Оптимум и пессимум частоты раздражения. Современные представления о строении и функции мембран. Активный и пассивный транспорт веществ через мембраны. Аналитический и системный подход к изучению функций организма

Н. Е. Введенский показал, что существуют оптимальные условия, при которых величина тетануса является наибольшей, причем она может значительно превосходить величину тетануса, ожидаемую согласно теории Гельмгольца. С другой стороны, существуют такие условия, при которых эффект оказывается ослабленным - пессимальные условия при чрезмерно сильных и частых раздражениях, - что опять-таки не согласуется с теорией суперпозиции. Умеренные по силе и частоте раздражения являются, таким образом, оптимальными, сильные же и частые раздражения вызывают пессимум - ослабление эффекта, торможение.

На основании этого Н. Е. Введенский считал, что высота тетануса определяется не только наложением отдельных сокращений друг на друга, но и теми изменениями, которые эти раздражения оставляют в ткани. Было показано, что импульсы, поступающие в ткань, меняют ее функциональное состояние; изменения эти зависят от характера приходящих импульсов. Если каждый последующий импульс попадает с таким интервалом, что застает ткань в состоянии повышенной реактивной способности, то эффект сокращения будет сильным, а высота тетануса больше ожидаемой (по Гельмгольцу). Н. Е. Введенский назвал это состояние повышенной возбудимости вслед за протекшим сократительным эффектом экзальтационной фазой. Экзальтационной фазе предшествует состояние пониженной реактивной способности -- рефрактерная фаза. Импульсы, следующие с такой частотой, при которой они попадают в рефрактерную фазу, вызывают пессимальный эффект, снижение высоты тетануса.

Реакция ткани, таким образом, пессимальная или оптимальная, зависит от того, в каком состоянии находится ткань к моменту прихода действующего на нее импульса. Для свежей, неутомленной икроножной мышцы лягушки оптимальная частота раздражений, дающая при физиологически максимальной силе раздражения тетанус наибольшей величины, составляет 100 раз в1 сек; увеличение частоты раздражения до 200, 300 раз в 1 сек приводит к пессимальному эффекту. Для утомленной мышцы оптимум сдвигается к более умеренным раздражениям, пессимальный эффект получается легче.
Мышца сокращается в ответ на нервный импульс приходящий из ЦНС. ^ Иннервация поперечно-полосатых мышечных волокон позвоночных осуществляется из мотонейронов спинного мозга или мозгового ствола. Один мотонейрон коллатералями своего аксона иннервирует несколько мышечных волокон. Комплекс включающий двигательный нейрон и иннервируемую им группу мышечных волокон представляет собой нейромоторную (двигательную) единицу. Она представляет собой основной функционально-структурный элемент нервно-мышечного аппарата. Практически, весь нервно-мышечный аппарат можно рассматривать как совокупность двигательных единиц.

По своему строению и функциональным особенностям двигательные единицы неодинаковы. Они отличаются размерами тела мотонейрона, толщиной аксона и числом мышечных волокон, входящих в состав двигательной единицы.

Так, малая двигательная единица , включает относительно маленький мотонейрон с тонким аксоном, который имеет небольшое число концевых веточек и соответственно иннервирует небольшое число мышечных волокон (самая малая - до нескольких десятков).Малые двигательные единицы входят в состав всех мелких мышц лицевой мускулатуры, пальцев рук и ног, кистей и частично в состав больших мышц туловища и конечностей. Большая двигательная единица включает крупный мотонейрон с относительно толстым аксоном, который образует большое число концевых веточек в мышце и соответственно иннервирует большое число (до нескольких тысяч) мышечных волокон. Таким образом, чем крупнее тело мотонейрона, тем толще его аксон и тем больше мышечных волокон иннервируется этим мотонейроном. Большие двигательные единицы входят преимущественно в состав больших мышц туловища и конечностей.

Следовательно, каждая мышца составлена из самых разных по размеру двигательных единиц - от малых до больших. Вместе с тем самая малая двигательная единица той или иной мышцы может быть значительно больше чем самая большая двигательная единица другой мышцы (например, малая двигательная единица мышцы туловища, превосходит по размеру большую двигательную единицу мышцы, осуществляющей движение глаза).

Среднее число мышечных волокон, иннервируемых одним мотонейроном, характеризует среднюю величину двигательных единиц мышцы. Обратная ей величина называется плотностью иннервации.

Плотность иннервации велика (ДЕ мала) в мышцах, приспособленных для «тонких» движений (мышцы пальцев, языка, наружные мышцы глаз). Наоборот, в мышцах, осуществляющих «грубые» движения (например, мышцах туловища), плотность иннервации мала (ДЕ велики).

Различают одиночный и множественный типы иннервации мышечных волокон. Чаще встречается одиночный тип иннервации , осуществляемый более или менее компактными моторными окончаниями аксона одного мотонейрона. Мышечные волокна, имеющие такую иннервацию, в ответ на нервные импульсы генерируют потенциалы действия, распространяющиеся по волокну. Их часто называют фазными и быстрыми , так как они производят быстрые сокращения.

^ Множественный тип иннервации встречается реже. волокон представлен в скелетной мускулатуре амфибий, а также во внешних глазных мышцах млекопитающих, где имеются также и одиночно иннервированные волокна. На каждом мышечном волокне при множественной иннервации располагается много моторных синапсов от одного или нескольких мотонейронов. Такие мышечные волокна реагируют на нервные импульсы только локальными постсинаптическими потенциалами. Потенциалы действия в них не генерируются из-за отсутствия в их мембране потенциалозависимых Na + -каналов, но возможно электротоническое распространение деполяризации из синаптических районов по всему волокну, необходимое для повсеместного запуска сократительного акта. Сократительный акт здесь более медленный, чем в волокнах с одиночной иннервацией, поэтому такие волокна часто называют тоническими и медленными .
^ Регуляция напряжения мышцы .

Управление движениями и сохранение определенного положения тела связано, прежде всего, с работой центральной нервной системы. Помимо выбора нужных мышц и моментов их включения центральная нервная система при управлении движениями и сохранении позы должна регулировать степень напряжения (укорочения этих мышц). Для решения последней задачи она использует три механизма: 1) регуляцию числа активных двигательных единиц (мотонейронов) данной мышцы, 2) выбор режима их работы, 3) определение характера временной связи активности двигательных единиц. Рассмотрим последовательно эти механизмы.

1. . Чем больше активных двигательных единиц у данной мышцы, тем большее напряжение она развивает.

Число активных двигательных единиц определяется интенсивностью возбуждающих влияний , которым подвергаются мотонейроны данной мышцы со стороны нейронов более высоких моторных уровней (моторной коры, подкорковых моторных центров), промежуточных нейронов спинного мозга и рецепторов.

Поскольку любая мышца иннервируется мотонейронами, имеющими неодинаковые размеры, а чем меньше размер тела мотонейрона, тем ниже порог возбуждения, то реакция их на эти возбуждающие влияния будет различной. Поэтому при относительно слабых возбуждающих влияниях потенциалы действия возникают лишь у наименьших из мотонейронов данной мышцы. Большее напряжение мышцы требует большей интенсивности возбуждающих влияний на ее мотонейроны. При этом помимо малых двигательных единиц активными становятся все большие по размеру двигательные единицы. Таким образом, значительные напряжения мышцы обеспечиваются активностью многих ее двигательных единиц. Этот механизм включения двигательных единиц в соответствии с их размерами носит название «правило размера».

Согласно этому правилу, самые малые двигательные единицы мышцы активны при любом ее напряжении, тогда как большие двигательные единицы, входящие в состав данной мышцы, активны лишь при больших ее напряжениях. Поэтому у одной и той же мышцы степень использования больших двигательных единиц по сравнению с малыми единицами ниже. Иначе говоря, в условиях обычной деятельности мышечные волокна больших двигательных единиц тренируются относительно мало.

2. Режим активности двигательных единиц . Как уже отмеча놆†††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††† важным механизмом, определяющим напряжение мышцы.

Частота импульсации мотонейронов зависит от интенсивности возбуждающих влияний, которым они подвергаются. Если интенсивность небольшая, то работают низкопороговые, малые мотонейроны и частота их импульсации относительно невелика. В этом случае малые двигательные единицы работают в режиме одиночных сокращений. Такая активность двигательных единиц обеспечивает лишь слабое, но зато мало утомительное сокращение мышцы. Его достаточно, например, для сохранения вертикальной позы тела.

В связи с этим понятно, почему позная активность мышц может поддерживаться без утомления много часов подряд.

Увеличение напряжения мышцы возникает благодаря усилению возбуждающих влияний на ее мотонейроны. Это усиление приводит не только к включению новых, более высокопороговых мотонейронов, но и к повышению частоты импульсации относительно низкопороговых мотонейронов. При этом интенсивность возбуждающих влияний, которым подвержены наиболее высокопороговые из активных мотонейронов, еще недостаточна, чтобы вызвать их высокочастотный разряд. Поэтому из активных двигательных единиц более низкопороговые работают с относительно большой для них частотой и, следовательно, в режиме тетанического сокращения, а наиболее высокопороговые - в режиме одиночных сокращений. При очень больших напряжениях мышцы большинство двигательных единиц работают в тетаническом режиме (из-за высокой частоты импульсации их мотонейронов), и потому большие напряжения мышцы могут поддерживаться недолго.

3. Связь во времени активности разных двигательных единиц . Напряжение мышцы в определенной мере зависит от того, как связаны во времени импульсы, посылаемые разными мотонейронами данной мышцы. Если импульсы достигают мышцы одновременно, то и двигательные единицы сокращаются одновременно (синхронно). В этом случае общее напряжение мышцы выше, но колебания напряжения при этом очень большие. Если мотонейроны посылают импульсы не одновременно, двигательные единицы работают с разной частотой и не одновременно (асинхронно), поэтому фазы сокращений их мышечных волокон не совпадают, общее напряжение мышцы при этом меньше, чем в первом случае, но и колебания напряжения, так же, значительно меньше.

режиме одиночных сокращений , но асинхронно, то общее напряжение всей мышцы колеблется незначительно. Чем больше число асинхронно сокращающихся двигательных единиц, тем меньше колебания в напряжении мышц. Соответственно более плавно совершается движение или точнее удерживается необходимая поза (меньше амплитуда физиологического тремора). В нормальных условиях большинство двигательных единиц одной мышцы работают асинхронно, независимо друг от друга, что и обеспечивает нормальную плавность ее сокращения.

При утомлении, вызванном большой и длительной мышечной работой, нарушается нормальная деятельность двигательных единиц, и они начинают возбуждаться одновременно (синхронно). В результате движение теряет плавность, нарушается его точность, возникает тремор утомления - большие размашистые дрожательные движения с частотой около 6 колебаний в 1 сек.

Если двигательные единицы работают в режиме полного (или почти полного)тетануса , то характер временной связи их активности почти не влияет на величину максимального напряжения, развиваемого мышцей в целом. При полном тетанусе уровень напряжения каждой из работающих двигательных единиц поддерживается почти постоянным (гладкий тетанус). Поэтому при относительно длительных и сильных сокращениях мышцы характер связи во времени импульсной активности мотонейронов практически не отражается на максимальном напряжении мышцы.

Синхронизация импульсной активности мотонейронов играет важную роль, при кратковременных сокращениях или в начале любого сокращения мышц, влияя на скорость развития напряжения, т. е. на величину «градиента силы». Чем больше совпадений в сократительных циклах разных двигательных единиц в начале развития напряжения мышцы, тем быстрее оно нарастает.

Такая синхронизация происходит особенно часто в начале выполнения быстрых движений, совершаемых против большой внешней нагрузки. Это, в значительной степени, связано с тем, что в начале разряда частота импульсации мотонейронов выше, чем в дальнейшем. Благодаря высокой начальной частоте импульсации и активности большого числа мотонейронов вероятность совпадения сократительных циклов многих двигательных единиц (синхронизации) в начале движения очень велика. Таким образом, скорость нарастания напряжения мышцы («градиент силы», или «взрывная сила») зависит как от числа активируемых двигательных единиц, так и от начальной частоты и степени синхронизации импульсации мотонейронов данной мышцы.

Лабораторная Работа № 7. Регистрация сокращения скелетной мышцы при разной частоте раздражения
Если раздражать мышцу серией импульсов с большими интервалами времени между ними (один раз в 1 с), то она отвечает на каждый импульс одиночным сокращением. Такие интервалы оказываются достаточными для сокращения мышцы и полного ее расслабления. Если посылать импульсы с большей частотой (более 10 раз в 1 с) и соответственно с меньшими интервалами, то возникает тетаническое сокращение, или тетанус , под которым понимают ответ мышцы на ритмическое раздражение. Различают тетанус зубчатый и гладкий.

Если каждый новый раздражающий импульс приходит в тот момент, когда мышца не полностью расслабилась после предыдущего сокращения, то форма тетануса будет зубчатой. Если последующий импульс приходит в момент укорочения мышцы, тетанус оказывается сплошным, гладким . При раздражении нерва нервно-мышечного препарата двумя импульсами с таким интервалом между ними, при котором второй импульс приходит к мышце во время повышенной ее возбудимости, происходит наложение кривых суперпозиция. При этом на второй импульс возникает сокращение большей высоты, чем на первый

Д л я р а б о т ы н е о б х о д и м ы: электроды с клеммой для нервно-мышечного препарата, стимулятор, кимограф, миограф, лягушка, набор инструментов для препарирования, штатив с муфтой, раствор Рингера, пипетка.

М е т о д и к а в ы п о л н е н и я р а б о т ы

Приготовьте нервно-мышечный препарат. Бедренную косточку препарата укрепите в зажиме электродов. Сухожилие мышцы посредством нити присоедините к пишущему рычагу. Писчик приставьте к бумаге, покрывающей барабан кимографа. Включите в сеть стимулятор, поставьте нужные параметры раздражения: частота 1 имп/с, длительность 1 мс, амплитуда 0. Подберите интенсивность раздражения, достаточную для получения кривой сокращения. Барабан кимографа поставьте на быстрый ход. Запишите несколько одиночных сокращений.

Увеличьте частоту раздражения до 10 имп/с. и запишите при таком раздражении зубчатый тетанус. Отметьте большую высоту зубчатого тетануса по сравнению с одиночным сокращением при одинаковой интенсивности раздражения. Для получения полного тетануса увеличьте частоту раздражения до 20 30 имп/с. Силу раздражения оставьте прежней. На бумаге запишется гладкий тетанус.

^ Объясните механизм возникновения гладкого и зубчатого тетанусов
Лабораторная работа № 8 Наблюдение оптимума и пессимума силы и частоты раздражения.
Явления оптимума и пессимума возникают при применении раздражителей, разных по частоте (оптимум и пессимум частоты) и по силе (оптимум и пессимум силы). С помощью стимулятора можно получить оптимум и пессимум частоты и силы раздражения. Появление пессимального ответа, выражающегося в уменьшении ответной реакции при увеличении силы или частоты раздражения, связано с развитием пессимального торможения. По своему механизму оно относится к деполяризационному типу. Доказательством наличия торможения может быть тот факт, что при уменьшении интенсивности раздражения мышца снова отвечает оптимальным эффектом. Если бы уменьшение эффекта было связано с развитием утомления, то препарат не ответил бы на меньшую силу раздражения.
Д л я р а б о т ы н е о б х о д и м ы: стимулятор, электроды, кимограф, миограф, лягушка, набор инструментов для препарирования, штатив, раствор Рингера.

М е т о д и к а в ы п о л н е н и я р а б о т ы.

1.Роль мышечного сокращения в организации поведенческой деятельности человека. Классификация мышц и их функции. Виды и режимы мышечных сокращений.

2.Гладкие мышцы, их морфологические и физиологические особенности.

3.Одиночное мышечное сокращение, его фазы. Суммация сокращений.

4.Тетаническое сокращение, его виды. Оптимум и пессимум по Введенскому

5.Сократительный аппарат мышечного волокна. Механизм мышечного сокращения.

6.Синапс. Классификация. Особенности строения. Механизм передачи возбуждения в химическом синапсе. Свойства синапсов.

7.Медиатор. Виды медиаторов. Свойства медиаторов.

8.Электрические и тормозные синапсы. Особенности передачи сигнала.

9.Пути фармакологической регуляции синаптической передачи возбуждения.

1. Роль мышечного сокращения в организации поведенческой деятельности человека. Классификация мышц и их функции. Виды и режимы мышечных сокращений.

Общим свойством всего живого и основой активного поведения является движение .

Органом движения является мышечный аппарат , который включает 3 вида мышц : скелетные, гладкие и сердечную мышцы.

Они выполняют следующие функции :

1. Создание позы и удержание тела в пространстве, преодоление инерции.

1.Двигательная функция внутренних органов (моторная функция кишечника, сократительная функция сердца, обеспечение дыхания за счет сокращения дыхательных мышц).

2.Эффекторный механизм мыслительной (произносимая речь) и поведенческой деятельности.

3.Преобразование химической энергии макроэргических соединений в механическую, тепловую, электрическую энергию.

Скелетные мышцы

Составляют 35-40% массы тела, их количество достигает 600.

Состоят из пучков мышечных волокон , заключенных в общую соединительно-тканную оболочку.

Мышечное волокно – это гигантская, многоядерная мышечная клетка (диаметр от 1 до 100 мкм, длина от 5 до 400 мм), содержащая сотни миофибрилл , которые являются структурной единицей и представляют сократительный аппарат мышечного волокна. Миофибриллы включают актин и миозин.

Скелетные волокна подpазделяются на фазные волокна (они генерируют потенциал действия) и тонические (не способны генерировать распространяющееся возбуждение).

Фазные волокна делятся на быстрые волокна (белые, гликолитические) и медленные волокна (красные, окислительные).

Физические свойства скелетных мышц.

Растяжимость – это способность мышцы изменять свою длину под действием растягивающей силы.

Эластичность – способность мышцы принимать свою первоначальную длину после прекращения действия растягивающей или деформирующей силы.

Сила – определяется максимальным грузом, который мышца в состоянии поднять.

Способность совершать работу – определяется произведением массы поднятого груза на высоту подъема.

Физиологические свойства скелетных мышц : возбудимость, проводимость, сократимость, лабильность.

Для скелетной мышцы характерны три основных режима сокращения :

ИЗОТОНИЧЕСКИЙ укорочение мышцы без изменения ее тонического напряжения (когда мышце не приходится перемещать груз, например, сокращение мышц языка).

ИЗОМЕТРИЧЕСКИЙ длина мышечных волокон остается постоянной на фоне увеличения напряжения (попытка поднять непосильный груз)

АУКСОТОНИЧЕСКИЙ изменение длины сопровождается изменением напряжения (работа мышцы при выполнении трудовых, спортивных и других двигательных актов).

Для скелетной мышцы характерны два вида сокращений :

ОДИНОЧНОЕ сокращение – возникает при действии одиночным стимулом (раздражителем) непосредственно на мышцу (прямое раздражение), или через иннервирующий ее двигательный нерв (непрямое).

ТЕТАНИЧЕСКОЕ (суммированное) сокращение – длительное сокращение мышцы в ответ на ритмическое раздражение.

(В естественных условиях к скелетной мышце из ЦНС поступают не одиночные импульсы, а серия импульсов, следующих друг за другом с определенными интервалами).

2. Гладкие мышцы, их морфологические и физиологические особенности

Гладкие мышцы находятся:

· во внутренних органах (пишеварительный тракт, мочевой пузырь);

· в сосудах, коже, глазе (мышцы радужной оболочки, цилиарная мышца).

Они делятся на

Тонические не способны развивать «быстрые» сокращения.

Фазно-тонические – способны быстро сокращаться и подразделяются на обладающие автоматией и не обладающие автоматией.

Морфологические особенности.

1.Образованы гладкомышечными клетками веретенообразной формы.

2.Хаотично расположены и окружены соединительной тканью (поэтому лишены поперечной исчерченности).

3.Контактируют друг с другом при помощи нексусов.

4.Сократительный аппарат представлен миофибриллами, состоящими в основном из актина. Миозин представлен только в дисперсной и агрегированной формах.

Физиологические особенности.

1.В основе сокращения – процесс превращения энергии АТФ в механическую энергию сокращения.

2.Сокращения медленные с использованием скользящего механизма.

3.Сокращение протекает с малыми энерготратами.

4.Обладают выраженной пластичностью (длительное сохранение измененной длины).

5.Обладают автоматией.

Раздражителями являются:

1.Быстрое и сильное растяжение гладких мышц.

2.Химические вещества (особенно гормоны и медиаторы, к которым гладкие мышцы обладают высокой чувствительностью).

Особенности электрических процессов.

1.Потенциал покоя в гладких мышцах меньше, чем в скелетных.

Это связано с более высокой проницаемостью мембраны для ионов Na .

В клетках не обладающих автоматией он стабилен и =– 60–70 мВ.

В клетках, обладающих автоматией , он неустойчивый с колебаниями от –30 до –70 мВ.

Потенциал действия имеет длительный латентный период.

Ниже, чем в скелетных мышцах.

Бывает двух типов: пикоподобная форма и форма «плато».

Связан с повышением проницаемости для ионов Са.

Несколько опережает сокращение.

2.Проведение возбуждения возникает, если приложенный стимул одновременно возбуждает некоторое минимальное количество мышечных клеток.

Может распространяться на соседние мышечные волокна (из-за малого сопротивления в области контактов) распространяется лишь на определенное расстояние, которое зависит от силы раздражителя скорость значительно меньше, чем в скелетной мышце и составляет от 2 до 15 см/с.

3. Одиночное мышечное сокращение, его фазы. Суммация сокращений

Одиночное мышечное сокращение продолжается около 100 мс и развивается по фазам :

Латентный (скрытый) период продолжается до 3 мс и представляет время от начала действия раздражителя до начала видимого ответа (сокращения) мышцы.

Фаза сокращения продолжается 40-50 мс характеризуется укорочением длины мышечного волокна, что связано с увеличением концентрации Сa 2+ в протофибриллярных пространствах и образованием актин-миозиновых связей .

Фаза расслабления продолжается 50-60 мс характеризуется увеличением (восстановлением) длины волокна. Возникает при снижении концентрации Ca 2+ в протофибриллярных пространствах и ослаблением актин-миозиновых связей.

Если на мышцу наносятся два и более раздражений с интервалом менее продолжительности одиночного сокращения , но более продолжительности рефрактрного периода ПД , то происходит суммация сокращений , в результате которой сократительный эффект усиливается.

Существует два типа суммации : частичная и полная

Частичная (или неполная) суммация возникает, если

меньше продолжительности одиночного мышечного сокращения ;

· больше продолжительности фазы сокращения , т.е. если второе раздражение попадает в фазу расслабления .

В результате амплитуда мышечного сокращения возрастает с образованием двух вершин.

Полная суммация возникает, если:

· интервал между раздражениями меньше продолжительности фазы сокращения , но больше продолжительности рефрактерного периода;

· второе раздражение попадает в фазу сокращения.

В результате амплитуда мышечного сокращения изменяется (увеличивается или уменьшается относительно одиночного сокращения) с образованием одной вершины

Увеличение или уменьшение амплитуды связано с изменением возбудимости в процессе возбуждения и зависит от того в какую фазу измененной возбудимости наносится следующее раздражение.

Учитывая, что в скелетной мышце процесс возбуждения продолжается около 8 мс (латентный период ПД - 2,5 мс плюс пиковый потенциал – около 5 мс), становится понятным, что укорочение мышечного волокна начнется тогда, когда быстрая деполяризация произойдет приблизительно на 1/3 от амплитуды пикового потенциала.

Известно, что в период формирования пикового потенциала возбудимость ткани снижена (фаза абсолютной и фаза относительной рефрактерности). Поэтому, если следующее раздражение будет наноситься в этот период, то амплитуда мышечного сокращения будет снижена.

Период возбуждения в скелетной мышце завершается следовой деполяризацией, продолжающейся от 20 до 40 мс.

В этот период возбудимость, а, следовательно, и сократимость повышена. Поэтому, если следующее раздражение будет приходиться на этот период, то амплитуда мышечного сокращения будет возрастать (тем больше, чем больше повышена возбудимость).

3. Тетаническое сокращение, его виды. Оптимум и пессимум по Введенскому

Различают два вида тетануса : зубчатый и гладкий.

В их основе лежат механизмы частичной или полной суммации.

Вид тетанического сокращения определяется Механическим состоянием мышцы в момент повторного возбуждения. Состоянием возбудимости мышцы в момент повторного возбуждения.

Зубчатый тетанус интервал между которыми больше продолжительности фазы сокращения , но меньше продолжительности одиночного мышечного сокращения (интервал от 100 до 50 мс при частоте раздражений от 10 до 20 Гц).

При этом каждое новое не завершившегося расслабления мышцы, образуя новые вершины последующих сокращений («зубцы»). Высота суммарного сокращения зависит от ритма и силы раздражений и определяется исходным уровнем формирования каждого следующего сокращения (чем выше уровень, тем больше амплитуда).

В начале фазы расслабления этот уровень выше, чем в конце.

Гладкий тетанус развивается на ряд последовательных раздражений, интервал между которыми меньше длительности фазы сокращения , но больше продолжительности потенциала действия (интервал от 50 до 5 мс при частоте 20 до 200 Гц).

Каждое новое сокращение формируется на фоне не завершившегося сокращения мышцы, образуя единую, гладкую вершину. Ее высота определяется уровнем измененной возбудимости в процессе возбуждения.

Если каждый следующий раздражитель попадает в фазу экзальтации (повышенной возбудимости), то амплитуда сокращения будет большой.

Если импульсы попадают в период сниженной возбудимости (относительная рефрактерность), то амплитуда будет снижена.

Явление изменения амплитуды в зависимости от возбудимости мышцы объяснил H.Е.Введенский, введя понятие оптимума и пессимума.

Оптимум - это тетаническое сокращение максимальной амплитуды.

Оптимальная частота – максимальная частота раздражений, при которой возникает максимальная амплитуда тетанического ответа.

Пессимум – снижение амплитуды тетанического сокращения при увеличении частоты раздражений (выше оптимальной величины).

Пессимальная частота – максимальная частота (сверх оптимальной), при которой возникает минимальная амплитуда тетанического ответа.

4. Сократительный аппарат мышечного волокна. Механизм мышечного сокращения

Структурной единицей мышечного волокна являются миофибриллы .

Они разделены на чередующиеся участки (диски), которые обладают различными оптическими свойствами .

Диски, обладающие двойным лучепреломлением, получили название анизотропные (А) диски .

Диски, которые не обладают двойным лучепреломлением, названы изотропные (I) диски.

Анизотропные диски в обыкновенном свете выглядят темными и состоят из двух темных полосок, разделенных светлой "H" полоской.

Изотропные диски в обыкновенном свете выглядят светлыми и в середине имеют темную "Z" полоску.

Z полоска – эта тонкая мембрана, которая является продолжением поверхностной мембраны вглубь мышечного волокна.

Она выполняет опорную функцию , поскольку через ее поры проходят протофибриллы.

В зоне Z мембраны также находятся триады или Т-системы триады представляют выпячивания плазматической мембраны с образованием поперечных трубочек в виде ярусов и цисцерн.

Они предсталяют саркоплазматический ретикулум , который содержит высокую концентрацию ионов Ca.

При возбуждении Z мембраны кальций по концентрационному градиенту выходит из саркоплазматического ретикулума в протофибриллярное пространство, вызывая процесс сокращения Активная реабсорбция ионов Са в саркоплазматический ретикулум за счет работы Са-насоса, приводит к расслаблению мышечного волокна.

Структурной единицей миофибриллы являются протофибриллы

Протофибриллы включают белковые нити актина и миозина , а также белки тропонин и тропомиозин.

Нити миозина – это толстые и короткие нити, которые входят только в состав анизотропного диска.

Нити актина – это тонкие и длинные нити, входящие в состав как изотропного, так и анизотропного дисков. Они вставлены между нитями миозина. От них свободна только H-полоска анизотропного диска.

Процесс сокращения происходит в результате скольжения нитей актина относительно нитей миозина, который запускается накоплением Са, при этом образуются актино-миозиновые комплексы (мостики) и нити актина вдвигаются в промежутки между нитями миозина.

Нити актина сближаются друг с другом.

Ширина H-полоски и анизотропных дисков уменьшается, изотропный диск своего не изменяет своего размера.

Механизм мышечного сокращения и расслабления.

1.Раздражение.

2.Возникновение потенциала действие.

3.Проведение возбуждения вдоль клеточной мембраны до Z мембраны, а далее вглубь волокна по трубочкам саркоплазматического ретикулума.

4.Освобождение Са из триад.

5.Диффузия Са к протофибриллам.

6.Взаимодействие Са с тропонином.

7.Конформационное изменение комплекса тропомиозин-тропонин.

8.Освобождение активных центров актина.

9.Присоединение актина к миозину.

10.В присутствии белка актомиозина распад АТФ с освобождением энергии.

11.Скольжение нитей актина относительно миозина.

12.Укорочение миофибриллы.

13.Активация кальциевого насоса.

14.Ресинтез АТФ.

15.Понижение концентрации свободных ионов Са в саркоплазме.

16.Разрушение актин-миозиновых комплексов.

17.Обратное скольжение нитей актина относительно миозина.

18.Увеличение (восстановление) миофибриллы.

5.Синапс. Классификация. Особенности строения. Механизм передачи возбуждения в химическом синапсе. Свойства синапсов

Синапс (соединять, смыкать, связывать) – это структурное образование, которое обеспечивает переход возбуждения с нервного волокна на инервируемую клетку.

Классификация и особенности строения по учебнику.

Механизм синоптической передачи возбуждения.

1.Деполяризация (возбуждение) пресинаптической мембраны.

2.Изменение проницаемости для ионов кальция.

3.Ионы кальция или его ионизированные комплексы по концентрационному градиенту поступают в нервное окончание (антагонистами кальция являются ионы магния и токсины ботулинуса).

4.Уменьшение электростатических влияний (одноименных зарядов) между пресинаптической мембраной и везикулами.

5.Приближение и слияние везикул с пресинаптической мембраной.

6.Изменение поверхностного натяжения везикул.

7.Разрыв везикул.

8.Выход медиатора в синоптическую щель.

9.Медиатор (возбуждающий в нервно-мышечном синапсе: ацетилхолин) диффундирует через синоптическую щель к рецепторам постсинап­тической мембраны.

10.Ацетилхолин вступает во взаимодействие с холинорецепторами (обладают избирательной чувствительностью к ацетилхолину).

11.При одновременном участии ионов кальция и макроэргического фосфата происходят конформационные изменения белковых молекул рецептора.

12.Открываются каналы постсинаптической мембраны для Na или Са.

13.Ионы Na по концентрационному градиенту поступают внутрь воспринимающей возбуждение клетки.

14.Развивается деполяризация – возбуждающий постсинаптический потенциал , который носит местный характер, по форме и свойствам напоминает локальный ответ (не подчиняется закону «все или ничего» и способен суммироваться).

15.Суммация возбуждающих постсинаптических потенциалов

16.Потенциал концевой пластинки.

17.Когда он достигает определенной (критической величины) возникают местные токи между возбужденными участками постсинаптической мембраны и невозбужденными участками прилегающей к ней обычной (электровозбудимой) мембраной.

18. На прилегающем участке электровозбудимой мембраны возникает потенциал действия.

Свойства химических синапсов.

1.Нервно-химический механизм передачи возбуждения (передача возбуждения осуществляется с помощью специфического химического вещества – медиатора, который выделяется нервным окончанием и количество которого пропорционально частоте приходящей нервной импульсации).

2.Принцип Дейла (во всех синапсах, образованных нервными окончаниями одного нейрона, выделяется только один вид медиатора – либо возбуждающий, либо тормозный).

3.Одностороннее проведение возбуждения (возбуждение передается только в одном направлении – от пресинаптической мембраны к постсинаптической мембране).

4.Синаптическая задержка (скорость проведения возбуждения в синапсе значительно медленнее, чем в нервном и мышечном волокне).

5.Низкая функциональная лабильность синапса.

6.Трансформация ритма возбуждения (при большой частоте нервных импульсов в пресинаптичоском окончании происходит уменьшение частоты возбуждений в постсинаптических образованиях).

7.Высокая утомляемость (временная потеря работоспособности в результате несоответствия синтеза и расхода медиатора).

8.Высокая чувствительность химическим веществам (фосфорорганические вещества являются ингибиторами холинэстеразы), к ядам (кураре – препятствует развитию потенциала концевой пластинки; ботулинус – блокирует высвобождение медиатора; змеиный яд – блокирует субсинаптические рецепторы).

Вопросы для самостоятельной подготовки (по учебнику).

1.Медиатор. Виды медиаторов. Свойства медиаторов.

2.Электрические и тормозные синапсы. Особенности передачи сигнала.

3.Пути фармакологической регуляции синаптической передачи возбуждения.

Пессимум (от лат. pessimum - наихудшее)

(физиологическое), угнетение деятельности органа или ткани, вызываемое чрезмерной частотой или силой наносимых раздражений; описано в 1886 Н. Е. Введенским (См. Введенский). Исследуя особенности проведения нервного импульса в нервно-мышечном препарате лягушки, он обнаружил, что усиление слитного сокращения мышцы - так называемое Тетанус а, вызываемое постепенным возрастанием частоты или силы раздражений (см. Оптимум), при дальнейшем их учащении или усилении, внезапно сменяется расслаблением мышцы и полным торможением её активности. Введенский трактовал это явление с позиций разработанной им теории Парабиоз а. Согласно этой теории, работоспособность нервных окончаний, передающих импульсы мышце, после прохождения волны возбуждения резко падает, и для восстановления их работоспособности требуется некоторое время (в нервно-мышечном препарате икроножной мышцы лягушки - 0,02-0,03 сек ). Это время определяет функциональные возможности нервных окончаний - их Лабильность . Если интервал между раздражениями меньше этого необходимого периода, то есть если он превышает лабильность нервных окончаний, в них развивается своеобразное стойкое нераспространяющееся возбуждение - парабиоз, блокирующее проведение нервных импульсов к мышце и тормозящее тем самым её активность, предохраняя от переутомления. Описываемое явление носит обратимый характер: снижение интенсивности раздражения восстанавливает мышечное сокращение. Явление П. обнаружено в ряде органов и тканей; многие исследователи полагают, что оно лежит в основе рефлекторной регуляции деятельности организма со стороны нервной системы.

Лит.: Введенский Н. Е., О соотношениях между раздражением и возбуждением при тетанусе, Полн. собр. соч., т. 2, Л., 1951; его же, Возбуждение, торможение и наркоз, там же, т. 4, Л., 1953; Ухтомский А. А., Возбуждение, утомление, торможение, Собр. соч., т. 2, Л., 1951; его же, Из истории учения о нервном торможении, там же; Беритов И. С., Общая физиология мышечной и нервной системы, 3 изд., т. 1, М., 1959; Физиология человека, М., 1972.

Н. Д. Аграчева.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Пессимум" в других словарях:

    ПЕССИМУМ - ПЕССИМУМ, особое физиологич. состояние нервно мышечного аппарата, впервые описанное русским физиологом Н. Е. Введенским в 1886 г. Под влиянием непрямого тетаниче ского раздражения при частоте не менее 100 в 1 секунду и силе индукционного тока на… … Большая медицинская энциклопедия

    - (от лат. pessimum наихудшее) (физиол.), угнетение деятельности нервной и мышечной тканей, вызываемое чрезмерной частотой стимуляции нервного ствола, к рая не может быть воспроизведена в виде биопотенциалов самого нерва и синхронных сокращений… … Биологический энциклопедический словарь

    Сущ., кол во синонимов: 1 торможение (13) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    - (лат. pessimum наихудшее) биол. ослабление деятельности органа или ткани при чрезмерно сильной или частой стимуляции, превышающей их функциональные возможности (лабильность). Новый словарь иностранных слов. by EdwART, 2009. пессимум (пэ), а, мн … Словарь иностранных слов русского языка

    Пессимум ритма и - силы раздражителя (от лат. pessimus наихудший) – уменьшение возбудимости ткани, возникающее при увеличении частоты и силы стимуляции выше значений, проявляющих максимальную реакцию … Словарь терминов по физиологии сельскохозяйственных животных

    Или пессимум эпохи Великого переселения народов общее похолодание климата в Европе, продолжавшееся несколько столетий после римского климатического оптимума. Кульминацией климатического пессимума стало похолодание 535 536 годов. На смену… … Википедия

    Карта переселения народов. Великое переселение народов условное название совокупности этнических перемещений в Европе в IV VII веках, главным образом с пе … Википедия

  • 2. Изменения возбудимости при возбуждении типичныхкардиомиоцитов. Электромеханическое сопряжение. Экстрасистола. Компенсаторная пауза. Систолический и минутный объем крови.
  • 3.Физиологические основы обезболивания.
  • 2.Внешние проявления деятельности сердца. Структурный анализ нормальной экг во II стандартном отведении. Электрическая ось сердца.
  • 3.Понятие стресса. Виды и стадии развития стресса по г. Селье. Стрессреализующие и стресслимитирующие системы. Профилактика психоэмоционального стресса.
  • 3)Морфо - функциональная организация отделов кожной сенсорной системы. Тактильная и температурная сенсорные системы как ее компоненты. Классификация тактильных и терморецепторов, их характеристика.
  • Билет 21
  • 1. Мотивации. Классификация мотиваций, механизмы их возникновения. Роль гипоталамуса и коры больших полушарий мозга в формировании мотиваций.
  • 3. Характеристика видов и режимов мышечного сокращения. Условия возникновения оптимума и пессимума.
  • Билет 22
  • 2. Принципы организации рационального питания. Специфическое динамическое действие питательных веществ.
  • 3. Физиологические особенности и свойства гладких мышц. Их значение в миогенной регуляции моторных функций внутренних органов.
  • Билет 23
  • 2.Основной обмен, условия определения основного обмена, факторы, влияющие на его величину.
  • 3.Потенциал действия и его фазы. Ионные механизмы возбуждения, Изменения проницаемости клеточной мембраны при возбуждении.
  • 1. Физиология мозжечка, его роль в регуляции соматических и вегетативных функций.
  • Билет 25
  • 1. Автономная (вегетативная) нервная система. Ее функции. Физиологические особенности симпатического, парасимпатического, метасимпатического отделов автономной нервной системы.
  • 2. Реабсорбция. Обязательная (облигатная) и избирательная (факультативная) реабсорбция. Активные и пассивные процессы, лежащие в основе реабсорбции.
  • 2. Представление о гомеостатических функциях почек (регуляция объема жидкости, осм. Давления, кислотно-основного равновесия, количества неорг. И орг. Веществ, давления крови, кроветворения).
  • 3. Функциональное состояние. Способы оценки, индивидуальные различия и регуляция функциональных состояний.
  • 1. Гипоталамус как высший центр вегетативной регуляции. Его роль в формировании мотивационно-потребностной сферы.
  • 2. Понятие крови, системы крови. Количесвво циркулирующей крови, ее состав. Функции крови. Основные константы крови, их величина и функциональное значение.
  • 2. Понятие об осмотическом давлении крови. Представление о саморегуляторном принципе механизма поддержания констант крови. Понятие о гемолизе, его видах и плазмолизе.
  • 3. Женская половая система[править | править исходный текст]
  • Функционирование репродуктивной системы
  • 2. Форменные элементы крови, их физиологическое значение. Понятие об эритро-,лейко-, и тромбоцитопоэзе, их нервной и гуморальной регуляции.
  • 3. Таламус, структурно-функциональная характеристика ядерных групп.
  • 1. Физиология щитовидной железы. Тиреоидные гормоны и их роль в регуляции функций организма.
  • 3. Физические и физиологические свойства скелетных мышц. Понятие двигательной единицы, физиологические особенности быстрых и медленных двигательных единиц.
  • 1 Вопрос 1. Функциональная асимметрии полушарий головного мозга у человека. Классификация, характеристика
  • 3 Вопрос. Речь, виды и функции речи. Функциональная асимметрия коры больших полушарий головного мозга, связанная с развитием речи у человека.
  • 1 Вопрос. Понятие о регуляции функций, Механизмы регуляции функций, Представление о саморегуляции постоянства внутренней среды организма. Ответ не нашла!!!
  • 2 Вопрос. Стресс, механизмы, роль в процессах жизнедеятельности. Стресс как фаза адаптации. Кратковременная и долговременная адаптации. Кроссадаптация и её роль в клинической практике
  • Симпатический отдел автономной нервной системы
  • свободно укорачивается мышечное волокно.

    3. Ауксотоническое: меняется длина и напряжение.

    Режимы (типы) сокращения в зависимости от длительности сокращения:

    Одиночное -мышечное сокращение – это сокращение на одиночное кратковременное раздражение,

    пороговым или сверхпороговым стимулом. Характерно для сердца.

    Оно состоит из периодов:

    1)Латентный –обусловлен возбуждением мембраны мышечного волокна и его распространением

    2)Период укорочения (развития напряжения);

    3)Период расслабления – когда уменьшается концентрация Са и отсоединяются головки миозина

    от актиновых филаментов.

    Тетаническое сокращение – это длительное сокращение скелетных мышц, возникающее в ответ на

    ритмическое раздражение (т.е. на ряд последующих друг за другом стимулов) В его основе лежит

    явление мышечных сокращений.

    Зубчатый тетанус – возникает когда каждое последующее раздражение попадает в фазу

    расслабления мышцы

    Гладкий тетанус – возникает когда каждое последуещее тетаническое сокращение падает в фазу

    сокращения (укорочения) мышцы.

    В основе механизма тетанического сокращения лежит явление – суммации мышечных сокращений. –

    это увеличение силы (или амплитуды) и длительности сокращения мышцы под действием ее повторного

    раздражения в период предыдущего сокращения.Моторные еденицы входящие в данную мышцу

    включаются в процесс раздрожения, чем больше единиц тем больше амплитуда сокращения и тонус мышц.

    Оптимум и пессимум силы и частоты раздражения.

    Оптимальные условия (частота), при которых величина тетануса является наиболее высокий и

    устойчивый.

    Пессимальная – высокая частота, превышающая лабильность нервно-мышечного синапса, при

    которой мышца расслабляется. Умеренные по силе и частоте раздражения являются, таким образом,

    оптимальными, сильные же и частые раздражения вызывают пессимум - ослабление эффекта, торможение.

    Реакция ткани, таким образом, пессимальная или оптимальная, зависит от того, в каком состоянии

    находится ткань к моменту прихода действующего на нее импульса. Для свежей, неутомленной

    икроножной мышцы лягушки оптимальная частота раздражений, дающая при физиологически

    максимальной силе раздражения тетанус наибольшей величины, составляет 100 раз в1 сек; увеличение

    частоты раздражения до 200, 300 раз в 1 сек приводит к пессимальному эффекту. Для утомленной мышцы

    оптимум сдвигается к более умеренным раздражениям, пессимальный эффект получается легче.

    Билет 22

    1. Роль различных отделов ЦНС в регуляции физиологических функций. Физиология спинного мозга. Клинически важные спинальные рефлексы.

    Спинной мозг является самым древним отделом ЦНС. В нем располагаются нейроны нескольких типов. Около 3 % составляют мотонейроны. Они в свою очередь подразделяются на альфа-мотонейроны тонические медленные, а также гамма-мотонейроны (проприоцептивная чувствительность). Кроме того 95% приходится на вставочные или интернейроны, среди которых выделяют собственные спинальные и проекционные.

    В структурах спинного мозга замыкается большое количество рефлекторных дуг, принимающих участие в регуляции соматических и вегетативных функций организма. Часть спинномозговых рефлексов связана с деятельностью нейронных механизмов самого спинного мозга (сегментарные рефлексы), другая связана с деятельностью различных центров головного мозга (надсегментарные рефлексы) и поэтому рефлексы спинного мозга могут отличатся самой различной степенью сложности.

    Существует несколько классификаций спинномозговых рефлексов, основные из них две следующие: первая – по рецепторам, раздражение которых вызывает рефлекс. По ней различают:

      проприоцептивные-запускаются рецепторами мышц, суставов и сухожильными рецепторами. Отсюда их первоначальное название-сухожильные рефлексы: обнаружены немецкими неврологами Эрбом и Вестфалем в 1875 году и с тех пор широко применяются в клинике как тест при исследованиях рефлекторной возбудимости см человека. Различают несколько форм сух.рефлексов:

    Фазический на растяжение (возникает как ответ на очень кратковременное растяжение мышц) именно они были описаны Эрбом и Вестфалем, например коленный рефлекс.

    Тонический на растяжение (возникает в ответ на длительное растяжение, продолжающееля десятки сек.) открыт в 1924 Шерингтоном. Например растяжение мышцы.

    Лучше экстензора-вызывает рефлекторное тоническое сокращение мышечных волокон,которое противодействует растяжению. Такие рефлексы также называются миотатическими, а фазические просто сухажильными. Подобного рода рефлексы используются в организме для поддержания позы и регуляции движений.

      висцерорецептивные-возникают с интерорецепторов, могут быть: - соматическими- появляются при сокращении мышц передней брюшной стенки, гр.клетки, разгибателей мышц спины. –вегетаивными-осуществляются при участии преганглионарных нейронов внс. И подразделяются по ее отделам(рефлексы симпат. И парасимпат. НС).

      Кожные - являются защитными

    Вторая классификация объединяет спинальные рефлексы по органам-эфекторам.

      Рефлексы конечностей, включает:

      Сгибательные-это рефлексы защитного типа, направленные на удаление животного от сильных повреждающих действий. Рефлектрная дуга этих рефлексов может иметь полисинаптический характер, появляются при раздражении болевых рецепторов человека. Например, погружение в слабый раствор серной кислоты лапки лягушки в опыте тюрка.

      Разгибательные рефлексы-к этой группе относятся собст.тонические рефлексы на растяжение мышц(#на погибание коленок). Клинический коленный рефлекс – фазный рефлекс и перекрестный разгибательный. Рефлекторная дуга этих рефлексов как правило имеет моносинаптический характер.

      Ритмические и позные – это сложные рефлексы, вовлекающие в деятельность большое количество различных двигательных ядер и требующие для своего осуществления функции ряда сегментов см. К ритмическим рефлексам относятся: чесательный (у млекопитающих) потирательный(у земноводных), а также шагание.

    К позиционным рефлексам относится группа рефлекторных реакций, объедененных по принципу длительного поддержания рефлекторного сокращения, необходимого для придания животному определенной позы (сгибательный и разгибательный, шейные тонические рефлексы положения).

      брюшные – вызываются штриховым раздражением кожи живота, выражаются в сокращении соответствующих участков мускулатуры стенки живота, это защитные рефлексы. Верхний-параллельно нижнему ребру, средний-на уровне пупка, нижний-праллельно паховой складки.

      рефлексы органов таза-кремастерный и анальный.

    Спинальный шок – обратимое угнетение двигательных и вегетативных рефлексов после перерыва см. при односторонней перерезке СМ возникает синдром Броун-Секара, характеризующийся тем, что на стороне поражения отмечается паралич, расстройство мыш чувст, сосудодвиг нарушения. На противоположной стороне сохранена мышечная чувствительность и движении, но выпадает болевая и температурная.

Суммация сокращений и тетанус возникают в том случае, если на мышцу наносится не одно, а несколько раздражений с определенным интервалом времени.

Рассмотрим пример:

Если интервал между раздражениями будет больше длительности одиночного сокращения (больше 100 мсек.), то зарегиструются 2 одиночных сокращения. Уменьшая интервал между раздражениями от 100 до 50 мсек

(частота 10-20 Гц), т.е. второе раздражение будет наноситься в фазу расслабления и амплитуда сокращения мышцы на второе раздражение будет больше, т.к. второе сокращение возникает тогда, когда мышца еще не успела полностью расслабиться, т.е. происходит суммация сокращений. При этом на миограмме регистрируется две вершины.

Если интервал между раздражениями меньше 50 мсек

(частота более 20 ГЦ), то второе раздражение воздействует на мышцу в конечный период фазы сокращения и произойдет полное слияние двух сокращений. Однако это будет наблюдаться до тех пор, пока интервал между раздражениями превышает длительность возникающего перед сокращением ПД, т.к. во время его развития резко падает возбудимость (фаза абсолютной рефрактерности.) и на второе раздражение, следующее с интервалом менее 5 мсек.

(частота более 200 Гц) -не реагирует.

Зубчатый тетанус

Развивается на ряд последовательных раздражений, интервал между которыми больше, чем длительность фазы сокращения мышцы.

Гладкий тетанус

Возникает тогда, когда интервал между раздражениями меньше длительности фазы сокращения, но больше чем продолжительность потенциала действия.

У разных мышц длительность фаз одиночного сокращения неодинакова, а, следовательно, частота стимуляции или естественного возбуждения мышцы для получения тетанического сокращения различны.

Тетанус характеризуется слиянием одиночных мышечных сокращений в непрерывное укорочение мышцы, которое по амплитуде превышает уровень, достигаемый при одиночном сокращении.

В случае гладкого тетануса после нескольких первых импульсов последующие ответы мышечных волокон не изменяют достигнутого напряжения, а лишь поддерживают его. В подобном режиме двигательные единицы мышц человека работают при развитии максимальных изометрических усилий. При гладком тетанусе развиваемое двигательными единицами напряжение в 2-4 раза больше, чем при одиночных сокращениях.

В режиме тетанического сокращения мышца способна работать лишь короткое время. Это объясняется тем, что из-за отсутствия периода расслабления она не может восстановить свой энергетический потенциал и работает как бы « в долг».

В естественных условиях мышечные волокна,двигательные единицы и скелетная мышца в целомработают в режиме одиночного сокращения только в том случае, когда длительность интервала между последовательными импульсами мотонейрона равна или превышает длительность одиночного сокращения иннервируемых им мышечных волокон.

Так, режим одиночного сокращения медленных волокон камбаловидной мышцы человека обеспечивается при частоте импульсации мотонейрона менее 12 импульсов в секунду, а быстрых волокон глазодвигательных мышц –при скорости импульсации мотонейрона менее 50 импульсов в секунду.

Гладкий тетанус для быстрых и медленных мышц достигается при разных частотах импульсации мотонейронов. Зависит это от времени одиночного сокращения. Так, гладкий тетанус для быстрой глазодвигательной мышцы проявляется при частоте свыше 150-200 импульсов в секунду, а у медленной камбаловидной мышцы –при частоте около 30 импульсов в секунду.

Оптимум и пессимум (Введенский)

Высокие частоты раздражения, вызывающие уменьшение сокращения мышцы, Введенский назвал пессимальными частотами раздражения, а ответ мышцы на это раздражение -пессимальным сокращениям. Уменьшение частоты стимуляции тотчас приводит к восстановлению высокого уровня тетанического сокращения.

Чтобы разбираемая ситуация имела конкретные числовые выражения, что облегчит понимание, условно определим интервалы временной продолжительности

Рассмотрим фазы: аболютная рефрактерность=5 мсек.

Относительная рефрактерность от 5-10 мсек.

Супернормальная. возбудимость от 10 до 40 мсек

Расчет показывает, что

При раздражении с частотой ритма 200 импульсов/сек многие импульсы тока будут действовать на ткань, когда она находится в состоянии абсолютной рефрактерности и не способна отвечать на них и, следовательно, они будут неэффективными, а ритм раздражения подвергается трансформации в более медленный ритм возбуждения. Если подобное возникает при исследовании сократительной способности мышц, то в этих условиях степень сокращения мышц будет меньше, чем при раздражении тока меньшей частоты

При увеличении интервала между раздражениями от 5 до 10 мсек.(от 200 до 100 импульсов в секунду), каждое следующее раздражение будет наноситься в фазу относительной рефрактерности. В этом частотном интервале выявляется наивысшая частота, которая способна воспроизводиться исследуемой структурой без искажения ритма, что соответствует лабильности данной структуры.

Последующее увеличение интервала между раздражениями от 10 до 40 мсек.(частоты от 100 до 25 импульсов в секунду) создает условия, когда каждое раздражение приходится на фазу супернормальной возбудимости, что благоприятствует возникновению возбуждения, и при этом можно ожидать максимального сокращения мышцы. Частота, которая вызывает максимальный сократительный эффект, была названа Введенским оптимальной частотой раздражений, а сокращение -оптимальным.

Изменяя силу раздражений при их фиксированной частоте, Введенский показал, что оптимум и пессимум сокращения зависят и от силы раздражения.

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

Эта тема принадлежит разделу:

Физиология

Общая физиология. Физиологические основы поведения. Высшая нервная деятельность. Физиологические основы психических функций человека. Физиология целенаправленной деятельности. Приспособление организма к различным условиям существования. Физиологическая кибернетика. Частная физиология. Кровь, лимфа, тканевая жидкость. Кровообращение. Дыхание. Пищеварение. Обмен веществ и энергии. Питание. Центральная нервная система. Методы исследования физиологических функций. Физиология и биофизика возбудимых тканей.

К данному материалу относятся разделы:

Роль физиологии в диалектико-материалистическом понимании сущности жизни. Связь физиологии с другими науками

Основные этапы развития физиологии

Аналитический и системный подход к изучению функций организма

Роль И.М.Сеченова и И.П.Павлова в создании материалистических основ физиологии

Защитные системы организма, обеспечивающие целостность его клеток и тканей

Общие свойства возбудимых тканей

Современные представления о строении и функции мембран. Активный и пассивный транспорт веществ через мембраны

Электрические явления в возбудимых тканях. История их открытия

Потенциал действия и его фазы. Изменение проницаемости калиевых, натриевых и кальциевых каналов в процессе формирования потенциала действия

Мембранный потенциал, его происхождение

Соотношение фаз возбудимости с фазами потенциала действия и одиночного сокращения

Законы раздражения возбудимых тканей

Действие постоянного тока на живые ткани

Физиологические свойства скелетной мышцы

Виды и режимы сокращения скелетных мышц. Одиночное мышечное сокращение и его фазы

Тетанус и его виды. Оптимум и пессимум раздражения

Лабильность, парабиоз и его фазы (Н.Е.Введенский)

Сила и работа мышц. Динамометрия. Эргография. Закон средних нагрузок

Распространение возбуждения по безмякотным нервным волокнам

Строение, классификация и функциональные свойства синапсов. Особенности передачи возбуждения в них

Функциональные свойства железистых клеток

Основные формы интеграции и регуляции физиологических функций (механическая, гуморальная, нервная)

Системная организация функций. И.П.Павлов - основоположник системного подхода в понимании функций организма

Учение П.К.Анохина о функциональных системах и саморегуляции функций. Узловые механизмы функциональной системы

Понятие о гомеостазе и гомеокинезе. Саморегуляторные принципы поддержания постоянства внутренней среды организма

Рефлекторный принцип регуляции (Р.Декарт, Г.Прохазка), его развитие в трудах И.М.Сеченова, И.П.Павлова, П.К.Анохина

Основные принципы и особенности распространения возбуждения в ЦНС

Торможение в ЦНС (И.М.Сеченов), его виды и роль. Современное представление о механизмах центрального торможения

Принципы координационной деятельности центральной нервной системы. Общие принципы координационной деятельности ЦНС

Автономная и соматическая нервная системы, их анатомо-фуцнкциональные различия

Сравнительная характеристика симпатического и парасимпатического отделов вегетативной нервной системы

Врожденная форма поведения (безусловные рефлексы и инстинкты), их значение для приспособительной деятельности

Условный рефлекс как форма приспособления животных и человека к изменяющимся условиям существования. Закономерности образования и проявления условных рефлексов; классификация условных рефлексов

Физиологические механизмы образования рефлексов. Их структурно-функциональная основа. Развитие представлений И.П.Павлова о механизмах формирования временных связей

Явление торможения в ВНД. Виды торможения. Современное представление о механизмах торможения

Аналитико-синтетическая деятельность коры больших полушарий

Архитектура целостного поведенческого акта с точки зрения теории функциональной системы П.К.Анохина

Мотивации. Классификация мотиваций, механизм их возникновения

Память, ее значение в формировании целостных приспособительных реакций

Учение И.П.Павлова о типах ВНД, их классификация и характеристика

Биологическая роль эмоций. Теории эмоций. Вегетативные и соматические компоненты эмоций

Физиологические механизмы сна. Фазы сна. Теории сна

Учение И.П.Павлова о I и II сигнальных системах

Роль эмоций в целенаправленной деятельности человека. Эмоциональное напряжение (эмоциональный стресс) и его роль в формировании психосоматических заболеваний организма

Роль социальных и биологических мотиваций в формировании целенаправленной деятельности человека

Особенности изменения вегетативных и соматических функций в организме, связанных с физическим трудом и спортивной деятельностью. Физическая тренировка, ее влияние на работоспособность человека

Особенности трудовой деятельности человека в условиях современного производства. Физиологическая характеристика труда с нервно-эмоциональным и умственным напряжением

Адаптация организма к физическим, биологическим и социальным факторам. Виды адаптации. Особенности адаптации человека к действию экстремальных факторов

Значение кровообращения для организма. Кровообращение как компонент различных функциональных систем, определяющих гомеостаз

Сердце, его гемодинамическая функция. Изменение давления и объема крови в полостях сердца в различные фазы кардиоцикла. Систолический и минутный объем крови

Физиологические свойства и особенности сердечной мышечной ткани. Современное представление о субстрате, природе и градиенте автоматии сердца

Тоны сердца и их происхождение

Саморегуляция деятельности сердца. Закон сердца (Старлинг Э.Х.) и современные дополнения к нему

Гуморальная регуляция деятельности сердца

Рефлекторная регуляция деятельности сердца. Характеристика влияния парасимпатических и симпатических нервных волокон и их медиаторов на деятельность сердца. Рефлексогенные поля и их значение в регуляции деятельности сердца

Кровяное давление, факторы, обусловливающие величину артериального и венозного кровяного давления

Артериальный и венный пульс, их происхождение. Анализ сфигмограммы и флебограммы

Капиллярный кровоток и его особенности. Микроциркуляция и ее роль в механизме обмена жидкости и различных веществ между кровью и тканями

Лимфатическая система. Лимфообразование, его механизмы. Функция лимфы и особенности регуляции лимфообразования и лимфотока

Функциональные особенности структуры, функции и регуляции сосудов легких, сердца и других органов

Рефлекторная регуляция тонуса сосудов. Сосудодвигательный центр, его эфферентные влияния. Афферентные влияния на сосудодвигательный центр

Гуморальные влияния на сосудистый тонус

Кровяное давление - как одна из физиологических констант организма. Анализ периферических и центральных компонентов функциональной системы саморегуляции кровяного давления

Пищевая мотивация. Физиологические основы голода и насыщения

Пищеварение, его значение. Функции пищеварительного тракта. Типы пищеварения в зависимости от происхождения и локализации гидролиза

Принципы регуляции деятельности пищеварительной системы. Роль рефлекторных, гуморальных и местных механизмов регуляции. Гормоны желудочно-кишечного тракта, их классификация

Пищеварение в полости рта. Саморегуляция жевательного акта. Состав и физиологическая роль слюны. Слюноотделение, его регуляция

Пищеварение в желудке. Состав и свойства желудочного сока. Регуляция желудочной секреции. Фазы отделения желудочного сока

Виды сокращения желудка. Нейрогуморальная регуляция движений желудка

Пищеварение в 12-перстной кишке. Внешнесекреторная деятельность поджелудочной железы. Состав и свойства сока поджелудочной железы. Регуляция и приспособительный характер панкреатической секреции к видам пищи и пищевым рационам

Постоянство температуры внутренней среды организма как необходимое условие нормального протекания метаболических процессов. Функциональная система, обеспечивающая поддержание постоянства температуры внутренней среды организма

Температура тела человека и ее суточные колебания. Температура различных участков кожных покровов и внутренних органов

Теплоотдача. Способы отдачи тепла и их регуляция

Выделение как один из компонентов сложных функциональных систем, обеспечивающих постоянство внутренней среды организма. Органы выделения, их участие в поддержании важнейших параметров внутренней среды

Почка. Образование первичной мочи. Фильтр, ее количество и состав

Образование конечной мочи, ее состав и свойства. Характеристика процесса реабсорбции различных веществ в канальцах и петле. Процессы секреции и экскреции в почечных канальцах

Регуляция деятельности почек. Роль нервных и гуморальных факторов

Процесс мочеиспускания, его регуляция. Выведение мочи

Выделительная функция кожи, легких и желудочно-кишечного тракта

Образование и секреция гормонов, их транспорт кровью, действие на клетки и ткани, метаболизм и экскреция. Саморегуляторные механизмы нейрогуморальных отношений и гормонообразовательной функции в организме

Гормоны гипофиза, его функциональные связи с гипоталамусом и участие в регуляции деятельности эндокринных органов

Физиология щитовидной и околощитовидной желез

Эндокринная функция поджелудочной железы и роль ее в регуляции обмена веществ

Физиология надпочечников. Роль гормонов коры и мозгового вещества в регуляции функций организма

Половые железы. Мужские и женские половые гормоны и их физиологическая роль в формировании пола и регуляции процессов размножения. Эндокринная функция плаценты

Роль спинного мозга в процессах регуляции деятельности опорно-двигательного аппарата и вегетативных функций организма. Характеристика спинальных животных. Принципы работы спинного мозга. Клинически важные спинальные рефлексы

Продолговатый мозг и мост, их участие в процессах саморегуляции функций

Физиология среднего мозга, его рефлекторная деятельность и участие в процессах саморегуляции функций

Децеребрационная ригидность и механизмы ее возникновения. Роль среднего и продолговатого мозга в регуляции мышечного тонуса

Статические и статокинетические рефлексы (Р.Магнус). Саморегуляторные механизмы поддержания равновесия тела

Физиология мозжечка, его влияние на моторные и вегетативные функции организма

Ретикулярная формация ствола мозга и ее нисходящее влияние на рефлекторную деятельность спинного мозга. Восходящие активирующие влияния ретикулярной формации ствола мозга на кору больших полушарий. Участие ретикулярной формации

Таламус. Функциональная характеристика и особенности ядерных групп таламуса. Гипоталамус. Характеристика основных ядерных групп. Участие гипоталамуса в регуляции вегетативных функций и в формировании эмоций и мотиваций

Лимбическая система мозга. Ее роль в формировании биологических мотиваций и эмоций

Роль базальных ядер в формировании мышечного тонуса и сложных двигательных актов

Современное представление о локализации функций в коре полушарий большого мозга. Динамическая локализация функций

Учение И.П.Павлова об анализаторах

Рецепторный отдел анализаторов. Классификация, функциональные свойства и особенности рецепторов. Функциональная мобильность (П.Г.Снякин). Проводниковый отдел анализаторов. Особенности проведения афферентных возбуждений

Адаптация анализаторов, ее периферические и центральные механизмы

Характеристика зрительного анализатора. Рецепторный аппарат. Восприятие цвета. Физиологические механизмы аккомодации глаза

Слуховой анализатор. Звукоулавливающие и звукопроводящие аппараты. Рецепторный отдел слухового анализатора. Механизм возникновения рецепторного потенциала в волосковых клетках спирального органа

Роль вестибулярного анализатора в восприятии и оценке положения тела в пространстве и при его перемещении

Двигательный анализатор, его роль в восприятии и оценке положения тела в пространстве и формировании движений

Тактильный анализатор. Классификация тактильных рецепторов, особенности их строения и функций

Роль температурного анализатора в восприятии внешней и внутренней среды организма

Физиологическая характеристика обонятельного анализатора. Классификация запахов, механизм их восприятия

Физиологическая характеристика вкусового анализатора. Механизм генерирования рецепторного потенциала при действии вкусовых раздражителей разной модальности

Расчет колебаний коленчатого вала ДВС проводится методом начальных параметров позволяющий при данной частоте колебаний по известным значениям перемещений и внутренних сил в начале участка определять значения тех же переменных в конце участка.