Specifična svojstva neorganskih kiselina. Klasifikacija, priprema i svojstva kiselina

Kiseline su pozvani složene supstance, čiji molekuli uključuju atome vodika koji se mogu zamijeniti ili zamijeniti za atome metala i kiselinski ostatak.

Na osnovu prisustva ili odsustva kiseonika u molekuli, kiseline se dele na one koje sadrže kiseonik(H2SO4 sumporna kiselina, H 2 SO 3 sumporna kiselina, HNO 3 Azotna kiselina, H 3 PO 4 fosforna kiselina, H 2 CO 3 ugljične kiseline, H 2 SiO 3 silicijum kiselina) i bez kiseonika(HF fluorovodonična kiselina, HCl hlorovodonična kiselina ( hlorovodonične kiseline), HBr bromovodična kiselina, HI jodovodična kiselina, H 2 S hidrosulfidna kiselina).

U zavisnosti od broja atoma vodika u molekulu kiseline, kiseline su jednobazne (sa 1 ​​H atoma), dvobazne (sa 2 H atoma) i trobazne (sa 3 H atoma). Na primjer, dušična kiselina HNO 3 je jednobazna, jer njena molekula sadrži jedan atom vodika, sumpornu kiselinu H 2 SO 4 dvobazni, itd.

Postoji vrlo malo neorganskih spojeva koji sadrže četiri atoma vodika koji se mogu zamijeniti metalom.

Dio molekule kiseline bez vodika naziva se kiselinski ostatak.

Kiseli ostaci mogu se sastojati od jednog atoma (-Cl, -Br, -I) - to su jednostavni kiseli ostaci, ili se mogu sastojati od grupe atoma (-SO 3, -PO 4, -SiO 3) - to su složeni ostaci.

IN vodeni rastvori Tokom reakcija razmjene i supstitucije, kiseli ostaci se ne uništavaju:

H 2 SO 4 + CuCl 2 → CuSO 4 + 2 HCl

Reč anhidrid znači bezvodna, odnosno kiselina bez vode. Na primjer,

H 2 SO 4 – H 2 O → SO 3. Anoksične kiseline nemaju anhidride.

Kiseline su dobile ime po nazivu elementa koji tvori kiselinu (sredstvo za stvaranje kiseline) s dodatkom završetaka "naya" i rjeđe "vaya": H 2 SO 4 - sumporna; H 2 SO 3 – ugalj; H 2 SiO 3 – silicijum itd.

Element može formirati nekoliko kisikovih kiselina. U ovom slučaju, naznačeni završeci u nazivima kiselina bit će kada element pokazuje veću valenciju (molekula kiseline sadrži visok sadržaj atoma kisika). Ako element pokazuje nižu valenciju, završetak u nazivu kiseline će biti „prazan“: HNO 3 - dušik, HNO 2 - dušik.

Kiseline se mogu dobiti otapanjem anhidrida u vodi. Ako su anhidridi nerastvorljivi u vodi, kiselina se može dobiti djelovanjem druge jače kiseline na sol tražene kiseline. Ova metoda je tipična i za kisik i za kiseline bez kisika. Kiseline bez kisika se također dobivaju direktnom sintezom iz vodika i nemetala, nakon čega slijedi otapanje rezultirajućeg spoja u vodi:

H 2 + Cl 2 → 2 HCl;

H 2 + S → H 2 S.

Rastvori nastalih gasovitih supstanci HCl i H 2 S su kiseline.

U normalnim uslovima, kiseline postoje u tečnom i čvrstom stanju.

Hemijska svojstva kiselina

Otopine kiseline djeluju na indikatore. Sve kiseline (osim silicijumske) su visoko rastvorljive u vodi. Posebne supstance - indikatori vam omogućavaju da odredite prisustvo kiseline.

Indikatori su supstance složena struktura. Mijenjaju boju ovisno o interakciji s različitim hemikalije. U neutralnim rastvorima imaju jednu boju, u rastvorima baza imaju drugu boju. U interakciji s kiselinom mijenjaju boju: indikator metil narandže postaje crven, a lakmusov indikator također postaje crven.

Interakcija sa bazama s stvaranjem vode i soli, koja sadrži nepromijenjeni kiselinski ostatak (reakcija neutralizacije):

H 2 SO 4 + Ca(OH) 2 → CaSO 4 + 2 H 2 O.

Interakcija s baznim oksidima sa stvaranjem vode i soli (reakcija neutralizacije). Sol sadrži kiselinski ostatak kiseline koja je korištena u reakciji neutralizacije:

H 3 PO 4 + Fe 2 O 3 → 2 FePO 4 + 3 H 2 O.

Interakcija sa metalima. Da bi kiseline stupile u interakciju sa metalima, moraju biti ispunjeni određeni uslovi:

1. metal mora biti dovoljno aktivan u odnosu na kiseline (u nizu aktivnosti metala mora se nalaziti prije vodonika). Što se metal dalje nalazi u seriji aktivnosti, to je intenzivnije u interakciji sa kiselinama;

2. kiselina mora biti dovoljno jaka (odnosno sposobna da donira ione vodonika H+).

Kada curi hemijske reakcije kiseline s metalima, nastaje sol i oslobađa se vodik (osim interakcije metala s dušičnom i koncentriranom sumpornom kiselinom):

Zn + 2HCl → ZnCl 2 + H 2 ;

Cu + 4HNO 3 → CuNO 3 + 2 NO 2 + 2 H 2 O.

Imate još pitanja? Želite li saznati više o kiselinama?
Da biste dobili pomoć od tutora, registrujte se.
Prva lekcija je besplatna!

web stranicu, kada kopirate materijal u cijelosti ili djelomično, link na izvor je obavezan.

Kiseline su hemijska jedinjenja koja su sposobna da doniraju električki nabijeni vodikov jon (kation) i takođe prihvate dva elektrona u interakciji, što rezultira formiranjem kovalentne veze.

U ovom članku ćemo pogledati glavne kiseline koje se proučavaju u srednjoj školi. srednje škole, a također naučiti mnoge zanimljivosti o raznim kiselinama. Hajde da počnemo.

Kiseline: vrste

U hemiji postoji mnogo različitih kiselina koje imaju vrlo različita svojstva. Hemičari razlikuju kiseline prema sadržaju kiseonika, isparljivosti, rastvorljivosti u vodi, jačini, stabilnosti, bilo da su organske ili neorganska klasa hemijska jedinjenja. U ovom članku ćemo pogledati tabelu koja predstavlja najpoznatije kiseline. Tabela će vam pomoći da zapamtite naziv kiseline i njenu hemijsku formulu.

Dakle, sve je jasno vidljivo. Ova tabela prikazuje najpoznatije kiseline u hemijskoj industriji. Tabela će vam pomoći da zapamtite imena i formule mnogo brže.

Vodonik sulfidna kiselina

H 2 S je hidrosulfidna kiselina. Njegova posebnost je u tome što je i gas. Vodonik sulfid je veoma slabo rastvorljiv u vodi, a takođe je u interakciji sa mnogim metalima. Sumporovodikova kiselina pripada grupi "slabih kiselina", čije ćemo primjere razmotriti u ovom članku.

H 2 S ima blago slatkast ukus, a takođe i veoma oštar miris pokvarena jaja. U prirodi se može naći u prirodnim ili vulkanskim gasovima, a oslobađa se i prilikom raspadanja proteina.

Svojstva kiselina su vrlo raznolika; čak i ako je kiselina nezamjenjiva u industriji, može biti vrlo štetna za ljudsko zdravlje. Ova kiselina je veoma toksična za ljude. Kada se udahne mala količina vodonik sulfida, osoba se budi glavobolja, počinje jaka mučnina i vrtoglavica. Ako osoba udahne veliki broj H 2 S, može dovesti do napadaja, kome ili čak trenutne smrti.

Sumporna kiselina

H 2 SO 4 je jaka sumporna kiselina sa kojom se deca upoznaju na časovima hemije u 8. razredu. Hemijske kiseline kao što je sumporna kiselina su veoma jaki oksidanti. H 2 SO 4 djeluje kao oksidant na mnoge metale, kao i na bazične okside.

H 2 SO 4 u kontaktu sa kožom ili odjećom izaziva hemijske opekotine, međutim, nije tako toksičan kao sumporovodik.

Azotna kiselina

Jake kiseline su veoma važne u našem svetu. Primjeri takvih kiselina: HCl, H 2 SO 4, HBr, HNO 3. HNO 3 je dobro poznata azotna kiselina. Našao je široku primenu u industriji, kao i u poljoprivreda. Koristi se za izradu raznih đubriva, u nakitu, pri štampanju fotografija, u proizvodnji lijekovi i boje, kao i u vojnoj industriji.

Takve hemijske kiseline, kao i azot, veoma su štetni za organizam. Pare HNO 3 ostavljaju čireve i uzrokuju akutna upala i iritacija disajnih puteva.

Dušična kiselina

Dušična kiselina se često miješa sa dušičnom kiselinom, ali postoji razlika između njih. Činjenica je da je mnogo slabiji od dušika, ima potpuno drugačija svojstva i djelovanje na ljudski organizam.

HNO 2 je našao široku primenu u hemijskoj industriji.

Fluorovodonična kiselina

Fluorovodonična kiselina (ili fluorovodonik) je rastvor H 2 O sa HF. Formula kiseline je HF. Fluorovodonična kiselina se vrlo aktivno koristi u industriji aluminija. Koristi se za otapanje silikata, jetkanja silicijuma i silikatnog stakla.

Vodonik-fluorid je vrlo štetan za ljudski organizam i, ovisno o svojoj koncentraciji, može biti blagi narkotik. U slučaju kontakta s kožom, u početku nema promjena, ali nakon nekoliko minuta se mogu pojaviti. oštra bol i hemijske opekotine. Fluorovodonična kiselina je veoma štetna za životnu sredinu.

Hlorovodonična kiselina

HCl je hlorovodonik i jaka je kiselina. Hlorovodonik zadržava svojstva kiselina koje pripadaju grupi jakih kiselina. Kiselina je providna i bezbojna po izgledu, ali se dimi u vazduhu. Hlorovodonik se široko koristi u metalurškoj i prehrambenoj industriji.

Ova kiselina izaziva hemijske opekotine, ali je ulazak u oči posebno opasan.

Fosforna kiselina

Fosforna kiselina (H 3 PO 4) je po svojim svojstvima slaba kiselina. Ali čak i slabe kiseline mogu imati svojstva jakih. Na primjer, H 3 PO 4 se koristi u industriji za obnavljanje željeza od rđe. Osim toga, fosforna (ili ortofosforna) kiselina se široko koristi u poljoprivredi - od nje se proizvode mnoga različita gnojiva.

Svojstva kiselina su vrlo slična - gotovo svaka od njih je vrlo štetna za ljudski organizam, H 3 PO 4 nije izuzetak. Na primjer, ova kiselina također uzrokuje teške hemijske opekotine, krvarenje iz nosa i lomljenje zuba.

Ugljena kiselina

H 2 CO 3 je slaba kiselina. Dobija se otapanjem CO 2 ( ugljen-dioksid) u H 2 O (voda). Ugljena kiselina se koristi u biologiji i biohemiji.

Gustina raznih kiselina

Gustina kiselina zauzima važno mjesto u teorijskom i praktičnom dijelu hemije. Poznavajući gustinu, možete odrediti koncentraciju određene kiseline, riješiti probleme kemijskog proračuna i dodati ispravnu količinu kiseline kako biste završili reakciju. Gustoća bilo koje kiseline mijenja se ovisno o koncentraciji. Na primjer, što je veći procenat koncentracije, to je veća gustina.

Opća svojstva kiselina

Apsolutno sve kiseline jesu (odnosno, sastoje se od nekoliko elemenata periodnog sistema), a u svom sastavu nužno uključuju H (vodik). Zatim ćemo pogledati koji su uobičajeni:

  1. Sve kiseline koje sadrže kiseonik (u čijoj se formuli nalazi O) pri razgradnji tvore vodu, a i one bez kiseonika se razlažu u jednostavne supstance(na primjer, 2HF se razlaže na F 2 i H 2).
  2. Oksidirajuće kiseline reaguju sa svim metalima u nizu aktivnosti metala (samo onima koji se nalaze lijevo od H).
  3. Oni stupaju u interakciju s raznim solima, ali samo s onima koje je formirala još slabija kiselina.

Prema sopstvenim fizička svojstva kiseline se oštro razlikuju jedna od druge. Na kraju krajeva, oni mogu imati miris ili ne, a također mogu biti različiti agregatna stanja: tečni, gasoviti i čak čvrsti. Čvrste kiseline su veoma zanimljive za proučavanje. Primjeri takvih kiselina: C 2 H 2 0 4 i H 3 BO 3.

Koncentracija

Koncentracija je vrijednost koja određuje kvantitativni sastav bilo koje otopine. Na primjer, kemičari često moraju odrediti koliko je čiste sumporne kiseline prisutno u razrijeđenoj kiselini H 2 SO 4. Da bi to učinili, sipaju malu količinu razrijeđene kiseline u mjernu čašu, izvagaju je i određuju koncentraciju pomoću grafikona gustoće. Koncentracija kiselina je usko povezana s gustoćom; često, prilikom određivanja koncentracije, postoje računski problemi gdje je potrebno odrediti postotak čiste kiseline u otopini.

Klasifikacija svih kiselina prema broju H atoma u njihovoj hemijskoj formuli

Jedna od najpopularnijih klasifikacija je podjela svih kiselina na jednobazne, dvobazne i, shodno tome, trobazne kiseline. Primeri jednobaznih kiselina: HNO 3 (azotna), HCl (hlorovodonična), HF (fluorovodonična) i druge. Ove kiseline se nazivaju jednobaznim, jer sadrže samo jedan atom H. Takvih kiselina je mnogo, nemoguće je zapamtiti apsolutno svaku. Samo trebate zapamtiti da se kiseline također klasificiraju prema broju H atoma u njihovom sastavu. Slično su definirane i dvobazne kiseline. Primjeri: H 2 SO 4 (sumporni), H 2 S (vodonik sulfid), H 2 CO 3 (ugalj) i drugi. Tribazni: H 3 PO 4 (fosforni).

Osnovna klasifikacija kiselina

Jedna od najpopularnijih klasifikacija kiselina je njihova podjela na one koje sadrže kisik i bez kisika. Kako zapamtiti bez znanja hemijska formula tvari koje su kiseline koje sadrže kisik?

Sve kiseline bez kiseonika ne sadrže važan element O je kiseonik, ali sadrži H. Stoga se uz njihovo ime uvijek vezuje riječ “vodonik”. HCl je H 2 S - vodonik sulfid.

Ali možete napisati i formulu zasnovanu na nazivima kiselina koje sadrže kiseline. Na primjer, ako je broj O atoma u tvari 4 ili 3, nazivu se uvijek dodaje sufiks -n-, kao i završetak -aya-:

  • H 2 SO 4 - sumpor (broj atoma - 4);
  • H 2 SiO 3 - silicijum (broj atoma - 3).

Ako tvar ima manje od tri atoma kisika ili tri, tada se sufiks -ist- koristi u nazivu:

  • HNO 2 - azotni;
  • H 2 SO 3 - sumpor.

Opća svojstva

Sve kiseline imaju kiselkast i često blago metalni ukus. Ali postoje i druga slična svojstva koja ćemo sada razmotriti.

Postoje supstance koje se nazivaju indikatori. Indikatori mijenjaju boju, ili boja ostaje, ali se mijenja njena nijansa. Ovo se dešava kada na indikatore utiču druge supstance, kao što su kiseline.

Primjer promjene boje je tako poznati proizvod kao što su čaj i limunska kiselina. Kada se limun doda u čaj, čaj postepeno počinje da primetno svetli. To je zbog činjenice da limun sadrži limunsku kiselinu.

Ima i drugih primjera. Lakmus, koji u neutralnom okruženju ima ljubičasta boja pocrveni kada se doda hlorovodonična kiselina.

Kada su napetosti u nizu napetosti prije vodonika, oslobađaju se mjehurići plina - H. Međutim, ako se metal koji je u zateznoj seriji nakon H stavi u epruvetu s kiselinom, tada neće doći do reakcije, neće biti evolucija gasa. Dakle, bakar, srebro, živa, platina i zlato neće reagovati sa kiselinama.

U ovom članku smo ispitali najpoznatije kemijske kiseline, kao i njihova glavna svojstva i razlike.

7. Kiseline. Sol. Odnos između klasa neorganskih supstanci

7.1. Kiseline

Kiseline su elektroliti, pri čijoj disocijaciji nastaju samo vodikovi katjoni H+ kao pozitivno nabijeni joni (tačnije hidronijev ioni H 3 O+).

Druga definicija: kiseline su složene supstance koje se sastoje od atoma vodika i kiselih ostataka (tabela 7.1).

Tabela 7.1

Formule i nazivi nekih kiselina, kiselih ostataka i soli

Kisela formulaIme kiselineKiselinski ostatak (anion)Naziv soli (prosjek)
HFfluorovodonična (fluorična)F −Fluoridi
HClhlorovodonična (hlorovodonična)Cl −Hloridi
HBrBromovodičnaBr−bromidi
HIHidrojodidI −Jodidi
H2SHidrogen sulfidS 2−Sulfidi
H2SO3SumpornaSO 3 2 −Sulfiti
H2SO4SumpornaSO 4 2 −Sulfati
HNO2NitrogenousNO2−Nitriti
HNO3NitrogenNE 3 −Nitrati
H2SiO3SilicijumSiO 3 2 −Silikati
HPO 3MetafosfornaPO 3 −Metafosfati
H3PO4OrthophosphoricPO 4 3 −Ortofosfati (fosfati)
H4P2O7pirofosforna (bifosforna)P 2 O 7 4 −Pirofosfati (difosfati)
HMnO4ManganMnO 4 −Permanganati
H2CrO4ChromeCrO 4 2 −Hromati
H2Cr2O7DihromCr 2 O 7 2 −Dihromati (bihromati)
H2SeO4SelenSeO 4 2 −Selenati
H3BO3BornayaBO 3 3 −Ortoborati
HClOHipohlorniClO –Hipohloriti
HClO2HloridClO2−Hlorit
HClO3ChlorousClO3−Hlorati
HClO4HlorClO 4 −Perhlorati
H2CO3UgaljCO 3 3 −Karbonati
CH3COOHSirćeCH 3 COO −Acetati
HCOOHAntHCOO −Formiates

U normalnim uslovima, kiseline mogu biti čvrste (H 3 PO 4, H 3 BO 3, H 2 SiO 3) i tečne (HNO 3, H 2 SO 4, CH 3 COOH). Ove kiseline mogu postojati i pojedinačno (100% oblik) i u obliku razrijeđenih i koncentriranih otopina. Na primjer, H 2 SO 4 , HNO 3 , H 3 PO 4 , CH 3 COOH su poznati i pojedinačno iu rastvorima.

Određeni broj kiselina je poznat samo u rastvorima. Sve su to halogenidi vodonika (HCl, HBr, HI), sumporovodik H 2 S, cijanovodonik (cijanovodonik HCN), ugljena H 2 CO 3, sumporna H 2 SO 3 kiselina, koji su rastvori gasova u vodi. Na primjer, hlorovodonična kiselina je mešavina HCl i H 2 O, ugljena kiselina je mešavina CO 2 i H 2 O. Jasno je da je upotreba izraza „rastvor hlorovodonične kiseline“ netačna.

Većina kiselina je rastvorljiva u vodi; silicijumska kiselina H 2 SiO 3 je nerastvorljiva. Ogromna većina kiselina ima molekularnu strukturu. Primjeri strukturne formule kiseline:

U većini molekula kiselina koje sadrže kisik, svi atomi vodika su vezani za kisik. Ali postoje izuzeci:


Kiseline su klasifikovane prema nizu karakteristika (tabela 7.2).

Tabela 7.2

Klasifikacija kiselina

Klasifikacioni znakVrsta kiselinePrimjeri
Broj vodikovih jona nastalih pri potpunoj disocijaciji molekula kiselineMonobazaHCl, HNO3, CH3COOH
DibasicH2SO4, H2S, H2CO3
TribasicH3PO4, H3AsO4
Prisutnost ili odsustvo atoma kisika u molekuliSadrže kiseonik (kiseli hidroksidi, oksokiseline)HNO2, H2SiO3, H2SO4
Bez kiseonikaHF, H2S, HCN
Stepen disocijacije (jačina)Jaki (potpuno disocirani, jaki elektroliti)HCl, HBr, HI, H2SO4 (razrijeđen), HNO3, HClO3, HClO4, HMnO4, H2Cr2O7
Slab (djelimično disociran, slabi elektroliti)HF, HNO 2, H 2 SO 3, HCOOH, CH 3 COOH, H 2 SiO 3, H 2 S, HCN, H 3 PO 4, H 3 PO 3, HClO, HClO 2, H 2 CO 3, H 3 BO 3, H 2 SO 4 (konc)
Oksidativna svojstvaOksidirajuća sredstva zbog H+ jona (uslovno neoksidirajuće kiseline)HCl, HBr, HI, HF, H 2 SO 4 (dil), H 3 PO 4, CH 3 COOH
Oksidirajuća sredstva zbog anjona (oksidirajuće kiseline)HNO 3, HMnO 4, H 2 SO 4 (konc), H 2 Cr 2 O 7
Redukcioni agensi zbog anjonaHCl, HBr, HI, H 2 S (ali ne i HF)
Termička stabilnostPostoje samo u rješenjimaH 2 CO 3, H 2 SO 3, HClO, HClO 2
Lako se raspada kada se zagrejeH 2 SO 3 , HNO 3 , H 2 SiO 3
Termički stabilanH 2 SO 4 (konc), H 3 PO 4

Sve generalno Hemijska svojstva kiseline su uzrokovane prisustvom u njihovim vodenim otopinama viška vodikovih katjona H + (H 3 O +).

1. Zbog viška H+ jona, vodeni rastvori kiselina menjaju boju lakmus ljubičaste i metilnarandže u crvenu (fenolftalein ne menja boju i ostaje bezbojan). U vodenoj otopini slabe ugljične kiseline lakmus nije crven, već ružičast; otopina iznad taloga vrlo slabe silicijske kiseline uopće ne mijenja boju indikatora.

2. Kiseline stupaju u interakciju sa bazičnim oksidima, bazama i amfoterni hidroksidi, amonijak hidrat (vidi Poglavlje 6).

Primjer 7.1. Za izvođenje transformacije BaO → BaSO 4 možete koristiti: a) SO 2; b) H 2 SO 4; c) Na 2 SO 4; d) SO 3.

Rješenje. Transformacija se može izvesti pomoću H 2 SO 4:

BaO + H 2 SO 4 = BaSO 4 ↓ + H 2 O

BaO + SO 3 = BaSO 4

Na 2 SO 4 ne reaguje sa BaO, a u reakciji BaO sa SO 2 nastaje barijum sulfit:

BaO + SO 2 = BaSO 3

Odgovor: 3).

3. Kiseline reaguju sa amonijakom i njegovim vodenim rastvorima da formiraju amonijumove soli:

HCl + NH 3 = NH 4 Cl - amonijum hlorid;

H 2 SO 4 + 2NH 3 = (NH 4) 2 SO 4 - amonijum sulfat.

4. Neoksidirajuće kiseline reaguju sa metalima koji se nalaze u nizu aktivnosti do vodika da bi formirali so i oslobađali vodonik:

H 2 SO 4 (razrijeđen) + Fe = FeSO 4 + H 2

2HCl + Zn = ZnCl 2 = H 2

Interakcija oksidirajućih kiselina (HNO 3, H 2 SO 4 (konc)) sa metalima je vrlo specifična i razmatra se pri proučavanju hemije elemenata i njihovih spojeva.

5. Kiseline stupaju u interakciju sa solima. Reakcija ima niz karakteristika:

a) u većini slučajeva, kada jača kiselina reaguje sa soli slabije kiseline, nastaju sol slabe kiseline i slaba kiselina, ili, kako se kaže, jača kiselina istiskuje slabiju. Serija opadanja jačine kiselina izgleda ovako:

Primjeri reakcija koje se javljaju:

2HCl + Na 2 CO 3 = 2NaCl + H 2 O + CO 2

H 2 CO 3 + Na 2 SiO 3 = Na 2 CO 3 + H 2 SiO 3 ↓

2CH 3 COOH + K 2 CO 3 = 2CH 3 KUVANJE + H 2 O + CO 2

3H 2 SO 4 + 2K 3 PO 4 = 3K 2 SO 4 + 2H 3 PO 4

Nemojte međusobno djelovati, na primjer, KCl i H 2 SO 4 (razrijeđeni), NaNO 3 i H 2 SO 4 (razrijeđeni), K 2 SO 4 i HCl (HNO 3, HBr, HI), K 3 PO 4 i H 2 CO 3, CH 3 KUVANJE i H 2 CO 3;

b) u nekim slučajevima slabija kiselina istiskuje jaču iz soli:

CuSO 4 + H 2 S = CuS↓ + H 2 SO 4

3AgNO 3 (dil) + H 3 PO 4 = Ag 3 PO 4 ↓ + 3HNO 3.

Takve reakcije su moguće kada se precipitati nastalih soli ne otapaju u nastalim razrijeđenim jakim kiselinama (H 2 SO 4 i HNO 3);

c) u slučaju stvaranja precipitata koji su netopivi u jakim kiselinama, može doći do reakcije između jake kiseline i soli koju formira druga jaka kiselina:

BaCl 2 + H 2 SO 4 = BaSO 4 ↓ + 2HCl

Ba(NO 3) 2 + H 2 SO 4 = BaSO 4 ↓ + 2HNO 3

AgNO 3 + HCl = AgCl↓ + HNO 3

Primjer 7.2. Označite red koji sadrži formule tvari koje reagiraju sa H 2 SO 4 (razrijeđenim).

1) Zn, Al 2 O 3, KCl (p-p); 3) NaNO 3 (p-p), Na 2 S, NaF 2) Cu(OH) 2, K 2 CO 3, Ag; 4) Na 2 SO 3, Mg, Zn(OH) 2.

Rješenje. Sve supstance iz reda 4 interaguju sa H 2 SO 4 (dil):

Na 2 SO 3 + H 2 SO 4 = Na 2 SO 4 + H 2 O + SO 2

Mg + H 2 SO 4 = MgSO 4 + H 2

Zn(OH) 2 + H 2 SO 4 = ZnSO 4 + 2H 2 O

U redu 1) reakcija sa KCl (p-p) nije izvodljiva, u redu 2) - sa Ag, u redu 3) - sa NaNO 3 (p-p).

Odgovor: 4).

6. Koncentrirana sumporna kiselina se vrlo specifično ponaša u reakcijama sa solima. Ovo je nehlapljiva i termički stabilna kiselina, stoga istiskuje sve jake kiseline iz čvrstih (!) soli, jer su isparljivije od H2SO4 (konc):

KCl (tv) + H 2 SO 4 (konc.) KHSO 4 + HCl

2KCl (s) + H 2 SO 4 (konc.) K 2 SO 4 + 2HCl

Soli koje formiraju jake kiseline (HBr, HI, HCl, HNO 3, HClO 4) reaguju samo sa koncentriranom sumpornom kiselinom i samo kada su u čvrstom stanju

Primjer 7.3. Koncentrirana sumporna kiselina, za razliku od razrijeđene, reagira:

3) KNO 3 (tv);

Rješenje. Obe kiseline reaguju sa KF, Na 2 CO 3 i Na 3 PO 4, a samo H 2 SO 4 (konc.) reaguje sa KNO 3 (čvrstim).

Odgovor: 3).

Metode za proizvodnju kiselina su veoma raznolike.

Anoksične kiseline primiti:

  • otapanjem odgovarajućih gasova u vodi:

HCl (g) + H 2 O (l) → HCl (p-p)

H 2 S (g) + H 2 O (l) → H 2 S (rastvor)

  • iz soli zamjenom sa jačim ili manje hlapljivim kiselinama:

FeS + 2HCl = FeCl 2 + H 2 S

KCl (tv) + H 2 SO 4 (konc) = KHSO 4 + HCl

Na 2 SO 3 + H 2 SO 4 Na 2 SO 4 + H 2 SO 3

Kiseline koje sadrže kiseonik primiti:

  • raspuštanje odgovarajućeg kiseli oksidi u vodi, dok stepen oksidacije elementa koji stvara kiselinu u oksidu i kiselini ostaje isti (sa izuzetkom NO 2):

N2O5 + H2O = 2HNO3

SO 3 + H 2 O = H 2 SO 4

P 2 O 5 + 3H 2 O 2H 3 PO 4

  • oksidacija nemetala oksidirajućim kiselinama:

S + 6HNO 3 (konc) = H 2 SO 4 + 6NO 2 + 2H 2 O

  • istiskivanjem jake kiseline iz soli druge jake kiseline (ako se taloži talog netopiv u nastalim kiselinama):

Ba(NO 3) 2 + H 2 SO 4 (razrijeđen) = BaSO 4 ↓ + 2HNO 3

AgNO 3 + HCl = AgCl↓ + HNO 3

  • istiskivanjem hlapljive kiseline iz njenih soli manje hlapljivom kiselinom.

U tu svrhu najčešće se koristi nehlapljiva, termički stabilna koncentrirana sumporna kiselina:

NaNO 3 (tv) + H 2 SO 4 (konc.) NaHSO 4 + HNO 3

KClO 4 (tv) + H 2 SO 4 (konc.) KHSO 4 + HClO 4

  • istiskivanje slabije kiseline iz njenih soli jačom kiselinom:

Ca 3 (PO 4) 2 + 3H 2 SO 4 = 3CaSO 4 ↓ + 2H 3 PO 4

NaNO 2 + HCl = NaCl + HNO 2

K 2 SiO 3 + 2HBr = 2KBr + H 2 SiO 3 ↓

Kiseline su složene tvari čiji molekuli uključuju atome vodika koji se mogu zamijeniti ili zamijeniti atomima metala i kiselinskim ostatkom.

Na osnovu prisustva ili odsustva kiseonika u molekuli, kiseline se dele na one koje sadrže kiseonik(H 2 SO 4 sumporna kiselina, H 2 SO 3 sumporna kiselina, HNO 3 azotna kiselina, H 3 PO 4 fosforna kiselina, H 2 CO 3 ugljična kiselina, H 2 SiO 3 silicijska kiselina) i bez kiseonika(HF fluorovodonična kiselina, HCl hlorovodonična kiselina (hlorovodonična kiselina), HBr bromovodična kiselina, HI jodovodična kiselina, H 2 S hidrosulfidna kiselina).

U zavisnosti od broja atoma vodika u molekulu kiseline, kiseline su jednobazne (sa 1 ​​H atoma), dvobazne (sa 2 H atoma) i trobazne (sa 3 H atoma). Na primjer, dušična kiselina HNO 3 je jednobazna, jer njena molekula sadrži jedan atom vodika, sumpornu kiselinu H 2 SO 4 dvobazni, itd.

Postoji vrlo malo neorganskih spojeva koji sadrže četiri atoma vodika koji se mogu zamijeniti metalom.

Dio molekule kiseline bez vodika naziva se kiselinski ostatak.

Kiseli ostaci mogu se sastojati od jednog atoma (-Cl, -Br, -I) - to su jednostavni kiseli ostaci, ili se mogu sastojati od grupe atoma (-SO 3, -PO 4, -SiO 3) - to su složeni ostaci.

U vodenim rastvorima, tokom reakcija razmene i supstitucije, kiseli ostaci se ne uništavaju:

H 2 SO 4 + CuCl 2 → CuSO 4 + 2 HCl

Reč anhidrid znači bezvodna, odnosno kiselina bez vode. Na primjer,

H 2 SO 4 – H 2 O → SO 3. Anoksične kiseline nemaju anhidride.

Kiseline su dobile ime po nazivu elementa koji tvori kiselinu (sredstvo za stvaranje kiseline) s dodatkom završetaka "naya" i rjeđe "vaya": H 2 SO 4 - sumporna; H 2 SO 3 – ugalj; H 2 SiO 3 – silicijum itd.

Element može formirati nekoliko kisikovih kiselina. U ovom slučaju, naznačeni završeci u nazivima kiselina bit će kada element pokazuje veću valenciju (molekula kiseline sadrži visok sadržaj atoma kisika). Ako element pokazuje nižu valenciju, završetak u nazivu kiseline će biti „prazan“: HNO 3 - dušik, HNO 2 - dušik.

Kiseline se mogu dobiti otapanjem anhidrida u vodi. Ako su anhidridi nerastvorljivi u vodi, kiselina se može dobiti djelovanjem druge jače kiseline na sol tražene kiseline. Ova metoda je tipična i za kisik i za kiseline bez kisika. Kiseline bez kisika se također dobivaju direktnom sintezom iz vodika i nemetala, nakon čega slijedi otapanje rezultirajućeg spoja u vodi:

H 2 + Cl 2 → 2 HCl;

H 2 + S → H 2 S.

Rastvori nastalih gasovitih supstanci HCl i H 2 S su kiseline.

U normalnim uslovima, kiseline postoje u tečnom i čvrstom stanju.

Hemijska svojstva kiselina

Otopine kiseline djeluju na indikatore. Sve kiseline (osim silicijumske) su visoko rastvorljive u vodi. Posebne supstance - indikatori vam omogućavaju da odredite prisustvo kiseline.

Indikatori su supstance složene strukture. Mijenjaju boju ovisno o interakciji s različitim kemikalijama. U neutralnim rastvorima imaju jednu boju, u rastvorima baza imaju drugu boju. U interakciji s kiselinom mijenjaju boju: indikator metil narandže postaje crven, a lakmusov indikator također postaje crven.

Interakcija sa bazama s stvaranjem vode i soli, koja sadrži nepromijenjeni kiselinski ostatak (reakcija neutralizacije):

H 2 SO 4 + Ca(OH) 2 → CaSO 4 + 2 H 2 O.

Interakcija s baznim oksidima sa stvaranjem vode i soli (reakcija neutralizacije). Sol sadrži kiselinski ostatak kiseline koja je korištena u reakciji neutralizacije:

H 3 PO 4 + Fe 2 O 3 → 2 FePO 4 + 3 H 2 O.

Interakcija sa metalima. Da bi kiseline stupile u interakciju sa metalima, moraju biti ispunjeni određeni uslovi:

1. metal mora biti dovoljno aktivan u odnosu na kiseline (u nizu aktivnosti metala mora se nalaziti prije vodonika). Što se metal dalje nalazi u seriji aktivnosti, to je intenzivnije u interakciji sa kiselinama;

2. kiselina mora biti dovoljno jaka (odnosno sposobna da donira ione vodonika H+).

Kada dođe do kemijske reakcije kiseline s metalima, nastaje sol i oslobađa se vodik (osim interakcije metala s dušičnom i koncentriranom sumpornom kiselinom):

Zn + 2HCl → ZnCl 2 + H 2 ;

Cu + 4HNO 3 → CuNO 3 + 2 NO 2 + 2 H 2 O.

Imate još pitanja? Želite li saznati više o kiselinama?
Za pomoć od tutora -.
Prva lekcija je besplatna!

blog.site, pri kopiranju materijala u cijelosti ili djelimično, potrebna je veza do originalnog izvora.