Diskriminant nema korijene. Izvođenje formule za rješavanje kvadratne jednadžbe. Nepotpune kvadratne jednadžbe

Na primjer, za trinom \(3x^2+2x-7\), diskriminanta će biti jednaka \(2^2-4\cdot3\cdot(-7)=4+84=88\). A za trinom \(x^2-5x+11\), to će biti jednako \((-5)^2-4\cdot1\cdot11=25-44=-19\).

Diskriminanta se označava slovom \(D\) i često se koristi u rješavanju. Također, po vrijednosti diskriminanta možete razumjeti kako otprilike izgleda graf (vidi dolje).

Diskriminant i korijeni jednadžbe

Diskriminantna vrijednost pokazuje broj kvadratnih jednadžbi:
- ako je \(D\) pozitivan, jednačina će imati dva korijena;
- ako je \(D\) jednako nuli – postoji samo jedan korijen;
- ako je \(D\) negativan, nema korijena.

Ovo ne treba poučavati, nije teško doći do takvog zaključka, jednostavno znajući da je od diskriminanta (tj. \(\sqrt(D)\) uključeno u formulu za izračunavanje korijena jednadžbe : \(x_(1)=\)\(\ frac(-b+\sqrt(D))(2a)\) i \(x_(2)=\)\(\frac(-b-\sqrt(D) ))(2a)\) Pogledajmo svaki slučaj detaljnije.

Ako je diskriminant pozitivan

U ovom slučaju, njegov korijen je neki pozitivan broj, što znači da će \(x_(1)\) i \(x_(2)\) imati različita značenja, jer u prvoj formuli \(\sqrt(D)\ ) se dodaje , au drugom se oduzima. I imamo dva različita korijena.

Primjer : Pronađite korijene jednadžbe \(x^2+2x-3=0\)
Rješenje :

Odgovori : \(x_(1)=1\); \(x_(2)=-3\)

Ako je diskriminanta nula

Koliko će biti korijena ako je diskriminanta nula? Hajde da urazumimo.

Korijenske formule izgledaju ovako: \(x_(1)=\)\(\frac(-b+\sqrt(D))(2a)\) i \(x_(2)=\)\(\frac(- b- \sqrt(D))(2a)\) . A ako je diskriminant nula, onda je i njegov korijen jednak nuli. Onda se ispostavi:

\(x_(1)=\)\(\frac(-b+\sqrt(D))(2a)\) \(=\)\(\frac(-b+\sqrt(0))(2a)\) \(=\)\(\frac(-b+0)(2a)\) \(=\)\(\frac(-b)(2a)\)

\(x_(2)=\)\(\frac(-b-\sqrt(D))(2a)\) \(=\)\(\frac(-b-\sqrt(0))(2a) \) \(=\)\(\frac(-b-0)(2a)\) \(=\)\(\frac(-b)(2a)\)

Odnosno, vrijednosti korijena jednadžbe će biti iste, jer dodavanje ili oduzimanje nule ništa ne mijenja.

Primjer : Pronađite korijene jednadžbe \(x^2-4x+4=0\)
Rješenje :

\(x^2-4x+4=0\)

Zapisujemo koeficijente:

\(a=1;\) \(b=-4;\) \(c=4;\)

Izračunavamo diskriminanta koristeći formulu \(D=b^2-4ac\)

\(D=(-4)^2-4\cdot1\cdot4=\)
\(=16-16=0\)

Pronalaženje korijena jednadžbe

\(x_(1)=\) \(\frac(-(-4)+\sqrt(0))(2\cdot1)\)\(=\)\(\frac(4)(2)\) \(=2\)

\(x_(2)=\) \(\frac(-(-4)-\sqrt(0))(2\cdot1)\)\(=\)\(\frac(4)(2)\) \(=2\)


Dobili smo dva identična korijena, tako da nema smisla pisati ih odvojeno - pišemo ih kao jedan.

Odgovori : \(x=2\)

Formule za korijene kvadratne jednadžbe. Razmatraju se slučajevi realnih, višestrukih i složenih korijena. Faktoriranje kvadratnog trinoma. Geometrijska interpretacija. Primjeri određivanja korijena i faktoringa.

Osnovne formule

Razmotrimo kvadratnu jednačinu:
(1) .
Korijeni kvadratne jednadžbe(1) određuju se formulama:
; .
Ove formule mogu se kombinirati na sljedeći način:
.
Kada su korijeni kvadratne jednadžbe poznati, tada se polinom drugog stepena može predstaviti kao proizvod faktora (faktoriziranih):
.

Zatim pretpostavljamo da su to realni brojevi.
Hajde da razmotrimo diskriminanta kvadratne jednačine:
.
Ako je diskriminant pozitivan, tada kvadratna jednadžba (1) ima dva različita realna korijena:
; .
Tada faktorizacija kvadratnog trinoma ima oblik:
.
Ako je diskriminant jednak nuli, tada kvadratna jednadžba (1) ima dva višestruka (jednaka) realna korijena:
.
Faktorizacija:
.
Ako je diskriminanta negativna, tada kvadratna jednadžba (1) ima dva kompleksna konjugirana korijena:
;
.
Ovdje je imaginarna jedinica, ;
i su stvarni i imaginarni dijelovi korijena:
; .
Onda

.

Grafička interpretacija

Ako gradite graf funkcije
,
što je parabola, tada će tačke presjeka grafa sa osom biti korijeni jednadžbe
.
Na , graf siječe x-osu (os) u dvije tačke.
Kada je , graf dodiruje x-osu u jednoj tački.
Kada je , graf ne prelazi x-osu.

U nastavku su primjeri takvih grafikona.

Korisne formule vezane za kvadratne jednadžbe

(f.1) ;
(f.2) ;
(f.3) .

Izvođenje formule za korijene kvadratne jednadžbe

Izvodimo transformacije i primjenjujemo formule (f.1) i (f.3):




,
Gdje
; .

Dakle, dobili smo formulu za polinom drugog stepena u obliku:
.
Ovo pokazuje da je jednadžba

izvedeno u
i .
To jest, i su korijeni kvadratne jednadžbe
.

Primjeri određivanja korijena kvadratne jednadžbe

Primjer 1


(1.1) .

Rješenje


.
Upoređujući s našom jednadžbom (1.1), nalazimo vrijednosti koeficijenata:
.
Pronalazimo diskriminanta:
.
Pošto je diskriminanta pozitivan, jednačina ima dva realna korijena:
;
;
.

Iz ovoga dobijamo faktorizaciju kvadratnog trinoma:

.

Grafikon funkcije y = 2 x 2 + 7 x + 3 siječe x-osu u dvije tačke.

Nacrtajmo funkciju
.
Graf ove funkcije je parabola. Presijeca apscisnu osu (os) u dvije tačke:
i .
Ove tačke su korijeni originalne jednadžbe (1.1).

Odgovori

;
;
.

Primjer 2

Pronađite korijene kvadratne jednadžbe:
(2.1) .

Rješenje

Napišimo kvadratnu jednačinu u opštem obliku:
.
Upoređujući s originalnom jednadžbom (2.1), nalazimo vrijednosti koeficijenata:
.
Pronalazimo diskriminanta:
.
Pošto je diskriminanta nula, jednačina ima dva višestruka (jednaka) korijena:
;
.

Tada faktorizacija trinoma ima oblik:
.

Grafikon funkcije y = x 2 - 4 x + 4 dodiruje x-osu u jednoj tački.

Nacrtajmo funkciju
.
Graf ove funkcije je parabola. Dodiruje x-osu (os) u jednoj tački:
.
Ova tačka je korijen originalne jednačine (2.1). Zato što se ovaj korijen rastavlja dva puta:
,
tada se takav korijen obično naziva višestrukim. To jest, oni vjeruju da postoje dva jednaka korijena:
.

Odgovori

;
.

Primjer 3

Pronađite korijene kvadratne jednadžbe:
(3.1) .

Rješenje

Napišimo kvadratnu jednačinu u opštem obliku:
(1) .
Prepišimo originalnu jednačinu (3.1):
.
Upoređujući sa (1), nalazimo vrijednosti koeficijenata:
.
Pronalazimo diskriminanta:
.
Diskriminant je negativan, . Stoga nema pravih korijena.

Možete pronaći složene korijene:
;
;
.

Onda


.

Grafikon funkcije ne prelazi x-osu. Nema pravih korena.

Nacrtajmo funkciju
.
Graf ove funkcije je parabola. Ne siječe x-os (os). Stoga nema pravih korijena.

Odgovori

Nema pravih korena. Složeni korijeni:
;
;
.

Kvadratna jednadžba - lako riješiti! *U daljem tekstu “KU”. Prijatelji, čini se da u matematici ne može biti ništa jednostavnije od rješavanja takve jednačine. Ali nešto mi je govorilo da mnogi ljudi imaju problema s njim. Odlučio sam da vidim koliko utisaka na zahtjev Yandex daje mjesečno. Evo šta se desilo, pogledajte:


Šta to znači? To znači da oko 70.000 ljudi mjesečno traži ove informacije, kakve veze ovo ljeto ima i šta će se među njima dogoditi školske godine— biće duplo više zahteva. To nije iznenađujuće, jer oni momci i djevojke koji su davno završili školu i spremaju se za Jedinstveni državni ispit traže ove informacije, a i školarci se trude da osvježe svoje pamćenje.

Uprkos činjenici da postoji mnogo sajtova koji vam govore kako da rešite ovu jednačinu, odlučio sam da dam svoj doprinos i objavim materijal. Prvo, želim da posjetitelji dolaze na moju stranicu na osnovu ovog zahtjeva; drugo, u drugim člancima, kada se pojavi tema “KU”, dat ću link do ovog članka; treće, reći ću vam nešto više o njegovom rješenju nego što se obično navodi na drugim stranicama. Hajde da počnemo! Sadržaj članka:

Kvadratna jednačina je jednačina oblika:

gdje su koeficijenti a,bi c su proizvoljni brojevi, sa a≠0.

IN školski kurs materijal je dat u sljedećem obliku - jednadžbe su uslovno podijeljene u tri klase:

1. Imaju dva korijena.

2. *Imajte samo jedan korijen.

3. Nemaju korijene. Ovdje je posebno vrijedno napomenuti da oni nemaju prave korijene

Kako se izračunavaju korijeni? Samo!

Izračunavamo diskriminanta. Ispod ove "strašne" riječi krije se vrlo jednostavna formula:

Formule korijena su sljedeće:

*Ove formule morate znati napamet.

Možete odmah zapisati i riješiti:

primjer:


1. Ako je D > 0, onda jednačina ima dva korijena.

2. Ako je D = 0, onda jednačina ima jedan korijen.

3. Ako D< 0, то уравнение не имеет действительных корней.

Pogledajmo jednačinu:


S tim u vezi, kada je diskriminanta jednaka nuli, školski kurs kaže da se dobija jedan korijen, ovdje je jednak devet. Sve je tačno, tako je, ali...

Ova ideja je donekle netačna. U stvari, postoje dva korijena. Da, da, nemojte se iznenaditi, dobijate dva jednaka korijena, a da budemo matematički precizni, onda bi odgovor trebao pisati dva korijena:

x 1 = 3 x 2 = 3

Ali ovo je tako - mala digresija. U školi možete to zapisati i reći da postoji jedan korijen.

Sada sljedeći primjer:


Kao što znamo, korijen negativan broj se ne ekstrahuje, pa se rješenja u u ovom slučaju br.

To je cijeli proces odlučivanja.

Kvadratna funkcija.

Ovo pokazuje kako rješenje izgleda geometrijski. Ovo je izuzetno važno razumjeti (u budućnosti ćemo u jednom od članaka detaljno analizirati rješenje kvadratne nejednakosti).

Ovo je funkcija oblika:

gdje su x i y varijable

a, b, c – dati brojevi, sa a ≠ 0

Grafikon je parabola:

Odnosno, ispada da rješavanje kvadratne jednadžbe na "y" jednak nuli nalazimo presečne tačke parabole sa x osom. Mogu postojati dvije od ovih tačaka (diskriminanta je pozitivna), jedna (diskriminanta je nula) i nijedna (diskriminanta je negativna). Detalji o kvadratna funkcija Možete pogledatičlanak Inna Feldman.

Pogledajmo primjere:

Primjer 1: Riješi 2x 2 +8 x–192=0

a=2 b=8 c= –192

D=b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Odgovor: x 1 = 8 x 2 = –12

*Moguće je odmah podijeliti lijevu i desnu stranu jednačine sa 2, odnosno pojednostaviti je. Proračuni će biti lakši.

Primjer 2: Odluči se x 2–22 x+121 = 0

a=1 b=–22 c=121

D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

Otkrili smo da je x 1 = 11 i x 2 = 11

U odgovoru je dozvoljeno napisati x = 11.

Odgovor: x = 11

Primjer 3: Odluči se x 2 –8x+72 = 0

a=1 b= –8 c=72

D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

Diskriminant je negativan, nema rješenja u realnim brojevima.

Odgovor: nema rješenja

Diskriminant je negativan. Postoji rješenje!

Ovdje ćemo govoriti o rješavanju jednadžbe u slučaju kada se dobije negativan diskriminant. Znate li išta o kompleksnim brojevima? Ovdje neću ulaziti u detalje zašto i gdje su nastali i koja je njihova specifična uloga i neophodnost u matematici ovo je tema za veliki poseban članak.

Koncept kompleksnog broja.

Malo teorije.

Kompleksni broj z je broj oblika

z = a + bi

gdje su a i b realni brojevi, i je takozvana imaginarna jedinica.

a+bi – ovo je JEDAN BROJ, a ne dodatak.

Imaginarna jedinica jednaka je korijenu minus jedan:

Sada razmotrite jednačinu:


Dobijamo dva konjugirana korijena.

Nepotpuna kvadratna jednadžba.

Razmotrimo posebne slučajeve, to je kada je koeficijent “b” ili “c” jednak nuli (ili su oba jednaka nuli). Oni se mogu lako riješiti bez ikakvih diskriminatornih pitanja.

Slučaj 1. Koeficijent b = 0.

Jednačina postaje:

transformirajmo:

primjer:

4x 2 –16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = –2

Slučaj 2. Koeficijent c = 0.

Jednačina postaje:

Transformirajmo i faktorizirajmo:

*Proizvod je jednak nuli kada je barem jedan od faktora jednak nuli.

primjer:

9x 2 –45x = 0 => 9x (x–5) =0 => x = 0 ili x–5 =0

x 1 = 0 x 2 = 5

Slučaj 3. Koeficijenti b = 0 i c = 0.

Ovdje je jasno da će rješenje jednadžbe uvijek biti x = 0.

Korisna svojstva i obrasci koeficijenata.

Postoje svojstva koja vam omogućavaju rješavanje jednadžbi s velikim koeficijentima.

Ax 2 + bx+ c=0 jednakost važi

a + b+ c = 0, To

- ako za koeficijente jednačine Ax 2 + bx+ c=0 jednakost važi

a+ s =b, To

Ova svojstva pomažu u rješavanju određene vrste jednadžbe.

Primjer 1: 5001 x 2 –4995 x – 6=0

Zbir kvota je 5001+( 4995)+( 6) = 0, što znači

Primjer 2: 2501 x 2 +2507 x+6=0

Jednakost važi a+ s =b, Sredstva

Pravilnosti koeficijenata.

1. Ako je u jednačini ax 2 + bx + c = 0 koeficijent “b” jednak (a 2 +1), a koeficijent “c” brojčano jednak koeficijentu “a”, tada su njegovi korijeni jednaki

ax 2 + (a 2 +1)∙x+ a= 0 = > x 1 = –a x 2 = –1/a.

Primjer. Razmotrimo jednačinu 6x 2 + 37x + 6 = 0.

x 1 = –6 x 2 = –1/6.

2. Ako je u jednačini ax 2 – bx + c = 0 koeficijent “b” jednak (a 2 +1), a koeficijent “c” brojčano jednak koeficijentu “a”, tada su njegovi korijeni jednaki

ax 2 – (a 2 +1)∙x+ a= 0 = > x 1 = a x 2 = 1/a.

Primjer. Razmotrimo jednačinu 15x 2 –226x +15 = 0.

x 1 = 15 x 2 = 1/15.

3. Ako u jednadžbi ax 2 + bx – c = 0 koeficijent “b” je jednako (a 2 – 1), i koeficijent “c” numerički jednak koeficijentu “a”, tada su njegovi korijeni jednaki

ax 2 + (a 2 –1)∙x – a= 0 = > x 1 = – a x 2 = 1/a.

Primjer. Razmotrimo jednačinu 17x 2 +288x – 17 = 0.

x 1 = – 17 x 2 = 1/17.

4. Ako je u jednačini ax 2 – bx – c = 0 koeficijent “b” jednak (a 2 – 1), a koeficijent c brojčano jednak koeficijentu “a”, tada su njegovi korijeni jednaki

ax 2 – (a 2 –1)∙x – a= 0 = > x 1 = a x 2 = – 1/a.

Primjer. Razmotrimo jednačinu 10x 2 – 99x –10 = 0.

x 1 = 10 x 2 = – 1/10

Vietin teorem.

Vietina teorema je dobila ime po poznatom francuskom matematičaru Francois Vieti. Koristeći Vietin teorem, možemo izraziti zbir i proizvod korijena proizvoljnog KU u terminima njegovih koeficijenata.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

Ukupno, broj 14 daje samo 5 i 9. Ovo su korijeni. Uz određenu vještinu, koristeći prikazanu teoremu, možete odmah usmeno riješiti mnoge kvadratne jednadžbe.

Osim toga, Vietin teorem. Pogodno je po tome što se nakon rješavanja kvadratne jednadžbe na uobičajen način (preko diskriminanta) mogu provjeriti rezultirajući korijeni. Preporučujem da to radite uvijek.

NAČIN TRANSPORTA

Ovom metodom koeficijent “a” se množi sa slobodnim pojmom, kao da mu je “bačen”, zbog čega se naziva metoda "transfera". Ova metoda se koristi kada se korijeni jednadžbe mogu lako pronaći pomoću Vietine teoreme i, što je najvažnije, kada je diskriminanta tačan kvadrat.

Ako A± b+c≠ 0, tada se koristi tehnika prijenosa, na primjer:

2X 2 – 11x+ 5 = 0 (1) => X 2 – 11x+ 10 = 0 (2)

Koristeći Vietinu teoremu u jednačini (2), lako je odrediti da je x 1 = 10 x 2 = 1

Rezultirajući korijeni jednadžbe moraju se podijeliti sa 2 (budući da su dva "izbačena" iz x 2), dobijamo

x 1 = 5 x 2 = 0,5.

Šta je obrazloženje? Pogledaj šta se dešava.

Diskriminante jednačina (1) i (2) su jednake:

Ako pogledate korijene jednadžbi, dobit ćete samo različite nazivnike, a rezultat ovisi upravo o koeficijentu x 2:


Drugi (modificirani) ima korijene koji su 2 puta veći.

Stoga, rezultat dijelimo sa 2.

*Ako prebacimo trojku, rezultat ćemo podijeliti sa 3, itd.

Odgovor: x 1 = 5 x 2 = 0,5

Sq. ur-ie i Jedinstveni državni ispit.

Reći ću vam ukratko o njegovoj važnosti - MORATE MOĆI DA ODLUČITE brzo i bez razmišljanja, morate znati formule korijena i diskriminanata napamet. Mnogi problemi uključeni u zadaće Jedinstvenog državnog ispita svode se na rješavanje kvadratne jednačine (uključujući i geometrijske).

Nešto vredno pažnje!

1. Oblik pisanja jednačine može biti „implicitan“. Na primjer, moguć je sljedeći unos:

15+ 9x 2 - 45x = 0 ili 15x+42+9x 2 - 45x=0 ili 15 -5x+10x 2 = 0.

Morate ga dovesti standardni pogled(da se ne zbunite prilikom odlučivanja).

2. Zapamtite da je x nepoznata veličina i može se označiti bilo kojim drugim slovom - t, q, p, h i drugim.

IN modernog društva sposobnost izvođenja operacija sa jednačinama koje sadrže promjenljivu na kvadrat može biti korisna u mnogim područjima aktivnosti i široko se koristi u praksi u naučnom i tehničkom razvoju. Dokaz za to se može naći u dizajnu marine i riječni brodovi, avioni i projektili. Koristeći takve proračune, trajektorije kretanja najviše različita tijela, uključujući svemirske objekte. Primjeri sa rješenjem kvadratne jednačine koriste se ne samo u ekonomskom predviđanju, u projektovanju i izgradnji objekata, već iu najobičnijim svakodnevnim okolnostima. Možda će biti potrebni u planinarska putovanja, na sportskim priredbama, u prodavnicama tokom kupovine iu drugim vrlo čestim situacijama.

Podijelimo izraz na njegove sastavne faktore

Stepen jednačine je određen maksimalnom vrijednošću stepena varijable koju izraz sadrži. Ako je jednako 2, onda se takva jednadžba naziva kvadratnom.

Ako govorimo jezikom formula, onda se naznačeni izrazi, ma kako izgledali, uvijek mogu dovesti u formu kada lijeva strana izraz se sastoji od tri pojma. Među njima: ax 2 (tj. varijabla na kvadratu sa svojim koeficijentom), bx (nepoznata bez kvadrata sa svojim koeficijentom) i c (slobodna komponenta, odnosno običan broj). Sve ovo na desnoj strani jednako je 0. U slučaju kada takvom polinomu nedostaje jedan od njegovih sastavnih članova, sa izuzetkom ose 2, naziva se nepotpuna kvadratna jednačina. Prvo treba razmotriti primjere s rješavanjem takvih problema, vrijednosti varijabli u kojima je lako pronaći.

Ako izraz izgleda tako da izraz na desnoj strani ima dva člana, tačnije ax 2 i bx, najlakši način da pronađete x je stavljanje varijable van zagrada. Sada će naša jednadžba izgledati ovako: x(ax+b). Zatim, postaje očigledno da je ili x=0, ili se problem svodi na pronalaženje varijable iz sljedećeg izraza: ax+b=0. Ovo je diktirano jednim od svojstava množenja. Pravilo kaže da proizvod dva faktora rezultira 0 samo ako je jedan od njih nula.

Primjer

x=0 ili 8x - 3 = 0

Kao rezultat, dobijamo dva korijena jednadžbe: 0 i 0,375.

Jednačine ove vrste mogu opisati kretanje tijela pod uticajem gravitacije, koja su se počela kretati iz određene tačke uzete kao ishodište koordinata. Ovdje matematička notacija poprima sljedeći oblik: y = v 0 t + gt 2 /2. Zamjenom potrebnih vrijednosti, izjednačavanjem desne strane sa 0 i pronalaženjem mogućih nepoznanica, možete saznati vrijeme koje prolazi od trenutka kada se tijelo diže do trenutka kada pada, kao i mnoge druge veličine. Ali o tome ćemo kasnije.

Faktoriranje izraza

Gore opisano pravilo omogućava rješavanje ovih problema na više načina teški slučajevi. Pogledajmo primjere rješavanja kvadratnih jednadžbi ovog tipa.

X 2 - 33x + 200 = 0

Ovaj kvadratni trinom je potpun. Prvo, transformirajmo izraz i činimo ga faktorima. Ima ih dva: (x-8) i (x-25) = 0. Kao rezultat, imamo dva korijena 8 i 25.

Primjeri rješavanja kvadratnih jednadžbi u 9. razredu omogućavaju ovoj metodi da pronađe varijablu u izrazima ne samo drugog, već čak i trećeg i četvrtog reda.

Na primjer: 2x 3 + 2x 2 - 18x - 18 = 0. Kada se desna strana rastavlja na faktore s promjenljivom, postoje tri od njih, odnosno (x+1), (x-3) i (x+ 3).

Kao rezultat, postaje očigledno da ova jednadžba ima tri korijena: -3; -1; 3.

Kvadratni korijen

Još jedan slučaj nepotpuna jednačina drugi red je izraz predstavljen u jeziku slova na način da desni deo je konstruisan od komponenti ax 2 i c. Ovdje, da bi se dobila vrijednost varijable, slobodni član se prenosi na desnu stranu, a nakon toga se izdvaja iz obje strane jednakosti Kvadratni korijen. Treba napomenuti da u ovom slučaju obično postoje dva korijena jednačine. Jedini izuzetak mogu biti jednakosti koje uopće ne sadrže pojam sa, gdje je varijabla jednaka nuli, kao i varijante izraza kada je desna strana negativna. U potonjem slučaju uopće nema rješenja, jer se gore navedene radnje ne mogu izvesti s korijenima. Treba razmotriti primjere rješenja kvadratnih jednačina ovog tipa.

U ovom slučaju, korijeni jednadžbe će biti brojevi -4 i 4.

Proračun površine zemljišta

Potreba za ovakvim proračunima pojavila se još u antičko doba, jer je razvoj matematike u tim dalekim vremenima u velikoj mjeri bio određen potrebom da se s najvećom preciznošću odrede površine i perimetri zemljišnih parcela.

Trebalo bi razmotriti i primjere rješavanja kvadratnih jednačina zasnovanih na problemima ove vrste.

Dakle, recimo da postoji pravougaona parcela čija je dužina 16 metara veća od širine. Trebali biste pronaći dužinu, širinu i obim lokacije ako znate da je njegova površina 612 m2.

Za početak, krenimo prvo potrebnu jednačinu. Označimo sa x širinu površine, tada će njena dužina biti (x+16). Iz napisanog proizilazi da je površina određena izrazom x(x+16), koji je, prema uslovima našeg zadatka, 612. To znači da je x(x+16) = 612.

Rješavanje kompletnih kvadratnih jednadžbi, a ovaj izraz je upravo to, ne može se raditi na isti način. Zašto? Iako lijeva strana još uvijek sadrži dva faktora, njihov proizvod uopće nije jednak 0, pa se ovdje koriste različite metode.

Diskriminantno

Prije svega, napravimo potrebne transformacije izgled ovog izraza će izgledati ovako: x 2 + 16x - 612 = 0. To znači da smo dobili izraz u obliku koji odgovara prethodno navedenom standardu, gdje je a=1, b=16, c=-612.

Ovo bi mogao biti primjer rješavanja kvadratnih jednadžbi pomoću diskriminanta. Ovdje se vrše potrebni proračuni prema šemi: D = b 2 - 4ac. Ova pomoćna veličina ne samo da omogućava pronalaženje traženih količina u jednačini drugog reda, već i određuje količinu moguće opcije. Ako je D>0, postoje dva; za D=0 postoji jedan korijen. U slučaju D<0, никаких шансов для решения у уравнения вообще не имеется.

O korijenima i njihovoj formuli

U našem slučaju, diskriminanta je jednaka: 256 - 4(-612) = 2704. Ovo sugerira da naš problem ima odgovor. Ako znate k, rješavanje kvadratnih jednadžbi mora se nastaviti pomoću formule u nastavku. Omogućava vam izračunavanje korijena.

To znači da je u prikazanom slučaju: x 1 =18, x 2 =-34. Druga opcija u ovoj dilemi ne može biti rješenje, jer se dimenzije parcele ne mogu mjeriti u negativnim veličinama, što znači da je x (odnosno širina parcele) 18 m. Odavde izračunavamo dužinu: 18 +16=34, a obim 2(34+18)=104(m2).

Primjeri i zadaci

Nastavljamo naše proučavanje kvadratnih jednadžbi. Primjeri i detaljna rješenja nekoliko njih bit će dati u nastavku.

1) 15x 2 + 20x + 5 = 12x 2 + 27x + 1

Premjestimo sve na lijevu stranu jednakosti, izvršimo transformaciju, odnosno dobićemo onu vrstu jednačine koja se obično naziva standardnom i izjednačiti je sa nulom.

15x 2 + 20x + 5 - 12x 2 - 27x - 1 = 0

Sabiranjem sličnih odredimo diskriminanta: D = 49 - 48 = 1. To znači da će naša jednadžba imati dva korijena. Izračunajmo ih prema gornjoj formuli, što znači da će prvi od njih biti jednak 4/3, a drugi 1.

2) A sada da riješimo misterije druge vrste.

Hajde da saznamo ima li ovdje korijena x 2 - 4x + 5 = 1? Da bismo dobili sveobuhvatan odgovor, smanjimo polinom na odgovarajući uobičajeni oblik i izračunajmo diskriminant. U gornjem primjeru nije potrebno rješavati kvadratnu jednačinu, jer to uopće nije suština problema. U ovom slučaju, D = 16 - 20 = -4, što znači da zaista nema korijena.

Vietin teorem

Pogodno je rješavati kvadratne jednadžbe koristeći gornje formule i diskriminant, kada se iz vrijednosti potonjeg uzme kvadratni korijen. Ali to se ne dešava uvijek. Međutim, u ovom slučaju postoji mnogo načina da se dobiju vrijednosti varijabli. Primjer: rješavanje kvadratnih jednadžbi pomoću Vietine teoreme. Ime je dobila po onom koji je živeo u 16. veku u Francuskoj i napravio briljantnu karijeru zahvaljujući njegovom matematičkom talentu i vezama na dvoru. Njegov portret se može vidjeti u članku.

Obrazac koji je slavni Francuz uočio bio je sljedeći. On je dokazao da se korijeni jednadžbe numerički sabiraju na -p=b/a, a njihov proizvod odgovara q=c/a.

Pogledajmo sada konkretne zadatke.

3x 2 + 21x - 54 = 0

Radi jednostavnosti, transformirajmo izraz:

x 2 + 7x - 18 = 0

Koristimo Vietin teorem, ovo će nam dati sljedeće: zbir korijena je -7, a njihov proizvod je -18. Odavde dobijamo da su korijeni jednadžbe brojevi -9 i 2. Nakon provjere, uvjerit ćemo se da se ove vrijednosti varijabli zaista uklapaju u izraz.

Parabola graf i jednadžba

Koncepti kvadratne funkcije i kvadratne jednadžbe su usko povezani. Primjeri za to su već navedeni ranije. Pogledajmo sada neke matematičke zagonetke malo detaljnije. Bilo koja jednačina opisanog tipa može se vizualno prikazati. Takav odnos, nacrtan kao graf, naziva se parabola. Njegove različite vrste prikazane su na donjoj slici.

Svaka parabola ima vrh, odnosno tačku iz koje izlaze njene grane. Ako je a>0, idu visoko do beskonačnosti, a kada je a<0, они рисуются вниз. Простейшим примером подобной зависимости является функция y = x 2 . В данном случае в уравнении x 2 =0 неизвестное может принимать только одно значение, то есть х=0, а значит существует только один корень. Это неудивительно, ведь здесь D=0, потому что a=1, b=0, c=0. Выходит формула корней (точнее одного корня) квадратного уравнения запишется так: x = -b/2a.

Vizuelni prikazi funkcija pomažu u rješavanju svih jednadžbi, uključujući one kvadratne. Ova metoda se naziva grafička. A vrijednost varijable x je koordinata apscise u tačkama gdje se linija grafikona seče sa 0x. Koordinate vrha se mogu pronaći pomoću formule koja je upravo data x 0 = -b/2a. I zamjenom rezultirajuće vrijednosti u originalnu jednadžbu funkcije, možete saznati y 0, odnosno drugu koordinatu vrha parabole, koja pripada osi ordinate.

Presjek grana parabole sa osom apscise

Postoji mnogo primjera rješavanja kvadratnih jednadžbi, ali postoje i opći obrasci. Pogledajmo ih. Jasno je da je presjek grafa sa 0x osom za a>0 moguć samo ako 0 ima negativne vrijednosti. I za a<0 координата у 0 должна быть положительна. Для указанных вариантов D>0. Inače D<0. А когда D=0, вершина параболы расположена непосредственно на оси 0х.

Iz grafa parabole možete odrediti i korijene. Vrijedi i suprotno. To jest, ako nije lako dobiti vizualni prikaz kvadratne funkcije, možete izjednačiti desnu stranu izraza sa 0 i riješiti rezultirajuću jednadžbu. A znajući tačke preseka sa 0x osom, lakše je konstruisati graf.

Iz istorije

Koristeći jednadžbe koje sadrže kvadratnu varijablu, u starim danima nisu samo pravili matematičke proračune i određivali površine geometrijskih figura. Drevnima su takvi proračuni bili potrebni za velika otkrića u oblastima fizike i astronomije, kao i za pravljenje astroloških prognoza.

Kao što moderni naučnici sugerišu, stanovnici Babilona bili su među prvima koji su rešili kvadratne jednačine. To se dogodilo četiri veka pre naše ere. Naravno, njihovi proračuni su se radikalno razlikovali od onih koji su trenutno prihvaćeni i ispali su mnogo primitivniji. Na primjer, mezopotamski matematičari nisu imali pojma o postojanju negativnih brojeva. Nisu im bile poznate i druge suptilnosti koje zna svaki savremeni školarac.

Možda čak i ranije od babilonskih naučnika, mudrac iz Indije Baudhayama počeo je rješavati kvadratne jednačine. To se dogodilo oko osam vekova pre Hristove ere. Istina, jednačine drugog reda, metode za rješavanje koje je on dao, bile su najjednostavnije. Osim njega, za slična pitanja nekada su se zanimali i kineski matematičari. U Evropi su kvadratne jednačine počele da se rešavaju tek početkom 13. veka, ali su ih kasnije u svojim radovima koristili tako veliki naučnici kao što su Newton, Descartes i mnogi drugi.