Что такое слабые электролиты. Учебная книга по химии

Различают сильные и слабые электролиты. Сильные электролиты в растворах практически диссоциированы полностью. К этой группе электролитов относится большинство солей, щелочей и сильных кислот. К слабым электролитам принадлежат слабые кислоты и слабые основания и некоторые соли: хлорид ртути (II), цианид ртути (II), роданид железа (III), иодид кадмия. Растворы сильных электролитов при больших концентрациях обладают значительной электропроводностью, причем она с разбавлением растворов возрастает незначительно.

Растворы слабых электролитов при больших концентрациях отличаются незначительной электропроводностью, сильно увеличивающейся при разбавлении растворов.

При растворении вещества в каком-либо растворителе образуются простые (несольватированные) ионы, нейтральные молекулы растворенного вещества, сольватированные (в водных растворах гидратированные) ионы (например, и т. д.), ионные пары (или ионные двойники), представляющие собой электростатически ассоциированные группы противоположно заряженных ионов (например, ), образование которых наблюдается в подавляющем числе неводных растворов электролитов, комплексные ионы (например, ), сольватированные молекулы и др.

В водных растворах сильных электролитов существуют только простые или сольватированные катионы и анионы. В их растворах нет молекул растворенного вещества. Поэтому неверно предполагать наличие молекул или наличие длительных связей между или и в водном растворе хлорида натрия.

В водных растворах слабых электролитов растворенное вещество может существовать в виде простых и сольватированных (-гидратированных) ионов и недиссоциированных молекул.

В неводных растворах некоторые сильные электролиты (например, ) диссоциированы не полностью даже при умеренно высоких концентрациях. В большинстве органических растворителей наблюдается образование ионных пар противоположно заряженных ионов (нодробнее см. книга 2).

В ряде случаев невозможно провести резкую границу между сильными и слабыми электролитами.

Межионные силы. Под действием межионных сил вокруг каждого свободно движущегося иона группируются, располагаясь симметрично, другие ионы, заряженные обратным знаком, образуя так называемую ионную атмосферу, или ионное облако, замедляющее движение иона в растворе.

Например, в растворе вокруг движущихся ионов калия группируются ионы хлора, а вблизи движущихся ионов хлора создается атмосфера из ионов калия.

Ионы, подвижность которых ослаблена силами межионного протяжения, проявляют в растворах пониженную химическую активность. Это вызывает отклонения в поведении сильных электролитов от классической формы закона действия масс.

Посторонние ионы, присутствующие в растворе данного электролита, также оказывают сильное влияние на подвижность его ионов. Чем выше концентрация, тем значительнее межионное взаимодействие и тем сильнее посторонние ионы влияют на подвижность ионов.

У слабых кислот и оснований связь водорода или гидроксила в их молекулах является в значительной степени не ионной, а ковалентной; поэтому при растворении слабых электролитов в растворителях, отличающихся даоюе большой диэлектрической проницаемостью, большая часть их молекул не распадается на ионы.

Растворы сильных электролитов отличаются от растворов слабых электролитов тем, что в них нет недиссоциированных молекул. Это подтверждается современными физическими и физико-химическими исследованиями. Например, исследование кристаллов сильных электролитов типа рентгенографическим путем подтверждает тот факт, что кристаллические решетки солей построены из ионов.

При растворении в растворителе с большой диэлектрической проницаемостью вокруг ионов образуются сольватные (в воде гидратные) оболочки, препятствующие их соединению в молекулы. Таким образом, поскольку сильные электролиты даже в кристаллическом состоянии не содержат молекул, они тем более не содержат молекул в растворах.

Однако экспериментальным путем найдено, что электропроводность водных растворов сильных электролитов не эквивалентна той электропроводности, которую молено было бы ожидать при -ной диссоциации молекул растворенных электролитов на ионы.

С помощью теории электролитической диссоциаций, предложенной Аррениусом, оказалось невозможным объяснить этот и ряд других фактов. Для их объяснения были выдвинуты новые научные положения.

В настоящее время несоответствие свойств сильных электролитов классической форме закона действия масс может быть объяснено при помощи теории сильных электролитов, предложенной Дебаем и Хюкке-лем. Основная идея этой теории заключается в том, что в растворах между ионами сильных электролитов возникают силы взаимного притяжения. Эти межионные силы вызывают отклонение поведения сильных электролитов от законов идеальных растворов. Наличие этих взаимодействий вызывает взаимное торможение катионов и анионов.

Влияние разбавления на межионное притяжение. Межионное притяжение вызывает отклонения в поведении реальных растворов аналогично тому, как межмолекулярное притяжение в реальных газах влечет за собой отступления их поведения от законов идеальных газов. Чем больше концентрация раствора, тем плотнее ионная атмосфера и тем меньше подвижность ионов, а следовательно, и электропроводность электролитов.

Подобно тому как свойства реального газа при низких давлениях приближаются к свойствам газа идеального, так и свойства растворов сильных электролитов при большом разбавлении приближаются к свойствам идеальных растворов.

Иными словами, в разбавленных растворах расстояния между ионами настолько велики, что испытываемое ионами взаимное притяжение или отталкивание чрезвычайно мало и практически сводится к нулю.

Таким образом, наблюдаемое увеличение электропроводности сильных электролитов при разбавлении их растворов объясняется ослаблением межионных сил притяжения и отталкивания, обусловливающим увеличение скорости движения ионов.

Чем менее диссоциирован электролит и чем более разбавлен раствор, тем меньше межионное электрическое влияние и тем меньше наблюдается отклонений от закона действия масс, и, наоборот, чем больше концентрация раствора, тем больше межионное электрическое влияние и тем больше наблюдается отклонений от закона действия масс.

По указанным выше причинам к водным растворам сильных электролитов, а также к концентрированным водным растворам слабых электролитов нельзя применять закон действия масс в его классической форме.

Слабые электролиты

Слабые электролиты - вещества, частично диссоциирующие на ионы. Растворы слабых электролитов наряду с ионами содержат недиссоциированные молекулы. Слабые электролиты не могут дать большой концентрации ионов в растворе. К слабым электролитам относятся:

1) почти все органические кислоты (CH 3 COOH, C 2 H 5 COOH и др.);

2) некоторые неорганические кислоты (H 2 CO 3 , H 2 S и др.);

3) почти все малорастворимые в воде соли, основания и гидроксид аммония Ca 3 (PO 4) 2 ; Cu(OH) 2 ; Al(OH) 3 ; NH 4 OH;

Они плохо проводят (или почти не проводят) электрический ток.

Концентрации ионов в растворах слабых электролитов качественно характеризуют степенью и константой диссоциации.

Степень диссоциации выражается в долях единицы или в процентах (a = 0,3 – условная граница деления на сильные и слабые электролиты).

Степень диссоциации зависит от концентрации раствора слабого электролита. При разбавлении водой степень диссоциации всегда увеличивается, т.к. увеличивается число молекул растворителя (H 2 O) на одну молекулу растворенного вещества. По принципу Ле-Шателье равновесие электролитической диссоциации в этом случае должно сместиться в направлении образования продуктов, т.е. гидратированных ионов.

Степень электролитической диссоциации зависит от температуры раствора. Обычно при увеличении температуры степень диссоциации растет, т.к. активируются связи в молекулах, они становятся более подвижными и легче ионизируются. Концентрацию ионов в растворе слабого электролита можно рассчитать, зная степень диссоциации a и исходную концентрацию вещества c в растворе.

HAn = H + + An - .

Константа равновесия К р этой реакции и есть константа диссоциации К д:

К д = . / . (10.11)

Если выразить равновесные концентрации через концентрацию слабого электролита С и его степень диссоциации α, то получим:

К д = С. α . С. α/С. (1-α) = С. α 2 /1-α. (10.12)

Это отношение называют законом разбавления Оствальда . Для очень слабых электролитов при α<<1 это уравнение упрощается:

К д = С. α 2 . (10.13)

Это позволяет заключить, что при бесконечном разбавлении степень диссоциации α стремится к единице.

Протолитическое равновесие в воде:

,

,

При постоянной температуре в разбавленных растворах концентрация воды в воде постоянна и равна 55,5 , ()

, (10.15)

где K в – ионное произведение воды.

Тогда =10 -7 . На практике из-за удобства измерения и записи используют величину – водородный показатель, (критерий) силы кислоты или основания. По аналогии .

Из уравнения (11.15): . При рН=7 – реакция раствора нейтральная, при рН<7 – кислая, а при pH>7 – щелочная.

При нормальных условиях (0°С):

, тогда

Рисунок 10.4 - pH различных веществ и систем

10.7 Растворы сильных электролитов

Сильные электролиты - это вещества, которые при растворении в воде практически полностью распадаются на ионы. Как правило, к сильным электролитам относятся вещества с ионными или сильно полярными связями: все хорошо растворимые соли, сильные кислоты (HCl, HBr, HI, HClO 4 , H 2 SO 4 ,HNO 3) и сильные основания (LiOH, NaOH, KOH, RbOH, CsOH, Ba(OH) 2 ,Sr(OH) 2 ,Ca(OH) 2).

В растворе сильного электролита растворённое вещество находится, в основном, в виде ионов (катионов и анионов); недиссоциированные молекулы практически отсутствуют.

Принципиальное отличие сильных электролитов от слабых состоит в том, что равновесие диссоциации сильных электролитов полностью смещено вправо:

H 2 SO 4 = H + + HSO 4 - ,

а потому константа равновесия (диссоциации) оказывается величиной неопределённой. Снижение электропроводности при увеличении концентрации сильного электролита обусловлено электростатическим взаимодействием ионов.

Голландский ученый Петрус Йозефус Вильгельмус Дебай и немецкий ученый Эрих Хюккель, предложив модель, которая легла в основу теории сильных электролитов, постулировали:

1) электролит полностью диссоциирует, но в сравнительно разбавленных растворах (С М = 0,01 моль. л -1);

2) каждый ион окружён оболочкой из ионов противоположного знака. В свою очередь, каждый из этих ионов сольватирован. Это окружение называется ионной атмосферой. При электролитическом взаимодействии ионов противоположных знаков необходимо учитывать влияние ионной атмосферы. При движении катиона в электростатическом поле ионная атмосфера деформируется; она сгущается перед ним и разрежается позади него. Эта асимметрия ионной атмосферы оказывает тем более тормозящее действие движению катиона, чем выше концентрация электролитов и чем больше заряд ионов. В этих системах становится неоднозначным понятие концентрации и должно заменяться активностью. Для бинарного одно-однозарядного электролита КatAn = Kat + + An - активности катиона(а +) и аниона (а -) соответственно равны

а + = γ + . С + , а - = γ - . С - , (10.16)

где С + и С - - аналитические концентрации соответственно катиона и аниона;

γ + и γ - - их коэффициенты активности.

(10.17)

Определить активности каждого иона в отдельности невозможно, поэтому для одно-однозарядных электролитов пользуются средними геометрическими значениями активностей я

и коэффициентов активностей.

Соли, их свойства, гидролиз

Ученица 8 класс Б школы № 182

Петрова Полина

Учитель химии:

Харина Екатерина Алексеевна

МОСКВА 2009

В быту мы привыкли иметь дело лишь с одной солью – поваренной, т.е. хлоридом натрия NaCl. Однако в химии солями называют целый класс соединений. Соли можно рассматривать как продукты замещения водорода в кислоте на металл. Поваренную соль, например, можно получить из соляной кислоты по реакции замещения:

2Na + 2HCl = 2NaCl + H 2 .

кислота соль

Если вместо натрия взять алюминий, образуется другая соль – хлорид алюминия:

2Al + 6HCl = 2AlCl 3 + 3H 2

Соли – это сложные вещества, состоящие из атомов металлов и кислотных остатков. Они являются продуктами полного или частичного замещения водорода в кислоте на металл или гидроксильной группы в основании на кислотный остаток. Например, если в серной кислоте H 2 SO 4 заместить на калий один атом водорода, получим соль KHSO 4 , а если два – K 2 SO 4 .

Различают несколько типов солей.

Типы солей Определение Примеры солей
Средние Продукт полного замещения водорода кислоты на металл. Ни атомов Н, ни ОН-групп не содержат. Na 2 SO 4 сульфат натрия CuCl 2 хлорид меди (II) Ca 3 (PO 4) 2 фосфат кальция Na 2 CO 3 карбонат натрия (кальцинированная сода)
Кислые Продукт неполного замещения водорода кислоты на металл. Содержат в своем составе атомы водорода. (Они образованны только многоосновными кислотами) CaHPO 4 гидрофосфат кальция Ca(H 2 PO 4) 2 дигидрофосфат кальция NaHCO 3 гидрокарбонат натрия (питьевая сода)
Основные Продукт неполного замещения гидроксогрупп основания на кислотный остаток. Включают ОН-группы. (Образованны только многокислотными основаниями) Cu(OH)Cl гидроксохлорид меди (II) Ca 5 (PO 4) 3 (OH) гидроксофосфат кальция (CuOH) 2 CO 3 гидроксокарбонат меди (II) (малахит)
Смешанные Соли двух кислот Ca(OCl)Cl – хлорная известь
Двойные Соли двух металлов K 2 NaPO 4 – ортофосфат дикалия-натрия
Кристаллогидраты Содержат кристаллизационную воду. При нагревании они обезвоживаются – теряют воду, превращаясь в безводную соль. CuSO 4 . 5H 2 O – пятиводный сульфат меди(II) (медный купорос) Na 2 CO 3 . 10H 2 O – десятиводный карбонат натрия (сода)

Способы получения солей.

1. Соли можно получить, действуя кислотами на металлы, основные оксиды и основания:

Zn + 2HCl ZnCl 2 + H 2

хлорид цинка

3H 2 SO 4 + Fe 2 O 3 Fe 2 (SO 4) 3 + 3H 2 O

сульфат железа (III)

3HNO 3 + Cr(OH) 3 Cr(NO 3) 3 + 3H 2 O

нитрат хрома (III)

2. Соли образуются при реакции кислотных оксидов со щелочами, а также кислотных оксидов с основными оксидами:

N 2 O 5 + Ca(OH) 2 Ca(NO 3) 2 + H 2 O

нитрат кальция

SiO 2 + CaO CaSiO 3

силикат кальция

3. Соли можно получить при взаимодействии солей с кислотами, щелочами, металлами, нелетучими кислотными оксидами и другими солями. Такие реакции протекают при условии выделения газа, выпадения осадка, выделения оксида более слабой кислоты или выделения летучего оксида.

Ca 3 (PO4) 2 + 3H 2 SO 4 3CaSO 4 + 2H 3 PO 4

ортофосфат кальция сульфат кальция

Fe 2 (SO 4) 3 + 6NaOH 2Fe(OH) 3 + 3Na 2 SO 4

сульфат железа (III) сульфат натрия

CuSO 4 + Fe FeSO 4 + Cu

сульфат меди (II) сульфат железа (II)

CaCO 3 + SiO 2 CaSiO 3 + CO 2

карбонат кальция силикат кальция

Al 2 (SO 4) 3 + 3BaCl 2 3BaSO 4 + 2AlCl 3



сульфат хлорид сульфат хлорид

алюминия бария бария алюминия

4. Соли бескислородных кислот образуются при взаимодействии металлов с неметаллами:

2Fe + 3Cl 2 2FeCl 3

хлорид железа (III)

Физические свойства.

Соли – твердые вещества различного цвета. Растворимость в воде их различна. Растворимы все соли азотной и уксусной кислот, а также соли натрия и калия. О растворимости в воде других солей можно узнать из таблицы растворимости.

Химические свойства.

1) Соли реагируют с металлами.

Так как эти реакции протекают в водных растворах, то для опытов нельзя применять Li, Na, K, Ca, Ba и другие активные металлы, которые при обычных условиях реагируют с водой, либо проводить реакции в расплаве.

CuSO 4 + Zn ZnSO 4 + Cu

Pb(NO 3) 2 + Zn Zn(NO 3) 2 + Pb

2) Соли реагируют с кислотами. Эти реакции протекают, когда более сильная кислота вытесняет более слабую, при этом выделяется газ или выпадает осадок.

При проведении этих реакций обычно берут сухую соль и действуют концентрированной кислотой.

BaCl 2 + H 2 SO 4 BaSO 4 + 2HCl

Na 2 SiO 3 + 2HCl 2NaCl + H 2 SiO 3

3) Соли реагируют со щелочами в водных растворах.

Это способ получения нерастворимых оснований и щелочей.

FeCl 3 (p-p) + 3NaOH(p-p) Fe(OH) 3 + 3NaCl

CuSO 4 (p-p) + 2NaOH (p-p) Na 2 SO 4 + Cu(OH) 2

Na 2 SO 4 + Ba(OH) 2 BaSO 4 + 2NaOH

4) Соли реагируют с солями.

Реакции протекают в растворах и используются для получения практически нерастворимых солей.

AgNO 3 + KBr AgBr + KNO 3

CaCl 2 + Na 2 CO 3 CaCO 3 + 2NaCl

5) Некоторые соли при нагревании разлагаются.

Характерным примером такой реакции является обжиг известняка, основной составной частью которого является карбонат кальция:

CaCO 3 CaO + CO2 карбонат кальция

1. Некоторые соли способны кристаллизироваться с образованием кристаллогидратов.

Сульфат меди (II) CuSO 4 – кристаллическое вещество белого цвета. При его растворении в воде происходит разогревание и образуется раствор голубого цвета. Выделение теплоты и изменение цвета – это признаки химической реакции. При выпаривании раствора выделяется кристаллогидрат CuSO 4 . 5H 2 O (медный купорос) . Образование этого вещества свидетельствует о том, что сульфат меди (II) реагирует с водой:

CuSO 4 + 5H 2 O CuSO 4 . 5H 2 O + Q

белого цвета сине-голубого цвета

Применение солей.

Большинство солей широко используется в промышленности и в быту. Например, хлорид натрия NaCl, или поваренная соль, незаменим в приготовлении пищи. В промышленности хлорид натрия используется для получения гидроксида натрия, соды NaHCO 3 , хлора, натрия. Соли азотной и ортофосфорной кислот в основном являются минеральными удобрениями. Например, нитрат калия KNO 3 – калийная селитра. Она также входит в состав пороха и других пиротехнических смесей. Соли применяются для получения металлов, кислот, в производстве стекла. Многие средства защиты растений от болезней, вредителей, некоторые лекарственные вещества также относятся к классу солей. Перманганат калия KMnO 4 часто называют марганцовкой. В качестве строительного материала используются известняки и гипс – CaSO 4 . 2H 2 O, который также применяется в медицине.

Растворы и растворимость.

Как уже указывалось ранее, растворимость является важным свойством солей. Растворимость - способность вещества образовывать с другим веществом однородную, устойчивую систему переменного состава, состоящую из двух или большего числа компонентов.

Растворы – это однородные системы, состоящие из молекул растворителя и частиц растворенного вещества.

Так, например, раствор поваренной соли состоит из растворителя – воды, растворенного вещества – ионов Na + ,Cl - .

Ионы (от греч. ión - идущий), электрически заряженные частицы, образующиеся при потере или присоединении электронов (или других заряженных частиц) атомами или группами атомов. Понятие и термин «ион» ввёл в 1834 М. Фарадей, который, изучая действие электрического тока на водные растворы кислот, щелочей и солей, предположил, что электропроводность таких растворов обусловлена движением ионов. Положительно заряженные ионы, движущиеся в растворе к отрицательному полюсу (катоду), Фарадей назвал катионами, а отрицательно заряженные, движущиеся к положительному полюсу (аноду), - анионами.

По степени растворимости в воде вещества делятся на три группы:

1) Хорошо растворимые;

2) Малорастворимые;

3) Практически нерастворимые.

Многие соли хорошо растворимы в воде. При решении вопроса о растворимости в воде других солей придется пользоваться таблицей растворимости.

Хорошо известно, что одни вещества в растворенном или расплавленном виде проводят электрический ток, другие в тех же условиях ток не проводят.

Вещества, распадающиеся на ионы в растворах или расплавах и поэтому проводящие электрический ток, называют электролитами .

Вещества, которые в тех же условиях на ионы не распадаются и электрический ток не проводят, называются неэлектролитами .

К электролитам относятся кислоты, основания и почти все соли. Сами электролиты электрический ток не проводят. В растворах и расплавах они распадаются на ионы, благодаря чему и протекает ток.

Распад электролитов на ионы при растворении их в воде называется электролитической диссоциацией . Ее содержание сводится к трем следующим положениям:

1) Электролиты при растворении в воде распадаются (диссоциируют) на ионы – положительные и отрицательные.

2) Под действием электрического тока ионы приобретают направленное движение: положительно заряженные ионы движутся к катоду и называются – катионы, а отрицательно заряженные ионы движутся к аноду и называются – анионами.

3) Диссоциация – обратимый процесс: параллельно с распадом молекул на ионы (диссоциацией) протекает процесс соединения ионов (ассоциация).

обратимость

Сильные и слабые электролиты.

Для количественной характеристики способности электролита распадаться на ионы введено понятие степени диссоциации (α), т. Е. Отношения числа молекул, распавшихся на ионы, кобщему числу молекул. Например, α = 1 говорит о том, что электролит полностью распался на ионы, а α = 0,2 означает, что продиссоциировала лишь каждая пятая из его молекул. При разбавлении концентрированного раствора, а также при нагревании его электропроводность повышается, так как возрастает степень диссоциации.

В зависимости от величины α электролиты условно делятся на сильные (диссоциируют практически нацело, (α 0,95) средней силы (0,95

Сильными электролитами являются многие минеральные кислоты (HCl, HBr, HI, H 2 SO 4 , HNO 3 и др.), щелочи (NaOH, KOH, Ca(OH) 2 и др.), почти все соли. К слабым принадлежат растворы некоторых минеральных кислот (H 2 S, H 2 SO 3 , H 2 CO 3 , HCN, HClO), многие органические кислоты (например, уксусная CH 3 COOH), водный раствор аммиака (NH 3 . 2 O), вода, некоторые соли ртути (HgCl 2). К электролитам средней силы часто относят плавиковую HF, ортофосфорную H 3 PO 4 и азотистую HNO 2 кислоты.

Гидролиз солей.

Термин « гидролиз » произошел от греческих слов hidor (вода) и lysis (разложение). Под гидролизом обычно понимают обменную реакцию между веществом и водой. Гидролитические процессы чрезвычайно распространены в окружающей нас природе (как живой, так и неживой), а также широко используются человеком в современных производственных и бытовых технологиях.

Гидролизом соли называется реакция взаимодействия ионов, входящих в состав соли, с водой, которая приводит к образованию слабого электролита и сопровождается изменением среды раствора.

Гидролизу подвергаются три типа солей:

а) соли, образованные слабым основанием и сильной кислотой (CuCl 2 , NH 4 Cl, Fe 2 (SO 4) 3 - протекает гидролиз по катиону)

NH 4 + + H 2 O NH 3 + H 3 O +

NH 4 Cl + H 2 O NH 3 . H 2 O + HCl

Реакция среды – кислая.

б) соли, образованные сильным основанием и слабой кислотой (К 2 CO 3 , Na 2 S - протекает гидролиз по аниону)

SiO 3 2- + 2H 2 O H 2 SiO 3 + 2OH -

K 2 SiO 3 +2H 2 O H 2 SiO 3 +2KOH

Реакция среды – щелочная.

в) соли, образованные слабым основанием и слабой кислотой (NH 4) 2 CO 3 , Fe 2 (CO 3) 3 – протекает гидролиз по катиону и по аниону.

2NH 4 + + CO 3 2- + 2H 2 O 2NH 3 . H 2 O + H 2 CO 3

(NH 4) 2 CO 3 + H 2 O 2NH 3 . H 2 O + H 2 CO 3

Часто реакция среды – нейтральная.

г) соли образованные сильным основанием и сильной кислотой (NaCl, Ba(NO 3) 2) гидролизу не подвержены.

В ряде случаев гидролиз протекает необратимо (как говорят, идет до конца). Так при смешении растворов карбоната натрия и сульфата меди выпадает голубой осадок гидратированной основной соли, которая при нагревании теряет часть кристаллизационной воды и приобретает зеленый цвет – превращается в безводный основный карбонат меди – малахит:

2CuSO 4 + 2Na 2 CO 3 + H 2 O (CuOH) 2 CO 3 + 2Na 2 SO 4 + CO 2

При смешении растворов сульфида натрия и хлорида алюминия гидролиз также идет до конца:

2AlCl 3 + 3Na 2 S + 6H 2 O 2Al(OH) 3 + 3H 2 S + 6NaCl

Поэтому Al 2 S 3 нельзя выделить из водного раствора. Эту соль получают из простых веществ.

Сильные и слабые электролиты

Кислоты, основания и соли в водных растворах диссоциируют — распадаются на ионы. Этот процесс может быть обратимым или необратимым.

При необратимой диссоциации в растворах все вещество или почти все распадается на ионы. Это характерно для сильных электролитов (рис. 10.1, а, с. 56). К сильным электролитам относятся некоторые кислоты и все растворимые в воде соли и основания (гидроксиды щелочных и щелочноземельных элементов) (схема 5, с. 56).

Рис. 10.1. Сравнение числа ионов в растворах с одинаковым исходным количеством электролита: а — хлоридная кислота (сильный электролит); б — нитритная кислота

(слабый электролит)

Схема 5. Классификация электролитов по силе

При обратимой диссоциации протекает два противоположных процесса: одновременно с распадом вещества на ионы (диссоциацией) происходит обратный процесс объединения ионов в молекулы вещества (ассоциация). Благодаря этому часть вещества в растворе существует в виде ионов, а часть — в виде молекул (рис. 10.1, б). Электролиты,

которые при растворении в воде распадаются на ионы только частично, называют слабыми электролитами. К их числу относится вода, многие кислоты, а также нерастворимые гидроксиды и соли (схема 5).

В уравнениях диссоциации слабых электролитов вместо обычной стрелки записывают двунаправленную стрелку (знак обратимости):

Силу электролитов можно объяснить полярностью химической связи, которая разрывается при диссоциации. Чем более полярна связь, тем легче под действием молекул воды она превращается в ионную, следовательно, тем сильнее электролит. В солях и гидроксидах полярность связи наибольшая, поскольку между ионами металлических элементов, кислотными остатками и гидроксид-ионами существует ионная связь, поэтому все растворимые соли и основания — сильные электролиты. В оксигенсодержащих кислотах при диссоциации разрывается связь O-H, полярность которой зависит от качественного и количественного состава кислотного остатка. Силу большинства оксигенсодержащих кислот можно определить, если обычную формулу кислоты записать в виде E(OH) m O n . Если в этой формуле будет n < 2 — кислота слабая, если n >2 — сильная.

Зависимость силы кислот от состава кислотного остатка


Степень диссоциации

Силу электролитов количественно характеризует степень электролитической диссоциации а, показывающая долю молекул вещества, которые распались в растворе на ионы.

Степень диссоциации а равна отношению числа молекул N или количества вещества n, распавшегося на ионы, к общему числу молекул N 0 или количеству растворенного вещества n 0:

Степень диссоциации можно выражать не только в долях единицы, но и в процентах:

Значение а может изменяться от 0 (диссоциация отсутствует) до 1, или 100 % (полная диссоциация). Чем лучше распадается электролит, тем больше значение степени диссоциации.

По значению степени электролитической диссоциации электролиты часто разделяют не на две, а на три группы: сильные, слабые и электролиты средней силы. Сильными электролитами считают те, степень диссоциации которых более 30 %, а слабыми — со степенью менее 3 %. Электролиты с промежуточными значениями а — от 3 % до 30 % — называют электролитами средней силы. По этой классификации таковыми считаются кислоты: HF, HNO 2 , H 3 PO 4 , H 2 SO 3 и некоторые другие. Две последние кислоты являются электролитами средней силы только по первой стадии диссоциации, а по другим — это слабые электролиты.


Степень диссоциации — величина переменная. Она зависит не только от природы электролита, но и от его концентрации в растворе. Эту зависимость впервые определил и исследовал Вильгельм Оствальд. Сегодня ее называют законом разведения Оствальда: при разбавлении раствора водой, а также при повышении температуры степень диссоциации увеличивается.

Вычисление степени диссоциации

Пример. В одном литре воды растворили гидроген флуорид количеством вещества 5 моль. Полученный раствор содержит 0,06 моль ионов Гидрогена. Определите степень диссоциации флуоридной кислоты (в процентах).

Запишем уравнение диссоциации флуоридной кислоты:

При диссоциации из одной молекулы кислоты образуется один ион Гидрогена. Если в растворе содержится 0,06 моль ионов H+, это означает, что продиссоцииро-вало 0,06 моль молекул гидроген флуорида. Следовательно, степень диссоциации равна:

Выдающийся немецкий физико-химик, лауреат Нобелевской премии по химии 1909 года. Родился в Риге, учился в Дерптском университете, где начал преподавательскую и научную деятельность. В 35 лет переехал в Лейпциг, где возглавил Физико-химический институт. Изучал законы химического равновесия, свойства растворов, открыл закон разведения, названный его именем, разработал основы теории кислотно-основного катализа, много времени уделял истории химии. Основал первую в мире кафедру физической химии и первый физико-химический журнал. В личной жизни обладал странными привычками: чувствовал отвращение к стрижке, а со своим секретарем общался исключительно при помощи велосипедного звонка.

Ключевая идея

Диссоциация слабых электролитов — обратимый процесс, а сильных —

необратимый.

Контрольные вопросы

116. Дайте определение сильных и слабых электролитов.

117. Приведите примеры сильных и слабых электролитов.

118. Какую величину используют для количественной характеристики силы электролита? Является ли она постоянной в любых растворах? Как можно увеличить степень диссоциации электролита?

Задания для усвоения материала

119. Приведите по одному примеру соли, кислоты и основания, которые являются: а) сильным электролитом; б) слабым электролитом.

120. Приведите пример вещества: а) двухосновная кислота, которая по первой стадии является электролитом средней силы, а по второй — слабым электролитом; б) двухосновная кислота, которая по обеим стадиями является слабым электролитом.

121. В некоторой кислоте по первой стадии степень диссоциации составляет 100 %, а по второй — 15 %. Какая кислота это может быть?

122. Каких частиц больше в растворе гидроген сульфида: молекул H 2 S, ионов H+, ионов S 2- или ионов HS - ?

123. Из приведенного перечня веществ отдельно выпишите формулы: а) сильных электролитов; б) слабых электролитов.

NaCl, HCl, NaOH, NaNO 3 , HNO 3 , HNO 2 , H 2 SO 4 , Ba(OH) 2 , H 2 S, K 2 S, Pb(NO 3) 2 .

124. Составьте уравнения диссоциации стронций нитрата, меркурий(11) хлорида, кальций карбоната, кальций гидроксида, сульфидной кислоты. В каких случаях диссоциация происходит обратимо?

125. В водном растворе натрий сульфата содержится 0,3 моль ионов. Какую массу этой соли использовали для приготовления такого раствора?

126. В растворе гидроген флуорида объемом 1 л содержится 2 г этой кислоты, а количество вещества ионов Гидрогена составляет 0,008 моль. Какое количество вещества флуорид-ионов в этом растворе?

127. В трех пробирках содержатся одинаковые объемы растворов хлорид-ной, флуоридной и сульфидной кислот. Во всех пробирках количества вещества кислот равны. Но в первой пробирке количество вещества ионов Гидрогена составляет 3 . 10 -7 моль, во второй — 8 . 10 -5 моль, а в третьей — 0,001 моль. В какой пробирке содержится каждая кислота?

128. В первой пробирке содержится раствор электролита, степень диссоциации которого составляет 89 %, во второй — электролит со степенью диссоциации 8 %о, а в третьей — 0,2 %о. Приведите по два примера электролитов разных классов соединений, которые могут содержаться в этих пробирках.

129*. В дополнительных источниках найдите информацию о зависимости силы электролитов от природы веществ. Установите зависимость между строением веществ, природой химических элементов, которые их образуют, и силой электролитов.

Это материал учебника

Диссоциация электролита количественно характеризуется степенью диссоциации. Степень диссоциации a это отношение числа молекул, диссоциированных на ионы N дисс. , к общему числу молекул растворенного электролита N :

a =

a – доля молекул электролита, распавшихся на ионы.

Степень диссоциации электролита зависит от многих факторов: природы электролита, природы растворителя, концентрации раствора, температуры.

По способности к диссоциации электролиты условно разделяют на сильные и слабые. Электролиты, которые в растворе существуют только в виде ионов, принято называть сильными . Электролиты, которые в растворенном состоянии находятся частично в виде молекул и частично в виде ионов, называются слабыми .

К сильным электролитам относятся почти все соли, некоторые кислоты: H 2 SO 4 , HNO 3 , HCl, HI, HClO 4 , гидроксиды щелочных и щелочно-земельных металлов (см. прил., табл. 6).

Процесс диссоциации сильных электролитов идет до конца:

HNO 3 = H + + NO 3 - , NaOH = Na + + OH - ,

и в уравнениях диссоциации ставятся знаки равенства.

Применительно к сильным электролитам понятие «степень диссоциации» носит условный характер. «Кажущаяся» степеньдиссоциации (a каж) ниже истинной (см. прил., табл. 6). С увеличением концентрации сильного электролита в растворе усиливается взаимодействие разноименно заряженных ионов. При достаточном приближении друг к другу они образуют ассоциаты. Ионы в них разделены слоями полярных молекул воды, окружающих каждый ион. Это сказывается на уменьшении электропроводности раствора, т.е. создается эффект неполной диссоциации.

Для учета этого эффекта введен коэффициент активности g, который уменьшается с возрастанием концентрации раствора, изменяясь в пределах от 0 до 1. Для количественного описания свойств растворов сильных электролитов пользуются величиной, называемой активностью (a) .

Под активностью иона понимают ту эффективную концентрацию его, соответственно которой он действует при химических реакциях.

Активность иона (a ) равна его молярной концентрации (С ), умноженной на коэффициент активности (g):

а = gС .

Использование активности вместо концентрации позволяет применять к растворам закономерности, установленные для идеальных растворов.

К слабым электролитам относятся некоторые минеральные (HNO 2 , H 2 SO 3 , H 2 S, H 2 SiO 3 , HCN, H 3 PO 4) и большинство органических кислот (СН 3 СООН, Н 2 С 2 О 4 и др.), гидроксид аммония NH 4 OH и все малорастворимые в воде основания, органические амины.

Диссоциация слабых электролитов обратима. В растворах слабых электролитов устанавливается равновесие между ионами и недиссоциированными молекулами. В соответствующих уравнениях диссоциации ставится знак обратимости («). Например, уравнение диссоциации слабой уксусной кислоты записывается так:


CH 3 COOH « CH 3 COO - + H + .

В растворе слабого бинарного электролита (КА ) устанавливается следующее равновесие, характеризуемое константой равновесия, называемой константой диссоциации К д:

КА « К + + А - ,

Если в 1 л раствора растворено С молей электролита КА и степень диссоциации равна a, значит, продиссоциировало молей электролита и образовалось каждого иона по молей. В недиссоциированном состоянии остается (С ) молей КА .

КА « К + + А - .

С – aС aС aС

Тогда константа диссоциации будет равна:

Так как константа диссоциации не зависит от концентрации, то выведенное соотношение выражает зависимость степени диссоциации слабого бинарного электролита от его концентрации. Из уравнения (6.1) видно, что уменьшение концентрации слабого электролита в растворе приводит к росту степени его диссоциации. Уравнение (6.1) выражает закон разбавления Оствальда .

Для очень слабых электролитов (при a <<1), уравнение Оствальда можно записать следующим образом:

К д a 2 C , или a » (6.2)

Константа диссоциации для каждого электролита постоянна при данной температуре, она не зависит от концентрации раствора и характеризует способность электролита распадаться на ионы. Чем выше К д, тем в большей степени электролит диссоциирует на ионы. Константы диссоциации слабых электролитов сведены в таблицы (см. прил., табл. 3).