Действием уф излучения. Ультрафиолетовые лучи: воздействие УФ излучения на организм человека

Свойства ультрафиолетового излучения определяются множеством параметров. Ультрафиолетовым излучением называются невидимое электромагнитное излучение, которое занимает определённую спектральную область между рентгеновским и видимым излучением в пределах соответствующих длин волн. Длина волны ультрафиолетового излучения составляет 400 – 100 нм и оказывает слабые биологические действия.

Чем выше биологическая активность волн данного излучения, тем слабее действие, соответственно, чем ниже длина волны, тем сильнее биологическая активность. Самой сильной активностью обладают волны с длиной 280 – 200 нм, которые оказывают бактерицидные действия и активно воздействуют на ткани организма.

Частота ультрафиолетового излучения тесно связана с длинами волн поэтому чем выше длина волны, тем меньше частоты излучения. Диапазон ультрафиолетового излучения, доходящий до поверхности Земли, составляет 400 – 280 нм, а более короткие волны, исходящие от Солнца поглощаются ещё в стратосфере при помощи озонового слоя .

Область УФ-излучения условно делится на:

  • Ближнюю – от 400 до 200 нм
  • Далёкую – от 380 до 200 нм
  • Вакуумную – от 200 до 10 нм

Спектр же ультрафиолетового излучения зависит от природы происхождения данного излучения и бывает:

  • Линейчатый (излучение атомов, лёгких молекул и ионов)
  • Непрерывный (торможение и рекомбинация электронов)
  • Состоящий из полос (излучение тяжёлых молекул)

Свойства УФ излучения

Свойствами ультрафиолетового излучения является химическая активность, проникающая способность, невидимость, уничтожение микроорганизмов, благотворное влияние на организм человека (в небольших дозах) и отрицательное воздействие на человека (в больших дозах). Свойства ультрафиолетового излучения в оптической области имеют значительные отличия от оптических свойств ультрафиолета видимой области. Наиболее характерной чертой является увеличение особого коэффициента поглощения, который приводит к уменьшению прозрачности многих тел, обладающих прозрачностью в видимой области .

Коэффициент отражения различных тел и материалов уменьшается с учётом уменьшения длины волны самого излучения. Физика ультрафиолетового излучения соответствует современным представлениям и перестаёт быть самостоятельной динамикой при высоких энергиях, а также объединяется в одну теорию со всеми калибровочными полями.

А вы знаете, что различно при разной интенсивности такого излучения? Прочитайте подробную информацию о полезных и вредных дозах УФ излучения в одной из наших статей.

У нас также доступна информация об использовании на приусадебном участке. Многие дачники уже используют солнечные батареи в своих домах. Попробуйте и вы, прочитав наш материал.

История открытия ультрафиолетового излучения

Ультрафиолетовое излучение, история открытия которого приходится на 1801 год, было озвучено лишь только в 1842 году. Данное явление было открыто немецким физиком Иоганном Вильгельмом Риттером и получило название «актинического излучения ». Это излучение входило в состав отдельных компонентов света, и играло роль восстановительного элемента.

Само понятие ультрафиолетовых лучей впервые встретилось в истории в 13-ом веке, в труде учёного Шри Мадхачарая, который описал атмосферу местности Бхутакаши, содержащей фиолетовые лучи, невидимые для глаз человека.

В ходе опытов в 1801 году группа учёных выяснила, что свет имеет несколько составляющих отдельных компонентов: окислительный, тепловой (инфракрасный), осветительный (видимый свет) и восстановительный (ультрафиолет).

УФ – излучение является непрерывно действующим фактором окружающей внешней среды и оказывает сильнейшее воздействие на различные физиологические процессы, которые протекают в организмах.

По мнению учёных именно оно сыграло основную роль в протекании эволюционных процессов на Земле. Благодаря данному фактору произошёл абиогенный синтез органических земных соединений, что повлияло на увеличения разнообразия видов жизненных форм.

Выяснилось, что все живые существа, в ходе эволюции приспособились использовать энергию всех частей спектра солнечной энергии. Видимую часть солнечного диапазона — для фотосинтеза, инфракрасную для тепла. Ультрафиолетовые компоненты используются в качестве фотохимического синтеза витамина D , который играет важнейшую роль обменов фосфора и кальция в организме живых существ и человека.

Ультрафиолетовый диапазон располагается от видимого света с коротковолновой стороны, и лучи ближней области воспринимаются человеком в качестве появления на коже загара. Короткие волны вызывают разрушительное воздействие на биологические молекулы.

Ультрафиолетовое излучение солнца имеет биологическую эффективность трёх спектральных участков, которые существенно отличаются один от другого и имеют соответствующие диапазоны, по-разному влияющие на живые организмы.

Данное излучение принимается для лечебных и профилактических целей в определённых дозировках. Для таких лечебных процедур используют специальные искусственные источники облучения, спектр излучения которых состоит из более коротких лучей, что оказывает более интенсивное воздействие на биологические ткани.

Вред от ультрафиолетового излучения приносит сильное воздействие данного источника радиации на организм и может вызвать поражения слизистых оболочек и различные дерматиты кожи . В основном вред от ультрафиолета наблюдается у работников различных сфер деятельности, которые контактируют с искусственными источниками данных волн.

Измерение ультрафиолетового излучения проводится многоканальными радиометрами и спектрорадиометрами непрерывного излучения, которые основаны на использовании вакуумных фотодиодов и фотоидов имеющих ограниченный диапазон длин волн.

Свойства ультрафиолетового излучения фото

Ниже приводим фотографии по теме статьи «Свойства ультрафиолетового излучения». Для открытия галереи фотографий достаточно нажать на миниатюру изображения.

Разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Хлорид серебра белого цвета в течение нескольких минут темнеет на свету. Разные участки спектра по-разному влияют на скорость потемнения. Быстрее всего это происходит перед фиолетовой областью спектра. Тогда многие ученые, включая Риттера, пришли к соглашению, что свет состоит из трех отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента.

Идеи о единстве трёх различных частей спектра впервые появились лишь в 1842 году в трудах Александра Беккереля , Мачедонио Меллони и др.

Подтипы

В качестве активной среды в ультрафиолетовых лазерах могут использоваться либо газы (например, аргоновый лазер , азотный лазер , эксимерный лазер и др.), конденсированные инертные газы , специальные кристаллы, органические сцинтилляторы , либо свободные электроны , распространяющиеся в ондуляторе .

Также существуют ультрафиолетовые лазеры, использующие эффекты нелинейной оптики для генерации второй или третьей гармоники в ультрафиолетовом диапазоне.

Воздействие

Деградация полимеров и красителей

На здоровье человека

В наиболее распространённых лампах низкого давления почти весь спектр излучения приходится на длину волны 253,7 нм, что хорошо согласуется с пиком кривой бактерицидной эффективности (то есть эффективности поглощения ультрафиолета молекулами ДНК). Этот пик находится в районе длины волны излучения равной 253,7 нм, которое оказывает наибольшее влияние на ДНК, однако природные вещества (например, вода) задерживают проникновение УФ.

Относительная спектральная бактерицидная эффективность ультрафиолетового излучения - относительная зависимость действия бактерицидного ультрафиолетового излучения от длины волны в спектральном диапазоне 205 - 315 нм. При длине волны 265 нм максимальное значение спектральной бактерицидной эффективности равно единице.

Бактерицидное УФ-излучение на этих длинах волн вызывает димеризацию тимина в молекулах ДНК. Накопление таких изменений в ДНК микроорганизмов приводит к замедлению темпов их размножения и вымиранию. Ультрафиолетовые лампы с бактерицидным эффектом в основном используются в таких устройствах, как бактерицидные облучатели и бактерицидные рециркуляторы.

Обеззараживание воздуха и поверхностей

Ультрафиолетовая обработка воды, воздуха и поверхности не обладает пролонгированным эффектом. Достоинство данной особенности заключается в том, что исключается вредное воздействие на человека и животных. В случае обработки сточных вод УФ флора водоемов не страдает от сбросов, как, например, при сбросе вод, обработанных хлором, продолжающим уничтожать жизнь ещё долго после использования на очистных сооружениях.

Ультрафиолетовые лампы с бактерицидным эффектом в обиходе часто называют просто бактерицидными лампами . Кварцевые лампы также имеют бактерицидный эффект, но их название обусловлено не эффектом действия, как у бактерицидных лампах, а связано с материалом колбы лампы -

Общая характеристика

Наибольшей биологической активностью обладают ультрафиолетовые лучи. В естественных условиях мощным источником ультрафиолетовых лучей является солнце. Однако лишь длинноволновая его часть достигает земной поверхности. Более коротковолновая радиация поглощается атмосферой уже на высоте 30-50 км от поверхности земли.

Наибольшая интенсивность потока ультрафиолетовой радиации наблюдается незадолго до полудня с максимумом в весенние месяцы.

Как уже указывалось, ультрафиолетовые лучи обладают значительной фотохимической активностью, что широко используется в практике. Ультрафиолетовое облучение применяется при синтезе ряда веществ, отбеливании тканей, изготовлении лакированной кожи, светокопировании чертежей, получении витамина D и других производственных процессах.

Важным свойством ультрафиолетовых лучей является их способность вызывать люминесценцию.

При некоторых процессах имеет место воздействие на работающих ультрафиолетовых лучей, например электросварка вольтовой дугой, автогенная резка и сварка, производство радиоламп и ртутных выпрямителей, литье и плавка металлов и некоторых минералов, светокопировка, стерилизация воды и т. д. Этому же воздействию подвергаются медицинский и технический персонал, обслуживающий ртутно-кварцевые лампы.

Ультрафиолетовые лучи обладают способностью изменять химическую структуру тканей и клеток.

Длина волны ультрафиолетового излучения

Биологическая активность ультрафиолетовых лучей различной длины волны неодинакова. Ультрафиолетовые лучи с длиной волны от 400 до 315 mμ. оказывают относительно слабое биологическое действие. Лучи с меньшей длиной волны отличаются большей биологической активностью. Ультрафиолетовые лучи длиной 315-280 mμ оказывают сильное кожное и антирахитическое действие. Особенно большой активностью обладает излучение с длиной волн 280-200 mμ. (бактерицидное действие, способность активно воздействовать на тканевые белки и липоиды, а также вызывать гемолиз).

В производственных условиях имеет место воздействие ультрафиолетовых лучей с длиной волны от 36 до 220 mμ. т. е. обладающих значительной биологической активностью.

В отличие от тепловых лучей, основным свойством которых является развитие гиперемии в участках, подвергшихся облучению, действие на организм ультрафиолетовых лучей представляется значительно более сложным.

Ультрафиолетовые лучи относительно мало проникают через кожу и их биологическое действие связано с развитием многих нейрогуморальных процессов, обусловливающих сложный характер влияния их на организм.

Ультрафиолетовая эритема

В зависимости от интенсивности источника света и содержания в его спектре инфракрасных или ультрафиолетовых лучей изменения со стороны кожи будут неодинаковыми.

Воздействие ультрафиолетовых лучей на кожу вызывает характерную реакцию со стороны сосудов кожи - ультрафиолетовую эритему. Ультрафиолетовая эритема существенно отличается от тепловой эритемы, вызванной инфракрасным облучением.

Обычно при применении инфракрасных лучей выраженных изменений со стороны кожи не наблюдается, так как возникающее чувство жжения и боль препятствуют длительному воздействию этих лучей. Эритема, развивающаяся в результате действия инфракрасных лучей, возникает непосредственно после облучения, является нестойкой, держится недолго (30-60 минут) и носит главным образом гнездный характер. После длительного воздействия инфракрасных лучей появляется бурая пигментация пятнистого вида.

Ультрафиолетовая эритема появляется после облучения вслед за некоторым латентным периодом. Этот период колеблется у разных людей от 2 до 10 часов. Продолжительность латентного периода ультрафиолетовой эритемы находится в известной зависимости от длины волны: эритема от длинноволновых ультрафиолетовых лучей появляется позднее и держится дольше, чем от коротковолновых.

Эритема, вызванная ультрафиолетовыми лучами, имеет ярко-красную окраску с резкими границами, точно соответствующими участку облучения. Кожа становится несколько отечной и болезненной. Наибольшего развития эритема достигает через 6-12 часов после появления, держится в течение 3-5 дней и постепенно бледнеет, приобретая коричневый оттенок, причем происходит равномерное и интенсивное потемнение кожи вследствие образования в ней пигмента. В некоторых случаях в период исчезновения эритемы наблюдается небольшое шелушение.

Степень развития эритемы зависит от величины дозы ультрафиолетовых лучей и индивидуальной чувствительности. При прочих равных условиях, чем больше доза ультрафиолетовых лучей, тем интенсивнее воспалительная реакция кожи. Наиболее выраженная эритема вызывается лучами с длинами волн около 290 mμ. При передозировке ультрафиолетового облучения эритема приобретает синюшный оттенок, края эритемы становятся расплывчатыми, облученный участок отечен и болезнен. Интенсивное облучение может вызвать ожог с развитием пузыря.

Чувствительность различных участков кожи к ультрафиолету

Кожные покровы живота, поясницы, боковых поверхностей грудной клетки обладают наибольшей чувствительностью к ультрафиолетовым лучам. Наименее чувствительна кожа кистей рук и лица.

Лица с нежной, слабопигментированной кожей, дети, а также страдающие базедовой болезнью и вегетативной дистонией обладают большей чувствительностью. Повышенная чувствительность кожи к ультрафиолетовым лучам наблюдается весной.

Установлено, что чувствительность кожи к ультрафиолетовым лучам может изменяться в зависимости от физиологического состояния организма. Развитие эритемной реакции зависит в первую очередь от функционального состояния нервной системы.

В ответ на ультрафиолетовое облучение в коже образуется и откладывается пигмент, являющийся продуктом белкового обмена кожи (органическое красящее вещество - меланин).

Длинноволновые ультрафиолетовые лучи вызывают более интенсивный загар, чем коротковолновые. При повторном ультрафиолетовом облучении кожа становится менее восприимчивой к этим лучам. Пигментация кожи развивается нередко и без предварительно видимой эритемы. В пигментированной коже ультрафиолетовые лучи не вызывают фотоэритемы.

Положительное влияние ультрафиолета

Ультрафиолетовые лучи понижают возбудимость чувствительных нервов (болеутоляющее действие) и оказывают также антиспастическое и антирахитическое действие. Под влиянием ультрафиолетовых лучей происходит образование очень важного для фосфорно-кальциевого обмена витамина D (находящийся в коже эргостерин превращается в витамин D). Под воздействием ультрафиолетовых лучей усиливаются окислительные процессы в организме, увеличивается поглощение тканями кислорода и выделение углекислоты, активируются ферменты, улучшается белковый и углеводный обмен. Повышается содержание кальция и фосфатов в крови. Улучшаются кроветворение, регенеративные процессы, кровоснабжение и трофика тканей. Расширяются сосуды кожи, снижается кровяное давление, повышается общий биотонус организма.

Благоприятное действие ультрафиолетовых лучей выражается в изменении иммунобиологической реактивности организма. Облучение стимулирует выработку антител, повышает фагоцитоз, тонизирует ретикулоэндотелиальную систему. Благодаря этому повышается сопротивляемость организма к инфекциям. Важное значение в этом отношении имеет дозировка облучения.

Ряд веществ животного и растительного происхождения (гематопорфирин, хлорофилл и т. д.), некоторые химические препараты (хинин, стрептоцид, сульфидин и т. д.), особенно флуоресцирующие краски (эозин, метиленовая синька и т. д.), обладают свойством повышать чувствительность организма к свету. В промышленности у лиц, работающих с каменноугольной смолой, отмечаются заболевания кожи открытых частей тела (зуд, жжение, краснота), причем эти явления исчезают по ночам. Это связано с фотосенсибилизирующими свойствами содержащегося в каменноугольной смоле акридина. Сенсибилизация имеет место преимущественно в отношении видимых лучей и в меньшей степени в отношении ультрафиолетовых лучей.

Большое практическое значение имеет способность ультрафиолетовых лучей убивать различные бактерии (так называемое бактерицидное действие). Это действие особенно интенсивно выражено у ультрафиолетовых лучей с длинами волн менее (265 - 200 mμ). Бактерицидное действие света связано с влиянием на протоплазму бактерий. Доказано, что после ультрафиолетового облучения митогенетическое излучение в клетках и крови повышается.

По современным представлениям, в основе действия света на организм лежит главным образом рефлекторный механизм, хотя большое значение придается и гуморальным факторам. Особенно это относится к действию ультрафиолетовых лучей. Нужно также иметь в виду возможность действия видимых лучей через органы зрения на кору и вегетативные центры.

В развитии эритемы, вызванной светом, существенное значение придается влиянию лучей на рецепторный аппарат кожи. При воздействии ультрафиолетовых лучей в результате распада белков в коже образуются гистамин и гистаминоподобные продукты, которые расширяют кожные сосуды и повышают их проницаемость, что ведет к гиперемии и отечности. Образующиеся в коже при воздействии ультрафиолетовых лучей продукты (гистамин, витамин D и др.) поступают в кровь и вызывают те общие сдвиги в организме, которые имеют место при облучении.

Таким образом, развивающиеся в облученном участке процессы ведут нейрогуморальным путем к развитию общей реакции организма. Эта реакция определяется главным образом состоянием высших регулирующих отделов центральной нервной системы, которое, как известно, может меняться под влиянием различных факторов.

Нельзя говорить о биологическом действие ультрафиолетового облучения вообще, вне зависимости от длины волны. Коротковолновое ультрафиолетовое излучение вызывает денатурацию белковых веществ, длинноволновое - фотолитический распад. Специфическое действие разных участков спектра ультрафиолетового излучения выявляется главным образом в начальной стадии.

Применение ультрафиолетового излучения

Широкое биологическое действие ультрафиолетовых лучей дает возможность в определенных дозах использовать их для профилактических и лечебных целей.

Для ультрафиолетового облучения пользуются солнечным светом, а также искусственными источниками облучения: ртутно-кварцевыми и аргонортутно-кварцевыми лампами. Спектр излучения ртутно-кварцевых ламп характеризуется наличием более коротких ультрафиолетовых лучей, чем в солнечном спектре.

Ультрафиолетовое облучение может быть общим или местным. Дозировка процедур производится по принципу биодоз.

В настоящее время ультрафиолетовое облучение широко используют, прежде всего, для профилактики различных заболеваний. С этой целью ультрафиолетовое облучение применяют для оздоровления окружающей человека внешней среды и изменения его реактивности (в первую очередь - повышения его иммунобиологических свойств).

С помощью специальных бактерицидных ламп может производиться стерилизация воздуха в лечебных учреждениях и жилых помещениях, стерилизация молока, воды и т. д. широко используется ультрафиолетовое облучение для предупреждения рахита, гриппа, в целях общего укрепления организма в лечебных и детских учреждениях, школах, физкультурных залах, фотариях при угольных шахтах, при тренировке спортсменов, для акклиматизации к условиям севера, при работах в горячих цехах (ультрафиолетовое облучение дает больший эффект в сочетании с воздействием инфракрасной радиации).

Ультрафиолетовые лучи особенно широко используются для облучения детей. В первую очередь такое облучение показано, ослабленным, часто болеющим детям, проживающим в северных и средних широтах. При этом улучшается общее состояние детей, сон, нарастает вес, снижается заболеваемость, уменьшается частота катаральных явлений и, длительность заболеваний. Улучшается общее физическое развитие, нормализуется кровь, проницаемость сосудов.

Значительное распространение получило также ультрафиолетовое облучение горнорабочих в фотариях, которые в большом количестве организованы на предприятиях горнорудной промышленности. При систематическом массовом облучении шахтеров, занятых на подземных работах, отмечается улучшение самочувствия, повышение трудоспособности, уменьшение утомляемости, снижение заболеваемости с временной утратой трудоспособности. После облучения шахтеров повышается процентное содержание гемоглобина, появляется моноцитоз, уменьшается число случаев гриппа, снижается заболеваемость опорно-двигательного аппарата, периферической нервной системы, реже наблюдаются гнойничковые заболевания кожи, катары верхних дыхательных путей и ангины, улучшаются показания жизненной емкости, легких.

Применение ультрафиолетового излучения в медицине

Применение ультрафиолетовых лучей с терапевтической целью базируется в основном на противовоспалительном, антиневралгическом и десенсибилизирующем действии этого вида лучистой энергии.

В комплексе с другими лечебными мероприятиями ультрафиолетовое облучение проводится:

1) при лечении рахита;

2) после перенесенных инфекционных заболеваний;

3) при туберкулезных заболеваниях костей, суставов, лимфатических узлов;

4) при фиброзном туберкулезе легких без явлений, указывающих на активацию процесса;

5) при заболеваниях периферической нервной системы, мышц и суставов;

6) при заболеваниях кожи;

7) при ожогах и отморожениях;

8) при гнойных осложнениях ран;

9) при рассасывании инфильтратов;

10) в целях ускорения регенеративных процессов при травмах костей и мягких тканей.

Противопоказаниями к облучению являются:

1) злокачественные новообразования (так как облучение ускоряет их рост);

2) резкое истощение;

3) повышенная функция щитовидной железы;

4) выраженные сердечно-сосудистые заболевания;

5) активный туберкулез легких;

6) заболевания почек;

7) выраженные изменения центральной нервной системы.

Следует помнить, что получение пигментации, особенно в короткий срок, не должно быть целью лечения. В ряде случаев хороший терапевтический эффект наблюдается и при слабой пигментации.

Негативное действие ультрафиолета

Длительное и интенсивное ультрафиолетовое облучение может оказать неблагоприятное влияние на организм и вызвать патологические изменения. При значительном облучении отмечаются быстрая утомляемость, головные боли, сонливость, ухудшение памяти, раздражительность, сердцебиение, понижение аппетита. Чрезмерное облучение может вызвать гиперкальциемию, гемолиз, задержку роста и понижение сопротивляемости инфекциям. При сильном облучении развиваются ожоги и дерматиты (жжение и зуд кожи, диффузная эритема, отечность). При этом отмечается повышение температуры тела, головная боль, разбитость. Ожоги и дерматиты, возникающие под воздействием солнечной радиации, связаны преимущественно с влиянием ультрафиолетовых лучей. У работающих на открытом воздухе под влиянием солнечной радиации могут возникнуть длительно и тяжело протекающие дерматиты. Необходимо помнить о возможности перехода описываемых дерматитов в рак.

В зависимости от глубины проникновения лучей различных участков солнечного спектра могут развиться изменения глаз. Под влиянием инфракрасных и видимых лучей возникает острый ретинит. Хорошо известна так называемая катаракта стеклодувов, развивающаяся в результате длительного поглощения инфракрасных лучей хрусталиком. Помутнение хрусталика происходит медленно, главным образом у рабочих горячих цехов со стажем работы 20-25 лет и больше. В настоящее время профессиональные катаракты в горячих цехах встречаются редко вследствие значительного улучшения условий труда. Роговица и конъюнктива реагируют главным образом на ультрафиолетовые лучи. Эти лучи (особенно с длиной волны менее 320 mμ .) вызывают в ряде случаев заболевание глаз, известное под названием фотоофтальмии или электроофтальмии. Это заболевание наиболее часто встречается у электросварщиков. В таких случаях часто наблюдается острый кератоконъюнктивит, который обычно возникает через 6-8 часов после работы, нередко ночью.

При электроофтальмии отмечается гиперемия и припухание слизистой, блефароспазм, светобоязнь, слезотечение. Часто обнаруживается поражение роговицы. Продолжительность острого периода болезни 1-2 дня. У работающих на открытом воздухе при ярком солнечном освещении широких покрытых снегом пространств фотоофтальмия протекает иногда в виде так называемой снежной слепоты. Лечение фотоофтальмии заключается в пребывании в темноте, применении новокаина и холодных примочек.

Средства защиты от ультрафиолетового излучения

Для защиты глаз от неблагоприятного действия ультрафиолетовых лучей на производствах пользуются щитками или шлемами со специальными темными стеклами, защитными очками, а для защиты остальных частей тела и окружающих лиц - изолирующими ширмами, переносными экранами, спецодеждой.

Благоприятные воздействия УФ лучей на организм

Лучи солнца обеспечивают тепло и свет, которые улучшают общее самочувствие и стимулируют кровообращение. Небольшое количество ультрафиолета необходимо организму для выработки витамина D. Витамин D играет важную роль в усвоении кальция и фосфора из пищи, а также в развитии скелета, функционировании иммунной системы и в формировании клеток крови. Без сомнения, небольшое количество солнечного света полезно для нас. Воздействия солнечного света в течение 5 - 15 минут на кожу рук, лица и кистей два - три раза в неделю в течение летних месяцев достаточно для поддержания нормального уровня витамина D. Ближе к экватору, где UV излучение интенсивнее, достаточно еще более короткого промежутка.

Следовательно, для большинства людей дефицит витамина D маловероятен. Возможные исключения – это те, кто значительно ограничил свое пребывание на солнце: не покидающие своего дома престарелые люди или люди с сильно пигментированной кожей, которые проживают в странах с низким уровнем UV излучения. Витамин D естественного происхождения очень редок в нашей пище, он присутствует главным образом в рыбьем жире и масле из печени трески.

Ультрафиолетовое излучение успешно используется при лечении множества заболеваний, включая рахит, псориаз, экзему и др. Это терапевтическое воздействие не исключает отрицательные побочные эффекты UV излучения, но оно проводится под медицинским наблюдением, чтобы гарантировать, что польза превышает риск.

Несмотря на значительную роль в медицине, негативные эффекты UV излучения обычно значительно перевешивают положительные. В дополнение к хорошо известным непосредственным эффектам избытка ультрафиолетового облучения, таким как ожоги или аллергические реакции, долгосрочные эффекты представляют опасность здоровью на протяжении всей жизни. Чрезмерный загар способствует поражению кожи, глаз и, вероятно, иммунной системы. Многие люди забывают о том, что UV радиация накапливается в течение всей жизни. Ваше отношение к загару сейчас определяет возможность развития у вас рака кожи или катаракты в дальнейшей жизни! Риск развития рака кожи напрямую связан с продолжительностью и частотой загара.

Воздействие у льтрафиолета на кожу

Здорового загара не существует! Клетки кожи производят пигмент темного цвета только с целью защиты от последующего излучения. Загар обеспечивает некоторую защиту против ультрафиолета. Темный загар на белой коже эквивалентен фактору защиты SPF между 2 и 4. Однако, это не является защитой от отдаленных последствий, таких как рак кожи. Загар может быть привлекательным в косметическом плане, но фактически это означает только то, что ваша кожа была повреждена и попыталась защитить себя.

Есть два различных механизма образования загара: быстрый загар, когда под воздействием ультрафиолета темнеет уже существующий в клетках пигмент. Этот загар начинает исчезать через несколько часов после прекращения воздействия. Долговременный загар возникает в течение приблизительно трех дней, когда новый меланин будет произведен и распределен между клетками кожи. Этот загар может сохраняться в течение нескольких недель.

Солнечный ожог- Высокие дозы ультрафиолета губительны для большинства клеток эпидермиса, а уцелевшие клетки оказываются повреждены. В лучшем случае солнечный ожог вызывает покраснение кожи, называемое эритемой. Она появляется вскоре после инсоляции и достигает максимальной интенсивности между 8 и 24 часами. В этом случае последствия исчезают в течение нескольких дней. Однако сильный загар может оставлять на коже болезненные пузыри и пятна белого цвета, новая кожа на месте которых лишена защиты и более чувствительна к повреждению ультрафиолетом.

Фотосенсибилизация - Небольшой процент населения обладают особенностью очень остро реагировать на ультрафиолетовое излучение. Даже минимальной дозы ультрафиолетового излучения достаточно для запуска у них аллергических реакций, приводящих к быстрому и сильному солнечному ожогу. Фотосенсибилизация часто связывается с использованием некоторых медикаментов, включая некоторые нестероидные противовоспалительные препараты, болеутоляющие средства, транквилизаторы, пероральные противодиабетические средства, антибиотики и антидепрессанты. Если вы постоянно принимаете какие-либо препараты, внимательно ознакомьтесь с аннотацией или проконсультируйтесь с вашим лечащим врачом о возможных реакциях фотосенсибилизации. Некоторые пищевые и косметические продукты, такие как парфюмерия или мыла могут также содержать увеличивающие чувствительность к ультрафиолету компоненты.

Фотостарение- Воздействие солнца способствует старению вашей кожи путем сочетания нескольких факторов. UVB стимулирует быстрое увеличение количества клеток в верхнем слое кожи. Поскольку все больше клеток произведено, эпидермис утолщается.

UVA, проникающий в более глубокие слои кожи, повреждает структуры соединительной ткани и кожа постепенно теряет эластичность. Морщины, дряблость кожи - часто встречающийся результат этой потери. Явление, которое мы часто можем заметить у пожилых людей - локальное избыточное производство меланина, приводящее к темным участкам или печеночным пятнам. Кроме того, лучи солнца высушивают вашу кожу, делая ее шершавой и грубой.

Немеланомные раковые заболевания кожи- В отличие от меланомы, базальноклеточная и чешуйчатая карцинома обычно не приводят к летальному исходу, но их хирургическое удаление может быть болезненным и привести к образованию рубцов.

Немеланомные раковые образования чаще всего располагаются на открытых солнцу частях тела, таких как уши, лицо, шея и предплечья. Обнаружено, что они более часто встречаются у рабочих, работающих вне помещений, чем у находящихся внутри помещений. Это дает основание полагать, что длительное накопление воздействия UV играет главную роль в развитии немеланомных раковых образований кожи.

Меланома- Злокачественная меланома - самый редкий, но и наиболее опасный тип рака кожи. Это одно из наиболее часто встречающихся раковых образований у людей в возрасте 20-35 лет, особенно в Австралии и Новой Зеландии. Все формы рака кожи имеют тенденцию к увеличению за прошлые двадцать лет, однако, самая высокая во всем мире остается за меланомой.

Меланома может возникнуть под видом новой родинки или как изменения цвета, формы, размера или изменения ощущений в уже существующих пятнах, веснушках или родинках. Меланомы обычно имеют неровный контур и неоднородную окраску. Зуд – еще один частый признак, но он также может встречаться при нормальных родинках. Если заболевание распознано и лечение проведено своевременно, прогноз для жизни благоприятный. При отсутствии лечения опухоль может быстро разрастаться и раковые клетки могут распространиться к другим частям тела.

Воздействие ультрафиолетового излучения на глаза

Глаза занимают менее 2 процентов от поверхности тела, однако представляют собой единственную систему органов, допускающую возможность проникновения видимого света вглубь организма. В течение эволюции множество механизмов развилось, чтобы защитить этот очень чувствительный орган от вредных воздействий солнечных лучей:

Глаз расположен в анатомических углублениях головы, защищен бровными дугами, бровями и ресницами. Однако эта анатомическая адаптация лишь частично защищает от ультрафиолетовых лучей в чрезвычайных условиях, таких как использование солярия или при сильном отражения света от снега, воды и песка.

Сужение зрачка, закрытие век и прищуривание минимизирует проникновение лучей солнца в глаз.

Однако эти механизмы активизированы ярким видимым светом, а не ультрафиолетовыми лучами, но в облачный день ультрафиолетовое излучение также может быть высоким. Поэтому, эффективность этих естественных механизмов защиты против воздействия ультрафиолета ограничена.

Фотокератит и фотоконъюнктивит- Фотокератит - воспаление роговой оболочки, в то время как фотоконъюнктивит относится к воспалению конъюнктивы, мембраны, которая ограничивает сферу глаза и покрывает внутреннюю поверхность век. Воспалительные реакции глазного яблока и век могут быть наравне с солнечным ожогом кожи очень чувствительны и обычно появляются в течение нескольких часов после воздействия. Фотокератит и фотоконъюнктивит могут быть очень болезненными, однако, они обратимы и, по всей видимости, не приводят к продолжительному повреждению глаз или нарушению зрения.

Крайняя форма фотокератита – «снежная слепота». Это иногда происходит у лыжников и альпинистов, которые испытывают воздействие очень высоких доз ультрафиолетовых лучей из-за высотных условий и очень сильного отражения. Свежий снег может отражать до 80 процентов ультрафиолетовых лучей. Эти сверхвысокие дозы ультрафиолета действуют губительно на клетки глаза и могут привести к слепоте. «Снежная слепота» очень болезненна. Чаще всего новые клетки растут быстро и зрение восстанавливается в течение нескольких дней. В отдельных случаях солнечная слепота может привести к осложнениям, таким как хроническое раздражение или слезотечение.

Птеригиум - Это разрастание конъюнктивы на поверхности глаза – часто встречающийся косметический недостаток, предположительно связанный с длительным воздействием ультрафиолета. Птеригиум может распространяться к центру роговой оболочки и таким образом уменьшать зрение. Данное явление также может воспаляться. Несмотря на то, что заболевание может быть устранено хирургическим путем, оно имеет тенденциюрецидивировать.

Катаракта- ведущая причина слепоты в мире. Белки хрусталика накапливают пигменты, которые покрывают линзу и в конечном итоге приводят к слепоте. Несмотря на то, что с возрастом катаракта появляется в различной степени у большинства людей, судя по всему, вероятность ее возникновения возрастает под воздействием ультрафиолета.

Раковые поражения глаз- По последним научным данным полагают, что различные формы рака глаза могут быть связаны воздействием ультрафиолетового излучения в течение жизни.

Меланома – частое раковое поражение глаз и иногда требующее хирургического удаления. Базальноклеточная карцинома наиболее часто располагается в области век.

Влияние УФ излучения на иммунную систему

Воздействие солнечного света может предшествовать герпетическим высыпаниям. По всей вероятности радиация UVB уменьшает эффективность иммунной системы и она больше не может держать под контролем вирус простого герпеса. В результате происходит высвобождение инфекции. В одном исследовании, проведенном в Соединенных Штатах, изучался эффект влияния солнцезащитного крема на выраженность высыпаний герпеса. Из 38 пациентов страдающих инфекцией простого герпеса у 27 развились высыпания после воздействия UV излучения. При использовании солнцезащитного крема напротив, ни у одного из пациентов высыпаний не возникло. Поэтому, кроме защиты от солнца, солнцезащитный крем может быть эффективным в предотвращении рецидива высыпаний герпеса, вызванных солнечным светом.

Исследования последних лет все больше доказывают, что воздействие ультрафиолетового излучения внешней среды может изменить активность и распределение некоторых клеток, ответственных за иммунный ответ в организме человека. Как следствие избыток UV излучения может увеличить риск инфекции или уменьшать способность организма обороняться против рака кожи. Там, где уровень ультрафиолетового излучения высок, (главным образом в развивающихся странах) это может снизить эффективность прививок.

Также высказаны предположения о том, что ультрафиолетовое излучение способно вызвать рак двумя разными способами: путем непосредственного повреждения ДНК и ослабляя иммунную систему. До настоящего времени было проведено не так много исследований, чтобы описать потенциальное влияние иммуномодуляции на развитие рака.

Вода, солнечные лучи и кислород, содержащийся в земной атмосфере – вот основные условия возникновения и факторы, обеспечивающие продолжение жизни на нашей планете. При этом уже давно доказано, что спектр и интенсивность солнечной радиации в космическом вакууме неизменны, а на Земле воздействие ультрафиолетового излучения зависит от очень многих причин: времени года, географического местоположения, высоты над уровнем моря, толщины озонового слоя, облачности и уровня концентрации естественных и промышленных примесей в воздухе.

Что такое ультрафиолетовые лучи

Солнце излучает лучи в видимых и невидимых для человеческого глаза диапазонах. К невидимому спектру относятся инфракрасные и ультрафиолетовые лучи.

Инфракрасное излучение – это электромагнитные волны длиной от 7 до 14 нм, которые несут на Землю колоссальный поток тепловой энергии, и поэтому их часто называют тепловыми. Доля инфракрасных лучей в солнечной радиации – 40%.

Ультрафиолетовое излучение представляет собой спектр электромагнитных волн, диапазон которых разделён условно на ближние и дальние ультрафиолетовые лучи. Дальние или вакуумные лучи полностью поглощаются верхними слоями атмосферы. В земных условиях они искусственно генерируются только в вакуумных камерах.

Ближние ультрафиолетовый лучи, разделены на три подгруппы диапазонов:

  • длинный – А (UVA) от 400 до 315 нм;
  • средний – В (UVB) от 315 до 280 нм;
  • короткий – С (UVС) от 280 до 100 нм.

Чем измеряется ультрафиолетовое излучение? Сегодня существуют много специальных приборов, как для бытового, так и для профессионального применения, которые позволяют измерить частоту, интенсивность и величину полученной дозы УФ-лучей, и тем самым оценить их вероятную вредность для организма.

Несмотря на то, что ультрафиолетовое излучение в составе солнечного света занимает всего лишь около 10%, именно благодаря его воздействию произошёл качественны скачок в эволюционном развитии жизни – выход организмов из воды на сушу.

Основные источники ультрафиолетового излучения

Главный и естественный источник ультрафиолетового излучения – это конечно же Солнце. Но и человек научился «производить ультрафиолет» с помощью специальных ламповых приборов:

  • ртутно-кварцевые лампы высокого давления, работающие в общем диапазоне УФ-излучения – 100-400 нм;
  • витальные люминесцентные лампы, генерирующие длину волн от 280 до 380 нм, с максимальным пиком излучения между 310 и 320 нм;
  • озонные и безозонные (с кварцевым стеклом) бактерицидные лампы, 80% ультрафиолетовых лучей которых приходится на длину 185 нм.

Как ультрафиолетовое излучение солнца, так и искусственный ультрафиолетовый свет обладают возможностью воздействовать на химическую структуру клеток живых организмов и растений, и на сегодняшний момент, известны только некоторые разновидности бактерий, которые могут обходиться и без него. Для всех остальных отсутствие ультрафиолетового излучения приведёт к неминуемой гибели.

Так каково же реальное биологическое действие ультрафиолетовых лучей, какова польза и есть ли вред от ультрафиолета для человека?

Влияние ультрафиолетовых лучей на организм человека

Самая коварная ультрафиолетовая радиация – это коротковолновое ультрафиолетовое излучение, поскольку оно разрушает любые виды белковых молекул.

Так почему на нашей планете возможна и продолжается наземная жизнь? Какой слой атмосферы задерживает губительные ультрафиолетовые лучи?

От жесткого ультрафиолетового излучения живые организмы защищают озоновые слои стратосферы, которые полностью поглощают лучи этого диапазона, и они просто не достигают поверхности Земли.

Поэтому, 95% общей массы солнечного ультрафиолета приходиться на длинные волны (А), а приблизительно 5% на средние (В). Но тут важно уточнить. Несмотря на то, что длинных УФ-волн гораздо больше, и они обладают большой проникающей способностью, оказывая воздействие на сетчатый и сосочковый слои кожи, именно 5% средних волн, которые не могут проникнуть дальше эпидермиса, обладают наибольшим биологическим воздействием.

Именно ультрафиолетовое излучение среднего диапазона интенсивно воздействует на кожный покров, глаза, а также активно влияет на работу эндокринной, центральной нервной и иммунной систем.

С одной стороны, облучение ультрафиолетом может вызвать:

  • сильный солнечный ожог кожных покровов – ультрафиолетовая эритема;
  • помутнение хрусталика, приводящее к слепоте – катаракта;
  • рак кожи – меланома.

Помимо этого, ультрафиолетовые лучи обладают мутагенным действием и вызывают сбои в работе иммунной системы, которые становятся причиной возникновения других онкологических патологий.

С другой стороны, именно действие ультрафиолетового излучения оказывает значимое влияние на метаболические процессы, происходящие в человеческом организме в целом. Повышается синтез мелатонина и серотонина, уровень которых оказывает положительное воздействие на работу эндокринной и центральной нервной системы. Ультрафиолетовый свет активизирует выработку витамина D, который является главным компонентом для усвоения кальция, а также препятствует развитию рахита и остеопороза.

Облучение ультрафиолетом кожных покровов

Поражение кожи могут носить как структурный, так и функциональный характер, которые, в свою очередь, можно разделить на:

  1. Острые повреждения – возникают из-за высоких доз солнечной радиации лучей среднего диапазона, полученных при этом за короткое время. К ним относятся острый фотодерматоз и эритема.
  2. Отсроченные повреждения – возникают на фоне продолжительного облучения длинноволновыми ультрафиолетовыми лучами, интенсивность которых, кстати, не зависит ни от времени года и от времени светового дня. К ним относят хронические фотодерматиты, фотостарение кожи или солнечная геродермия, ультрафиолетовый мутагенез и возникновение новообразований: меланомы, плоскоклеточного и базальноклеточного рака кожи. Среди перечня отсроченных повреждений есть и герпес.

Важно отметить, что и острые, и отсроченные повреждения можно получить при чрезмерном увлечении принятия искусственных солнечных ванн, не ношении солнцезащитных очков, а также при посещении соляриев, использующих несертифицированное оборудование и/или не проводящих мероприятий по специальной профилактической калибровке ультрафиолетовых ламп.

Защита кожи от ультрафиолета

Если не злоупотреблять любыми «солнечными ваннами», то человеческое тело справится с защитой от излучения самостоятельно, ведь боле 20% задерживается здоровым эпидермисом. Сегодня защита от ультрафиолета кожных покровов сводиться к следующим приемам, которые минимизируют риск образования злокачественных новообразований:

  • ограничение времени нахождения на солнце, особенно в полуденные летние часы;
  • ношение лёгкой, но закрытой одежды, ведь для получения необходимой дозы, стимулирующей выработку витамина D, совсем не обязательно покрываться загаром;
  • подбор солнцезащитных кремов в зависимости от конкретного ультрафиолетового индекса, характерного для данной местности, времени года и суток, а также от собственного типа кожи.

Внимание! Для коренных жителей средней полосы России, показатель УФ-индекса выше 8, не просто требует применения активной защиты, но и представляет реальную угрозу для здоровья. Измерение величины излучения и прогнозы солнечных индексов можно найти на ведущих сайтах погоды.

Воздействие ультрафиолета на глаза

Повреждение структуры глазной роговицы и хрусталика (электроофтальмия) возможны при зрительном контакте с любым источником ультрафиолетового излучения. Несмотря на то, что здоровая роговица не пропускает и отражает жесткий ультрафиолет на 70%, причин, которые могут стать источником возникновения серьёзных заболеваний достаточно много. Среди них:

  • незащищённое наблюдении за вспышками, солнечными затмениями;
  • случайный взгляд на светило на морском побережье или в высоких горах;
  • фото-травма от вспышки фотоаппарата;
  • наблюдение за работой сварочного аппарата ил пренебрежение техникой безопасности (отсутствие защитного шлема) при работе с ним;
  • длительная работа стробоскопа на дискотеках;
  • нарушение правил посещения солярия;
  • длительное нахождение в помещении, в котором работают кварцевые бактерицидные озоновые лампы.

Каковы первые признаки электроофтальмии? Клинические симптомы, а именно покраснение глазных склер и век, болевой синдром при движении глазных яблок и ощущение инородного тела в глазе, как правило, наступают спустя 5-10 часов после перечисленных выше обстоятельств. Тем не менее, средства защиты от ультрафиолетового излучения доступны каждому, ведь даже обычные линзы из стекла, не пропускают большую часть УФ-лучей.

Использование защитных очков со специальным фотохромным покрытием на линзах, так называемые «очки-хамелеоны», станет оптимальным «бытовым» вариантом для защиты глаз. Вам не придется утруждать себя вопросом, а какого цвета и степени затемнения ультрафиолетовый фильтр действительно обеспечивает эффективную защиту в конкретных обстоятельствах.

И конечно же, что при ожидаемом зрительном контакте со вспышками ультрафиолета, необходимо заранее надевать защитные очки или использовать другие приспособления, которые задерживают губительные для роговицы и хрусталика лучи.

Применение ультрафиолета в медицине

Ультрафиолет убивает грибок и другие микробы, находящиеся в воздухе и на поверхности стен, потолков, пола и предметов, а после воздействия специальных ламп происходит очищение от плесни. Это бактерицидное свойство ультрафиолета люди используют для обеспечения стерильности манипуляционных и хирургических помещений. Но ультрафиолетовое излучение в медицине используется не только для борьбы с внутрибольничными инфекциями.

Свойства ультрафиолетового излучения нашло своё применение при самых различных заболеваниях. При этом возникают и постоянно совершенствуются новые методики. Например, придуманное около 50 лет назад ультрафиолетовое облучение крови, первоначально применялось для подавления роста бактерий в крови при сепсисе, тяжёлых пневмониях, обширных гнойных ранах и других гнойно-септических патологиях.

Сегодня, ультрафиолетовое облучение крови или очистка крови, помогает бороться с острыми отравлениями, передозировкой лекарств, фурункулёзом, деструктивным панкреатитом, облитерирующим атеросклерозом, ишемией, церебральным атеросклерозом, алкоголизмом, наркоманией, острыми психическими расстройствами и многими другими болезнями, список которых постоянно расширяется.

Заболевания, при которых показано применение ультрафиолетового излучения, и когда любая процедура с УФ-лучами вредна:

ПОКАЗАНИЯ ПРОТИВОПОКАЗАНИЯ
солнечное голодание, рахит индивидуальная непереносимость
раны и язвы онкология
отморожения и ожоги кровотечения
невралгии и миозиты гемофилия
псориаз, экзема, витилиго, рожа ОНМК
заболевания органов дыхания фотодерматит
сахарный диабет почечная и печёночная недостаточность
аднекситы малярия
остеомиелит, остеопороз гиперфункция щитовидки
несистемные ревматические поражения инфаркты, инсульты

Для того, чтобы жить без боли, людям с поражением суставов, неоценимую помощь в общей комплексной терапии принесёт ультрафиолетовая лампа.

Влияние ультрафиолета при ревматоидных артритах и артрозах, совмещение методики ультрафиолетовой терапии с правильным подбором биодозы и грамотной схемой приёма антибиотиков – это 100% гарантия достижения системно-оздоровительного эффекта при минимальной лекарственной нагрузке.

В заключение отметим, что положительное влияние ультрафиолетового излучения на организм и всего одна единственная процедура ультрафиолетового облучения (очищения) крови + 2 сеанса в солярии, помогут здоровому человеку выглядеть и чувствовать себя на 10 лет моложе.