Тепловой эффект формула химия. Как рассчитать количество теплоты, тепловой эффект и теплоту образования

В результате изучения данной темы вы узнаете:

  • Чем обычные уравнения химических реакций отличаются от их термохимических уравнений.
  • От каких факторов зависит скорость химических реакций.
  • Чем истинное (химическое) равновесие отличается от кажущегося равновесия.
  • В какую сторону смещается равновесие при изменении внешних условий.
  • В чем состоит механизм гомогенного и гетерогенного катализа.
  • Что такое ингибиторы и промоторы.

В результате изучения данной темы вы научитесь:

  • Рассчитывать тепловые эффекты химических реакций с использованием величин энтальпий образования веществ.
  • Проводить расчеты с использованием математического выражения принципа Вант-Гоффа.
  • Определять направление смещения химического равновесия при изменении температуры и давления.

Учебные вопросы:

6.1. Энергетика химических процессов

6.1.1. Внутренняя энергия и энтальпия

В любом процессе соблюдается закон сохранения энергии:

Q = Δ U + A.

Это равенство означает, что если к системе подводится теплота Q, то она расходуется на изменение внутренней энергии Δ U и на совершение работы А.

Внутренняя энергия системы – это общий ее запас, включающий энергию поступательного и вращательного движения молекул, энергию движения электронов в атомах, энергию взаимодействия ядер с электронами, ядер с ядрами и т.д., т.е. все виды энергии, кроме кинетической и потенциальной энергии системы в целом.

Работа, совершаемая системой при переходе из состояния 1, характеризуемого объемом V 1 , в состояние 2 (объем V 2) при постоянном давлении (работа расширения), равна:

А = р(V 2 - V 1).

При постоянном давлении (р=const) с учетом выражения для работы расширения закон сохранения энергии запишется следующим образом:

Q = (U 2 + pV 2) – (U 1 + pV 1).

Сумма внутренней энергии системы и произведения ее объема на давление называется энтальпией Н:

Поскольку точное значение внутренней энергии системы неизвестно, абсолютные величины энтальпий также не могут быть получены. Научное значение имеют и практическое применение находят изменения энтальпий Δ Н.

Внутренняя энергия U и энтальпия Н представляют собой функции состояния системы. Функциями состояния являются такие характеристики системы, изменения которых определяются лишь конечным и начальным состоянием системы, т.е. не зависят от пути процесса.

6.1.2. Экзо- и эндотермические процессы

Протекание химических реакций сопровождается поглощением или выделением теплоты. Экзотермической называют реакцию, протекающую с выделением теплоты в окружающую среду, а эндотермической – с поглощением теплоты из окружающей среды.

Многие процессы в промышленности и в лабораторной практике протекают при постоянных давлении и температуре (Т=const, р=const). Энергетической характеристикой этих процессов является изменение энтальпии:

Q P = -Δ Н.

Для процессов, протекающих при постоянных объеме и температуре (Т=const, V=const) Q V =-Δ U.

Для экзотермических реакций Δ Н < 0, а в случае протекания эндотермической реакции Δ Н > 0. Например,

N 2(г) + ЅO 2(г) = N 2 O (г) ; ΔН 298 = +82кДж,

CH 4(г) + 2O 2(г) = CO 2(г) + 2H 2 O (г) ; ΔН 298 = -802кДж.

Химические уравнения, в которых дополнительно указывается тепловой эффект реакции (величина DН процесса), а также агрегатное состояние веществ и температура, называются термохимическими уравнениями.

В термохимических уравнениях отмечают фазовое состояние и аллотропные модификации реагентов и образующихся веществ: г – газообразное, ж – жидкое, к – кристаллическое; S (ромб) , S (монокл) , С (графит) , С (алмаз) и т.д.

6.1.3. Термохимия; закон Гесса

Энергетические явления, сопровождающие физические и химические процессы изучает термохимия . Основным законом термохимии является закон, сформулированный русским ученым Г.И. Гессом в 1840 году.

Закон Гесса: изменение энтальпии процесса зависит от вида и состояния исходных веществ и продуктов реакции, но не зависит от пути процесса.

При рассмотрении термохимических эффектов часто вместо понятия «изменение энтальпии процесса» используют выражение «энтальпия процесса», подразумевая под этим понятием величину Δ Н. Неправильно использовать при формулировке закона Гесса понятие «тепловой эффект процесса», поскольку величина Q в общем случае не является функцией состояния. Как выше было указано, только при постоянном давлении Q P =-Δ Н (при постоянном объеме Q V =-Δ U).

Так, образование PCl 5 можно рассматривать как результат взаимодействия простых веществ:

P (к, белый) + 5/2Cl 2(г) = PCl 5(к) ; Δ Н 1 ,

или как результат процесса, протекающего в несколько стадий:

P (к, белый) + 3/2Cl 2(г) = PCl 3(г) ; Δ Н 2 ,

PCl 3(г) + Cl 2(г) = PCl 5(к) ; Δ Н 3 ,

или суммарно:

P (к, белый) + 5/2Cl 2(г) = PCl 5(к) ; Δ Н 1 = Δ Н 2 + Δ Н 3 .

6.1.4. Энтальпии образования веществ

Энтальпией образования называется энтальпия процесса образования вещества в данном агрегатном состоянии из простых веществ, находящихся в устойчивых модификациях. Энтальпией образования сульфата натрия, например, является энтальпия реакции:

2Na (к) + S (ромб) +2O 2(г) = Na 2 SO 4(к) .

Энтальпия образования простых веществ равна нулю.

Поскольку тепловой эффект реакции зависит от состояния веществ, температуры и давления, то при проведении термохимических расчетов условились использовать стандартные энтальпии образования – энтальпии образования веществ, находящихся при данной температуре в стандартном состоянии . В качестве стандартного состояния для веществ, находящихся в конденсированном состоянии принято реальное состояние вещества при данной температуре и давлении 101,325 кПа (1 атм). В справочниках обычно приводятся стандартные энтальпии образования веществ при температуре 25 o С (298К), отнесенные к 1 моль вещества (Δ Н f o 298). Стандартные энтальпии образования некоторых веществ при Т=298К приведены в табл. 6.1.

Таблица 6.1.

Стандартные энтальпии образования (Δ Н f o 298) некоторых веществ

Вещество

Δ Н f o 298 , кДж/моль

Вещество

Δ Н f o 298 , кДж/моль

Стандартные энтальпии образования большинства сложных веществ являются отрицательными величинами. Для небольшого числа неустойчивых веществ Δ Н f o 298 > 0. К числу таких веществ, в частности, относятся оксид азота(II) и оксид азота(IV), табл.6.1.

6.1.5. Расчет тепловых эффектов химических реакций

Для расчета энтальпий процессов используется следствие из закона Гесса: энтальпия реакции равна сумме энтальпий образования продуктов реакции за вычетом суммы энтальпий образования исходных веществ с учетом стехиометрических коэффициентов .

Рассчитаем энтальпию разложения карбоната кальция. Процесс описывается следующим уравнением:

СаСО 3(к) = CaO (к) + CO 2(г) .

Энтальпия этой реакции будет равна сумме энтальпий образования оксида кальция и углекислого газа за вычетом энтальпии образования карбоната кальция:

Δ Н o 298 = Δ Н f o 298 (СаО (к)) + Δ Н f o 298 (СО 2(г)) - Δ Н f o 298 (СаСО 3(к)).

Используя данные табл.6.1. получаем:

Δ Н o 298 = - 635,1 -393,5 + 1206,8 = + 178,2 кДж.

Из полученных данных следует, что рассматриваемая реакция является эндотермической, т.е. протекает с поглощением тепла.

CaO (к) + CO 2(к) = СаСО 3(к)

Сопровождается выделением теплоты. Ее энтальпия окажется равной

Δ Н o 298 = -1206,8 +635,1 + 393,5 = -178,2 кДж.

6.2. Скорость химических реакций

6.2.1. Понятие скорости реакции

Раздел химии, в котором рассматриваются скорость и механизмы химических реакций называется химической кинетикой . Одним из ключевых понятий в химической кинетике является скорость химической реакции.

Скорость химической реакции определяется изменением концентрации реагирующих веществ в единицу времени при неизменном объеме системы.

Рассмотрим следующий процесс:

Пусть в какой–то момент времени t 1 концентрация вещества А равна величине с 1 , а в момент t 2 – величине с 2 . За промежуток времени от t 1 до t 2 , изменение концентрации составит Δ с = с 2 – с 1 . Средняя скорость реакции равна:

Знак минус ставится потому, что по мере протекания реакции (Δ t> 0) концентрация вещества уменьшается (Δ с< 0), в то время, как скорость реакции является положительной величиной.

Скорость химической реакции зависит от природы реагирующих веществ и от условий протекания реакций: концентрации, температуры, присутствия катализатора, давления (для газовых реакций) и некоторых других факторов. В частности, при увеличении площади соприкосновения веществ скорость реакции увеличивается. Скорость реакции также возрастает при увеличении скорости перемешивания реагирующих веществ.

Численное значение скорости реакции зависит также от того, по какому компоненту рассчитывается скорость реакции. Так, например, скорость процесса

Н 2 + I 2 = 2HI,

рассчитанная по изменению концентрации HI в два раза больше скорости реакции, вычисленной по изменению концентрации реагентов Н 2 или I 2 .

6.2.2. Зависимость скорости реакции от концентрации; порядок и молекулярность реакции

Основной закон химической кинетики – закон действующих масс –устанавливает зависимость скорости реакции от концентрации реагирующих веществ.

Скорость реакции пропорциональна произведению концентраций реагирующих веществ . Для реакции, записанной в общем виде как

аA + bB = cC + dD,

зависимость скорости реакции от концентрации имеет вид:

v = k [A] α [B] β .

В данном кинетическом уравнении k – коэффициент пропорциональности, называемый константой скорости ; [A] и [B] – концентрации веществ А и В. Константа скорости реакции k зависит от природы реагирующих веществ и от температуры, но не зависит от их концентраций. Коэффициенты α и β находят из экспериментальных данных.

Сумма показателей степеней в кинетических уравнениях называется общим порядком реакции. Различают также частный порядок реакции по одному из компонентов. Например, для реакции

Н 2 + С1 2 = 2 НС1

Кинетическое уравнение выглядит так:

v = k 1/2 ,

т.е. общий порядок равен 1,5 а порядки реакции по компонентам Н 2 и С1 2 равны соответственно 1 и 0,5.

Молекулярность реакции определяется числом частиц, одновременным соударением которых осуществляется элементарный акт химического взаимодействия. Элементарный акт (элементарная стадия) – единичный акт взаимодействия или превращения частиц (молекул, ионов, радикалов) в другие частицы. Для элементарных реакций молекулярность и порядок реакции совпадают. Если процесс многостадиен и поэтому запись уравнения реакции не раскрывает механизма процесса, порядок реакции не совпадает с ее молекулярностью.

Химические реакции подразделяют на простые (одностадийные) и сложные, протекающие в несколько стадий.

Мономолекулярная реакция – это реакция, в которой элементарный акт представляет собой химическое превращение одной молекулы. Например:

СН 3 СНО (г) = СН 4(г) + СО (г) .

Бимолекулярная реакция – реакция, элементарный акт в которой осуществляется при столкновении двух частиц. Например:

H 2(г) + I 2(г) = 2 HI (г) .

Тримолекулярная реакция – простая реакция, элементарный акт которой осуществляется при одновременном столкновении трех молекул. Например:

2NO (г) + O 2(г) = 2 NO 2(г) .

Установлено, что одновременное столкновение более чем трех молекул, приводящее к образованию продуктов реакции, практически невозможно.

Закон действующих масс не распространяется на реакции, протекающие с участием твердых веществ, поскольку их концентрации постоянны и они реагируют лишь на поверхности. Скорость таких реакций зависит от величины поверхности соприкосновения между реагирующими веществами.

6.2.3. Зависимость скорости реакции от температуры

Скорость химических реакций при повышении температуры возрастает. Это увеличение вызвано возрастанием кинетической энергии молекул. В 1884 году голландский химик Вант-Гофф сформулировал правило: при повышении температуры на каждые 10 градусов скорость химических реакций увеличивается в 2-4 раза.

Правило Вант-Гоффа записывается в виде:

,

где V t 1 и V t 2 - скорости реакции при температурах t 1 и t 2 ; γ - температурный коэффициент скорости, равный 2 - 4.

Правило Вант-Гоффа используется для приближенной оценки влияния температуры на скорость реакции. Более точное уравнение, описывающее зависимость константы скорости реакции от температуры, предложил в 1889 году шведский ученый С. Аррениус:

.

В уравнении Аррениуса А – константа, Е – энергия активации (Дж/моль); Т – температура, К.

Согласно Аррениусу не все столкновения молекул приводят к химическим превращениям. Лишь молекулы, обладающие некоторой избыточной энергией способны прореагировать. Эта избыточная энергия, которой должны обладать сталкивающиеся частицы, чтобы между ними произошла реакция, называется энергией активации .

6.3. Понятие о катализе и катализаторах

Катализатором называется вещество, изменяющее скорость химической реакции, но остающееся химически неизменным по окончании реакции.

Одни катализаторы ускоряют реакцию, другие, называемые ингибиторами , замедляют ее протекание. Например, добавление в качестве катализатора небольшого количества МnO 2 к пероксиду водорода Н2О2 вызывает бурное разложение:

2 Н 2 O 2 –(MnO 2) 2 Н 2 O + O 2 .

В присутствии небольших количеств серной кислоты наблюдается уменьшение скорости разложения Н 2 О 2 . В этой реакции серная кислота выступает в роли ингибитора.

В зависимости от того, находится ли катализатор в той же фазе, что и реагирующие вещества или образует самостоятельную фазу, различают гомогенный и гетерогенный катализ .

Гомогенный катализ

В случае гомогенного катализа реагирующие вещества и катализатор находятся в одной фазе, например, газообразной. Механизм действия катализатора основан на том, что он вступает во взаимодействие с реагирующими веществами с образованием промежуточных соединений.

Рассмотрим механизм действия катализатора. В отсутствие катализатора реакция

Протекает очень медленно. Катализатор образует с исходными веществами (например, с веществом В) реакционноспособный промежуточный продукт:

который энергично реагирует с другим исходным веществом с образованием конечного продукта реакции:

ВК + А = АВ + К.

Гомогенный катализ имеет место, например, в процессе окисления оксида серы(IV) в оксид серы(VI), который происходит в присутствии оксидов азота.

Гомогенная реакция

2 SO 2 + O 2 = 2 SO 3

в отсутствии катализатора идет очень медленно. Но при введении катализатора (NO) происходит образование промежуточного соединения (NO2):

O 2 + 2 NO = 2 NO 2 ,

которое легко окисляет SO 2:

NO 2 + SO 2 = SO 3 + NO.

Энергия активации последнего процесса очень мала, поэтому реакция протекает с высокой скоростью. Таким образом, действие катализаторов сводится к уменьшению энергии активации реакции.

Гетерогенный катализ

При гетерогенном катализе катализатор и реагирующие вещества находятся в различных фазах. Катализатор обычно находится в твердом, а реагирующие вещества в жидком или газообразном состояниях. При гетерогенном катализе ускорение процесса обычно связано с каталитическим действием поверхности катализатора.

Катализаторы отличаются избирательностью (селективностью) действия. Так, например, в присутствии катализатора оксида алюминия Al 2 O 3 при 300 o С из этилового спирта получают воду и этилен:

С 2 Н 5 OН –(Al 2 O 3) С 2 Н 4 + Н 2 O.

При той же температуре, но в присутствии в качестве катализатора меди Cu, происходит дегидрирование этилового спирта:

С 2 Н 5 OН –(Cu) СН 3 СНО + Н 2 .

Небольшие количества некоторых веществ снижают или даже полностью уничтожают активность катализаторов (отравление катализаторов). Такие вещества называются каталитическими ядами . Например, кислород вызывает обратимое отравление железного катализатора при синтезе NH 3 . Восстановить активность катализатора можно путем пропускания очищенной от кислорода свежей смеси азота и водорода. Сера вызывает необратимое отравление катализатора при синтезе NH 3 . Его активность пропусканием свежей смеси N 2 +Н 2 восстановить уже не удается.

Вещества, усиливающие действие катализаторов реакции, называются промоторами , или активаторами (промотирование платиновых катализаторов, например, производится путем добавок железа или алюминия).

Более сложен механизм гетерогенного катализа. Для его объяснения используется адсорбционная теория катализа. Поверхность катализатора неоднородна, поэтому на ней имеются так называемые активные центры. На активных центрах происходит адсорбция реагирующих веществ. Последний процесс вызывает сближение реагирующих молекул и повышение их химической активности, так как у адсорбированных молекул ослабляется связь между атомами, увеличивается расстояние между атомами.

С другой стороны, считают, что ускоряющее действие катализатора в гетерогенном катализе связано с тем, что реагирующие вещества образуют промежуточные соединения (как и в случае гомогенного катализа), что приводит к снижению энергии активации.

6.4. Химическое равновесие

Необратимые и обратимые реакции

Реакции, протекающие только в одном направлении и завершающиеся полным превращением исходных веществ в конечные вещества, называются необратимыми.

Необратимыми, т.е. протекающими до конца, являются реакции в которых

Химические реакции, которые могут идти в противоположных направлениях, называются обратимыми. Типичными обратимыми реакциями является реакции синтеза аммиака и окисления оксида серы(IV) в оксид серы(VI):

N 2 + 3 H 2 2 NH 3 ,

2 SO 2 + O 2 2 SO 3 .

При написании уравнений обратимых реакций вместо знака равенства ставят две стрелки, направленные в противоположные стороны.

В обратимых реакциях скорость прямой реакции в начальный момент времени имеет максимальное значение, которое убывает по мере уменьшения концентрации исходных реагентов. Напротив, обратная реакция вначале имеет минимальную скорость, возрастающую по мере увеличения концентрации продуктов. В результате, наступает момент, когда скорости прямой и обратной реакции становятся равны между собой и в системе устанавливается химическое равновесие.

Химическое равновесие

Состояние системы реагирующих веществ, при котором скорость прямой реакции становится равной скорости обратной реакции, называется химическим равновесием.

Химическое равновесие называется также истинным равновесием. Помимо равенства скоростей прямой и обратной реакций, истинное (химическое) равновесие характеризуется следующими признаками:

    неизменность состояния системы вызвана протеканием прямой и обратной реакции, то есть равновесное состояние является динамическим;

    состояние системы остается неизменным во времени, если на систему не оказывается внешнее воздействие;

    любое внешнее воздействие вызывает смещение равновесия системы; однако, если внешнее воздействие снимается, то система снова возвращается в исходное состояние;

  • состояние системы одинаково независимо от того, с какой стороны система подходит к равновесию – со стороны исходных веществ или со стороны продуктов реакции.

От истинного следует отличать кажущееся равновесие . Так, например, смесь кислорода и водорода в закрытом сосуде при комнатной температуре может сохраняться сколь угодно долго. Однако инициирование реакции (электрический разряд, ультрафиолетовое облучение, повышение температуры) вызывает необратимое протекание реакции образования воды.

6.5. Принцип Ле Шателье

Влияние изменения внешних условий на положение равновесия определяется принципом Ле Шатель е (Франция, 1884 год): если на систему, находящуюся в состоянии равновесия, производить какое–либо внешнее воздействие, то равновесие в системе сместится в сторону ослабления этого воздействия.

Принцип Ле Шателье применим не только к химическим процессам, но и к физическим, таким как кипение, кристаллизация, растворение и т. д.

Рассмотрим влияние различных факторов на химическое равновесие на примере реакции синтеза аммиака:

N 2 + 3 H 2 2 NH 3 ; Δ H = -91,8 кДж.

Влияние концентрации на химическое равновесие.

В соответствии с принципом Ле Шателье увеличение концентрации исходных веществ смещает равновесие в сторону образования продуктов реакции. Увеличение же концентрации продуктов реакции смещает равновесие в сторону образования исходных веществ.

В рассмотренном выше процессе синтеза аммиака введение в равновесную систему дополнительных количеств N 2 или H 2 вызывает смещение равновесия в том направлении, при котором концентрация этих веществ уменьшается, следовательно, происходит сдвиг равновесия в сторону образования NH3. Увеличение концентрации аммиака смещает равновесие в сторону исходных веществ.

Катализатор одинаково ускоряет как прямую так и обратную реакции, поэтому введение катализатора не влияет на химическое равновесие.

Влияние температуры на химическое равновесие

При повышении температуры равновесие сдвигается в сторону эндотермической реакции, при понижении температуры – в сторону экзотермической реакции.

Степень смещения равновесия определяется абсолютной величиной теплового эффекта: чем больше величина Δ H реакции, тем значительнее влияние температуры.

В рассматриваемой реакции синтеза аммиака повышение температуры сместит равновесие в сторону исходных веществ.

Влияние давления на химическое равновесие

Изменение давления оказывает влияние на химическое равновесие с участием газообразных веществ. Согласно принципу Ле Шателье, повышение давления смещает равновесие в сторону реакции, протекающей с уменьшением объема газообразных веществ, а понижение давления сдвигает равновесие в противоположную сторону. Реакции синтеза аммиака протекает с уменьшением объема системы (в левой части уравнения находится четыре объема, в правой – два). Поэтому повышение давления смещает равновесие в сторону образования аммиака. Уменьшение давления сместит равновесие в обратную сторону. Если в уравнении обратимой реакции число молекул газообразных веществ в правой и левой частях равны (реакция протекает без изменения объема газообразных веществ), то давление не влияет на положение равновесия в этой системе.

Все методы расчета тепловых эффектов основаны на уравнении Кирхгоффа в интегральной форме.

Чаще всего, в качестве первой температуры используют стандартную 298,15K.

Все методы расчета тепловых эффектов сводятся к способам взятия интеграла правой части уравнения.

Методы взятия интеграла:

I. По средним теплоемкостям. Данный метод является наиболее простым и наименее точным. В этом случае выражение под знаком интеграла заменяется на изменение средней теплоемкости, которая не зависит от температуры в выбранном диапазоне.

Средние теплоемкости табулированы и измерены для большинства реакций. Их легко рассчитать по справочным данным.

II. По Истинным теплоемкостям. (С помощью температурных рядов)

В этом методе подынтегральное выражение теплоемкости записывается как температурный ряд:

III. По высокотемпературным составляющим энтальпии. Данный метод получил большое распространение с развитием ракетной техники при расчете тепловых эффектов химических реакций при высоких температурах. Он основан на определении изобарной теплоемкости:

Высокотемпературная составляющая энтальпии. Она показывает, насколько изменится энтальпия индивидуального вещества при нагревании его на определенное количество градусов.

Для химической реакции записываем:

Таким образом:

Лекция №3.

План лекции:

1. II закон термодинамики, определение, математическая запись.

2. Анализ II закона термодинамики

3. Расчет изменения энтропии в некоторых процессах

здесь и далее индексы i относятся к исходным веществам или реагентам, а индексыj – к конечным веществам или продуктам реакции; и – стехиометрические коэффициенты в уравнении реакции для исходных веществ и продуктов реакции, соответственно.

Пример: Рассчитаем тепловой эффект реакции синтеза метанола при стандартных условиях.

Решение: Для расчетов воспользуемся справочными данными по стандартным теплотам образования, участвующих в реакции веществ (см. табл. 44 на стр.72 справочника ).

Тепловой эффект реакции синтеза метанола в стандартных условиях по первому следствию из закона Гесса (уравнение 1.15) равен:

При расчете тепловых эффектов химических реакции нужно учитывать, что тепловой эффект зависит от агрегатного состояния реагентов и от вида записи химического уравнения реакции:

По второму следствию из закона Гесса тепловой эффект можно рассчитать, используя теплоты сгорания Δ c H , как разность сумм теплот сгорания исходных веществ и продуктов реакции (с учетом стехиометрических коэффициентов):

где Δ r C p – характеризует изменение изобарной теплоемкости системы в результате протекания химической реакции и называется температурным коэффициентом теплового эффекта реакции.

Из дифференциального уравнения Кирхгоффа следует, что зависимость теплового эффекта от температуры определяется знаком Δ r C p , т.е. зависит от того, что больше, суммарная теплоемкость исходных веществ или суммарная теплоемкость продуктов реакции. Проанализируем дифференциальное уравнение Кирхгофа.



1. Если температурный коэффициент Δ r C p > 0, то производная > 0 и функция возрастающая. Следовательно, тепловой эффект реакции с ростом температуры увеличивается.

2. Если температурный коэффициент Δ r C p < 0, то производная < 0 и функция убывающая. Следовательно, тепловой эффект реакции с ростом температуры уменьшается.

3. Если температурный коэффициент Δ r C p = 0, то производная = 0 и . Следовательно, тепловой эффект реакции не зависит от температуры. Этот случай на практике не встречается.

Дифференциальные уравнения удобны для анализа, но неудобны для расчетов. Чтобы получить уравнение для расчета теплового эффекта химической реакции, проинтегрируем дифференциальное уравнение Кирхгофа, разделив переменные:

Теплоемкости веществ зависят от температуры, следовательно, и . Однако, в области обычно используемых в химико-технологических процессах температурах эта зависимость не значительна. Для практических целей пользуются средними теплоемкостями веществ в интервале температур от 298 К до заданной температуры , которые приводятся в справочниках. Температурный коэффициент теплового эффекта, рассчитанный с использованием средних теплоемкостей:

Пример: Рассчитаем тепловой эффект реакции синтеза метанола при температуре 1000 К и стандартном давлении.

Решение: Для расчетов воспользуемся справочными данными по средним теплоемкостям участвующих в реакции веществ в интервале температур от 298 К до 1000 К (см. табл. 40 на стр.56 справочника ):

Изменение средней теплоемкости системы в результате протекания химической реакции:

Второе начало термодинамики

Одной из важнейших задач химической термодинамики яв­ляется выяснение принципиальной возможности (или невоз­можности) самопроизвольного протекания химической реакции в рассматриваемом направлении. В тех случаях, когда стано­вится ясно, что данное химическое взаимодействие происходить может, необходимо определить степень превращения исходных веществ и выход продуктов реакции, то есть полноту протекания реакции

Направление протекания самопроизвольного процесса можно определить на основе второго закона или начала термодинамики, сформулированного, например, в виде постулата Клаузиуса:

Теплота сама собой не может переходить от холодного тела к горячему, т. е. невозможен такой процесс, единственным резуль­татом которого был бы переход теплоты от тела с более низкой температурой к телу с более высокой температурой.

Предложено множество формулировок второго начала термо­динамики. Формулировка Томсона - Планка:

Невозможен вечный двигатель второго рода, т. е. невозмож­на такая периодически действующая машина, которая бы позволяла получать работу только за счет охлаждения источника тепла.

Математическая формулировка второго начала термодинамики возникла при анализе работы тепловых машин в трудах Н. Карно и Р. Клаузиуса.

Клаузиусом была введена функция состояния S , названная энтропией, изменение которой равно теплоте обратимого процесса, отнесенной к температуре

Для любого процесса

(1.22)

Полученное выражение представляет собой математическое выражение второго начала термодинамики.

7. Вычислить тепловой эффект реакции при стандартных условиях: Fe 2 O 3 (т) + 3 CO (г) = 2 Fe (т) + 3 CO 2 (г) ,если теплота образования: Fe 2 O 3 (т) = – 821,3 кДж/моль;СО (г) = – 110,5 кДж/моль;

СО 2 (г) = – 393,5 кДж/моль.

Fe 2 O 3 (т) + 3 CO (г) = 2 Fe (т) + 3 CO 2 (г) ,

Зная стандартные тепловые эффекты сгорания исходных веществ и продуктов реакции, рассчитываем тепловой эффект реакции при стандартных условиях:

16. Зависимость скорости химической реакции от температуры. Правило Вант-Гоффа. Температурный коэффициент реакции.

К реакциям приводят только столкновения между активными молекулами, средняя энергия которых превышает среднюю энергию участников реакции.

При сообщении молекулам некоторой энергии активации Е (избыточная энергия над средней) уменьшается потенциальная энергия взаимодействия атомов в молекулах, связи внутри молекул ослабевают, молекулы становятся реакционноспособными.

Энергия активации не обязательно подводится извне, она может быть сообщена некоторой части молекул путем перераспределения энергии при их столкновениях. По Больцману, среди N молекул находится следующее число активных молекул N   обладающих повышенной энергией  :

N  N·e – E / RT (1)

где Е – энергия активации, показывающая тот необходимый избыток энергии, по сравнению со средним уровнем, которым должны обладать молекулы, чтобы реакция стала возможной; остальные обозначения общеизвестны.

При термической активации для двух температур T 1 и T 2 отношение констант скоростей будет:

, (2) , (3)

что позволяет определять энергию активации по измерению скорости реакции при двух различных температурах Т 1 и Т 2 .

Повышение температуры на 10 0 увеличивает скорость реакции в 2 – 4 раза (приближенное правило Вант-Гоффа). Число, показывающее, во сколько раз увеличивается скорость реакции (следовательно, и константа скорости) при увеличении температуры на 10 0 называется температурным коэффициентом реакции:

 (4) .(5)

Это означает, например, что при увеличении температуры на 100 0 для условно принятого увеличения средней скорости в 2 раза ( = 2) скорость реакции возрастает в 2 10 , т.е. приблизительно в 1000 раз, а при = 4 –в 4 10 , т.е. в 1000000 раз. Правило Вант-Гоффа применимо для реакций, протекающих при сравнительно невысоких температурах в узком их интервале. Резкое возрастание скорости реакции при повышении температуры объясняется тем, что число активных молекул при этом возрастает в геометрической прогрессии.


25. Уравнение изотермы химической реакции Вант-Гоффа.

В соответствии с законом действующих масс для произвольной реакции

а A + bB = cC + dD

уравнение скорости прямой реакции можно записать:

,

а для скорости обратной реакции:

.

По мере протекания реакции слева направо концентрации веществ А и В будут уменьшаться и скорость прямой реакции будет падать. С другой стороны, по мере накопления продуктов реакции C и D скорость реакции справа налево будет расти. Наступает момент, когда скорости υ 1 и υ 2 становятся одинаковыми, концентрации всех веществ остаются неизменными, следовательно,

,

ОткудаK c = k 1 / k 2 =

.

Постоянная величина К с, равная отношению констант скоростей прямой и обратной реакций, количественно описывает состояние равновесия через равновесные концентрации исходных веществ и продуктов их взаимодействия (в степени их стехиометрических коэффициентов) и называется константой равновесия. Константа равновесия является постоянной только для данной температуры, т.е.

К с = f (Т). Константу равновесия химической реакции принято выражать отношением, в числителе которого стоит произведение равновесных молярных концентраций продуктов реакции, а в знаменателе – произведение концентраций исходных веществ.

Если компоненты реакции представляют собой смесь идеальных газов, то константа равновесия (К р) выражается через парциальные давления компонентов:

.

Для перехода от К р к К с воспользуемся уравнением состояния P · V = n·R·T. Поскольку

, то P = C·R·T. .

Из уравнения следует, что К р = К с при условии, если реакция идет без изменения числа моль в газовой фазе, т.е. когда (с + d) = (a + b).

Если реакция протекает самопроизвольно при постоянных Р и Т или V и Т, то значенияG и F этой реакции можно получить из уравнений:

,

где С А, С В, С С, С D – неравновесные концентрации исходных веществ и продуктов реакции.

,

где Р А, Р В, Р С, Р D – парциальные давления исходных веществ и продуктов реакции.

Два последних уравнения называются уравнениями изотермы химической реакции Вант-Гоффа. Это соотношение позволяет рассчитать значения G и F реакции, определить ее направление при различных концентрациях исходных веществ.

Необходимо отметить, что как для газовых систем, так и для растворов, при участии в реакции твердых тел (т.е. для гетерогенных систем) концентрация твердой фазы не входит в выражение для константы равновесия, поскольку эта концентрация практически постоянна. Так, для реакции

2 СО (г) = СО 2 (г) + С (т)

константа равновесия записывается в виде

.

Зависимость константы равновесия от температуры (для температуры Т 2 относительно температуры Т 1) выражается следующим уравнением Вант-Гоффа:

,

где Н 0 – тепловой эффект реакции.

Для эндотермической реакции (реакция идет с поглощением тепла) константа равновесия увеличивается с повышением температуры, система как бы сопротивляется нагреванию.

34. Осмос, осмотическое давление. Уравнение Вант-Гоффа и осмотический коэффициент.

Осмос – самопроизвольное движение молекул растворителя через полупроницаемую мембрану, разделяющую растворы разной концентрации, из раствора меньшей концентрации в раствор с более высокой концентрацией, что приводит к разбавлению последнего. В качестве полупроницаемой мембраны, через маленькие отверстия которой могут селективно проходить только небольшие по объему молекулы растворителя и задерживаются крупные или сольватированные молекулы или ионы, часто служит целлофановая пленка – для высокомолекулярных веществ, а для низкомолекулярных – пленка из ферроцианида меди. Процесс переноса растворителя (осмос) можно предотвратить, если на раствор с большей концентрацией оказать внешнее гидростатическое давление (в условиях равновесия это будет так называемое осмотическое давление, обозначаемое буквой ). Для расчета значения  в растворах неэлектролитов используется эмпирическое уравнение Вант-Гоффа:

где С – моляльная концентрация вещества, моль/кг;

R – универсальная газовая постоянная, Дж/моль · К.

Величина осмотического давления пропорциональна числу молекул (в общем случае числу частиц) одного или нескольких веществ, растворенных в данном объеме раствора, и не зависит от их природы и природы растворителя. В растворах сильных или слабых электролитов общее число индивидуальных частиц увеличивается вследствие диссоциации молекул, поэтому в уравнение для расчета осмотического давления необходимо вводить соответствующий коэффициент пропорциональности, называемый изотоническим коэффициентом.

i · C · R · T,

где i – изотонический коэффициент, рассчитываемый как отношение суммы чисел ионов и непродиссоциировавших молекул электролита к начальному числу молекул этого вещества.

Так, если степень диссоциации электролита, т.е. отношение числа молекул, распавшихся на ионы, к общему числу молекул растворенного вещества, равна  и молекула электролита распадается при этом на n ионов, то изотонический коэффициент рассчитывается следующим образом:

i = 1 + (n – 1) · ,(i > 1).

Для сильных электролитов можно принять  = 1, тогда i = n, и коэффициент i (также больше 1) носит название осмотического коэффициента.

Явление осмоса имеет большое значение для растительных и животных организмов, поскольку оболочки их клеток по отношению к растворам многих веществ обладают свойствами полупроницаемой мембраны. В чистой воде клетка сильно набухает, в ряде случаев вплоть до разрыва оболочки, а в растворах с высокой концентрацией солей, наоборот, уменьшается в размерах и сморщивается из-за большой потери воды. Поэтому при консервировании пищевых продуктов к ним добавляется большое количество соли или сахара. Клетки микроорганизмов в таких условиях теряют значительное количество воды и гибнут.

ТЕПЛОВОЙ ЭФФЕКТ , теплота, выделенная или поглощенная термодинамич. системой при протекании в ней хим. р-ции. Определяется при условии, что система не совершает никакой работы (кроме возможной работы расширения), а т-ры и продуктов равны. Поскольку теплота не является ф-цией состояния, т.е. при переходе между состояниями зависит от пути перехода, то в общем случае тепловой эффект не может служить характеристикой конкретной р-ции. В двух случаях бесконечно малое кол-во теплоты (элементарная теплота) d Q совпадает с полным дифференциалом ф-ции состояния: при постоянстве объема d Q = = dU (U-внутр. энергия системы), а при постоянстве d Q = dH (H-энтальпия системы).

Практически важны два типа тепловых эффектов -изотермо-изобар-ный (при постоянных т-ре Т и р) и изотермо-изо-хорный (при постоянных Т и объеме V). Различают дифференциальный и интегральный тепловые эффекты . Дифференциальный тепловой эффект определяется выражениями:

где u i , h i -соотв. парциальные молярные внутр. энергия и ; v i -стехиометрич. коэф. (v i > 0 для продуктов, v i <0 для ); x = (n i - n i 0)/v i ,-хим. переменная, определяющая состав системы в любой момент протекания р-ции (n i и n i0 - числа i-го компонента в данный момент времени и в начале хим. превращения соотв.). Размерность дифференциального теплового эффекта реакции-кДж/ . Если u T,V , h T,p > 0, р-ция наз. эндотермической, при обратном знаке эффекта-экзотермической. Два типа эффектов связаны соотношением:


Температурная зависимость теплового эффекта дается , применение к-рого, строго говоря, требует знания парциальных молярных всех участвующих в р-ции в-в, однако в большинстве случаев эти величины неизвестны. Поскольку для р-ций, протекающих в реальных р-рах и др. термодинамически неидеальных средах, тепловые эффекты, как и др. , существенно зависят от состава системы и эксперим. условий, разработан подход, облегчающий сопоставление разных р-ций и систематику тепловых эффектов . Этой цели служит понятие стандартного теплового эффекта (обозначается). Под стандартным понимается тепловой эффект , осуществляемой (часто гипртетичес-ки) в условиях, когда все участвующие в р-ции в-ва находятся в заданных . Дифференц. и интегральный стандартные тепловые эффекты всегда численно совпадают. Стандартный тепловой эффект легко рассчитать с использованием таблиц стандартных теплот образования или теплот сгорания в-в (см. ниже). Для неидеальных сред между реально измеренными и стандартными тепловыми эффектами существует большое расхождение, что необходимо иметь в виду при использовании тепловых эффектов в термодинамических расчетах. Напр., для щелочного диацетимида [(СН 3 СО) 2 NH (тв) + Н 2 О(ж) = = СН 3 СОКН 2 (тв) + СН 3 СООН(ж)+] в 0,8 н. р-ре NaOH в водном (58% по массе ) при 298 К измеренный тепловой эффект D H 1 = - 52,3 кДж/ . Для той же р-ции в стандартных условиях получено = - 18,11 кДж/ . Столь значит. разница объясняется тепловыми эффектами, сопровождающими в-в в указанном р-рителе (теплотами ). Для твердого , жидкой уксусной к-ты и теплоты равны соотв.: D H 2 = 13,60; D H 3 = - 48,62; D H 4 = - 0,83 кДж/ , так что= D H 1 - D H 2 - D H 3 + D H 4 . Из примера вид но, что при исследованиях тепловых эффектов важны измерения тепловых эффектов сопутствующих физ.-хим. процессов.

Изучение тепловых эффектов составляет важнейшую задачу . Осн. эксперим. метод -калориметрия. Совр. аппаратура позволяет изучать тепловые эффекты в газовой, жидкой и твердой фазах, на границе раздела фаз, а также в сложных . системах. Диапазон типичных значений измеряемых тепловых эффектов составляет от сотен Дж/ до сотен кДж/ . В табл. приводятся данные калориметрич. измерений тепловых эффектов нек-рых р-ций. Измерение тепловых эффектов , разведения, а также теплот позволяет перейти от реально измеренных тепловых эффектов к стандартным.


Важная роль принадлежит тепловым эффектам двух типов - теплотам образования соед. из простых в-в и теплотам сгорания в-в в чистом с образованием высших элементов, из к-рых состоит в-во. Эти тепловые эффекты приводятся к стандартным условиям и табулируются. С их помощью легко рассчитать любой тепловой эффект ; он равен алгебраич. сумме теплот образования или теплот сгорания всех участвующих в р-ции в-в:

Применение табличных величин позволяет вычислять тепловые эффекты мн. тысяч р-ций, хотя сами эти величины известны лишь для неск. тыс. соединений. Такой метод расчета непригоден, однако, для р-ций с небольшими тепловыми эффектами, т. к. расчетная малая величина, полученная как алгебраич. сумма неск. больших величин, характеризуется погрешностью, к-рая по абс. величине может превосходить тепловой эффект . Расчет тепловых эффектов с помощью величин основан на том, что есть ф-ция состояния. Это позволяет составлять системы термохим. ур-ний для определения теплового эффекта требуемой р-ции (см. ). Вычисляют практически всегда стандартные тепловые эффекты . Помимо рассмотренного выше метода расчет тепловых эффектов проводят по температурной зависимости -ур-ния