Давление в плевральной полости и его изменение при дыхании.

Механизм выдоха (экспирации) обеспечивается за счет:

· Тяжести грудной клетки.

· Эластичности реберных хрящей.

· Эластичности легких.

· Давления органов брюшной полости на диафрагму.

В состоянии покоя выдох происходит пассивно .

В форсированном дыхании принимают экспираторные мышцы: внутренние межреберные мышцы (их направление - сверху, назад, спереди, вниз) и вспомогательные экспираторные мышцы: мышцы, сгибающие позвоночник, мышцы брюшного пресса (ко-сые, прямая, поперечная). При сокращении последних органы брюшной полости оказывают давление на расслабленную диафрагму и она выпячивается в грудную полость.

Типы дыхания. В зависимости преимущественно за счет какого компонента (поднятия ребер или диафрагмы) происходит увеличение объема грудной клетки, выделяют 3 типа дыхания:

· - грудной (реберный);

· - брюшной;

· - смешанный.

В большей степени тип дыхания зависит от возраста (подвижность грудной клетки увеличивается), одежды (тесные корсажи, пеленание), профессии (у лиц, занимающихся физическим трудом - брюшной тип дыхания увеличивается). Брюшное дыхание затрудняется в последние месяцы беременности, и тогда дополнительно включается грудное.

Наиболее эффективен брюшной тип дыхания:

· - глубже вентиляция легких;

· - облегчается возврат венозной крови к сердцу.

Брюшной тип дыхания преобладает у работников физического труда, скалолазов, певцов и др. У ребенка после рождения вначале устанавливается брюшной тип дыхания, а позже - к 7 годам - грудной.

Давление в плевральной полости и его изменение при дыхании.

Легкие покрыты висцеральной, а пленка грудной полости - париетальной плеврой. Между ними содержится серозная жидкость. Они плотно прилегают друг к другу (щель 5-10 мкм) и скользят относительно друг друга. Это скольжение необходимо для того, чтобы легкие могли следовать за сложными изменениями грудной клетки не деформируясь. При воспалении (плеврит, спайки) уменьшается вентиляция соответствующих участков легких.

Если ввести иглу в плевральную полость и соединить ее с водным манометром, то окажется, что давление в ней:

· при вдохе - на 6-8 см Н 2 О

· при выдохе - на 3-5 см Н 2 О ниже атмосферного.

Эту разницу между внутриплевральным и атмосферным давлением обычно называют давлением в плевральной полости.

Отрицательное давление в плевральной полости обусловлено эластической тягой легких, т.е. стремлением легких к спадению.

При вдохе увеличение грудной полости ведет к повышению отрицательного давления в плевральной полости, т.е. возрастает транспульмональное давление, приводящее к расправлению легких (демонстрация при помощи аппарата Дондерса).

При расслаблении инспираторных мышц транспульмональное давление уменьшается и легкие в силу эластичности спадаются.

Если ввести в плевральную полость небольшое количество воздуха, то он рассосется, т. к. в крови мелких вен малого круга кровообращения напряжение растворенных газов меньше, чем в атмосфере.

Накоплению жидкости в плевральной полости препятствует более низкое онкотическое давление плевральной жидкости (меньше белков), чем в плазме. Имеет значение и понижение гидростатического давления в малом круге кровообращения.

Изменение давления в плевральной полости можно измерить прямым способом (но можно повредить легочную ткань). Поэтому лучше измерять его путем введения в пищевод (в грудную его часть) баллончика длиной 10 см. Стенки пищевода весьма податливы.

Эластическая тяга легких обусловлена 3 факторами:

1. Поверхностным натяжением пленки жидкости, покрывающей внутреннюю поверхность альвеол.

2. Упругостью ткани стенок альвеол (содержат эластические волокна).

3. Тонусом бронхиальных мышц.

На любой поверхности раздела между воздухом и жидкостью действуют силы межмолекулярного сцепления, стремящиеся уменьшить величину этой поверхности (силы поверхностного натяжения). Под влиянием этих сил альвеолы стремятся сократиться. Силы поверхностного натяжения создают 2/3 эластической тяги легких. Поверхностное натяжение альвеол в 10 раз меньше теоретически рассчитанного для соответствующей водной поверхности.

Если бы внутренняя поверхность альвеолы была покрыта водным раствором, то поверхностное натяжение должно было быть в 5-8 раз больше. В этих условиях было бы спадение альвеол (ателектаз). Но этого не происходит.

Это значит, что в альвеолярной жидкости на внутренней поверхности альвеол имеются вещества, снижающие поверхностное натяжение, т. е. ПАВ. Их молекулы сильно притягиваются к друг другу, но обладают слабым средством с жидкостью, вследствие этого они собираются на поверхности и тем самым снижают поверхностное натяжение.

Такие вещества называются поверхностно активными веществами (ПАВ), роль которых в данном случае выполняют так называемые сурфактанты. Они представляют собой липиды и белки. Образуются специальными клетками альвеол - пневмоцитами II типа. Выстилка имеет толщину 20-100 нм. Но наибольшей поверхностной активностью компонентов этой смеси обладают производные лецитина.

При уменьшении размеров альвеол. молекулы сурфактанта сближаются, их плотность на единицу поверхности больше и поверхностное натяжение снижается - альвеола не спадается.

При увеличении (расширении) альвеол их поверхностное натяжение повышается, так как плотность сурфактанта на единицу поверхности понижается. Это усиливает эластическую тягу легких.

В процессе дыхания усиления дыхательных мышц тратится на преодоление не только эластического сопротивления легких и тканей грудной клетки, но и на преодоление неэластического сопротивления газовому потоку в воздухоносных путях, которое зависит от их просвета.

Нарушение образования сурфактантов приводит к спадению большого количества альвеол - ателектазу - отсутствие вентиляции обширных участков легких.

У новорожденных сурфактанты необходимы для расправления легких при первых дыхательных движениях.

Давление в плевральной полости, изменение его в разные фазы дыхательного цикла и роль в механизме внешнего дыхания. Пневмоторакс.

В плевральной полости имеются три обособленных серозных мешка – в одном из них находится сердце, а в двух других – легкие. Серозная оболочка легкого называется плеврой. Она состоит из двух листков:

Висцерального, - висцеральная (легочная) плевра плотно покрывает легкое, заходит в его борозды, отделяя таким образом доли легкого друг от друга,

Пристеночного, - париетальная (пристеночная) плевра выстилает внутри стенки грудной полости.

В области корня легкого висцеральная плевра переходит в париетальную, образуя таким образом замкнутое щелевидное пространство - плевральную полость. Внутренняя поверхность плевры покрыта мезотелием и увлажняется небольшим количеством серозной жидкости, благодаря чему уменьшается трение между плевральными листками во время дыхательных движений. Давление в плевральной полости ниже, чем атмосферное (принимаемое за нулевое) на 4-9 мм рт. ст., поэтому его называют отрицательным. (При спокойном дыхании внутриплевральное давление равно в фазу вдоха 6-9 мм рт. ст., а в фазу выдоха –4-5 мм рт. ст.; при глубоком вдохе давление может падать до 3 мм рт. ст.). Внутриплевральное давление возникает и поддерживается в результате взаимодействия грудной клетки с тканью легких за счет их эластической тяги. При этом эластическая тяга легких развивает усилие, которое всегда стремится уменьшить объем грудной клетки. Кроме того, атмосферный воздух производит одностороннее (изнутри) давление на легкие через воздухоносные пути. Грудная клетка неподатлива к передаче давления воздуха снаружи на легкие, поэтому атмосферный воздух, растягивая легкие, прижимает их к париетальной плевре и грудной стенке. В формировании конечного значения внутриплеврального давления участвуют также активные силы, развиваемые дыхательными мышцами во время дыхательных движений. Также на поддержание внутриплеврального давления влияют процессы фильтрации и всасывания плевральной жидкости (благодаря деятельности мезотелиальных клеток, которые также обладают способностью поглощать из плевральной полости воздух).

В силу того, что давление в плевральной полости понижено, при ранениях стенки грудной полости с повреждением париетальной плевры в нее поступает окружающий воздух. Это явление называется пневмоторакс. При этом внутриплевральное и атмосферное давления выравниваются, легкое спадается и нарушается его дыхательная функция (т.к. вентиляция легкого при наличии дыхательных движений грудной клетки и диафрагмы становится невозможной)

Различают следующие виды пневмоторакса: закрытый, - возникает при повреждении висцеральной (например, при спонтанном пневмотораксе) или висцеральной и париетальной плевры (например, при ранении легкого обломком ребра) без проникающего повреждения грудной стенки, - при этом воздух поступает в плевральную полость из легкого,

Открытый, - возникает при проникающем ранении грудной клетки, - при этом воздух может поступать в плевральную полость как из легкого, так и из окружающей среды,

Напряженный. - является крайним проявлением закрытого пневмоторакса, при спонтанном пневмотораксе возникает редко, - при этом воздух поступает в плевральную полость, но, вследствие клапанного механизма, не выходит обратно, а накапливается в ней, что может сопровождаться смещением средостения и выраженными гемодинамическими нарушениями.

По этиологии различают: самопроизвольный (спонтанный), - возникает при разрыве легочных альвеол (туберкулез, эмфизема легких);

Травматический, - возникает при повреждении грудной клетки,

Искусственный, - введение воздуха или газа в полость плевры специальной иглой, что вызывает сдавливание легкого, - применяется для лечения туберкулеза (вызывает спадение каверны за счет сдавливания легкого).

ДЫХАНИЕ – совокупность процессов, обеспечивающих потребление организмом кислорода (О2) и выделение углекислого газа (СО2)

ЭТАПЫ ДЫХАНИЯ:

1. Внешнее дыхание или вентиляция легких – обмен газами между атмосферным и альвеолярным воздухом

2. Обмен газов между альвеолярным воздухом и кровью капилляров малого круга кровообращения

3. Транспорт газов кровью (О 2 и СО 2)

4. Обмен газов в тканях между кровью капилляров большого круга кровообращения и клетками тканей

5. Тканевое, или внутреннее, дыхание – процесс поглощения тканями О 2 и выделения СО 2 (окислительно-восстановительные реакции в митохондриях с образованием АТФ)

ДЫХАТЕЛЬНАЯ СИСТЕМА

Совокупность органов, обеспечивающих снабжение организма кислородом, выведение углекислого газа и освобождение энергии, необходимой для всех форм жизнедеятельности


ФУНКЦИИ ДЫХАТЕЛЬНОЙ СИСТЕМЫ:

Ø Обеспечение организма кислородом и использование его в окислительно-восстановительных процессах

Ø Образование и выделение из организма избытка углекислого газа

Ø Окисление (распад) органических соединений с выделением энергии

Ø Выделение летучих продуктов метаболизма (пары воды (500 мл в сутки), алкоголя, аммиака и др.)

Процессы, лежащие в основе выполнения функций:

а) вентиляция (проветривание)

б) газообмен

СТРОЕНИЕ ДЫХАТЕЛЬНОЙ СИСТЕМЫ

Рис. 12.1. Строение дыхательной системы

1 – Носовой ход



2 – Носовая раковина

3 – Лобная пазуха

4 – Клиновидная пазуха

5 – Глотка

6 – Гортань

7 – Трахея

8 – Левый бронх

9 – Правый бронх

10 – Левое бронхиальное дерево

11 – Правое бронхиальное дерево

12 – Левое легкое

13 – Правое легкое

14 – Диафрагма

16 – Пищевод

17 – Ребра

18 – Грудина

19 – Ключица

орган обоняния, а также наружное отверстие дыхательных путей: служит для согревания и очистки вдыхаемого воздуха

ПОЛОСТЬ НОСА

Начальный отдел дыхательных путей и одновременно орган обоняния. Тянется от ноздрей до глотки, разделена перегородкой на две половины, которые спереди через ноздри сообщаются с атмосферой, а сзади при помощи хоан – с носоглоткой


Рис. 12.2. Строение полости носа

Гортань

отрезок дыхательной трубки, который соединяет глотку с трахеей. Находится на уровне IV-VI шейных позвонков. Представляет собой входное отверстие, защищающее легкие. В гортани расположены голосовые связки. Сзади от гортани располагается глотка, с которой она сообщается своим верхним отверстием. Внизу гортань переходит в трахею


Рис. 12.3. Строение гортани

Голосовая щель – промежуток между правой и левой голосовыми складками. При изменении положения хрящей, под действием мышц гортани может меняться ширина голосовой щели и натяжение голосовых связок. Выдыхаемый воздух колеблет голосовые связки ® возникают звуки

Трахея

трубка, которая наверху сообщается с гортанью, а снизу заканчивается делением (бифуркация ) на два главных бронха


Рис. 12.4. Главные дыхательные пути

Вдыхаемый воздух проходит через гортань в трахею. Отсюда он разделяется на два потока, каждый из которых идет в свое легкое по разветвленной системе бронхов

БРОНХИ

трубчатые образования, представляющие разветвления трахеи. Отходят от трахеи почти под прямым углом и направляются к воротам легких

Правый бронх шире, но короче левого и является как бы продолжением трахеи

Бронхи по строению похожи на трахею; они очень гибкие благодаря хрящевым кольцам в стенках и выстланы дыхательным эпителием. Соединительнотканная основа богата эластическими волокнами, которые могут менять диаметр бронха

Главные бронхи (первого порядка ) делятся на долевые (второго порядка ): на три в правом легком и на два в левом – каждый направляется в свою долю. Затем они делятся на более мелкие, идущие в свои сегменты – сегментарные (третьего порядка ), продолжающие делиться, образуя «бронхиальное дерево» легкого

БРОНХИАЛЬНОЕ ДЕРЕВО – система бронхов, по которой воздух из трахеи попадает в легкие; включает главные, долевые, сегментарные, субсегментарные (9-10 генераций) бронхи, а также бронхиолы (дольковые, терминальные и респираторные)

Внутри бронхолегочных сегментов бронхи последовательно делятся до 23 раз, пока не заканчиваются тупиком из альвеолярных мешочков

Бронхиолы (диаметр дыхательного пути менее 1 мм) делятся до образования концевых (терминальных ) бронхиол , которые делятся на самые тонкие короткие дыхательные пути – респираторные бронхиолы , переходящие в альвеолярные ходы , на стенках которых находятся пузырьки - альвеолы (воздушные мешочки ). Основная часть альвеол сосредоточена в гроздьях на концах альвеолярных ходов, образующихся при делении респираторных бронхиол

Рис. 12.5. Нижние дыхательные пути

Рис. 12.6. Воздухоносный путь, газообменная область и их объемы после спокойного выдоха

Функции воздухоносных путей:

1. Газообменная - доставка атмосферного воздуха в газообменную область и проведение газовой смеси из легких в атмосферу

2. Негазообменные:

§ Очистка воздуха от пыли, микроорганизмов. Защитные дыхательные рефлексы (кашель, чихание).

§ Увлажнение вдыхаемого воздуха

§ Согревание вдыхаемого воздуха (на уровне 10-й генерации до 37 0 С

§ Рецепция (восприятие) обонятельных, температурных, механических раздражителей

§ Участие в процессах терморегуляции организма (теплопродукция, теплоиспарение, конвекция)

§ Являются периферическим аппаратом генерации звуков

Ацинус

структурная единица легкого (до 300 тыс.), в которой происходит газообмен между кровью, находящейся в капиллярах легкого, и воздухом, заполняющим легочные альвеолы. Представляет собой комплекс от начала респираторной бронхиолы, по своему виду напоминающий виноградную гроздь

В ацинус входит 15-20 альвеол , в легочную дольку – 12-18 ацинусов . Из долек состоят доли легкого

Рис. 12.7. Легочный ацинус

Альвеолы (в легких взрослого человека 300 млн., площадь их общей поверхности 140 м 2) – открытые пузырьки с очень тонкими стенками, внутренняя поверхность которых выстлана однослойным плоским эпителием, лежащим на основной мембране, к которой прилежат оплетающие альвеолы кровеносные капилляры, образующие вместе с эпителиоцитами барьер между кровью и воздухом (аэрогематический барьер) толщиной 0,5 мкм, не препятствующий обмену газов и выделению водяных паров

В альвеолах обнаружены:

§ макрофаги (защитные клетки), которые поглощают посторонние частицы, попавшие в дыхательный тракт

§ пневмоциты – клетки, которые выделяют сурфактант


Рис. 12.8. Ультраструктура альвеолы

СУРФАКТАНТ – поверхностно-активное вещество легких, содержащее фосфолипиды (в частности, лецитин), триглицериды, холестерин, протеины и углеводы и образующее слой толщиной 50 нм внутри альвеол, альвеолярных ходов, мешочков, бронхиол

Значение сурфактанта:

§ Уменьшает поверхностное натяжение жидкости, покрывающей альвеолы (почти в 10 раз) ® облегчает вдох и предотвращает ателектаз (слипание) альвеол при выдохе.

§ Облегчает диффузию кислорода из альвеол в кровь вследствие хорошей растворимости кислорода в нем.

§ Выполняет защитную роль: 1) обладает бактериостатической активностью; 2) защищает стенки альвеол от повреждающего действия окислителей и перекисей; 3) обеспечивает обратный транспорт пыли и микробов по воздухоносному пути; 4) уменьшает проницаемость легочной мембраны, что является профилактикой развития отека легких в связи с уменьшением выпотевания жидкости из крови в альвеолы

ЛЕГКИЕ

Правое и левое легкое – два отдельных объекта, расположенные в грудной полости по сторонам от сердца; покрыты серозной оболочкой – плеврой , которая образует вокруг них два замкнутых плевральных мешка. Имеют неправильную конусовидную форму с основанием, обращенным к диафрагме, и верхушкой, выступающей на 2-3 см над ключицей в области шеи



Рис. 12.10. Сегментарное строение легких.

1 – верхушечный сегмент; 2 – задний сегмент; 3 – передний сегмент; 4 – латеральный сегмент (правое легкое) и верхний язычковый сегмент (левое легкое); 5 – медиальный сегмент (правое легкое) и нижний язычковый сегмент (левое легкое); 6 – верхушечный сегмент нижней доли; 7 – базальный медиальный сегмент; 8 – базальный передний сегмент; 9 – базальный латеральный сегмент; 10 – базальный задний сегмент

ЭЛАСТИЧНОСТЬ ЛЕГКИХ

способность отвечать на нагрузку повышением напряжения, которая включает в себя:

§ упругость – способность восстанавливать свою форму и объем после прекращения действия внешних сил, вызывающих деформацию

§ жесткость – способность сопротивляться дальнейшей деформации при превышении предала упругости

Причины эластических свойств легких:

§ напряжение эластических волокон паренхимы легких

§ поверхностное натяжение жидкости, выстилающей альвеолы – создается сурфактантом

§ кровенаполнение легких (чем выше кровенаполнение, тем меньше эластичность

Растяжимость – свойство обратное упругости, связано с наличием эластических и коллагеновых волокон, которые образуют спиральную сеть вокруг альвеол

Пластичность – свойство противоположное жесткости

ФУНКЦИИ ЛЕГКИХ

Газообменная – обогащение крови кислородом, используемым тканями организма, и удаление из нее углекислого газа: достигается благодаря легочному кровообращению. Кровь от органов тела возвращается к правой стороне сердца и по легочным артериям направляется в легкие

Негазообменные:

Ø Защитная – образование антител, фагоцитоз альвеолярными фагоцитами, выработка лизоцима, интерферона, лактоферрина, иммуноглобулинов; в капиллярах задерживаются и разрушаются микробы, агрегаты жировых клеток, тромбоэмболы

Ø Участие в процессах терморегуляции

Ø Участие в процессах выделения – удаление СО 2 , воды (около 0,5 л/сут.) и некоторых летучих веществ: этанола, эфира, закиси азота ацетона, этилмеркаптана

Ø Инактивация БАВ – более 80 % брадикинина, введенного в легочный кровоток, разрушается при однократном прохождении крови через легкое, происходит превращение ангиотензина I в ангиотензин II под влиянием ангиотензиназы; инактивируется 90-95 % простагландинов групп Е и Р

Ø Участие в выработке БАВ –гепарина, тромбоксана В 2 , простагландинов, тромбопластина, факторов свертывания крови VII и VIII, гистамина, серотонина

Ø Являются резервуаром воздуха для голосообразования

ВНЕШНЕЕ ДЫХАНИЕ

Процесс вентиляции легких, обеспечивающий газообмен между организмом и окружающей средой. Осуществляется благодаря наличию дыхательного центра, его афферентных и эфферентных систем, дыхательных мышц. Оценивается по соотношению альвеолярной вентиляции к минутному объему. Для характеристики внешнего дыхания используют статические и динамические показатели внешнего дыхания

Дыхательный цикл – ритмически повторяющаяся смена состояния дыхательного центра и исполнительных органов дыхания



Рис. 12.11. Дыхательные мышцы

Диафрагма – плоская мышца, отделяющая грудную полость от брюшной. Она образует два купола, левый и правый, направленные выпуклостями вверх, между которыми находится небольшая впадина для сердца. В ней есть несколько отверстий, сквозь которые из грудной области в брюшную проходят очень важные структуры организма. Сокращаясь, она увеличивает объем грудной полости и обеспечивает приток воздуха в легкие


Рис. 12.12. Положение диафрагмы во время вдоха и выдоха

давление в плевральной ПОЛОСТИ

физическая величина, характеризующая состояние содержимого полости плевры. Это величина, на которую давление в плевральной полости ниже атмосферного (отрицательное давление ); при спокойном дыхании оно равно 4 мм рт. ст. в конце выдоха и 8 мм рт. ст. в конце вдоха. Создается силами поверхностного натяжения и эластической тягой легкого


Рис. 12.13. Изменения давления во время вдоха и выдоха

ВДОХ (инспирация) – физиологический акт наполнения легких атмосферным воздухом. Осуществляется благодаря активной деятельности дыхательного центра и дыхательной мускулатуры, увеличивающей объем грудной клетки, в результате чего снижается давление в плевральной полости и в альвеолах, что приводит к поступлению воздуха окружающей среды в трахею, бронхи и респираторные зоны легкого. Происходит без активного участия легких, так как сократительные элементы в них отсутствуют

ВЫДОХ (экспирация) – физиологический акт выведения из легкого части воздуха, принимающего участие в газообмене. Вначале выводится воздух анатомического и физиологического мертвого пространства, мало отличающийся от атмосферного воздуха, затем альвеолярный воздух, обогащенный СО 2 и бедный О 2 в результате газообмена. В условиях покоя процесс пассивный. Осуществляется без затраты мышечной энергии, за счет эластической тяги легкого, грудной клетки, гравитационных сил и расслабления дыхательных мышц

При форсированном дыхании глубина выдоха усиливается с помощью мышц брюшного пресса и внутренних межреберных. Мышцы брюшного пресса сдавливают брюшную полость спереди и усиливают подъем диафрагмы. Внутренние межреберные мышцы смещают ребра вниз и тем самым уменьшают поперечное сечение грудной полости, а следовательно и ее объем

Отрицательное давление в плевральной щели. - раздел Образование, Лекция 4. Физиология дыхания Грудная Клетка Образует Герметичную Полость, Обеспечивающую Изоляцию Легких О...

Грудная клетка образует герметичную полость, обеспечивающую изоляцию легких от атмосферы. Легкие покрывает висцеральный плевральный листок, а внутреннюю поверхность грудной клетки - париетальная плевра. Между этими листками существует щелевидное пространство, заполненное плевральной жидкостью. Внутриплевральное давление между плевральными листками в норме ниже, чем атмосферное. И это состояние называется отрицательным давлением в плевральной щели (полости). При открытых верхних дыхательных путях давление во всех отделах легких равно атмосферному. Перенос атмосферного воздуха в легкие происходит при появлении разницы давлений между внешней средой и альвеолами легких. При каждом вдохе объем легких увеличивается, давление заключенного в них воздуха или внутрилегочное давление становится ниже атмосферного на 6 – 9 мм рт. ст. и воздух засасывается в легкие. При выдохе уменьшается объем легких, давление в альвеолах становится выше атмосферного и альвеолярный воздух выходит во внешнюю среду. На высоте спокойного выдоха отрицательное давление в плевральной щели составляет 1,5 – 3мм.рт.ст. Отрицательное давление в плевральной полости обусловлено так называемой эластической тягой легких - силой, с которой легкие постоянно стремятся уменьшить свой объем

Конец работы -

Эта тема принадлежит разделу:

Лекция 4. Физиология дыхания

Спирометрия метод измерения объемов выдыхаемого воздуха с помощью прибора спирометра... Спирография методика непрерывной регистрации объемов выдыхаемого и... Пневмотахография методика непрерывной регистрации объемной скорости потоков вдыхаемого и выдыхаемого...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Легочные объемы и емкости.
При спокойном дыхании человек вдыхает и выдыхает около 500 мл воздуха. Этот объем воздуха называется дыхательным объемом (ДО) (рис.3).

Транспорт газов кровью.
Кислород и углекислый газ в крови находятся в двух состояниях: в химически связанном и в растворенном. Перенос кислорода из альвеолярного воздуха в кровь и углекислого газа из крови в альвеолярный

Транспорт кислорода.
Из общего количества кислорода, который содержится в артериальной крови, только 5% растворено в плазме, остальное количество кислорода переносится эритроцитами, в которых он находится в химической

Гидрокарбонатный буфер.
Из вышеприведенных газообменных реакция следует, что их течение на уровне легких и тканей оказывается разнонаправленным. Чем в этих случаях определяется направленность образования и диссоциации фор

Виды соединений Hb.
Гемоглобин – особый белок хромопротеида, благодаря которому эритроциты выполняют дыхательную функцию и поддерживают рН крови. Основная функция гемоглобина - перенос кислорода и частично углекислого

Основные системы регуляции кислотно – щелочного равновесия в организме.
Кислотно – щелочное равновесие (КЩР) (кислотно –щелочной баланс, кислотно –щелочное состояние (КЩС), кислотно – основное равновесие) – это постоянство концентрации Н+ (протонов) в жидких

Регуляция дыхания
Как и все системы в организме, дыхание регулируется двумя основными механизмами – нервным и гуморальным. Основой нервной регуляции является реализация рефлекса Геринга –Бреера, который по

Кислород. Улыбки. Упражнения. Два основных типа дыхания. Мышцы. Упражнения на дыхание. Дыхание. Ритмы. Диафрагма. Экология. Воздушный шарик. Дружба лёгких и сердца. Плавать в море. Правильное дыхание. Верхнегрудное дыхание. Воздух. Бронхоспазм. Сердце человека. Дыхание ассоциируется с вдохом и выдохом. Правильное дыхание животом. Животные и растения. Животики. Запахи. Виды дыхания. Хорошее настроение.

«Правильное дыхание» - Рекомендации. Правильное дыхание. Китайская поговорка. Дыхательная система человека. Расплата за неправильное дыхание. Существует три типа дыхания. Дыхательные мышцы. Займите положение лежа на спине. Упражнение на брюшное дыхание. Оценка дыхательных привычек. Человек рождается с правильным механизмом дыхания. Чередование брюшного и грудного дыхания. Определение глубины дыхания. Симптомы «высотной болезни».

«Дыхательная гимнастика» - Дыхательные упражнения. Гуси летят. Трубач. Петушок. Упражнения для дыхательной гимнастики. Ворона. Бросим мяч. Почему дыхательная гимнастика нужна. Дыхательная гимнастика может быть использована в различных режимных моментах. Паровозик. Вырасти большой. Бегемотик. Неоценимый вклад в его здоровье. Часть физкультурного занятия или отдельные дыхательные упражнения. Дыхательная гимнастика для детей дошкольного возраста.

«Физиология дыхания человека» - Конвекционное поступление воздуха. Характеристика динамических показателей. Вдох. Дыхательные пути. Давление в плевральной полости. Внешнее дыхание. Спирография. Регуляция просвета бронхов. Дыхательный объём. Физиология дыхательной системы. Вентиляция. Спирометр. Вспомогательные дыхательные мышцы. Система дыхания. Общая характеристика дыхания. Функции дыхательных путей.

«Строение дыхательной системы» - Строение и функция органов дыхания. Непроизвольная регуляция. Заболевание органов дыхания. Легочное и тканевое дыхание. Лёгкие, покрытые плеврой. Механизм вдоха. Лёгкие. Обозначьте. Воздух увлажняется и обезвреживается. Диффузия газов. Гуморальная регуляция. Дыхание. Дыхательная система. Для чего нашему организму кислород. Процессы вдоха и выдоха. Вентеляция легких. Бронхи. Механизм вдоха и выдоха.

«Органы дыхательной системы человека» - Заболевания дыхательной системы. Строение органов дыхания. Дыхательная система одна из самых важных из систем. Знаний об органах дыхательной системы. Газообмен. Дыхательные пути. Знания о строении органов дыхательной системы. С чего начинается дыхание каждого из нас. Легкие. Функции дыхательной системы. Ткань лёгкого. Трахея. Дыхательная система.