Logarithm na walang batayan kung paano malutas. Solusyon ng mga logarithmic equation. Kumpletong Gabay (2019)

Mahalaga sa amin ang iyong privacy. Para sa kadahilanang ito, bumuo kami ng Patakaran sa Privacy na naglalarawan kung paano namin ginagamit at iniimbak ang iyong impormasyon. Mangyaring basahin ang aming patakaran sa privacy at ipaalam sa amin kung mayroon kang anumang mga katanungan.

Pagkolekta at paggamit ng personal na impormasyon

Ang personal na impormasyon ay tumutukoy sa data na maaaring magamit upang makilala o makipag-ugnayan sa isang partikular na tao.

Maaaring hilingin sa iyo na ibigay ang iyong personal na impormasyon anumang oras kapag nakipag-ugnayan ka sa amin.

Ang mga sumusunod ay ilang halimbawa ng mga uri ng personal na impormasyon na maaari naming kolektahin at kung paano namin magagamit ang naturang impormasyon.

Anong personal na impormasyon ang aming kinokolekta:

  • Kapag nagsumite ka ng aplikasyon sa site, maaari kaming mangolekta ng iba't ibang impormasyon, kabilang ang iyong pangalan, numero ng telepono, address Email atbp.

Paano namin ginagamit ang iyong personal na impormasyon:

  • Kinokolekta namin Personal na impormasyon nagbibigay-daan sa amin na makipag-ugnayan sa iyo at ipaalam sa iyo ang tungkol sa mga natatanging alok, promosyon at iba pang mga kaganapan at paparating na mga kaganapan.
  • Paminsan-minsan, maaari naming gamitin ang iyong personal na impormasyon upang magpadala sa iyo ng mahahalagang paunawa at komunikasyon.
  • Maaari rin kaming gumamit ng personal na impormasyon para sa mga panloob na layunin tulad ng pag-audit, pagsusuri ng data at iba't ibang pag-aaral upang mapabuti ang mga serbisyong ibinibigay namin at upang mabigyan ka ng mga rekomendasyon tungkol sa aming mga serbisyo.
  • Kung sasali ka sa isang premyo na draw, paligsahan o katulad na insentibo, maaari naming gamitin ang impormasyong ibibigay mo upang pangasiwaan ang mga naturang programa.

Pagbubunyag sa mga ikatlong partido

Hindi namin ibinubunyag ang impormasyong natanggap mula sa iyo sa mga ikatlong partido.

Mga pagbubukod:

  • Kung kinakailangan - alinsunod sa batas, utos ng hudisyal, sa mga legal na paglilitis, at/o batay sa mga pampublikong kahilingan o kahilingan mula sa mga ahensya ng gobyerno sa teritoryo ng Russian Federation - ibunyag ang iyong personal na impormasyon. Maaari rin kaming magbunyag ng impormasyon tungkol sa iyo kung matukoy namin na ang naturang pagbubunyag ay kinakailangan o naaangkop para sa seguridad, pagpapatupad ng batas, o iba pang layunin ng pampublikong interes.
  • Kung sakaling magkaroon ng muling pagsasaayos, pagsasanib o pagbebenta, maaari naming ilipat ang personal na impormasyong kinokolekta namin sa may-katuturang kahalili ng third party.

Proteksyon ng personal na impormasyon

Nagsasagawa kami ng mga pag-iingat - kabilang ang administratibo, teknikal at pisikal - upang protektahan ang iyong personal na impormasyon mula sa pagkawala, pagnanakaw, at maling paggamit, pati na rin mula sa hindi awtorisadong pag-access, pagsisiwalat, pagbabago at pagkasira.

Pagpapanatili ng iyong privacy sa antas ng kumpanya

Upang matiyak na ligtas ang iyong personal na impormasyon, ipinapaalam namin ang mga kasanayan sa privacy at seguridad sa aming mga empleyado at mahigpit na ipinapatupad ang mga kasanayan sa privacy.


Patuloy kaming nag-aaral ng logarithms. Sa artikulong ito ay pag-uusapan natin pagkalkula ng logarithms, ang prosesong ito ay tinatawag logarithm. Una, haharapin natin ang pagkalkula ng logarithms ayon sa kahulugan. Susunod, isaalang-alang kung paano matatagpuan ang mga halaga ng logarithms gamit ang kanilang mga katangian. Pagkatapos nito, tatalakayin natin ang pagkalkula ng mga logarithms sa pamamagitan ng unang ibinigay na mga halaga ng iba pang logarithms. Sa wakas, alamin natin kung paano gumamit ng mga talahanayan ng logarithms. Ang buong teorya ay binibigyan ng mga halimbawa na may mga detalyadong solusyon.

Pag-navigate sa pahina.

Pag-compute ng mga logarithms ayon sa kahulugan

Sa pinakasimpleng mga kaso, posible na mabilis at madaling gumanap paghahanap ng logarithm sa pamamagitan ng kahulugan. Tingnan natin nang mabuti kung paano nagaganap ang prosesong ito.

Ang kakanyahan nito ay upang kumatawan sa bilang b sa anyong a c , kung saan, sa pamamagitan ng kahulugan ng logarithm, ang numero c ay ang halaga ng logarithm. Iyon ay, sa pamamagitan ng kahulugan, ang paghahanap ng logarithm ay tumutugma sa sumusunod na hanay ng mga pagkakapantay-pantay: log a b=log a a c =c .

Kaya, ang pagkalkula ng logarithm, sa pamamagitan ng kahulugan, ay bumaba sa paghahanap ng isang numero c na isang c \u003d b, at ang numero c mismo ay ang nais na halaga ng logarithm.

Dahil sa impormasyon ng mga nakaraang talata, kapag ang numero sa ilalim ng tanda ng logarithm ay ibinigay ng ilang antas ng base ng logarithm, pagkatapos ay maaari mong agad na ipahiwatig kung ano ang katumbas ng logarithm - ito ay katumbas ng exponent. Magpakita tayo ng mga halimbawa.

Halimbawa.

Hanapin ang log 2 2 −3 , at kalkulahin din ang natural na logarithm ng e 5.3 .

Solusyon.

Ang kahulugan ng logarithm ay nagpapahintulot sa atin na sabihin kaagad na ang log 2 2 −3 = −3 . Sa katunayan, ang numero sa ilalim ng tanda ng logarithm ay katumbas ng base 2 sa −3 na kapangyarihan.

Katulad nito, makikita natin ang pangalawang logarithm: lne 5.3 =5.3.

Sagot:

log 2 2 −3 = −3 at lne 5.3 =5.3 .

Kung ang numero b sa ilalim ng tanda ng logarithm ay hindi ibinigay bilang kapangyarihan ng base ng logarithm, pagkatapos ay kailangan mong maingat na isaalang-alang kung posible na magkaroon ng isang representasyon ng numero b sa anyo a c . Kadalasan ang representasyong ito ay medyo halata, lalo na kapag ang numero sa ilalim ng tanda ng logarithm ay katumbas ng base sa kapangyarihan ng 1, o 2, o 3, ...

Halimbawa.

Kalkulahin ang logarithms log 5 25 , at .

Solusyon.

Madaling makita na 25=5 2 , pinapayagan ka nitong kalkulahin ang unang logarithm: log 5 25=log 5 5 2 =2 .

Nagpapatuloy kami sa pagkalkula ng pangalawang logarithm. Ang isang numero ay maaaring katawanin bilang isang kapangyarihan ng 7: (tingnan kung kinakailangan). Kaya naman, .

Isulat muli natin ang ikatlong logarithm sa sumusunod na anyo. Ngayon ay makikita mo na , kung saan namin conclude na . Samakatuwid, sa pamamagitan ng kahulugan ng logarithm .

Sa madaling sabi, ang solusyon ay maaaring isulat tulad ng sumusunod:

Sagot:

log 5 25=2 , At .

Kapag mayroong sapat na malaking halaga sa ilalim ng tanda ng logarithm natural na numero, kung gayon hindi masakit na mabulok ito sa mga pangunahing kadahilanan. Kadalasan ay nakakatulong na kumatawan sa naturang numero bilang ilang kapangyarihan ng base ng logarithm, at samakatuwid, upang kalkulahin ang logarithm na ito sa pamamagitan ng kahulugan.

Halimbawa.

Hanapin ang halaga ng logarithm.

Solusyon.

Ang ilang mga katangian ng logarithms ay nagbibigay-daan sa iyo upang agad na tukuyin ang halaga ng logarithms. Kasama sa mga katangiang ito ang pag-aari ng logarithm ng pagkakaisa at ang pag-aari ng logarithm ng isang numero, katumbas ng base: log 1 1=log a a 0 =0 at log a a=log a a 1 =1 . Iyon ay, kapag ang numero 1 o ang numero a ay nasa ilalim ng tanda ng logarithm, katumbas ng base ng logarithm, kung gayon sa mga kasong ito ang logarithm ay 0 at 1, ayon sa pagkakabanggit.

Halimbawa.

Ano ang logarithms at lg10?

Solusyon.

Dahil , ito ay sumusunod mula sa kahulugan ng logarithm .

Sa pangalawang halimbawa, ang numero 10 sa ilalim ng tanda ng logarithm ay tumutugma sa base nito, kaya ang decimal logarithm ng sampu ay katumbas ng isa, iyon ay, lg10=lg10 1 =1 .

Sagot:

AT lg10=1 .

Tandaan na ang pag-compute ng logarithms ayon sa kahulugan (na tinalakay natin sa nakaraang talata) ay nagpapahiwatig ng paggamit ng equality log a a p =p , na isa sa mga katangian ng logarithms.

Sa pagsasagawa, kapag ang numero sa ilalim ng sign ng logarithm at ang base ng logarithm ay madaling kinakatawan bilang isang kapangyarihan ng ilang numero, napaka-maginhawang gamitin ang formula. , na tumutugma sa isa sa mga katangian ng logarithms. Isaalang-alang ang isang halimbawa ng paghahanap ng logarithm, na naglalarawan ng paggamit ng formula na ito.

Halimbawa.

Kalkulahin ang logarithm ng .

Solusyon.

Sagot:

.

Ang mga katangian ng logarithms na hindi nabanggit sa itaas ay ginagamit din sa pagkalkula, ngunit pag-uusapan natin ito sa mga sumusunod na talata.

Paghahanap ng mga logarithms sa mga tuntunin ng iba pang kilalang logarithms

Ang impormasyon sa talatang ito ay nagpapatuloy sa paksa ng paggamit ng mga katangian ng logarithms sa kanilang pagkalkula. Ngunit dito ang pangunahing pagkakaiba ay ang mga katangian ng logarithm ay ginagamit upang ipahayag ang orihinal na logarithm sa mga tuntunin ng isa pang logarithm, ang halaga nito ay kilala. Kumuha tayo ng isang halimbawa para sa paglilinaw. Sabihin nating alam natin na log 2 3≈1.584963 , pagkatapos ay mahahanap natin, halimbawa, log 2 6 sa pamamagitan ng paggawa ng kaunting pagbabago gamit ang mga katangian ng logarithm: log 2 6=log 2 (2 3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

Sa halimbawa sa itaas, sapat na para sa amin na gamitin ang ari-arian ng logarithm ng produkto. Gayunpaman, mas madalas kailangan mong gumamit ng mas malawak na arsenal ng mga katangian ng logarithms upang makalkula ang orihinal na logarithm sa mga tuntunin ng mga ibinigay.

Halimbawa.

Kalkulahin ang logarithm ng 27 hanggang base 60 kung alam na ang log 60 2=a at log 60 5=b .

Solusyon.

Kaya kailangan nating hanapin ang log 60 27 . Madaling makita na ang 27=3 3 , at ang orihinal na logarithm, dahil sa katangian ng logarithm ng degree, ay maaaring isulat muli bilang 3·log 60 3 .

Ngayon tingnan natin kung paano maipahayag ang log 60 3 sa mga tuntunin ng mga kilalang logarithms. Ang pag-aari ng logarithm ng isang numero na katumbas ng base ay nagpapahintulot sa iyo na isulat ang equality log 60 60=1 . Sa kabilang banda, log 60 60=log60(2 2 3 5)= log 60 2 2 +log 60 3+log 60 5= 2 log 60 2+log 60 3+log 60 5 . kaya, 2 log 60 2+log 60 3+log 60 5=1. Kaya naman, log 60 3=1−2 log 60 2−log 60 5=1−2 a−b.

Sa wakas, kinakalkula namin ang orihinal na logarithm: log 60 27=3 log 60 3= 3 (1−2 a−b)=3−6 a−3 b.

Sagot:

log 60 27=3 (1−2 a−b)=3−6 a−3 b.

Hiwalay, ito ay nagkakahalaga ng pagbanggit ng kahulugan ng formula para sa paglipat sa isang bagong base ng logarithm ng form . Pinapayagan ka nitong lumipat mula sa logarithms na may anumang base patungo sa logarithms na may isang tiyak na base, ang mga halaga nito ay kilala o posible na mahanap ang mga ito. Karaniwan, mula sa orihinal na logarithm, ayon sa pormula ng paglipat, lumipat sila sa logarithms sa isa sa mga base 2, e o 10, dahil para sa mga base na ito mayroong mga talahanayan ng logarithms na nagpapahintulot sa kanila na kalkulahin na may isang tiyak na antas ng katumpakan. Sa susunod na seksyon, ipapakita namin kung paano ito ginagawa.

Mga talahanayan ng logarithms, ang kanilang paggamit

Para sa isang tinatayang pagkalkula ng mga halaga ng logarithms, maaaring gamitin ng isa mga talahanayan ng logarithm. Ang pinakakaraniwang ginagamit ay ang base 2 logarithm table, ang natural na logarithm table, at ang decimal logarithm table. Kapag nagtatrabaho sa sistema ng decimal na numero, maginhawang gumamit ng talahanayan ng mga logarithms sa base ng sampu. Sa tulong nito, matututunan nating hanapin ang mga halaga ng logarithms.










Ang ipinakita na talahanayan ay nagbibigay-daan, na may katumpakan ng isang sampung-libo, upang mahanap ang mga halaga ng decimal logarithms ng mga numero mula 1.000 hanggang 9.999 (na may tatlong decimal na lugar). Ang prinsipyo ng paghahanap ng halaga ng logarithm gamit ang talahanayan ng decimal logarithm ay susuriin sa tiyak na halimbawa- mas malinaw. Hanapin natin ang lg1,256 .

Sa kaliwang hanay ng talahanayan ng mga decimal logarithms makikita natin ang unang dalawang digit ng numerong 1.256, iyon ay, nakita natin ang 1.2 (ang numerong ito ay binilog sa asul para sa kalinawan). Ang ikatlong digit ng numerong 1.256 (numero 5) ay matatagpuan sa una o huling linya sa kaliwa ng dobleng linya (ang numerong ito ay binilog ng pula). Ang ikaapat na digit ng orihinal na numero 1.256 (number 6) ay matatagpuan sa una o huling linya sa kanan ng dobleng linya (ang numerong ito ay bilugan ng berde). Ngayon nakita namin ang mga numero sa mga cell ng talahanayan ng logarithms sa intersection ng minarkahang hilera at ang mga markang haligi (ang mga numerong ito ay naka-highlight sa orange). Ang kabuuan ng mga minarkahang numero ay nagbibigay ng nais na halaga ng decimal logarithm hanggang sa ikaapat na decimal place, iyon ay, log1.236≈0.0969+0.0021=0.0990.

Posible ba, gamit ang talahanayan sa itaas, upang mahanap ang mga halaga ng decimal logarithms ng mga numero na mayroong higit sa tatlong digit pagkatapos ng decimal point, at lumampas din sa mga limitasyon mula 1 hanggang 9.999? Oo kaya mo. Ipakita natin kung paano ito ginagawa gamit ang isang halimbawa.

Kalkulahin natin ang lg102.76332 . Una kailangan mong magsulat numero sa karaniwang anyo : 102.76332=1.0276332 10 2 . Pagkatapos nito, ang mantissa ay dapat na bilugan hanggang sa ikatlong decimal na lugar, mayroon kami 1.0276332 10 2 ≈1.028 10 2, habang ang orihinal na decimal logarithm ay humigit-kumulang katumbas ng logarithm ng resultang numero, iyon ay, kumukuha kami ng lg102.76332≈lg1.028·10 2 . Ngayon ilapat ang mga katangian ng logarithm: lg1.028 10 2 =lg1.028+lg10 2 =lg1.028+2. Sa wakas, nakita namin ang halaga ng logarithm lg1.028 ayon sa talahanayan ng decimal logarithms lg1.028≈0.0086+0.0034=0.012. Bilang resulta, ang buong proseso ng pagkalkula ng logarithm ay ganito: lg102.76332=lg1.0276332 10 2 ≈lg1.028 10 2 = lg1.028+lg10 2 =lg1.028+2≈0.012+2=2.012.

Sa konklusyon, ito ay nagkakahalaga ng noting na gamit ang talahanayan ng decimal logarithms, maaari mong kalkulahin ang tinatayang halaga ng anumang logarithm. Upang gawin ito, sapat na gamitin ang formula ng paglipat upang pumunta sa decimal logarithms, hanapin ang kanilang mga halaga sa talahanayan, at isagawa ang natitirang mga kalkulasyon.

Halimbawa, kalkulahin natin ang log 2 3 . Ayon sa formula para sa paglipat sa isang bagong base ng logarithm, mayroon kaming . Mula sa talahanayan ng decimal logarithms makikita natin ang lg3≈0.4771 at lg2≈0.3010. kaya, .

Bibliograpiya.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. at iba pa.Algebra and the Beginnings of Analysis: A Textbook for Grades 10-11 of General Educational Institutions.
  • Gusev V.A., Mordkovich A.G. Mathematics (isang manwal para sa mga aplikante sa mga teknikal na paaralan).

Ano ang logarithm?

Pansin!
May mga karagdagang
materyal sa Espesyal na Seksyon 555.
Para sa mga malakas na "hindi masyadong..."
At para sa mga "sobra...")

Ano ang logarithm? Paano malutas ang mga logarithms? Ang mga tanong na ito ay nakalilito sa maraming nagtapos. Ayon sa kaugalian, ang paksa ng logarithms ay itinuturing na kumplikado, hindi maintindihan at nakakatakot. Lalo na - mga equation na may logarithms.

Ito ay ganap na hindi totoo. Ganap! ayaw maniwala? ayos lang. Ngayon, sa loob ng mga 10 - 20 minuto:

1. Intindihin ano ang logarithm.

2. Matutong lutasin ang isang buong klase mga exponential equation. Kahit na hindi mo pa naririnig ang tungkol sa kanila.

3. Matutong magkalkula ng mga simpleng logarithms.

Bukod dito, para dito kakailanganin mo lamang malaman ang talahanayan ng pagpaparami, at kung paano itataas ang isang numero sa isang kapangyarihan ...

Pakiramdam ko ay nagdududa ka ... Well, panatilihin ang oras! Go!

Una, lutasin ang sumusunod na equation sa iyong isip:

Kung gusto mo ang site na ito...

Siyanga pala, mayroon akong ilang mas kawili-wiling mga site para sa iyo.)

Maaari kang magsanay sa paglutas ng mga halimbawa at alamin ang iyong antas. Pagsubok na may agarang pag-verify. Pag-aaral - nang may interes!)

maaari kang maging pamilyar sa mga function at derivatives.

(mula sa Greek λόγος - "salita", "relasyon" at ἀριθμός - "numero") na mga numero b sa pamamagitan ng dahilan a(log α b) ay tinatawag na ganoong numero c, At b= isang c, ibig sabihin, log α b=c At b=ac ay katumbas. Makatuwiran ang logarithm kung a > 0, a ≠ 1, b > 0.

Sa ibang salita logarithm numero b sa pamamagitan ng dahilan A binabalangkas bilang isang exponent kung saan dapat itaas ang isang numero a para makuha ang numero b(ang logarithm ay umiiral lamang para sa mga positibong numero).

Mula sa pagbabalangkas na ito ay sumusunod na ang pagkalkula x= log α b, ay katumbas ng paglutas ng equation a x =b.

Halimbawa:

log 2 8 = 3 dahil 8=2 3 .

Tandaan namin na ang ipinahiwatig na pagbabalangkas ng logarithm ay ginagawang posible upang agad na matukoy halaga ng logarithm kapag ang numero sa ilalim ng sign ng logarithm ay isang tiyak na kapangyarihan ng base. Sa katunayan, ang pagbabalangkas ng logarithm ay ginagawang posible upang bigyang-katwiran na kung b=a c, pagkatapos ay ang logarithm ng numero b sa pamamagitan ng dahilan a katumbas Sa. Malinaw din na ang paksa ng logarithm ay malapit na nauugnay sa paksa antas ng bilang.

Ang pagkalkula ng logarithm ay tinutukoy logarithm. Ang Logarithm ay ang matematikal na operasyon ng pagkuha ng logarithm. Kapag kumukuha ng logarithm, ang mga produkto ng mga kadahilanan ay binago sa kabuuan ng mga termino.

Potentiation ay ang mathematical operation na kabaligtaran sa logarithm. Kapag potentiating, ang ibinigay na base ay itataas sa kapangyarihan ng expression kung saan ang potentiation ay ginanap. Sa kasong ito, ang mga kabuuan ng mga termino ay binago sa produkto ng mga kadahilanan.

Kadalasan, ang mga totoong logarithm na may mga base 2 (binary), e Euler number e ≈ 2.718 (natural logarithm) at 10 (decimal) ay ginagamit.

Sa yugtong ito, ito ay nagkakahalaga ng pagsasaalang-alang mga sample ng logarithms log 7 2 , ln 5, lg0.0001.

At ang mga entry lg (-3), log -3 3.2, log -1 -4.3 ay walang katuturan, dahil sa una sa kanila isang negatibong numero ang inilalagay sa ilalim ng tanda ng logarithm, sa pangalawa - isang negatibong numero sa base, at sa pangatlo - parehong negatibong numero sa ilalim ng tanda ng logarithm at isang yunit sa base.

Mga kondisyon para sa pagtukoy ng logarithm.

Ito ay nagkakahalaga ng pagsasaalang-alang nang hiwalay sa mga kondisyon a > 0, a ≠ 1, b > 0. kahulugan ng logarithm. Isaalang-alang natin kung bakit kinukuha ang mga paghihigpit na ito. Makakatulong ito sa amin sa pagkakapantay-pantay ng form na x = log α b, na tinatawag na pangunahing logarithmic identity, na direktang sumusunod sa kahulugan ng logarithm na ibinigay sa itaas.

Kunin ang kundisyon a≠1. Dahil ang isa ay katumbas ng isa sa anumang kapangyarihan, kung gayon ang pagkakapantay-pantay x=log α b maaari lamang umiral kapag b=1, ngunit ang log 1 1 ay magiging anumang tunay na numero. Upang maalis ang kalabuan na ito, kukunin namin a≠1.

Patunayan natin ang pangangailangan ng kondisyon a>0. Sa a=0 ayon sa pagbabalangkas ng logarithm, maaari lamang umiral kapag b=0. At pagkatapos ay naaayon log 0 0 maaaring maging anumang di-zero na tunay na numero, dahil ang zero sa anumang di-zero na kapangyarihan ay zero. Upang maalis ang kalabuan na ito, ang kondisyon a≠0. At kailan a<0 kailangan nating tanggihan ang pagsusuri ng makatwiran at hindi makatwiran na mga halaga ng logarithm, dahil ang exponent na may rational at irrational exponent ay tinukoy lamang para sa mga hindi negatibong base. Ito ay para sa kadahilanang ito na ang kondisyon a>0.

At ang huling kondisyon b>0 sumusunod mula sa hindi pagkakapantay-pantay a>0, dahil x=log α b, at ang halaga ng degree na may positibong base a laging positibo.

Mga tampok ng logarithms.

Logarithms nailalarawan sa pamamagitan ng katangi-tangi mga tampok, na humantong sa kanilang malawakang paggamit upang lubos na mapadali ang maingat na pagkalkula. Sa paglipat "sa mundo ng logarithms", ang multiplikasyon ay binago sa isang mas madaling karagdagan, paghahati sa pagbabawas, at pagtaas sa isang kapangyarihan at pagkuha ng isang ugat ay binago sa multiplikasyon at paghahati ng isang exponent, ayon sa pagkakabanggit.

Ang pagbabalangkas ng mga logarithms at isang talahanayan ng kanilang mga halaga (para sa trigonometriko function) ay unang inilathala noong 1614 ng Scottish mathematician na si John Napier. Ang mga logarithmic table, na pinalaki at idinetalye ng ibang mga siyentipiko, ay malawakang ginagamit sa mga kalkulasyon ng siyensya at inhinyero, at nanatiling may kaugnayan hanggang sa magamit ang mga ito. mga elektronikong calculator at mga kompyuter.

pangunahing katangian.

  1. logax + logay = log(x y);
  2. logax − logay = log(x: y).

parehong batayan

log6 4 + log6 9.

Ngayon pasimplehin natin ng kaunti ang gawain.

Mga halimbawa ng paglutas ng logarithms

Paano kung may degree sa base o argumento ng logarithm? Kung gayon ang exponent ng degree na ito ay maaaring alisin sa sign ng logarithm ayon sa mga sumusunod na patakaran:

Siyempre, ang lahat ng mga patakarang ito ay may katuturan kung ang ODZ logarithm ay sinusunod: a > 0, a ≠ 1, x >

Gawain. Hanapin ang halaga ng expression:

Paglipat sa isang bagong pundasyon

Hayaang ibigay ang logarithm logax. Pagkatapos ay para sa anumang bilang c tulad na c > 0 at c ≠ 1, ang pagkakapantay-pantay ay totoo:

Gawain. Hanapin ang halaga ng expression:

Tingnan din:


Mga pangunahing katangian ng logarithm

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Ang exponent ay 2.718281828…. Upang matandaan ang exponent, maaari mong pag-aralan ang panuntunan: ang exponent ay 2.7 at dalawang beses sa taon ng kapanganakan ni Leo Tolstoy.

Mga pangunahing katangian ng logarithms

Ang pag-alam sa panuntunang ito, malalaman mo ang eksaktong halaga ng exponent at ang petsa ng kapanganakan ni Leo Tolstoy.


Mga halimbawa para sa logarithms

Kunin ang logarithm ng mga expression

Halimbawa 1
A). x=10ac^2 (a>0, c>0).

Sa pamamagitan ng mga katangian 3,5 kinakalkula namin

2.

3.

4. saan .



Halimbawa 2 Hanapin ang x kung


Halimbawa 3. Hayaang ibigay ang halaga ng logarithms

Kalkulahin ang log(x) kung




Mga pangunahing katangian ng logarithms

Ang mga logarithms, tulad ng anumang numero, ay maaaring idagdag, ibawas at i-convert sa lahat ng posibleng paraan. Ngunit dahil ang logarithms ay hindi masyadong ordinaryong mga numero, may mga panuntunan dito, na tinatawag pangunahing katangian.

Dapat mong malaman ang mga patakarang ito - walang seryosong problema sa logarithmic ang malulutas kung wala ang mga ito. Bilang karagdagan, napakakaunti sa kanila - lahat ay maaaring matutunan sa isang araw. Kaya simulan na natin.

Pagdaragdag at pagbabawas ng logarithms

Isaalang-alang ang dalawang logarithms na may parehong base: logax at logay. Pagkatapos ay maaari silang idagdag at ibawas, at:

  1. logax + logay = log(x y);
  2. logax − logay = log(x: y).

Kaya, ang kabuuan ng logarithm ay katumbas ng logarithm ng produkto, at ang pagkakaiba ay ang logarithm ng quotient. Mangyaring tandaan: ang pangunahing punto dito ay - parehong batayan. Kung ang mga base ay naiiba, ang mga patakarang ito ay hindi gagana!

Ang mga formula na ito ay makakatulong sa pagkalkula ng logarithmic expression kahit na ang mga indibidwal na bahagi nito ay hindi isinasaalang-alang (tingnan ang aralin na "Ano ang logarithm"). Tingnan ang mga halimbawa at tingnan:

Dahil ang mga base ng logarithms ay pareho, ginagamit namin ang sum formula:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Gawain. Hanapin ang halaga ng expression: log2 48 − log2 3.

Ang mga base ay pareho, ginagamit namin ang formula ng pagkakaiba:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Gawain. Hanapin ang halaga ng expression: log3 135 − log3 5.

Muli, ang mga base ay pareho, kaya mayroon kaming:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Tulad ng nakikita mo, ang orihinal na mga expression ay binubuo ng "masamang" logarithms, na hindi isinasaalang-alang nang hiwalay. Ngunit pagkatapos ng mga pagbabago, medyo normal na mga numero ang lumabas. Batay sa katotohanang ito, marami mga test paper. Oo, ang kontrol - mga katulad na expression sa lahat ng kabigatan (minsan - na halos walang pagbabago) ay inaalok sa pagsusulit.

Pag-alis ng exponent mula sa logarithm

Madaling makita na ang huling panuntunan ay sumusunod sa kanilang unang dalawa. Ngunit ito ay mas mahusay na tandaan ito pa rin - sa ilang mga kaso ito ay makabuluhang bawasan ang halaga ng mga kalkulasyon.

Siyempre, ang lahat ng mga patakarang ito ay may katuturan kung ang ODZ logarithm ay sinusunod: a > 0, a ≠ 1, x > 0. At isa pang bagay: matutong ilapat ang lahat ng mga formula hindi lamang mula kaliwa hanggang kanan, kundi pati na rin sa kabaligtaran, i.e. maaari mong ipasok ang mga numero bago ang sign ng logarithm sa logarithm mismo. Ito ang madalas na kinakailangan.

Gawain. Hanapin ang halaga ng expression: log7 496.

Tanggalin natin ang antas sa argumento ayon sa unang formula:
log7 496 = 6 log7 49 = 6 2 = 12

Gawain. Hanapin ang halaga ng expression:

Tandaan na ang denominator ay isang logarithm na ang base at argumento ay eksaktong kapangyarihan: 16 = 24; 49 = 72. Mayroon kaming:

Sa tingin ko ang huling halimbawa ay nangangailangan ng paglilinaw. Saan napunta ang logarithms? Hanggang sa pinakahuling sandali, nagtatrabaho lamang kami sa denominator.

Mga formula ng logarithms. Ang logarithms ay mga halimbawa ng mga solusyon.

Iniharap nila ang base at argumento ng logarithm na nakatayo doon sa anyo ng mga degree at kinuha ang mga tagapagpahiwatig - nakakuha sila ng isang "tatlong-kuwento" na bahagi.

Ngayon tingnan natin ang pangunahing bahagi. Ang numerator at denominator ay may parehong numero: log2 7. Dahil ang log2 7 ≠ 0, maaari nating bawasan ang fraction - 2/4 ay mananatili sa denominator. Ayon sa mga patakaran ng aritmetika, ang apat ay maaaring ilipat sa numerator, na ginawa. Ang resulta ay ang sagot: 2.

Paglipat sa isang bagong pundasyon

Sa pagsasalita tungkol sa mga patakaran para sa pagdaragdag at pagbabawas ng mga logarithms, partikular kong binigyang-diin na gumagana lamang ang mga ito sa parehong mga base. Paano kung magkaiba ang mga base? Paano kung hindi sila eksaktong mga kapangyarihan ng parehong bilang?

Ang mga formula para sa paglipat sa isang bagong base ay sumagip. Binubalangkas namin ang mga ito sa anyo ng isang teorama:

Hayaang ibigay ang logarithm logax. Pagkatapos ay para sa anumang bilang c tulad na c > 0 at c ≠ 1, ang pagkakapantay-pantay ay totoo:

Sa partikular, kung ilalagay natin ang c = x, makakakuha tayo ng:

Ito ay sumusunod mula sa pangalawang pormula na posible na palitan ang base at ang argumento ng logarithm, ngunit sa kasong ito ang buong expression ay "ibinalik", i.e. ang logarithm ay nasa denominator.

Ang mga formula na ito ay bihirang makita sa karaniwan mga numerical expression. Posibleng suriin kung gaano kaginhawa ang mga ito kapag nilulutas ang mga logarithmic equation at hindi pagkakapantay-pantay.

Gayunpaman, may mga gawain na hindi malulutas maliban sa paglipat sa isang bagong pundasyon. Isaalang-alang natin ang ilan sa mga ito:

Gawain. Hanapin ang halaga ng expression: log5 16 log2 25.

Tandaan na ang mga argumento ng parehong logarithms ay eksaktong exponents. Kunin natin ang mga tagapagpahiwatig: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Ngayon, i-flip natin ang pangalawang logarithm:

Dahil ang produkto ay hindi nagbabago mula sa permutation ng mga kadahilanan, mahinahon naming pinarami ang apat at dalawa, at pagkatapos ay naisip ang mga logarithms.

Gawain. Hanapin ang halaga ng expression: log9 100 lg 3.

Ang batayan at argumento ng unang logarithm ay eksaktong kapangyarihan. Isulat natin ito at alisin ang mga tagapagpahiwatig:

Ngayon, alisin natin ang decimal logarithm sa pamamagitan ng paglipat sa isang bagong base:

Pangunahing logarithmic na pagkakakilanlan

Kadalasan sa proseso ng paglutas ay kinakailangan na kumatawan sa isang numero bilang isang logarithm sa isang naibigay na base. Sa kasong ito, ang mga formula ay makakatulong sa amin:

Sa unang kaso, ang numero n ay nagiging exponent sa argumento. Ang numero n ay maaaring maging anumang bagay, dahil ito ay ang halaga lamang ng logarithm.

Ang pangalawang formula ay talagang isang paraphrased na kahulugan. Ito ay tinatawag na ganito:

Sa katunayan, ano ang mangyayari kung ang bilang b ay itataas sa isang antas na ang bilang b sa antas na ito ay nagbibigay ng bilang a? Tama: ito ang parehong numero a. Basahin muli ang talatang ito nang mabuti - maraming tao ang "nakabitin" dito.

Tulad ng mga bagong base conversion formula, ang pangunahing logarithmic identity ay minsan ang tanging posibleng solusyon.

Gawain. Hanapin ang halaga ng expression:

Tandaan na ang log25 64 = log5 8 - kinuha lamang ang parisukat mula sa base at ang argumento ng logarithm. Ibinigay ang mga patakaran para sa pagpaparami ng mga kapangyarihan sa parehong base, nakukuha natin ang:

Para sa mga hindi nakakaalam, ito ay tunay na hamon mula sa pagsusulit 🙂

Logarithmic unit at logarithmic zero

Sa konklusyon, magbibigay ako ng dalawang pagkakakilanlan na mahirap tawagan ang mga katangian - sa halip, ito ay mga kahihinatnan mula sa kahulugan ng logarithm. Ang mga ito ay patuloy na matatagpuan sa mga problema at, nakakagulat, lumikha ng mga problema kahit para sa "advanced" na mga mag-aaral.

  1. logaa = 1 ay. Tandaan minsan at para sa lahat: ang logarithm sa anumang base a mula sa base na ito mismo ay katumbas ng isa.
  2. ang log 1 = 0 ay. Ang base a ay maaaring anuman, ngunit kung ang argumento ay isa - ang logarithm sero! Dahil ang a0 = 1 ay direktang bunga ng kahulugan.

Iyon ang lahat ng mga pag-aari. Siguraduhing magsanay sa pagsasabuhay ng mga ito! I-download ang cheat sheet sa simula ng aralin, i-print ito at lutasin ang mga problema.

Tingnan din:

Ang logarithm ng numero b hanggang sa base a ay nagsasaad ng expression. Upang kalkulahin ang logarithm ay nangangahulugang makahanap ng gayong kapangyarihan x () kung saan totoo ang pagkakapantay-pantay

Mga pangunahing katangian ng logarithm

Ang mga katangian sa itaas ay kailangang malaman, dahil, sa kanilang batayan, halos lahat ng mga problema at mga halimbawa ay nalutas batay sa logarithms. Ang natitirang mga kakaibang katangian ay maaaring makuha sa pamamagitan ng matematikal na pagmamanipula gamit ang mga formula na ito

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Kapag kinakalkula ang mga formula para sa kabuuan at pagkakaiba ng logarithms (3.4) ay madalas na nakatagpo. Ang natitira ay medyo kumplikado, ngunit sa isang bilang ng mga gawain sila ay kailangang-kailangan para sa pagpapasimple ng mga kumplikadong expression at pagkalkula ng kanilang mga halaga.

Mga karaniwang kaso ng logarithms

Ang ilan sa mga karaniwang logarithms ay ang mga kung saan ang base ay kahit sampu, exponential o deuce.
Ang batayang sampung logarithm ay karaniwang tinatawag na batayang sampung logarithm at ito ay simpleng tinutukoy na lg(x).

Makikita sa tala na ang mga pangunahing kaalaman ay hindi nakasulat sa talaan. Halimbawa

Ang natural na logarithm ay ang logarithm na ang batayan ay ang exponent (tinutukoy na ln(x)).

Ang exponent ay 2.718281828…. Upang matandaan ang exponent, maaari mong pag-aralan ang panuntunan: ang exponent ay 2.7 at dalawang beses sa taon ng kapanganakan ni Leo Tolstoy. Ang pag-alam sa panuntunang ito, malalaman mo ang eksaktong halaga ng exponent at ang petsa ng kapanganakan ni Leo Tolstoy.

At isa pang mahalagang base two logarithm ay

Ang derivative ng logarithm ng function ay katumbas ng isang hinati sa variable

Ang integral o antiderivative logarithm ay tinutukoy ng dependence

Ang materyal sa itaas ay sapat na para sa iyo upang malutas ang isang malawak na klase ng mga problema na may kaugnayan sa logarithms at logarithms. Para sa kapakanan ng pag-unawa sa materyal, magbibigay lamang ako ng ilang karaniwang mga halimbawa mula sa kurikulum ng paaralan at mga unibersidad.

Mga halimbawa para sa logarithms

Kunin ang logarithm ng mga expression

Halimbawa 1
A). x=10ac^2 (a>0, c>0).

Sa pamamagitan ng mga katangian 3,5 kinakalkula namin

2.
Sa pamamagitan ng pagkakaiba ng ari-arian ng logarithms, mayroon tayo

3.
Gamit ang mga katangian 3.5 nahanap namin

4. saan .

Ang isang tila kumplikadong expression gamit ang isang serye ng mga panuntunan ay pinasimple sa form

Paghahanap ng mga Halaga ng Logarithm

Halimbawa 2 Hanapin ang x kung

Solusyon. Para sa pagkalkula, inilalapat namin ang mga katangian 5 at 13 hanggang sa huling termino

Palitan sa talaan at magluksa

Dahil ang mga base ay pantay, tinutumbasan namin ang mga expression

Logarithms. Unang antas.

Hayaang ibigay ang halaga ng logarithms

Kalkulahin ang log(x) kung

Solusyon: Kunin ang logarithm ng variable upang isulat ang logarithm sa kabuuan ng mga termino


Ito ay simula pa lamang ng pagkilala sa mga logarithms at mga katangian nito. Magsanay ng mga kalkulasyon, pagyamanin ang iyong mga praktikal na kasanayan - malapit mo nang kailanganin ang nakuhang kaalaman upang malutas ang mga logarithmic equation. Ang pagkakaroon ng pag-aaral ng mga pangunahing pamamaraan para sa paglutas ng mga naturang equation, palalawakin namin ang iyong kaalaman para sa isa pang pantay na mahalagang paksa - logarithmic inequalities ...

Mga pangunahing katangian ng logarithms

Ang mga logarithms, tulad ng anumang numero, ay maaaring idagdag, ibawas at i-convert sa lahat ng posibleng paraan. Ngunit dahil ang logarithms ay hindi masyadong ordinaryong mga numero, may mga panuntunan dito, na tinatawag pangunahing katangian.

Dapat mong malaman ang mga patakarang ito - walang seryosong problema sa logarithmic ang malulutas kung wala ang mga ito. Bilang karagdagan, napakakaunti sa kanila - lahat ay maaaring matutunan sa isang araw. Kaya simulan na natin.

Pagdaragdag at pagbabawas ng logarithms

Isaalang-alang ang dalawang logarithms na may parehong base: logax at logay. Pagkatapos ay maaari silang idagdag at ibawas, at:

  1. logax + logay = log(x y);
  2. logax − logay = log(x: y).

Kaya, ang kabuuan ng logarithm ay katumbas ng logarithm ng produkto, at ang pagkakaiba ay ang logarithm ng quotient. Mangyaring tandaan: ang pangunahing punto dito ay - parehong batayan. Kung ang mga base ay naiiba, ang mga patakarang ito ay hindi gagana!

Ang mga formula na ito ay makakatulong sa pagkalkula ng logarithmic expression kahit na ang mga indibidwal na bahagi nito ay hindi isinasaalang-alang (tingnan ang aralin na "Ano ang logarithm"). Tingnan ang mga halimbawa at tingnan:

Gawain. Hanapin ang halaga ng expression: log6 4 + log6 9.

Dahil ang mga base ng logarithms ay pareho, ginagamit namin ang sum formula:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Gawain. Hanapin ang halaga ng expression: log2 48 − log2 3.

Ang mga base ay pareho, ginagamit namin ang formula ng pagkakaiba:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Gawain. Hanapin ang halaga ng expression: log3 135 − log3 5.

Muli, ang mga base ay pareho, kaya mayroon kaming:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Tulad ng nakikita mo, ang orihinal na mga expression ay binubuo ng "masamang" logarithms, na hindi isinasaalang-alang nang hiwalay. Ngunit pagkatapos ng mga pagbabago, medyo normal na mga numero ang lumabas. Maraming pagsubok ang nakabatay sa katotohanang ito. Oo, ang kontrol - mga katulad na expression sa lahat ng kabigatan (minsan - na halos walang pagbabago) ay inaalok sa pagsusulit.

Pag-alis ng exponent mula sa logarithm

Ngayon pasimplehin natin ng kaunti ang gawain. Paano kung may degree sa base o argumento ng logarithm? Kung gayon ang exponent ng degree na ito ay maaaring alisin sa sign ng logarithm ayon sa mga sumusunod na patakaran:

Madaling makita na ang huling panuntunan ay sumusunod sa kanilang unang dalawa. Ngunit ito ay mas mahusay na tandaan ito pa rin - sa ilang mga kaso ito ay makabuluhang bawasan ang halaga ng mga kalkulasyon.

Siyempre, ang lahat ng mga patakarang ito ay may katuturan kung ang ODZ logarithm ay sinusunod: a > 0, a ≠ 1, x > 0. At isa pang bagay: matutong ilapat ang lahat ng mga formula hindi lamang mula kaliwa hanggang kanan, kundi pati na rin sa kabaligtaran, i.e. maaari mong ipasok ang mga numero bago ang sign ng logarithm sa logarithm mismo.

Paano malutas ang mga logarithms

Ito ang madalas na kinakailangan.

Gawain. Hanapin ang halaga ng expression: log7 496.

Tanggalin natin ang antas sa argumento ayon sa unang formula:
log7 496 = 6 log7 49 = 6 2 = 12

Gawain. Hanapin ang halaga ng expression:

Tandaan na ang denominator ay isang logarithm na ang base at argumento ay eksaktong kapangyarihan: 16 = 24; 49 = 72. Mayroon kaming:

Sa tingin ko ang huling halimbawa ay nangangailangan ng paglilinaw. Saan napunta ang logarithms? Hanggang sa pinakahuling sandali, nagtatrabaho lamang kami sa denominator. Iniharap nila ang base at argumento ng logarithm na nakatayo doon sa anyo ng mga degree at kinuha ang mga tagapagpahiwatig - nakakuha sila ng isang "tatlong-kuwento" na bahagi.

Ngayon tingnan natin ang pangunahing bahagi. Ang numerator at denominator ay may parehong numero: log2 7. Dahil ang log2 7 ≠ 0, maaari nating bawasan ang fraction - 2/4 ay mananatili sa denominator. Ayon sa mga patakaran ng aritmetika, ang apat ay maaaring ilipat sa numerator, na ginawa. Ang resulta ay ang sagot: 2.

Paglipat sa isang bagong pundasyon

Sa pagsasalita tungkol sa mga patakaran para sa pagdaragdag at pagbabawas ng mga logarithms, partikular kong binigyang-diin na gumagana lamang ang mga ito sa parehong mga base. Paano kung magkaiba ang mga base? Paano kung hindi sila eksaktong mga kapangyarihan ng parehong bilang?

Ang mga formula para sa paglipat sa isang bagong base ay sumagip. Binubalangkas namin ang mga ito sa anyo ng isang teorama:

Hayaang ibigay ang logarithm logax. Pagkatapos ay para sa anumang bilang c tulad na c > 0 at c ≠ 1, ang pagkakapantay-pantay ay totoo:

Sa partikular, kung ilalagay natin ang c = x, makakakuha tayo ng:

Ito ay sumusunod mula sa pangalawang pormula na posible na palitan ang base at ang argumento ng logarithm, ngunit sa kasong ito ang buong expression ay "ibinalik", i.e. ang logarithm ay nasa denominator.

Ang mga formula na ito ay bihirang makita sa mga ordinaryong numerical expression. Posibleng suriin kung gaano kaginhawa ang mga ito kapag nilulutas ang mga logarithmic equation at hindi pagkakapantay-pantay.

Gayunpaman, may mga gawain na hindi malulutas maliban sa paglipat sa isang bagong pundasyon. Isaalang-alang natin ang ilan sa mga ito:

Gawain. Hanapin ang halaga ng expression: log5 16 log2 25.

Tandaan na ang mga argumento ng parehong logarithms ay eksaktong exponents. Kunin natin ang mga tagapagpahiwatig: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Ngayon, i-flip natin ang pangalawang logarithm:

Dahil ang produkto ay hindi nagbabago mula sa permutation ng mga kadahilanan, mahinahon naming pinarami ang apat at dalawa, at pagkatapos ay naisip ang mga logarithms.

Gawain. Hanapin ang halaga ng expression: log9 100 lg 3.

Ang batayan at argumento ng unang logarithm ay eksaktong kapangyarihan. Isulat natin ito at alisin ang mga tagapagpahiwatig:

Ngayon, alisin natin ang decimal logarithm sa pamamagitan ng paglipat sa isang bagong base:

Pangunahing logarithmic na pagkakakilanlan

Kadalasan sa proseso ng paglutas ay kinakailangan na kumatawan sa isang numero bilang isang logarithm sa isang naibigay na base. Sa kasong ito, ang mga formula ay makakatulong sa amin:

Sa unang kaso, ang numero n ay nagiging exponent sa argumento. Ang numero n ay maaaring maging anumang bagay, dahil ito ay ang halaga lamang ng logarithm.

Ang pangalawang formula ay talagang isang paraphrased na kahulugan. Ito ay tinatawag na ganito:

Sa katunayan, ano ang mangyayari kung ang bilang b ay itataas sa isang antas na ang bilang b sa antas na ito ay nagbibigay ng bilang a? Tama: ito ang parehong numero a. Basahin muli ang talatang ito nang mabuti - maraming tao ang "nakabitin" dito.

Tulad ng mga bagong base conversion formula, ang pangunahing logarithmic identity ay minsan ang tanging posibleng solusyon.

Gawain. Hanapin ang halaga ng expression:

Tandaan na ang log25 64 = log5 8 - kinuha lamang ang parisukat mula sa base at ang argumento ng logarithm. Dahil sa mga patakaran para sa pagpaparami ng mga kapangyarihan na may parehong base, nakukuha natin ang:

Kung ang isang tao ay hindi alam, ito ay isang tunay na gawain mula sa Unified State Examination 🙂

Logarithmic unit at logarithmic zero

Sa konklusyon, magbibigay ako ng dalawang pagkakakilanlan na mahirap tawagan ang mga katangian - sa halip, ito ay mga kahihinatnan mula sa kahulugan ng logarithm. Ang mga ito ay patuloy na matatagpuan sa mga problema at, nakakagulat, lumikha ng mga problema kahit para sa "advanced" na mga mag-aaral.

  1. logaa = 1 ay. Tandaan minsan at para sa lahat: ang logarithm sa anumang base a mula sa base na ito mismo ay katumbas ng isa.
  2. ang log 1 = 0 ay. Ang base a ay maaaring anuman, ngunit kung ang argumento ay isa, ang logarithm ay zero! Dahil ang a0 = 1 ay direktang bunga ng kahulugan.

Iyon ang lahat ng mga pag-aari. Siguraduhing magsanay sa pagsasabuhay ng mga ito! I-download ang cheat sheet sa simula ng aralin, i-print ito at lutasin ang mga problema.