Значение периодической системы менделеева. Научное значение периодического закона. Вопросы для закрепления темы

    Предпосылкой открытия Периодического закона послужили решения международного съезда химиков в городе Карлсруэ в 1860 году, когда окончательно утвердилось атомно - молекулярное учение были предприняты первые единые определения понятий молекулы и атома, а также атомного веса, который мы теперь называем относительной атомной массой.

    Д. И. Менделеев в своём открытии опирался на чётко сформулированные исходные положения:

    Свойства элементов зависят от их атомных масс;

    Форма этой зависимости - периодическая.

    Рассмотренные выше предпосылки можно назвать объективными, то есть не зависящими от личности ученого, так как они были обусловлены историческим развитием химии как науки.

    Открытие Менделеевым Периодического закона.

    Первый вариант Периодической таблицы элементов был опубликован Д. И. Менделеевым в 1869 году - задолго до того, как было изучено строение атома. В это время Менделеев преподавал химию в Петербургском университете. Готовясь к лекциям, собирая материал для своего учебника "Основы химии", Д. И. Менделеев раздумывал над тем, как систематизировать материал таким образом, чтобы сведения о химических свойствах элементов не выглядели набором разрозненных фактов.

    Ориентиром в этой работе Д. И. Менделееву послужили атомные массы (атомные веса) элементов. После Всемирного конгресса химиков в 1860 году, в работе которого участвовал и Д. И. Менделеев, проблема правильного определения атомных весов была постоянно в центре внимания многих ведущих химиков мира, в том числе и Д. И. Менделеева. Располагая элементы в порядке возрастания их атомных весов, Д. И. Менделеев обнаружил фундаментальный закон природы, который теперь известен как Периодический закон:

    Свойства элементов периодически изменяются в соответствии с их атомным весом.

    Приведенная формулировка нисколько не противоречит современной, в которой понятие "атомный вес" заменено понятием "заряд ядра". Ядро состоит из протонов и нейтронов. Число протонов и нейтронов в ядрах большинства элементов примерно одинаково, поэтому атомный вес увеличивается примерно так же, как увеличивается число протонов в ядре (заряд ядра Z).

    Принципиальная новизна Периодического закона заключалась в следующем:

    1. Устанавливалась связь между НЕСХОДНЫМИ по своим свойствам элементами. Эта связь заключается в том, что свойства элементов плавно и примерно одинаково изменяются с возрастанием их атомного веса, а затем эти изменения ПЕРИОДИЧЕСКИ ПОВТОРЯЮТСЯ.

    2. В тех случаях, когда создавалось впечатление, что в последовательности изменения свойств элементов не хватает какого-нибудь звена, в Периодической таблице предусматривались ПРОБЕЛЫ, которые надо было заполнить еще не открытыми элементами.

    Во всех предыдущих попытках определить взаимосвязь между элементами другие исследователи стремились создать законченную картину, в которой не было места еще не открытым элементам. Наоборот, Д. И. Менделеев считал важнейшей частью своей Периодической таблицы те ее клеточки, которые оставались пока пустыми. Это давало возможность предсказать существование еще неизвестных элементов.

    Достойно восхищения, что свое открытие Д. И. Менделеев сделал в то время, когда атомные веса многих элементов были определены весьма приблизительно, а самих элементов было известно всего 63 - то есть чуть больше половины известных нам сегодня.

    Глубокое знание химических свойств различных элементов позволило Менделееву не только указать на еще не открытые элементы, но и точно предсказать их свойства! Д. И. Менделеев точно предсказал свойства элемента, названного им "эка-силицием". Спустя 16 лет этот элемент действительно был открыт немецким химиком Винклером и назван германием.

    Сопоставление свойств, предсказанных Д. И. Менделеевым для еще не открытого элемента "эка-силиция" со свойствами элемента германия (Ge). В современной Периодической таблице германий занимает место "эка-силиция".

    Свойство

    Предсказано Д. И. Менделеевым для "эка-силиция" в 1870 году

    Определено для германия Ge, открытого в 1886 году

    Цвет, внешний вид

    коричневый

    светло-коричневый

    Атомный вес

    72,59

    Плотность (г/см3)

    5,5

    5,35

    Формула оксида

    ХО2

    GeO2

    Формула хлорида

    XCl4

    GeCl4

    Плотность хлорида (г/см3)

    1,9

    1,84

    Точно так же блестяще подтвердились предсказанные Д. И. Менделеевым свойства "эка-алюминия" (элемент галлий Ga, открыт в 1875 году) и "эка-бора" (открытый в 1879 году элемент скандий Sc).

    После этого ученым всего мира стало ясно, что Периодическая таблица Д. И. Менделеева не просто систематизирует элементы, а является графическим выражением фундаментального закона природы - Периодического закона.

    Структура Периодической системы.

    На основе Периодического закона Д.И. Менделеев создал Периодическую систему химических элементов, которая состояла из 7 периодов и 8 групп (короткопериодный вариант таблицы). В настоящее время чаще используется длиннопериодный вариант Периодической системы (7 периодов, 8 групп, отдельно показаны элементы - лантаноиды и актиноиды).

    Периоды - это горизонтальные ряды таблицы, они подразделяются на малые и большие. В малых периодах находится 2 элемента (1-й период) или 8 элементов (2-й, 3-й периоды), в больших периодах - 18 элементов (4-й, 5-й периоды) или 32 элемента (6-й, 7-й период). Каждый период начинается с типичного металла, а заканчивается неметаллом (галогеном) и благородным газом.

    Группы - это вертикальные последовательности элементов, они нумеруется римской цифрой от I до VIII и русскими буквами А и Б. Короткопериодный вариант Периодической системы включал подгруппы элементов (главную и побочную).

    Подгруппа - это совокупность элементов, являющихся безусловными химическими аналогами; часто элементы подгруппы обладают высшей степенью окисления, отвечающей номеру группы.

    В А-группах химические свойства элементов могут меняться в широком диапазоне от неметаллических к металлическим (например, в главной подгруппе V группы азот - неметалл, а висмут - металл).

    В Периодической системе типичные металлы расположены в IА группе (Li-Fr), IIА (Mg-Ra) и IIIА (In, Tl). Неметаллы расположены в группах VIIА (F-Al), VIА (O-Te), VА (N-As), IVА (C, Si) и IIIА (B). Некоторые элементы А-групп (бериллий Ве, алюминий Al, германий Ge, сурьма Sb, полоний Po и другие), а также многие элементы Б-групп проявляют и металлические, и неметаллические свойства (явление амфотерности).

    Для некоторых групп применяют групповые названия: IА (Li-Fr) - щелочные металлы, IIА (Ca-Ra) - щелочноземельные металлы, VIА (O-Po) - халькогены, VIIА (F-At) - галогены, VIIIА (He-Rn) - благородные газы. Форма Периодической системы, которую предложил Д.И. Менделеева, называлась короткопериодной или классической. В настоящее время больше используется другая форма Периодической системы - длиннопериодная.

    Периодический закон Д.И. Менделеева и Периодическая система химических элементов стали основой современной химии. Относительные атомные массы приведены по Международной таблице 1983 года. Для элементов 104-108 в квадратных скобках приведены массовые числа наиболее долгоживущих изотопов. Названия и символы элементов, приведенные в круглых скобках, не являются общепринятыми.

    IV Периодический закон и строение атома.

    Основные сведения строения атомов.

    В конце XIX - начале XX века физики доказали, что атом является сложной частицей и состоит из более простых (элементарных) частиц. Были обнаружены:

    катодные лучи (английский физик Дж. Дж. Томсон, 1897 г.), частицы которых получили название электроны e− (несут единичный отрицательный заряд);

    естественная радиоактивность элементов (французские ученые - радиохимики А. Беккерель и М. Склодовская-Кюри, физик Пьер Кюри, 1896 г.) и существование α-частиц (ядер гелия 4He2+);

    наличие в центре атома положительно заряженного ядра (английский физик и радиохимик Э. Резерфорд, 1911 г.);

    искусственное превращение одного элемента в другой, например азота в кислород (Э. Резерфорд, 1919 г.). Из ядра атома одного элемента (азота - в опыте Резерфорда) при соударении с α-частицей образовывалось ядро атома другого элемента (кислорода) и новая частица, несущая единичный положительный заряд и названная протоном (p+, ядро 1H)

    наличие в ядре атома электронейтральных частиц - нейтронов n0 (английский физик Дж. Чедвик, 1932 г.).

    В результате проведенных исследований было установлено, что в атоме каждого элемента (кроме 1H) присутствуют протоны, нейтроны и электроны, причем протоны и нейтроны сосредоточены в ядре атома, а электроны - на его периферии (в электронной оболочке).

    Число протонов в ядре равно числу электронов в оболочке атома и отвечает порядковому номеру этого элемента в Периодической системе.

    Электронная оболочка атома представляет собой сложную систему. Она делится на подоболочки с разной энергией (энергетические уровни); уровни, в свою очередь, подразделяются на подуровни, а подуровни включают атомные орбитали, которые могут различаться формой и размерами (обозначаются буквами s, p, d, f и др.).

    Итак, главной характеристикой атома является не атомная масса, а величина положительного заряда ядра. Это более общая и точная характеристика атома, а значит, и элемента. От величины положительного заряда ядра атома зависят все свойства элемента и его положение в периодической системе. Таким образом, порядковый номер химического элемента численно совпадает с зарядом ядра его атома. Периодическая система элементов является графическим изображением периодического закона и отражает строение атомов элементов.

    Теория строения атома объясняет периодическое изменение свойств элементов. Возрастание положительного заряда атомных ядер от 1 до 110 приводит к периодическому повторению у атомов элементов строения внешнего энергетического уровня. А поскольку от числа электронов на внешнем уровне в основном зависят свойства элементов, то и они периодически повторяются. В этом физический смысл периодического закона.

    Каждый период в периодической системе начинается элементами, атомы которых на внешнем уровне имеют один s-электрон (незавершенные внешние уровни) и потому проявляют сходные свойства - легко отдают валентные электроны, что обуславливает их металлический характер. Это щелочные металлы - Li, Na, К, Rb, Cs.

    Заканчивается период элементами, атомы которых на внешнем уровне содержат 2(s2) электрона (в первом периоде) или 8 (s2p6) электронов (во всех последующих), то есть имеют завершенный внешний уровень. Это благородные газы Не, Ne, Аr, Кr, Хе, имеющие инертные свойства.

Периодическая система элементов оказала большое влияние на последующее развитие химии. Она не только была первой естественной классификацией химических элементов, показавшей, что они образуют стройную систему и находятся в тесной связи друг с другом, но и явилась могучим орудием для дальнейших исследований.

В время, когда Менделеев на основе открытого им периоди­ческого закона составлял свою таблицу, многие элементы были еще неизвестны. Так, например, был неизвестен элемент , находящийся в четвертом ряду. По атомному весу вслед за каль­цием шел , но нельзя было поставить сразу после кальция, так как он попал бы в третью группу, тогда как четырехвалентен, образует высший окисел ТiO 2 , да и по всем другим свойствам должен быть отнесен к четвертой группе. Поэтому Менделеев пропустил одну клетку, т. е. оставил свобод­ное место между кальцием и титаном. На том же основании в пятом ряду между цинком и мышьяком были оставлены две свободные клетки, занятые теперь элементами таллием и герма­нием. Свободные места остались и в других рядах. Менде­леев был не только убежден, что должны существовать неиз­вестные еще элементы, которые заполнят эти места, но и заранее предсказал свойства таких элементов, основываясь на их поло­жении среди других элементов периодической системы.

Одному из них, которому в будущем предстояло занять место между кальцием и титаном, он дал название эка-бор (так как свойства его должны были напоминать бор); два других, для которых в таблице остались свободные места в пятом ряду между цинком и мышьяком, были названы эка-алюминием и эка-силицием.

Предсказывая свойства этих неизвестных элементов, Менде­леев писал: «Решаюсь сделать это ради того, чтобы хотя со вре­менем, когда будет открыто одно из этих предсказываемых тел, иметь возможность окончательно увериться самому и> уверить других химиков в справедливости тех предположений, которые лежат в основании предлагаемой мною системы».

В течение следующих 15 лет предсказания Менделеева бле­стяще подтвердились: все три ожидаемых элемента действительно были открыты. Сперва французский химик Лекок де-Буабодран открыл новый элемент , обладающий всеми свойствами эка-алюминия; вслед за тем в Швеции Нильсоном был открыт , имевший свойства эка-бора, и, наконец, спустя еще не­сколько лет в Германии Винклер открыл элемент, названный им германием, который оказался тождественным с эка-силицием.

Чтобы судить об удивительной точности предсказаний Мен­делеева, сопоставим свойства предсказанного им в 1871 г. эка-силиция со свойствами открытого в 1886 г. германия:

Свойства эка-силиция

Эка-силиций Es - плавкий металл, способный в сильном жару улету­чиваться

Атомный вес Es близок к 72

Удельный вес Es около 5,5

EsО 2 должен легко восстанавливаться

Удельный вес EsO 2 будет близок к 4,7

ЕвСl 4 - жидкость, кипящая около 90°, удельный вес ее близок к 1,9

Свойства германия

Атомный вес Ge 72,6

Удельный вес Ge 5,35 при 20°

GeО 2 легко восстанавливается углем или водородом до металла

Удельный вес GeO 2 4,703 при 18°

GeCl 4 - жидкость, кипящая при 83°, удельный вес ее 1,88 при 18°

Открытие галлия, скандия и германия было величайшим три­умфом периодического закона. Весь мир заговорил о сбывшихся теоретических предсказаниях русского химика и о его периоди­ческом законе, получившем после этого всеобщее признание.

Сам Менделеев с глубоким удовлетворением встретил эти от­крытия. «Писавши в 1871 г. статью о приложении периодического закона к определению свойств еще не открытых элементов, - говорил он, - я не думал, что доживу до оправдания этого след­ствия периодического закона, но действительность ответила иначе. Описаны были мною три элемента: экабор, экаалюминий и экасилиций, и не прошло 20 лет, как я имел уже величайшую радость видеть все три открытыми…» .

Большое значение имела периодическая система также в ре­шении вопроса о валентности и величинах атомных весов некото­рых элементов. Так, например, элемент долгое время считался аналогом алюминия и его окислу приписывали формулу Ве 2 O 3 . Путем анализа было найдено, что в окиси бериллия на 16 весовых частей кислорода приходится 9 вес. ч. бериллия. Но так как летучие соединения бериллия не были известны, опре­делить точно атомный вес этого элемента не представлялось воз­можным. Исходя из процентного состава и предполагаемой фор­мулы окиси бериллия, его атомный вес считали равным 13,5. Периодическая система показала, что для бериллия в таблице есть только одно место, а именно над магнием, так что окись его должна иметь формулу ВеО, откуда атомный вес бериллия полу­чается равным девяти. Этот вывод вскоре был подтвержден определениями плотности паров хлористого бериллия, что дало возможность вычислить атомный вес бериллия.

Точно так же периодическая система дала толчок к исправле­нию атомных весов некоторых редких элементов. Например, це­зию приписывали раньше атомный вес 123,4. Менделеев же, рас­полагая элементы в таблицу, нашел, что по своим свойствам це­зий должен стоять в левом столбце первой группы под рубидием и потому будет иметь атомный вес около 130. Новейшие опреде­ления показывают,что атомный вес цезия равен 132,91.

Первоначально был встречен очень хо­лодно и недоверчиво. Когда Менделеев, опираясь на свое откры­тие, поставил под сомнение ряд опытных данных относительно атомных весов и решился предсказать существование и свойства еще не открытых элементов, многие химики отнеслись к его сме­лым высказываниям с нескрываемым пренебрежением. Так, на­пример, Л. Мейер писал в 1870 г. о периодическом законе: «Было бы поспешно предпринимать на таких шатких основаниях изме­нение доныне принятых атомных весов».

Однако после того как предсказания Менделеева подтверди­лись и получил всеобщее признание, в ряде стран были предприняты попытки оспорить первенство Менде­леева и приписать открытие периодического закона другим ученым.

Протестуя против таких попыток, Менделеев писал: «Утверждение закона возможно только при помощи вывода из него следствий, без него невозможных и не ожидаемых, и оправ­дания тех следствий в опытной проверке. Поэтому-то, увидев , я с своей стороны (1869-1871) вывел из него такие логические следствия, которые могли показать - верен он или нет. Без такого способа испытания не может утвердиться ни один закон природы. Ни Шанкуртуа, которому французы при­писывают право на открытие периодического закона, ни Нью­лэндс, которого выставляют англичане, ни Л. Мейер, которого цитировали иные как основателя периодического закона, не рисковали предугадывать свойства неоткрытых элементов, изме­нять «принятые веса атомов» и вообще считать периодический за­кон новым, строго постановленным законом природы, могущим охватывать еще доселе необобщенные факты, как это сделано мною с самого начала (1869)».

Открытие периодического закона и создание системы химических элементов имело огромное значение не только для химии и других естественных наук, но и для философии, для всего на­шего миропонимания. Вскрывая зависимость между свойствами химических элементов и количеством в их атомах, пе­риодический закон явился блестящим подтверждением всеобщего закона развития природы, закона перехода количества в каче­ство.

До Менделеева химики группировали элементы по их химиче­скому сходству, стремясь сблизить между собой только сходные элементы. Совершенно иначе подошел к рассмотрению элементов Менделеев. Он встал на путь сближения несходных элементов, расположив рядом химически различные элементы, имевшие близкие значения атомных весов. Именно это сопоставление позволило вскрыть глубокую органическую связь между всеми элементами и привело к открытию периодического закона.

Периодическая система Д.И. Менделеева стала важнейшей вехой в развитии атомно-молекулярного учения. Благодаря ей сложилось современное понятие о химическом элементе, были уточнены представления о простых веществах и соединениях.

Этот закон обладал предсказательной силой. Он позволил вести целенаправленный поиск новых, еще не открытых элементов. Атомные веса многих элементов, определенные до этого недостаточно точно, подверглись проверке и уточнению именно потому, что их ошибочные значения вступали в противоречие с Периодическим законом.

Прогнозирующая роль периодической системы, показанная Менделеевым, в XX веке проявилась в оценке химических свойств трансурановых элементов.

Принципиальная новизна Периодического закона, открытого и сформулированного Д.И. Менделеевым, заключалась в следующем:

1. Устанавливалась связь между НЕСХОДНЫМИ по своим свойствам элементами. Эта связь заключается в том, что свойства элементов плавно и примерно одинаково изменяются с возрастанием их атомного веса, а затем эти изменения ПЕРИОДИЧЕСКИ ПОВТОРЯЮТСЯ.

2. В тех случаях, когда создавалось впечатление, что в последовательности изменения свойств элементов не хватает какого-нибудь звена, в Периодической таблице предусматривались ПРОБЕЛЫ, которые надо было заполнить еще не открытыми элементами. Мало того, Периодический закон позволял ПРЕДСКАЗЫВАТЬ свойства этих элементов.

С момента появления Периодического закона химия перестала быть описательной наукой. Как образно заметил известный русский химик Н.Д. Зелинский, Периодический закон явился «открытием взаимной связи всех атомов в мироздании».

Дальнейшие открытия в химии и физике многократно подтвердили фундаментальный смысл Периодического закона. Были открыты инертные газы, которые великолепно вписались в Периодическую систему - особенно наглядно это показывает длинная форма таблицы. Порядковый номер элемента оказался равным заряду ядра атома этого элемента. Многие неизвестные ранее элементы были открыты благодаря целенаправленному поиску именно тех свойств, которые предсказывались по Периодической таблице.

Периодическая система Менделеева явилась своего рода путеводной картой при изучении неорганической химии и исследовательской работе в этой области.

Появление периодической системы открыло новую, подлинно научную эру в истории химии и ряде смежных наук -- взамен разрозненных сведений об элементах и соединениях появилась стройная система, на основе которой стало возможным обобщать, делать выводы, предвидеть.

В истории развития науки известно много крупных открытий. Но немногие из них можно сопоставить с тем, что сделал Менделеев. Периодический закон химических элементов стал естественнонаучной основой учения о веществе, о его строении и эволюции в природе.

Американские ученые (Г. Сиборг и др.), синтезировавшие в 1955 году элемент № 101, дали ему название Менделевий «… в знак признания приоритета великого русского химика, который первым использовал периодическую систему элементов. Для предсказания химических свойств тогда еще не открытых элементов». Этот принцип был ключом при открытии почти всех трансурановых элементов.

В 1964 году имя Менделеева занесено на Доску Почета науки Бриджпортского университета (США) в число имен величайших ученых мира.

Периодическая система элементов оказала большое влияние на последующее развитие химии.

Она не только была первой естественной классификацией химических элементов, показавшей, что они образуют стройную систему и находятся в тесной связи друг с другом, по и явилась могучим орудием для дальнейших исследований.

В то время, когда Менделеев на основе открытого им периодического закона составлял свою таблицу, многие элементы были еще неизвестны. Так, был неизвестен элемент четвертого периода скандий. По атомной массе вслед за кальцием шел титан, но титан нельзя было поставить сразу после кальция, так как он попал бы в третью группу, тогда как титан образует высший оксид, да и по другим свойствам должен быть отнесен к четвертой группе. Поэтому Менделеев пропустил одну клетку, т. е. оставил свободное место между кальцием и титаном. На том же основании в четвертом периоде между цинком и мышьяком были оставлены две свободные клетки, занятые теперь элементами галлием и германием. Свободные места остались и в других рядах. Менделеев был не только убежден, что должны существовать неизвестные еще элементы, которые заполнят эти места, но и заранее предсказал свойства таких элементов, основываясь на их положении среди других элементов периодической системы. Одному из них, которому в будущем предстояло занять место между кальцием и титаном, он дал название экабор (так как свойства его должны были напоминать бор); два других, для которых в таблице остались свободные места между цинком и мышьяком, были названы эка-алюминием и экасилицием.

В течение следующих 15 лет предсказания Менделеева блестяще подтвердились: все три ожидаемых элемента были открыты. Вначале французский химик Лекок де Буабодран открыл галлий, обладающий всеми свойствами экаалюминия; вслед за тем в Швеции Л. Ф. Нильсоном был открыт скандий, имевший свойства экабора, и, наконец, спустя еще несколько лет в Германии К. А. Винклер открыл элемент, названный им германием, который оказался тождественным экасилицию.

Чтобы судить об удивительной точности предвидения Менделеева, сопоставим предсказанные им в 1871 г. свойства экасилиция со свойствами открытого в 1886 г. германия:

Открытие галлия, скандия и германия было величайшим триумфом периодического закона.

Большое значение имела периодическая система также при установлении валентности и атомных масс некоторых элементов. Так, элемент бериллий долгое время считался аналогом алюминия и его оксиду приписывали формулу. Исходя из процентного состава и предполагаемой формулы оксида бериллия, его атомную массу считали равной 13,5. Периодическая система показала, что для бериллия в таблице есть только одно место, а именно - над магнием, так что его оксид должен иметь формулу, откуда атомная масса бериллия получается равной десяти. Этот вывод вскоре был подтвержден определениями атомной массы бериллия по плотности пара его хлорида.



Точно <гак же периодическая система дала толчок к исправлению атомных масс некоторых элементов. Например, цезию раньше приписывали атомную массу 123,4. Менделев же, располагая элементы в таблицу, нашел, что по своим свойствам цезий должен стоять в главной подгруппе первой группы под рубидием и потому будет иметь атомную массу около 130. Современные определения показывают, что атомная масса цезия равна 132,9054.

И в настоящее время периодический закон остается путеводной нитью и руководящим принципом химии. Именно на его основе были искусственно созданы в последние десятилетия трансурановые элементы, расположенные в периодической системе после урана. Один из них - элемент № 101, впервые полученный в 1955 г., - в честь великого русского ученого был назван менделевием.

Открытие периодического закона и создание системы химических элементов имело огромное значение не только для химии, но и для философии, для всего нашего миропонимания. Менделеев показал, что химические элементы составляют стройную систему, в основе которой лежит фундаментальный закон природы. В этом нашло выражение положение материалистической диалектики о взаимосвязи и взаимообусловленности явлений природы. Вскрывая зависимость между свойствами химических элементов и массой их атомов, периодический закон явился блестящим подтверждением одного из всеобщих законов развития природы - закона перехода количества в качество.

Последующее развитие науки позволило, опираясь на периодический закон, гораздо глубже познать строение вещества, чем это было возможно при жизни Менделеева.

Разработанная в XX веке теория строения атома в свою очередь дала периодическому закону и периодической системе элементов новое, более глубокое освещение. Блестящее подтверждение нашли пророческие слова Менделеева: «Периодическому закону не грозит разрушение, а обещаются только надстройка и развитие».

6. Периодический закон и периодическая система д.И. Менделеева Структура периодической системы (период, группа, подгруппа). Зна­чение периодического закона и периодической системы.

Периодический закон Д. И. Менделеева: Свойства простых тел, а также формы и свойства соеди­ нений элементов находятся в периодической зависимости от величины атомных весов элементов.(Свойства эл-тов находяхтся в периодической зависимости от заряда атомов их ядер).

Периодическая система элементов. Ряды элементов, в пре­делах которых свойства изменяются последовательно, как, напри­мер, ряд из восьми элементов от лития до неона или от натрия до аргона, Менделеев назвал периодами. Если напишем эти два периода один под другим так, чтобы под литием находился натрий, а под неоном - аргон, то получим следующее расположение эле­ментов:

При таком расположении в вертикальные столбцы попадают элементы, сходные по своим свойствам и обладающие одинаковой валентностью, например, литий и натрий, бериллий и магний и т. д.

Разделив все элементы на периоды и располагая один период под другим так, чтобы Сходные по свойствам и типу образуемых соединений элементы приходились друг под другом, Менделеев со­ставил таблицу, названную им периодической системой элементов по группам и рядам.

Значение периодической систе мы. Периодическая система элементов оказала большое влияние на последующее развитие химии. Она не только была первой естественной классификацией химических элементов, показавшей, что они обра­зуют стройную систему и находятся в тесной связи друг с дру­гом, но и явилась могучим орудием для дальнейших исследо­ваний.

7. Периодическое изменение свойств химических элементов. Атомные и ионные радиусы. Энергия ионизации. Сродство к электрону. Электроотрицательность.

Зависимость атомных радиусов от заряда ядра атома Z имеет периодический характер. В пределах одного периода с увеличе­нием Z проявляется тенденция к уменьшению размеров атома, что особенно четко наблюдается в коротких периодах

С началом застройки нового электронного слоя, более удален­ного от ядра, т. е. при переходе к следующему периоду, атомные радиусы возрастают (сравните, например, радиусы атомов фтора и натрия). В результате в пределах подгруппы с возрастанием заряда ядра размеры атомов увеличиваются.

Потеря атомов электронов приводит к уменьшению его эф­фективных размеров, а присоединение избыточных электронов - к увеличению. Поэтому радиус положительно заряженного иона (катиона) всегда меньше, а радиус отрицательно заряженного нона (аниона) всегда больше радиуса соответствующего электронейтрального атома.

В пределах одной подгруппы радиусы ионов одинакового за­ряда возрастают с увеличением заряда ядра Такая закономерность объясняется увеличением числа элек­тронных слоев и растущим удалением внешних электронов от ядра.

Наиболее ха­рактерным химическим свойством металлов является способность их атомов легко отдавать внешние электроны и превращаться в положительно заряженные ионы, а неметаллы, наоборот, харак­теризуются способностью присоединять электроны с образованием отрицательных ионов. Для отрыва электрона от атома с превраще­нием последнего в положительный ион нужно затратить некоторую энергию, называемую энергией ионизации.

Энергию ионизации можно определить путем бомбардировки атомов электронами, ускоренными в электрическом поле. То наи­меньшее напряжение поля, при котором скорость электронов ста­новится достаточной для ионизации атомов, называется потен­циалом ионизации атомов данного элемента и выражается в вольтах. При затрате достаточной энергии можно оторвать от атома два, три и более электронов. Поэтому говорят о первом потен­циале ионизации (энергия отрыва от атома первого элек­трона).втором потенциале ионизации (энергия отрыва второго электрона)

Как отмечалось выше, атомы могут не только отдавать, но и присоединять электроны. Энергия, выделяющаяся при присоедине­нии электрона к свободному атому, называется сродством атома к электрону. Сродство к электрону, как и энергия ионизации, обычно выражается в электронвольтах. Так, сродство к электрону атома водорода равно 0,75 эВ, кислорода-1,47 эВ, фтора -3,52 эВ.

Сродство к электрону атомов металлов, как правило, близко к нулю или отрицательно; из этого следует, что для атомов боль­шинства металлов присоединение электронов энергетически невы­годно. Сродство же к электрону атомов неметаллов всегда поло­жительно и тем больше, чем ближе к благородному газу распо­ложен неметалл в периодической системе; это свидетельствует об усилении неметаллических свойств по мере приближения к концу периода.