Наиболее сильный электролит. Как определить сильные и слабые электролиты

Величина a выражается в долях единицы или в % и зависит от природы электролита, растворителя, температуры, концентрации и состава раствора.

Особую роль играет растворитель: в ряде случаев при переходе от водных растворов к органическим растворителям степень диссоциации электролитов может резко возрасти или уменьшиться. В дальнейшем, при отсутствии специальных указаний, будем считать, что растворителем является вода.

По степени диссоциации электролиты условно разделяют на сильные (a > 30%), средние (3% < a < 30%) и слабые (a < 3%).

К сильным электролитам относят:

1) некоторые неорганические кислоты (HCl, HBr, HI, HNO 3 , H 2 SO 4 , HClO 4 и ряд других);

2) гидроксиды щелочных (Li, Na, K, Rb, Cs) и щелочноземельных (Ca, Sr, Ba) металлов;

3) почти все растворимые соли.

К электролитам средней силы относят Mg(OH) 2 , H 3 PO 4 , HCOOH, H 2 SO 3 , HF и некоторые другие.

Слабыми электролитами считают все карбоновые кислоты (кроме HCOOH) и гидратированные формы алифатических и ароматических аминов. Слабыми электролитами являются также многие неоргани-ческие кислоты (HCN, H 2 S, H 2 CO 3 и др.) и основания (NH 3 ∙H 2 O).

Несмотря на некоторые совпадения, в целом не следует отождествлять растворимость вещества с его степенью диссоциации. Так, уксусная кислота и этиловый спирт неограниченно растворимы в воде, но в то же время первое вещество является слабым электро-литом, а второе - неэлектролит.

Кислоты и основания

Несмотря на то, что понятия «кислота» и «основание» широко используются для описания химических процессов, единого подхода к классификации веществ с точки зрения отнесения их к кислотам или основаниям нет. Существующие в настоящее время теории (ионная теория С. Аррениуса , протолитическая теория И. Бренстеда и Т. Лоури и электронная теория Г. Льюиса ) имеют определенные ограничения и, таким образом, применимы лишь в частных случаях. Остановимся подробнее на каждой из этих теорий.

Теория Аррениуса.

В ионной теории Аррениуса понятия «кислота» и «основание» тесно связаны с процессом электролитической диссоциации:

Кислотой является электролит, диссоциирующий в растворах с образованием ионов Н + ;

Основанием является электролит, диссоциирующий в растворах с образованием ионов ОН - ;

Амфолитом (амфотерным электролитом) является электролит, диссоциирующий в растворах с образованием как ионов Н + , так и ионов ОН - .

Например:

НА ⇄ Н + + А - nH + + MeO n n - ⇄ Ме(ОН) n ⇄ Ме n + + nОН -

В соответствии с ионной теорией кислотами могут быть как нейтральные молекулы, так и ионы, например:

HF ⇄ H + + F -

H 2 PO 4 - ⇄ H + + HPO 4 2 -

NH 4 + ⇄ H + + NH 3

Аналогичные примеры можно привести и для оснований:

КОН К + + ОН -

- ⇄ Al(OH) 3 + ОН -

+ ⇄ Fe 2+ + ОН -

К амфолитам относят гидроксиды цинка, алюминия, хрома и некоторые другие, а также аминокислоты, белки, нуклеиновые кислоты.

В целом, кислотно-основное взаимодействие в растворе сводится к реакции нейтрализации:

H + + ОН - H 2 O

Однако, ряд экспериментальных данных показывает ограниченность ионной теории. Так, аммиак, органические амины, оксиды металлов типа Na 2 O, СаО, анионы слабых кислот и т.д. в отсутствии воды проявляют свойства типичных оснований, хотя не имеют в своем составе гидроксид-ионов.

С другой стороны, многие оксиды (SO 2 , SO 3 , Р 2 О 5 и т.д.), галогениды, галогенангидриды кислот, не имея в своем составе ионов водорода, даже в отсутствии воды проявляют кислотные свойства, т.е. нейтрализуют основания.

Кроме того, поведение электролита в водном растворе и в неводной среде может быть противоположным.

Так, CH 3 COOH в воде является слабой кислотой:

CH 3 COOH ⇄ CH 3 COO - + H + ,

а в жидком фтороводороде проявляет свойства основания:

HF + CH 3 COOH ⇄ CH 3 COOH 2 + + F -

Исследования подобных типов реакций и в особенности реакций, протекающих в неводных растворителях, привели к созданию более общих теорий кислот и оснований.

Теория Бренстеда и Лоури.

Дальнейшим развитием теории кислот и оснований явилась предложенная И. Бренстедом и Т. Лоури протолитическая (протонная) теория. В соответствии с этой теорией:

Кислотой называют любое вещество, молекулы (или ионы) которого способны отдавать протон, т.е. быть донором протона;

Основанием называют любое вещество, молекулы (или ионы) которого способны присоединять протон, т.е. быть акцептором протона;

Таким образом, понятие основания значительно расширяется, что подтверждается следующими реакциями:

ОН - + Н + Н 2 О

NH 3 + H + NH 4 +

H 2 N-NH 3 + + H + H 3 N + -NH 3 +

По теории И. Бренстеда и Т. Лоури кислота и основание составляют сопряженную пару и связаны равновесием:

КИСЛОТА ⇄ ПРОТОН + ОСНОВАНИЕ

Поскольку реакция переноса протона (протолитическая реакция) обратима, причем в обратном процессе тоже передается протон, то продукты реакции являются друг по отношению к другу кислотой и основанием. Это можно записать в виде равновесного процесса:

НА + В ⇄ ВН + + А - ,

где НА – кислота, В – основание, ВН + – кислота, сопряженная с основанием В, А - – основание, сопряженное с кислотой НА.

Примеры.

1) в реакции:

HCl + OH - ⇄ Cl - + H 2 O,

HCl и H 2 O – кислоты, Cl - и OH - – соответствующие сопряженные с ними основания;

2) в реакции:

HSO 4 - + H 2 O ⇄ SO 4 2 - + H 3 O + ,

HSO 4 - и H 3 O + – кислоты, SO 4 2 - и H 2 O – основания;

3) в реакции:

NH 4 + + NH 2 - ⇄ 2NH 3 ,

NH 4 + – кислота, NH 2 - – основание, а NH 3 выступает в роли как кислоты (одна молекула), так и основания (другая молекула), т.е. демонстрирует признаки амфотерности – способности проявлять свойства кислоты и основания.

Такой способностью обладает и вода:

2Н 2 О ⇄ Н 3 О + + ОН -

Здесь одна молекула Н 2 О присоединяет протон (основание), образуя сопряженную кислоту – ион гидроксония Н 3 О + , другая отдает протон (кислота), образуя сопряженное основание ОН - . Этот процесс называется автопротолизом .

Из приведенных примеров видно, что в отличие от представлений Аррениуса, в теории Бренстеда и Лоури реакции кислот с основаниями не приводят к взаимной нейтрализации, а сопровождаются образованием новых кислот и оснований.

Необходимо также отметить, что протолитическая теория рассматривает понятия «кислота» и «основание» не как свойство, но как функцию, которую выполняет рассматриваемое соединение в протолитической реакции. Одно и то же соединение может в одних условиях реагировать как кислота, в других – как основание. Так, в водном растворе СН 3 СООН проявляет свойства кислоты, а в 100%-й H 2 SO 4 – основания.

Однако, несмотря на свои достоинства, протолитическая теория, как и теория Аррениуса, не применима к веществам, не содержащим атомов водорода, но, в тоже время, проявляющим функцию кислоты: галогенидам бора, алюминия, кремния, олова.

Теория Льюиса.

Иным подходом к классификации веществ с точки зрения отнесения их к кислотам и основаниям явилась электронная теория Льюиса. В рамках электронной теории:

кислотой называют частицу (молекулу или ион), способную присоединять электронную пару (акцептор электронов);

основанием называют частицу (молекулу или ион), способную отдавать электронную пару (донор электронов).

Согласно представлениям Льюиса, кислота и основание взаимодействуют друг с другом с образованием донорно-акцепторной связи. В результате присоединения пары электронов у атома с электронным дефицитом возникает завершенная электронная конфигурация - октет электронов. Например:

Аналогичным образом можно представить и реакцию между нейтральными молекулами:

Реакция нейтрализации в терминах теории Льюиса рассматривается как присоединение электронной пары гидроксид-иона к иону водорода, предоставляющему для размещения этой пары свободную орбиталь:

Таким образом, сам протон, легко присоединяющий электронную пару, с точки зрения теории Льюиса, выполняет функцию кислоты. В этой связи, кислоты по Бренстеду могут рассматриваться как продукты реакции между льюисовскими кислотами и основаниями. Так, HCl является продуктом нейтрализации кислоты H + основанием Cl - , а ион H 3 O + образуется в результате нейтрализации кислоты H + основанием H 2 O.

Реакции между кислотами и основаниями Льюиса также иллюстрируют следующие примеры:

К основаниям Льюиса также относят галогенид-ионы, аммиак, алифатические и ароматические амины, кислородсодержащие органические соединения типа R 2 CO, (где R - органический радикал).

К кислотам Льюиса относят галогениды бора, алюминия, кремния, олова и других элементов.

Очевидно, что в теории Льюиса понятие «кислота» включает в себя более широкий круг химических соединений. Это объясняется тем, что по Льюису отнесение вещества к классу кислот обусловлено исключительно строением его молекулы, определяющим электронно-акцепторные свойства, и не обязательно связано с наличием атомов водорода. Льюисовские кислоты, не содержащие атомов водорода, называют апротонными .


Эталоны решения задач

1. Написать уравнение электролитической диссоциации Al 2 (SO 4) 3 в воде.

Сульфат алюминия является сильным электролитом и в водном растворе подвергается полному распаду на ионы. Уравнение диссоциации:

Al 2 (SO 4) 3 + (2x + 3y)H 2 O 2 3+ + 3 2 - ,

или (без учета процесса гидратации ионов):

Al 2 (SO 4) 3 2Al 3+ + 3SO 4 2 - .

2. Чем является ион HCO 3 - с позиций теории Бренстеда-Лоури?

В зависимости от условий ион HCO 3 – может как отдавать протоны:

HCO 3 - + OH - CO 3 2 - + H 2 O (1),

так и присоединять протоны:

HCO 3 - + H 3 O + H 2 CO 3 + H 2 O (2).

Таким образом, в первом случае ион HCO 3 - является кислотой, во втором - основанием, т. е. является амфолитом.

3. Определить, чем с позиций теории Льюиса является ион Ag + в реакции:

Ag + + 2NH 3 +

В процессе образования химических связей, который протекает по донорно-акцепторному механизму, ион Ag + , имея свободную орбиталь, является акцептором электронных пар, и, таким образом, проявляет свойства кислоты Льюиса.

4. Определить ионную силу раствора в одном литре которого находятся 0,1 моль KCl и 0,1 моль Na 2 SO 4 .

Диссоциация представленных электролитов протекает в соответствии с уравнениями:

Na 2 SO 4 2Na + + SO 4 2 -

Отсюда: С(K +) = С(Cl -) = С(KCl) = 0,1 моль/л;

С(Na +) = 2×С(Na 2 SO 4) = 0,2 моль/л;

С(SO 4 2 -) = С(Na 2 SO 4) = 0,1 моль/л.

Ионную силу раствора вычисляем по формуле:

5. Определить концентрацию CuSO 4 в растворе данного электролита с I = 0,6 моль/л.

Диссоциация CuSO 4 протекает по уравнению:

CuSO 4 Cu 2+ + SO 4 2 -

Примем С(CuSO 4) за x моль/л, тогда, в соответствии с уравнением реакции, С(Cu 2+) = С(SO 4 2 -) = x моль/л. В данном случае выражение для расчета ионной силы будет иметь вид:

6. Определить коэффициент активности иона K + в водном растворе KCl с С(KCl) = 0,001 моль/л.

который в данном случае примет вид:

.

Ионную силу раствора найдем по формуле:

7. Определить коэффициент активности иона Fe 2+ в водном растворе, ионная сила которого равна 1.

В соответствии с законом Дебая-Хюккеля:

следовательно:

8. Определить константу диссоциации кислоты HA, если в растворе этой кислоты с концентрацией 0,1 моль/л a = 24%.

По величине степени диссоциации можно определить, что данная кислота является электролитом средней силы. Следовательно, для расчета константы диссоциации кислоты используем закон разведения Оствальда в его полной форме:

9. Определить концентрацию электролита, если a = 10%, K д = 10 - 4 .

Из закона разведения Оствальда:

10. Степень диссоциации одноосновной кислоты HA не превышает 1%. (HA) = 6,4×10 - 7 . Определить степень диссоциации HA в ее растворе с концентрацией 0,01 моль/л.

По величине степени диссоциации можно определить, что данная кислота является слабым электролитом. Это позволяет использовать приближенную формулу закона разведения Оствальда:

11. Степень диссоциации электролита в его растворе с кон-центрацией 0,001 моль/л равна 0,009. Определить константу диссоциации этого электролита.

Из условия задачи видно, что данный электролит является слабым (a = 0,9%). Поэтому:

12. (HNO 2) = 3,35. Сравнить силу HNO 2 с силой одно-основной кислоты HA, степень диссоциации которой в растворе с С(HA) = 0,15 моль/л равна 15%.

Рассчитаем (HA), используя полную форму уравнения Оствальда:

Так как (HA) < (HNO 2), то кислота HA является более сильной кислотой по сравнению с HNO 2 .

13. Имеются два раствора KCl, содержащие при этом и другие ионы. Известно, что ионная сила первого раствора (I 1) равна 1, а второго (I 2) составляет величину 10 - 2 . Сравнить коэффициенты активности f (K +) в данных растворах и сделать вывод, как отличаются свойства этих растворов от свойств бесконечно разбавленных растворов KCl.

Коэффициенты активности ионов K + рассчитаем, используя закон Дебая-Хюккеля:

Коэффициент активности f - это мера отклонения в поведении раствора электролита данной концентрации от его поведения при бесконечном разведении раствора.

Так как f 1 = 0,316 сильнее отклоняется от 1, чем f 2 = 0,891, то в растворе с большей ионной силой наблюдается большее отклонение в поведении раствора KCl от его поведения при бесконечном разведении.


Вопросы для самоконтроля

1. Что такое электролитическая диссоциация?

2. Какие вещества называют электролитами и неэлектролитами? Приведите примеры.

3. Что такое степень диссоциации?

4. От каких факторов зависит степень диссоциации?

5. Какие электролиты считаются сильными? Какие средней силы? Какие слабыми? Приведите примеры.

6. Что такое константа диссоциации? От чего зависит и от чего не зависит константа диссоциации?

7. Как связаны между собой константа и степень диссоциации в бинарных растворах средних и слабых электролитов?

8. Почему растворы сильных электролитов в своем поведении обнаруживают отклонения от идеальности?

9. В чем заключается суть термина «кажущаяся степень диссоциации»?

10. Что такое активность иона? Что такое коэффициент актив-ности?

11. Как изменяется величина коэффициента активности с разбавлением (концентрированием) раствора сильного электролита? Каково предельное значение коэффициента активности при бесконечном разведении раствора?

12. Что такое ионная сила раствора?

13. Как вычисляют коэффициент активности? Сформулируйте закон Дебая-Хюккеля.

14. В чем суть ионной теории кислот и оснований (теории Аррениуса)?

15. В чем состоит принципиальное отличие протолитической теории кислот и оснований (теории Бренстеда и Лоури) от теории Аррениуса?

16. Как трактует электронная теория (теория Льюиса) понятие «кислота» и «основание»? Приведите примеры.


Варианты задач для самостоятельного решения

Вариант №1

1. Написать уравнение электролитической диссоциации Fe 2 (SO 4) 3 .

НА + H 2 O ⇄ Н 3 O + + А - .

Вариант №2

1. Написать уравнение электролитической диссоциации CuCl 2 .

2. Определить, чем с позиций теории Льюиса является ион S 2 - в реакции:

2Ag + + S 2 - ⇄ Ag 2 S.

3. Вычислить молярную концентрацию электролита в растворе, если a = 0,75%, а = 10 - 5 .

Вариант №3

1. Написать уравнение электролитической диссоциации Na 2 SO 4 .

2. Определить, чем с позиций теории Льюиса является ион CN - в реакции:

Fe 3 + + 6CN - ⇄ 3 - .

3. Ионная сила раствора CaCl 2 равна 0,3 моль/л. Рассчитать С(CaCl 2).

Вариант №4

1. Написать уравнение электролитической диссоциации Ca(OH) 2 .

2. Определить, чем с позиций теории Бренстеда является молекула H 2 O в реакции:

H 3 O + ⇄ H + + H 2 O.

3. Ионная сила раствора K 2 SO 4 составляет 1,2 моль/л. Рассчитать С(K 2 SO 4).

Вариант №5

1. Написать уравнение электролитической диссоциации K 2 SO 3 .

NH 4 + + H 2 O ⇄ NH 3 + H 3 O + .

3. (CH 3 COOH) = 4,74. Сравнить силу CH 3 COOH с силой одноосновной кислоты HA, степень диссоциации которой в растворе с С(HA) = 3,6×10 - 5 моль/л равна 10%.

Вариант №6

1. Написать уравнение электролитической диссоциации K 2 S.

2. Определить, чем с позиций теории Льюиса является молекула AlBr 3 в реакции:

Br - + AlBr 3 ⇄ - .

Вариант №7

1. Написать уравнение электролитической диссоциации Fe(NO 3) 2 .

2. Определить, чем с позиций теории Льюиса является ион Cl - в реакции:

Cl - + AlCl 3 ⇄ - .

Вариант №8

1. Написать уравнение электролитической диссоциации K 2 MnO 4 .

2. Определить, чем с позиций теории Бренстеда является ион HSO 3 - в реакции:

HSO 3 - + OH – ⇄ SO 3 2 - + H 2 O.

Вариант №9

1. Написать уравнение электролитической диссоциации Al 2 (SO 4) 3 .

2. Определить, чем с позиций теории Льюиса является ион Co 3+ в реакции:

Co 3+ + 6NO 2 - ⇄ 3 - .

3. В 1 л раствора содержится 0,348 г K 2 SO 4 и 0,17 г NaNO 3 . Определить ионную силу этого раствора.

Вариант №10

1. Написать уравнение электролитической диссоциации Ca(NO 3) 2 .

2. Определить, чем с позиций теории Бренстеда является молекула H 2 O в реакции:

B + H 2 O ⇄ OH - + BH + .

3. Вычислить концентрацию электролита в растворе, если a = 5%, а = 10 - 5 .

Вариант №11

1. Написать уравнение электролитической диссоциации KMnO 4 .

2. Определить, чем с позиций теории Льюиса является ион Cu 2+ в реакции:

Cu 2+ + 4NH 3 ⇄ 2 + .

3. Вычислить коэффициент активности иона Cu 2+ в растворе CuSO 4 c С(CuSO 4) = 0,016 моль/л.

Вариант №12

1. Написать уравнение электролитической диссоциации Na 2 CO 3 .

2. Определить, чем с позиций теории Бренстеда является молекула H 2 O в реакции:

K + + xH 2 O ⇄ + .

3. Имеются два раствора NaCl, содержащие и другие электролиты. Значения ионной силы этих растворов соответственно равны: I 1 = 0,1 моль/л, I 2 = 0,01 моль/л. Сравнить коэффициенты активности f (Na +) в данных растворах.

Вариант №13

1. Написать уравнение электролитической диссоциации Al(NO 3) 3 .

2. Определить, чем с позиций теории Льюиса является молекула RNH 2 в реакции:

RNH 2 + H 3 O + ⇄ RNH 3 + + H 2 O.

3. Сравнить коэффициенты активности катионов в растворе, содержащем FeSO 4 и KNO 3 , при условии, что концентрации электролитов составляют, соответственно, 0,3 и 0,1 моль/л.

Вариант №14

1. Написать уравнение электролитической диссоциации K 3 PO 4 .

2. Определить, чем с позиций теории Бренстеда является ион H 3 O + в реакции:

HSO 3 - + H 3 O + ⇄ H 2 SO 3 + H 2 O.

Вариант №15

1. Написать уравнение электролитической диссоциации K 2 SO 4 .

2. Определить, чем с позиций теории Льюиса является Pb(OH) 2 в реакции:

Pb(OH) 2 + 2OH - ⇄ 2 - .

Вариант №16

1. Написать уравнение электролитической диссоциации Ni(NO 3) 2 .

2. Определить, чем с позиций теории Бренстеда является ион гидроксония (H 3 O +) в реакции:

2H 3 O + + S 2 - ⇄ H 2 S + 2H 2 O.

3. Ионная сила раствора, содержащего только Na 3 PO 4 , равна 1,2 моль/л. Определить концентрацию Na 3 PO 4 .

Вариант №17

1. Написать уравнение электролитической диссоциации (NH 4) 2 SO 4 .

2. Определить, чем с позиций теории Бренстеда является ион NH 4 + в реакции:

NH 4 + + OH - ⇄ NH 3 + H 2 O.

3. Ионная сила раствора, содержащего одновременно KI и Na 2 SO 4 , равна 0,4 моль/л. С(KI) = 0,1 моль/л. Определить концен-трацию Na 2 SO 4 .

Вариант №18

1. Написать уравнение электролитической диссоциации Cr 2 (SO 4) 3 .

2. Определить, чем с позиций теории Бренстеда является молекула белка в реакции:


БЛОК ИНФОРМАЦИИ

Шкала значений pH

Таблица 3. Взаимосвязь концентраций ионов H + и OH - .


Эталоны решения задач

1. Концентрация ионов водорода в растворе составляет 10 - 3 моль/л. Рассчитать значения pH, pOH и [ОН - ] в данном растворе. Определить среду раствора.

Примечание. Для вычислений используются соотношения: lg10 a = a ; 10 lga = а .

Среда раствора с pH = 3 является кислой, так как pH < 7.

2. Вычислить рН раствора соляной кислоты с молярной концентрацией 0,002 моль/л.

Так как в разбавленном растворе НС1 » 1, а в растворе одноосновной кислоты C(к-ты) = C( к-ты), то можем записать:

3. К 10 мл раствора уксусной кислоты с C( СН 3 СООН) = 0,01 моль/л добавили 90 мл воды. Найти разность значений pН раствора до и после разбавления, если (СН 3 СООН) = 1,85×10 - 5 .

1) В исходном растворе слабой одноосновной кислоты СН 3 СООН:

Следовательно:

2) Добавление к 10 мл раствора кислоты 90 мл воды соответ-ствует 10-кратному разбавлению раствора. Поэтому.

Соли, их свойства, гидролиз

Ученица 8 класс Б школы № 182

Петрова Полина

Учитель химии:

Харина Екатерина Алексеевна

МОСКВА 2009

В быту мы привыкли иметь дело лишь с одной солью – поваренной, т.е. хлоридом натрия NaCl. Однако в химии солями называют целый класс соединений. Соли можно рассматривать как продукты замещения водорода в кислоте на металл. Поваренную соль, например, можно получить из соляной кислоты по реакции замещения:

2Na + 2HCl = 2NaCl + H 2 .

кислота соль

Если вместо натрия взять алюминий, образуется другая соль – хлорид алюминия:

2Al + 6HCl = 2AlCl 3 + 3H 2

Соли – это сложные вещества, состоящие из атомов металлов и кислотных остатков. Они являются продуктами полного или частичного замещения водорода в кислоте на металл или гидроксильной группы в основании на кислотный остаток. Например, если в серной кислоте H 2 SO 4 заместить на калий один атом водорода, получим соль KHSO 4 , а если два – K 2 SO 4 .

Различают несколько типов солей.

Типы солей Определение Примеры солей
Средние Продукт полного замещения водорода кислоты на металл. Ни атомов Н, ни ОН-групп не содержат. Na 2 SO 4 сульфат натрия CuCl 2 хлорид меди (II) Ca 3 (PO 4) 2 фосфат кальция Na 2 CO 3 карбонат натрия (кальцинированная сода)
Кислые Продукт неполного замещения водорода кислоты на металл. Содержат в своем составе атомы водорода. (Они образованны только многоосновными кислотами) CaHPO 4 гидрофосфат кальция Ca(H 2 PO 4) 2 дигидрофосфат кальция NaHCO 3 гидрокарбонат натрия (питьевая сода)
Основные Продукт неполного замещения гидроксогрупп основания на кислотный остаток. Включают ОН-группы. (Образованны только многокислотными основаниями) Cu(OH)Cl гидроксохлорид меди (II) Ca 5 (PO 4) 3 (OH) гидроксофосфат кальция (CuOH) 2 CO 3 гидроксокарбонат меди (II) (малахит)
Смешанные Соли двух кислот Ca(OCl)Cl – хлорная известь
Двойные Соли двух металлов K 2 NaPO 4 – ортофосфат дикалия-натрия
Кристаллогидраты Содержат кристаллизационную воду. При нагревании они обезвоживаются – теряют воду, превращаясь в безводную соль. CuSO 4 . 5H 2 O – пятиводный сульфат меди(II) (медный купорос) Na 2 CO 3 . 10H 2 O – десятиводный карбонат натрия (сода)

Способы получения солей.

1. Соли можно получить, действуя кислотами на металлы, основные оксиды и основания:

Zn + 2HCl ZnCl 2 + H 2

хлорид цинка

3H 2 SO 4 + Fe 2 O 3 Fe 2 (SO 4) 3 + 3H 2 O

сульфат железа (III)

3HNO 3 + Cr(OH) 3 Cr(NO 3) 3 + 3H 2 O

нитрат хрома (III)

2. Соли образуются при реакции кислотных оксидов со щелочами, а также кислотных оксидов с основными оксидами:

N 2 O 5 + Ca(OH) 2 Ca(NO 3) 2 + H 2 O

нитрат кальция

SiO 2 + CaO CaSiO 3

силикат кальция

3. Соли можно получить при взаимодействии солей с кислотами, щелочами, металлами, нелетучими кислотными оксидами и другими солями. Такие реакции протекают при условии выделения газа, выпадения осадка, выделения оксида более слабой кислоты или выделения летучего оксида.

Ca 3 (PO4) 2 + 3H 2 SO 4 3CaSO 4 + 2H 3 PO 4

ортофосфат кальция сульфат кальция

Fe 2 (SO 4) 3 + 6NaOH 2Fe(OH) 3 + 3Na 2 SO 4

сульфат железа (III) сульфат натрия

CuSO 4 + Fe FeSO 4 + Cu

сульфат меди (II) сульфат железа (II)

CaCO 3 + SiO 2 CaSiO 3 + CO 2

карбонат кальция силикат кальция

Al 2 (SO 4) 3 + 3BaCl 2 3BaSO 4 + 2AlCl 3



сульфат хлорид сульфат хлорид

алюминия бария бария алюминия

4. Соли бескислородных кислот образуются при взаимодействии металлов с неметаллами:

2Fe + 3Cl 2 2FeCl 3

хлорид железа (III)

Физические свойства.

Соли – твердые вещества различного цвета. Растворимость в воде их различна. Растворимы все соли азотной и уксусной кислот, а также соли натрия и калия. О растворимости в воде других солей можно узнать из таблицы растворимости.

Химические свойства.

1) Соли реагируют с металлами.

Так как эти реакции протекают в водных растворах, то для опытов нельзя применять Li, Na, K, Ca, Ba и другие активные металлы, которые при обычных условиях реагируют с водой, либо проводить реакции в расплаве.

CuSO 4 + Zn ZnSO 4 + Cu

Pb(NO 3) 2 + Zn Zn(NO 3) 2 + Pb

2) Соли реагируют с кислотами. Эти реакции протекают, когда более сильная кислота вытесняет более слабую, при этом выделяется газ или выпадает осадок.

При проведении этих реакций обычно берут сухую соль и действуют концентрированной кислотой.

BaCl 2 + H 2 SO 4 BaSO 4 + 2HCl

Na 2 SiO 3 + 2HCl 2NaCl + H 2 SiO 3

3) Соли реагируют со щелочами в водных растворах.

Это способ получения нерастворимых оснований и щелочей.

FeCl 3 (p-p) + 3NaOH(p-p) Fe(OH) 3 + 3NaCl

CuSO 4 (p-p) + 2NaOH (p-p) Na 2 SO 4 + Cu(OH) 2

Na 2 SO 4 + Ba(OH) 2 BaSO 4 + 2NaOH

4) Соли реагируют с солями.

Реакции протекают в растворах и используются для получения практически нерастворимых солей.

AgNO 3 + KBr AgBr + KNO 3

CaCl 2 + Na 2 CO 3 CaCO 3 + 2NaCl

5) Некоторые соли при нагревании разлагаются.

Характерным примером такой реакции является обжиг известняка, основной составной частью которого является карбонат кальция:

CaCO 3 CaO + CO2 карбонат кальция

1. Некоторые соли способны кристаллизироваться с образованием кристаллогидратов.

Сульфат меди (II) CuSO 4 – кристаллическое вещество белого цвета. При его растворении в воде происходит разогревание и образуется раствор голубого цвета. Выделение теплоты и изменение цвета – это признаки химической реакции. При выпаривании раствора выделяется кристаллогидрат CuSO 4 . 5H 2 O (медный купорос) . Образование этого вещества свидетельствует о том, что сульфат меди (II) реагирует с водой:

CuSO 4 + 5H 2 O CuSO 4 . 5H 2 O + Q

белого цвета сине-голубого цвета

Применение солей.

Большинство солей широко используется в промышленности и в быту. Например, хлорид натрия NaCl, или поваренная соль, незаменим в приготовлении пищи. В промышленности хлорид натрия используется для получения гидроксида натрия, соды NaHCO 3 , хлора, натрия. Соли азотной и ортофосфорной кислот в основном являются минеральными удобрениями. Например, нитрат калия KNO 3 – калийная селитра. Она также входит в состав пороха и других пиротехнических смесей. Соли применяются для получения металлов, кислот, в производстве стекла. Многие средства защиты растений от болезней, вредителей, некоторые лекарственные вещества также относятся к классу солей. Перманганат калия KMnO 4 часто называют марганцовкой. В качестве строительного материала используются известняки и гипс – CaSO 4 . 2H 2 O, который также применяется в медицине.

Растворы и растворимость.

Как уже указывалось ранее, растворимость является важным свойством солей. Растворимость - способность вещества образовывать с другим веществом однородную, устойчивую систему переменного состава, состоящую из двух или большего числа компонентов.

Растворы – это однородные системы, состоящие из молекул растворителя и частиц растворенного вещества.

Так, например, раствор поваренной соли состоит из растворителя – воды, растворенного вещества – ионов Na + ,Cl - .

Ионы (от греч. ión - идущий), электрически заряженные частицы, образующиеся при потере или присоединении электронов (или других заряженных частиц) атомами или группами атомов. Понятие и термин «ион» ввёл в 1834 М. Фарадей, который, изучая действие электрического тока на водные растворы кислот, щелочей и солей, предположил, что электропроводность таких растворов обусловлена движением ионов. Положительно заряженные ионы, движущиеся в растворе к отрицательному полюсу (катоду), Фарадей назвал катионами, а отрицательно заряженные, движущиеся к положительному полюсу (аноду), - анионами.

По степени растворимости в воде вещества делятся на три группы:

1) Хорошо растворимые;

2) Малорастворимые;

3) Практически нерастворимые.

Многие соли хорошо растворимы в воде. При решении вопроса о растворимости в воде других солей придется пользоваться таблицей растворимости.

Хорошо известно, что одни вещества в растворенном или расплавленном виде проводят электрический ток, другие в тех же условиях ток не проводят.

Вещества, распадающиеся на ионы в растворах или расплавах и поэтому проводящие электрический ток, называют электролитами .

Вещества, которые в тех же условиях на ионы не распадаются и электрический ток не проводят, называются неэлектролитами .

К электролитам относятся кислоты, основания и почти все соли. Сами электролиты электрический ток не проводят. В растворах и расплавах они распадаются на ионы, благодаря чему и протекает ток.

Распад электролитов на ионы при растворении их в воде называется электролитической диссоциацией . Ее содержание сводится к трем следующим положениям:

1) Электролиты при растворении в воде распадаются (диссоциируют) на ионы – положительные и отрицательные.

2) Под действием электрического тока ионы приобретают направленное движение: положительно заряженные ионы движутся к катоду и называются – катионы, а отрицательно заряженные ионы движутся к аноду и называются – анионами.

3) Диссоциация – обратимый процесс: параллельно с распадом молекул на ионы (диссоциацией) протекает процесс соединения ионов (ассоциация).

обратимость

Сильные и слабые электролиты.

Для количественной характеристики способности электролита распадаться на ионы введено понятие степени диссоциации (α), т. Е. Отношения числа молекул, распавшихся на ионы, кобщему числу молекул. Например, α = 1 говорит о том, что электролит полностью распался на ионы, а α = 0,2 означает, что продиссоциировала лишь каждая пятая из его молекул. При разбавлении концентрированного раствора, а также при нагревании его электропроводность повышается, так как возрастает степень диссоциации.

В зависимости от величины α электролиты условно делятся на сильные (диссоциируют практически нацело, (α 0,95) средней силы (0,95

Сильными электролитами являются многие минеральные кислоты (HCl, HBr, HI, H 2 SO 4 , HNO 3 и др.), щелочи (NaOH, KOH, Ca(OH) 2 и др.), почти все соли. К слабым принадлежат растворы некоторых минеральных кислот (H 2 S, H 2 SO 3 , H 2 CO 3 , HCN, HClO), многие органические кислоты (например, уксусная CH 3 COOH), водный раствор аммиака (NH 3 . 2 O), вода, некоторые соли ртути (HgCl 2). К электролитам средней силы часто относят плавиковую HF, ортофосфорную H 3 PO 4 и азотистую HNO 2 кислоты.

Гидролиз солей.

Термин « гидролиз » произошел от греческих слов hidor (вода) и lysis (разложение). Под гидролизом обычно понимают обменную реакцию между веществом и водой. Гидролитические процессы чрезвычайно распространены в окружающей нас природе (как живой, так и неживой), а также широко используются человеком в современных производственных и бытовых технологиях.

Гидролизом соли называется реакция взаимодействия ионов, входящих в состав соли, с водой, которая приводит к образованию слабого электролита и сопровождается изменением среды раствора.

Гидролизу подвергаются три типа солей:

а) соли, образованные слабым основанием и сильной кислотой (CuCl 2 , NH 4 Cl, Fe 2 (SO 4) 3 - протекает гидролиз по катиону)

NH 4 + + H 2 O NH 3 + H 3 O +

NH 4 Cl + H 2 O NH 3 . H 2 O + HCl

Реакция среды – кислая.

б) соли, образованные сильным основанием и слабой кислотой (К 2 CO 3 , Na 2 S - протекает гидролиз по аниону)

SiO 3 2- + 2H 2 O H 2 SiO 3 + 2OH -

K 2 SiO 3 +2H 2 O H 2 SiO 3 +2KOH

Реакция среды – щелочная.

в) соли, образованные слабым основанием и слабой кислотой (NH 4) 2 CO 3 , Fe 2 (CO 3) 3 – протекает гидролиз по катиону и по аниону.

2NH 4 + + CO 3 2- + 2H 2 O 2NH 3 . H 2 O + H 2 CO 3

(NH 4) 2 CO 3 + H 2 O 2NH 3 . H 2 O + H 2 CO 3

Часто реакция среды – нейтральная.

г) соли образованные сильным основанием и сильной кислотой (NaCl, Ba(NO 3) 2) гидролизу не подвержены.

В ряде случаев гидролиз протекает необратимо (как говорят, идет до конца). Так при смешении растворов карбоната натрия и сульфата меди выпадает голубой осадок гидратированной основной соли, которая при нагревании теряет часть кристаллизационной воды и приобретает зеленый цвет – превращается в безводный основный карбонат меди – малахит:

2CuSO 4 + 2Na 2 CO 3 + H 2 O (CuOH) 2 CO 3 + 2Na 2 SO 4 + CO 2

При смешении растворов сульфида натрия и хлорида алюминия гидролиз также идет до конца:

2AlCl 3 + 3Na 2 S + 6H 2 O 2Al(OH) 3 + 3H 2 S + 6NaCl

Поэтому Al 2 S 3 нельзя выделить из водного раствора. Эту соль получают из простых веществ.

Диссоциация электролита количественно характеризуется степенью диссоциации. Степень диссоциации a это отношение числа молекул, диссоциированных на ионы N дисс. , к общему числу молекул растворенного электролита N :

a =

a – доля молекул электролита, распавшихся на ионы.

Степень диссоциации электролита зависит от многих факторов: природы электролита, природы растворителя, концентрации раствора, температуры.

По способности к диссоциации электролиты условно разделяют на сильные и слабые. Электролиты, которые в растворе существуют только в виде ионов, принято называть сильными . Электролиты, которые в растворенном состоянии находятся частично в виде молекул и частично в виде ионов, называются слабыми .

К сильным электролитам относятся почти все соли, некоторые кислоты: H 2 SO 4 , HNO 3 , HCl, HI, HClO 4 , гидроксиды щелочных и щелочно-земельных металлов (см. прил., табл. 6).

Процесс диссоциации сильных электролитов идет до конца:

HNO 3 = H + + NO 3 - , NaOH = Na + + OH - ,

и в уравнениях диссоциации ставятся знаки равенства.

Применительно к сильным электролитам понятие «степень диссоциации» носит условный характер. «Кажущаяся» степеньдиссоциации (a каж) ниже истинной (см. прил., табл. 6). С увеличением концентрации сильного электролита в растворе усиливается взаимодействие разноименно заряженных ионов. При достаточном приближении друг к другу они образуют ассоциаты. Ионы в них разделены слоями полярных молекул воды, окружающих каждый ион. Это сказывается на уменьшении электропроводности раствора, т.е. создается эффект неполной диссоциации.

Для учета этого эффекта введен коэффициент активности g, который уменьшается с возрастанием концентрации раствора, изменяясь в пределах от 0 до 1. Для количественного описания свойств растворов сильных электролитов пользуются величиной, называемой активностью (a) .

Под активностью иона понимают ту эффективную концентрацию его, соответственно которой он действует при химических реакциях.

Активность иона (a ) равна его молярной концентрации (С ), умноженной на коэффициент активности (g):



а = gС .

Использование активности вместо концентрации позволяет применять к растворам закономерности, установленные для идеальных растворов.

К слабым электролитам относятся некоторые минеральные (HNO 2 , H 2 SO 3 , H 2 S, H 2 SiO 3 , HCN, H 3 PO 4) и большинство органических кислот (СН 3 СООН, Н 2 С 2 О 4 и др.), гидроксид аммония NH 4 OH и все малорастворимые в воде основания, органические амины.

Диссоциация слабых электролитов обратима. В растворах слабых электролитов устанавливается равновесие между ионами и недиссоциированными молекулами. В соответствующих уравнениях диссоциации ставится знак обратимости («). Например, уравнение диссоциации слабой уксусной кислоты записывается так:

CH 3 COOH « CH 3 COO - + H + .

В растворе слабого бинарного электролита (КА ) устанавливается следующее равновесие, характеризуемое константой равновесия, называемой константой диссоциации К д:

КА « К + + А - ,

.

Если в 1 л раствора растворено С молей электролита КА и степень диссоциации равна a, значит, продиссоциировало молей электролита и образовалось каждого иона по молей. В недиссоциированном состоянии остается (С ) молей КА .

КА « К + + А - .

С – aС aС aС

Тогда константа диссоциации будет равна:

(6.1)

Так как константа диссоциации не зависит от концентрации, то выведенное соотношение выражает зависимость степени диссоциации слабого бинарного электролита от его концентрации. Из уравнения (6.1) видно, что уменьшение концентрации слабого электролита в растворе приводит к росту степени его диссоциации. Уравнение (6.1) выражает закон разбавления Оствальда .

Для очень слабых электролитов (при a <<1), уравнение Оствальда можно записать следующим образом:

К д a 2 C , или a » (6.2)

Константа диссоциации для каждого электролита постоянна при данной температуре, она не зависит от концентрации раствора и характеризует способность электролита распадаться на ионы. Чем выше К д, тем в большей степени электролит диссоциирует на ионы. Константы диссоциации слабых электролитов сведены в таблицы (см. прил., табл. 3).

Измерение степени диссоциации различных электролитов показало, что отдельные электролиты при одинаковой нормальной концентрации растворов диссоциируют на ионы весьма различно.

Особенно велика разница в значениях степени диссоциации кислот. Например, азотная и соляная кислоты в 0,1 н. растворах почти полностью распадаются на ионы; угольная же, синильная и другие кислоты диссоциируют при тех же условиях лишь в не-знaчитeльнoй степени.

Из растворимых в воде оснований (щелочей) слабо диссоциирующим является гидрат окиси аммония, остальные щелочи хорошо диссоциируют. Все соли, за небольшим исключением, также хорошо диссоциируют на ионы.

Различие в значениях степени диссоциации отдельных кислот обусловливается характером валентной связи между атомами, образующими их молекулы. Чем более полярна связь между водородом и остальной частью молекулы, тем легче отщепляется , тем сильнее будет диссоциировать кислота.

Электролиты, хорошо диссоциирующие на ионы, получили название сильных электролитов, в отличие от слабых электролитов, образующих в водных растворах лишь незначительное число ионов. Растворы сильных электролитов сохраняют высокую электропроводность даже при очень больших концентрациях. Наоборот, электропроводность растворов слабых электролитов быстро падает с увеличением концентрации. к сильным электролитам относятся такие кислоты, как соляная, азотная, серная и некоторые другие, затем щелочи (кроме NH 4 OH) и почти все соли.

Многоооновные кислоты и многокислотные основания диссоциируют ступенчато. Так, например, молекулы серной кислоты в первую очередь диссоциируют по уравнению

H 2 SO 4 ⇄ H + HSO 4 ‘

или точнее:

H 2 SO 4 + H 2 O ⇄ H 3 O + HSO 4 ‘

Отщепление второго иона водорода по уравнению

HSO 4 ‘ ⇄ H + SO 4 »

или

HSO 4 ‘ + H 2 O ⇄ H 3 O + SO 4 »

идет уже значительно труднее, так как ему приходится преодолевать притяжение со стороны двухзарядного иона SO 4 », который, конечно, притягивает к себе ион водорода сильнее, чем однозарядный ион HSO 4 ‘. Поэтому вторая ступень диссоциации или, как говорят, вторичная диссоциация происходит в гораздо меньшей степени, чем первичная, и в обычных растворах серной кислоты содержится лишь небольшое число ионов SO 4 »

Фосфорная кислота Н 3 РО 4 диссоциирует в три ступени:

H 3 PO 4 ⇄ H + H 2 PO 4 ‘

H 2 PO 4 ⇄ H + HPO 4 »

HPO 4 » ⇄ H + PO 4 »’

Молекулы Н 3 РO 4 сильно диссоциируют на ионы Н и Н 2 РО 4 ‘. Ионы H 2 PO 4 ‘ ведут себя, как более слабая кислота, и диссоциируют на H и HPO 4 » в меньшей степени. Ионы же НРО 4 » диссоциируют, как очень слабая кислота, и почти не дают ионов Н

и PO 4 »’

Основания, содержащие более одной гидроксильной группы в молекуле, тоже диссоциируют ступенчато. Например:

Ва(ОН) 2 ⇄ ВаОН + ОН’

ВаОН ⇄ Ва + ОН’

Что касается солей, нормальные соли всегда диссоциируют на ионы металлов и кислотных остатков. Например:

СаСl 2 ⇄ Сa + 2Сl’ Na 2 SO 4 ⇄ 2Na + SO 4 »

Кислые соли, подобно многоосновным кислотам, диссоциируют ступенчато. Например:

NaHCO 3 ⇄ Na + НСО 3 ‘

HCO 3 ‘ ⇄ H + CO 3 »

Однако по второй ступени очень мала, так что раствор кислой соли содержит лишь незначительное число ионов водорода.

Основные соли диссоциируют на ионы основных и кислотных остатков. Например:

Fe(OH)Cl 2 ⇄ FeOH + 2Сl»

Вторичной диссоциации ионов основных остатков на ионы металла и гидроксила почти не происходит.

В табл. 11 приведены числовые значения степени диссоциации некоторых кислот, оснований и солей в 0, 1 н. растворах.

С увеличением концентрации уменьшается. Поэтому в очень концентрированных растворах даже сильные кислоты диссоциированы сравнительно слабо. Для

Таблица 11

Кислот, оснований и солей в 0,1 н. растворах при 18°

Электролит Формула Степень диссоциаци и в %
Кислоты
Соляная HCl 92
Бромистоводородная НВr 92
Йодистоводородная HJ . 92
Азотная HNO 3 92
Серная H 2 SO 4 58
Сернистая H 2 SO 3 34
Фосфорная H 3 PO 4 27
Фтористоводородная HF 8,5
Уксусная CH 3 COOH 1,3
Уголная H 2 CO 3 0,17
Сероводородная H 2 S 0,07
Синильная HCN 0,01
Борная H 3 BO 3 0,01
Основания
Гидроксид бария Ва (OH) 2 92
Едкое кали кон 89
Едкий натр NaON 84
Гидроксид аммония NH 4 OH 1,3
Соли
Хлористый КСl 86
Хлористый аммоний NH4Cl 85
Хлористый NaCl 84
Азотнокислый KNO 3 83
AgNO 3 81
Уксуснокислый NaCH 3 COO 79
Хлористый ZnCl 2 73
Сернокислый Na 2 SO 4 69
Сернокислый ZnSO 4 40
Сернокислая

Электролиты – это вещества, сплавы веществ либо растворы, которые имеют способность электролитически проводить гальванический ток. Определить, к каким электролитам относится вещество, дозволено применяя теорию электролитической диссоциации.

Инструкция

1. Суть данной теории заключается в том, что при расплавлении (растворении в воде) фактически все электролиты раскладываются на ионы, которые бывают как позитивно, так и негативно заряженные (что и именуется электролитической диссоциацией). Под воздействием электрического тока негативные (анионы «-») движутся к аноду (+), а позитивно заряженные (катионы, «+»), движутся к катоду (-). Электролитическая диссоциация – это обратимый процесс (обратный процесс носит наименование «моляризация»).

2. Степень (a) электролитической диссоциации находится в зависимости от природы самого электролита, растворителя, и от их концентрации. Это отношение числа молекул (n) , которые распались на ионы к всеобщему числу введенных в раствор молекул (N). Получаете: a = n / N

3. Таким образом, мощные электролиты – вещества, всецело распадающиеся на ионы при растворении в воде. К крепким электролитам, как водится, относятся вещества с сильнополярными либо ионными связями: это соли, которые отлично растворимы, крепкие кислоты (HCl, HI, HBr, HClO4, HNO3, H2SO4), а также мощные основания (KOH, NaOH, RbOH, Ba(OH)2, CsOH, Sr(OH)2, LiOH, Ca(OH)2). В крепком электролите вещество, растворенное в нем, находится по большей части в виде ионов (анионов и катионов); молекул, которые недиссоциированные – фактически нет.

4. Слабые электролиты – такие вещества, которые диссоциируют на ионы лишь отчасти. Слабые электролиты совместно с ионами в растворе содержат молекулы недиссоциированные. Слабые электролиты не дают в растворе крепкой концентрации ионов.К слабым относятся:- органические кислоты (примерно все) (C2H5COOH, CH3COOH и пр.);- некоторые из неорганических кислот (H2S, H2CO3 и пр.);- фактически все соли, малорастворимые в воде, гидроксид аммония, а также все основания (Ca3(PO4)2; Cu(OH)2; Al(OH)3; NH4OH);- вода.Они фактически не проводят электрический ток, либо проводят, но дрянно.

Крепкое основание – неорганическое химическое соединение, образованное гидроксильной группой -ОН и щелочным (элементы I группы периодической системы: Li, K, Na, RB, Cs) либо щелочноземельным металлом (элементы II группы Ba, Ca). Записываются в виде формул LiOH, KOH, NaOH, RbOH, CsOH, Са(ОН) ?, Ва(ОН) ?.

Вам понадобится

  • выпарительная чашка
  • горелка
  • индикаторы
  • металлический стержень
  • Н?РО?

Инструкция

1. Мощные основания проявляют химические свойства, характерные для всех гидроксидов. Присутствие щелочей в растворе определяется по изменению окраски индикатора. К пробе с исследуемым раствором добавьте метилоранж, фенолфталеин либо опустите лакмусовую бумажку. Метилоранж дает желтую окраску, фенолфталеин – пурпурную, а лакмусовая бумага окрашивается в синий цвет. Чем крепче основание, тем насыщеннее окрашивается индикатор.

2. Если нужно узнать какие именно щелочи вам представлены, то проведите добротный обзор растворов. Особенно распространенные мощные основания – гидроксиды лития, калия, натрия, бария и кальция. Основания вступают в реакцию с кислотами (реакции нейтрализации) с образованием соли и воды. При этом дозволено выделить Са(ОН) ?, Ва(ОН) ? и LiOH. При взаимодействии с ортофосфорной кислотой образуются нерастворимые осадки. Остальные гидроксиды осадков не дадут, т.к. все соли К и Na растворимы.3 Са(ОН) ? + 2 Н?РО? –? Ca?(PO?)??+ 6 H?О3 Ва(ОН) ? +2 Н?РО? –? Ва?(PO?)??+ 6 H?О3 LiOH + Н?РО? –? Li?РО?? + 3 H?ОПроцедите их и высушите. Внесите высушенные осадки в пламя горелки. По изменению окраски пламени дозволено добротно определить ионы лития, кальция и бария. Соответственно вы определите где какой гидроксид. Соли лития окрашивают пламя горелки в карминово-алый цвет. Соли бария – в зеленый, а соли кальция – в красный.

3. Оставшиеся щелочи образуют растворимые ортофосфаты.3 NaOH + Н?РО?–? Na?РО? + 3 H?О3 KOH + Н?РО?–? K?РО? + 3 H?ОНеобходимо выпарить воду до сухого остатка. Выпаренные соли на металлическом стержне поочередно внесите в пламя горелки. Там, где находится соль натрия – пламя окрасится в ясно-желтый цвет, а ортофосфат калия – в розово-фиолетовый. Таким образом имея наименьший комплект оборудования и реактивов вы определили все данные вам мощные основания.

Электролит – вещество, которое в твердом состоянии является диэлектриком, то есть не проводит электрического тока, впрочем, в растворенном либо расплавленном виде становится проводником. Отчего происходит такая резкая смена свойств? Дело в том, что молекулы электролита в растворах либо расплавах диссоциируют на позитивно заряженные и негативно заряженные ионы, вследствие чему эти вещества в таком агрегатном состоянии способны проводить электрический ток. Электролитическими свойствами владеет множество солей, кислот, оснований.

Инструкция

1. Все ли электролиты идентичны по силе, то есть являются классными проводниками тока? Нет, от того что многие вещества в растворах либо расплавах диссоциируют лишь в малой степени. Следственно электролиты подразделяются на крепкие, средней силы и слабые.

2. Какие вещества относятся к мощным электролитам? Такие вещества, в растворах либо расплавах которых диссоциации подвергаются фактически 100% молекул, причем вне зависимости от концентрации раствора. В перечень крепких электролитов входит безусловное множество растворимых щелочей, солей и некоторые кислоты, такие как соляная, бромистая, йодистая, азотная и т.д.

3. Чем отличаются от них электролиты средней силы? Тем, что они диссоциируют в значительно меньшей степени (на ионы распадаются от 3% до 30% молекул). Типичные представители таких электролитов – серная и ортофосфорная кислоты.

4. А как ведут себя в растворах либо расплавах слабые электролиты ? Во-первых, они диссоциируют в дюже малой степени (не огромнее 3% от всеобщего числа молекул), во-вторых, их диссоциация идет тем дрянней и неторопливей, чем выше насыщенность раствора. К таким электролитам относятся, скажем, нашатырный спирт (гидроксид аммония), множество органических и неорганических кислот (включая плавиковую – HF) и, разумеется, каждым нам знакомая вода. От того что лишь жалко малая доля ее молекул распадается на водород-ионы и гидроксил-ионы.

5. Запомните, что степень диссоциации и, соответственно, сила электролита находятся в зависимости от многих факторов: природы самого электролита, растворителя, температуры. Следственно само это распределение в знаменитой степени условно. Чай одно и то же вещество может при разных условиях быть и мощным электролитом, и слабым. Для оценки силы электролита была введена особая величина – константа диссоциации, определяемая на основе закона действующих масс. Но она применима лишь по отношению к слабым электролитам; мощные электролиты закону действующих масс не подчиняются.

Соли – это химические вещества, состоящие из катиона, то есть позитивно заряженного иона, металла и негативно заряженного аниона – кислотного остатка. Типов солей много: типичные, кислые, основные, двойные, смешанные, гидратные, комплексные. Это зависит от составов катиона и аниона. Как дозволено определить основание соли?

Инструкция

1. Представим, у вас есть четыре идентичные емкости с жгучими растворами. Вы знаете, что это – растворы углекислого лития, углекислого натрия, углекислого калия и углекислого бария. Ваша задача: определить, какая соль содержится в всей емкости.

2. Припомните физические и химические свойства соединений этих металлов. Литий, натрий, калий – щелочные металлы первой группы, их свойства дюже схожи, активность усиливается от лития к калию. Барий – щелочноземельный металл 2-й группы. Его углекислая соль отменно растворяется в жгучей воде, но дрянно растворяется в холодной. Стоп! Вот и первая вероятность сразу определить, в какой емкости содержится углекислый барий.

3. Охладите емкости, скажем, разместив их в сосуд со льдом. Три раствора останутся прозрачными, а четвертый стремительно помутнеет, начнет выпадать белый осадок. Вот в нем-то и находится соль бария. Отложите эту емкость в сторону.

4. Дозволено стремительно определить углекислый барий и иным методом. Поочередно отливайте немножко раствора в иную емкость с раствором какой-нибудь сернокислой соли (скажем, сульфата натрия). Только ионы бария, связываясь с сульфат-ионами, мигом образуют плотный белый осадок.

5. Выходит, углекислый барий вы определили. Но как вам различить соли 3 щелочных металлов? Это достаточно легко сделать, вам потребуются фарфоровые чашки для выпаривания и спиртовка.

6. Отлейте малое число всего раствора в отдельную фарфоровую чашку и выпарите воду на огне спиртовки. Образуются мелкие кристаллики. Внесите их в пламя спиртовки либо горелки Бунзена – с поддержкой стального пинцета, либо фарфоровой ложечки. Ваша задача – подметить цвет запылавшего «язычка» пламени. Если это соль лития – цвет будет ясно-красным. Натрий окрасит пламя в интенсивный желтый цвет, а калий – в пурпурно-фиолетовый. Кстати, если бы таким же образом испытали соль бария – цвет пламени должен был быть зеленым.

Полезный совет
Один известный химик в молодости приблизительно так же разоблачил алчную хозяйку пансиона. Он посыпал остатки недоеденного блюда хлористым литием – веществом, безусловно безобидным в мелких числах. На дальнейший день за обедом ломтик мяса из поданного к столу блюда был сожжен перед спектроскопом – и жильцы пансиона увидели ясно-красную полосу. Хозяйка готовила еду из вчерашних остатков.

Обратите внимание!
Правда чистая вода проводит электрический ток дюже дрянно, она все-таки имеет измеримую электрическую проводимость, поясняемую тем, что вода немножко диссоциирует на гидроксид-ионы и ионы водорода.

Полезный совет
Множество электролитов – вещества враждебные, следственно при работе с ними будьте предельно осмотрительны и соблюдайте правила техники безопасности.