Антибиотик ингибитор микросомальных ферментов печени. Биотрансформация лекарственных веществ. Реакции I и II этапов метаболизма. Индукторы и ингибиторы микросомальных ферментов (примеры). Беременность и период лактации

ПЕЧЕНЬ И ЛЕКАРСТВЕННЫЙ МЕТАБОЛИЗМ

Михеева О. М.

ГУ Центральный научно-исследовательский институт гастроэнтерологии ДЗ г. Москвы

Михеева Ольга Михайловна 111123, Москва, ш. Энтузиастов, д. 86 E-mail: [email protected]

Лекарственные средства метаболизируются в печени для изменения их биологической активности с образованием водорастворимых метаболитов, которые выводятся из организма с желчью и мочой. Степень метаболизма препаратов определяется емкостью ферментов для каждого лекарственного вещества. Система ферментов Р450 расположена в микросомальной фракции гепатоцитов. Способность организма метаболизировать лекарственные средства изменяется под влиянием других веществ.

При заболеваниях печени клиренс лекарственных средств уменьшается, а период их полувыведения возрастает в результате снижения экстракции их гепатоцитами. Лекарства с высокой печеночной экстракцией обладают риском передозировки. При снижении метаболических возможностей гепатоцита до 70% увеличивается в крови содержание препаратов с низкой печеночной экстракцией, но риск передозировки невелик.

Ключевые слова: метаболизм; цитохром Р450; микросомы гепатоцитов; индукция; ингибирование. SUMMARY

Liver metabolism aims to change the biological activity of drugs to make them water-soluble to be excreted with bile and urine. The degree of metabolism depends on fermentative capacity for each drag (P450 fermentative system is localized in microsomal fraction of hepatocyte). Metabolism ability also changes under the influence of other substances. Liver diseases lead up to decrease of drug clirens and to increase the semi-excretion time because of reduction of liver metabolism. Therefore the drags usually undergoing intensive liver metabolism necessitate a high risk of overdose when liver diseases present. On the other hand no risk of overdose exist when drags with low liver metabolism are used.

Keywords: metabolism; cytochrome P450; hepatocyte microsomes; induction; inhibition.

Метаболизм (биотрансформация) - это комплекс физико-биохимических изменений, которым подвергаются лекарственные средства в печени для снижения растворимости в жирах и изменения биологической активности .

Большинство препаратов растворимы в липидах и неспособны элиминироваться из организма. Превращения данных лекарств необходимы с образованием водорастворимых метаболитов, которые выводятся из организма с желчью и мочой .

Фармакологически активный препарат может превращаться в другое активное вещество, при этом метаболиты некоторых лекарственных средств

могут быть менее активны и менее токсичны, чем исходные соединения. Биотрансформация других препаратов приводит к образованию метаболитов, более активных по сравнению с введенными в организм лекарственными средствами .

Степень метаболизма препаратов определяется емкостью ферментов для данного вещества, скоростью реакций и абсорбции. Если лекарственное средство применяют перорально в небольшой дозе, а емкость ферментов и скорость метаболизма значительны, то большая часть препарата биотранс-формируется со снижением его биодоступности. С увеличением дозы лекарственного средства ферментативные системы, участвующие в метаболизме,

насыщаются и биодоступность препарата увеличивается.

Различают два типа химических реакций метаболизма лекарственных препаратов в организме: синтетические и несинтетические.

В основе синтетических реакций лежит конъюгация лекарственных средств с эндогенными субстратами (глюкуроновая, уксусная и серная кислоты, аденозилметионин, сульфаты, глицин, глутатион, метильные группы и вода). Соединение этих веществ с лекарственными препаратами происходит через функциональные группы: гидроксильную, карбоксильную, аминную, эпоксидную. После завершения реакции молекула препарата становится более полярной и легче выводится из организма .

При несинтетических превращениях молекулы лекарственных средств с исходно фармакологической активностью изменяются путем окисления, восстановления и гидролиза в сторону уменьшения, увеличения или полной потери активности.

Несинтетические реакции метаболизма лекарственных препаратов разделяются на две группы: немикросомальные и микросомальные .

Немикросомальные ферменты биотрансфор-мируют в печени небольшое число лекарственных веществ путем конъюгации (исключая глюкуро-нидную), восстановления и гидролиза (например, ацетилсалициловая кислота) .

Большинство микросомальных процессов биотрансформации происходит в печени реакциями окисления, восстановления и гидролиза . Окисление - это процесс присоединения к молекуле лекарственного вещества атома кислорода и/или отщепления атома водорода. Восстановление - это процесс присоединения к молекуле препарата атома водорода и/или отщепления атома кислорода. Гидролиз - это процесс присоединения воды .

Микросомальному преобразованию подвергаются жирорастворимые лекарства, которые проникают через мембраны эндоплазматического ретику-лума гепатоцитов и связываются с цитохромами .

Различают две фазы метаболизма лекарственных средств.

В первой фазе метаболизма при участии ферментов происходит процесс гидроксилирования, окисления, восстановления или гидролиза. В молекуле появляется химически активный радикал, к которому присоединяется конъюгирующая молекула во второй фазе .

Система гемопротеинов Р450 расположена в ми-кросомальной фракции гепатоцитов - гладкой эндоплазматической сети. К ней относятся моноок-сигеназы, цитохром С-редуктаза, цитохром Р450 .

Цитохром Р450 (цито - цитоплазма, хром - цвет, Р - пигмент и длина поглощаемой волны 450 нм) назван так потому, что при длительном применении фенобарбитала гепатоциты, синтезируемые гемсодержащий пигмент, после действия окиси углерода поглощали свет длиной волны 450 нм.

Около 10 из 50 идентифицированных изоформ фермента системы Р450, структура которых кодируется отдельным геном, влияют на метаболизм лекарственных препаратов в организме человека. На каждой молекуле цитохрома Р450 имеется участок для субстрата, способный связывать лекарства. У человека метаболизм лекарств обеспечивают цитохромы, относящиеся к трем семействам: Р450-1, -II, -III.

Воздействие цитохромов Р450 происходит по одному из двух конкурентных путей: метаболической детоксикации либо активации.

Ферментативная активность гепатоцита зависит от предшествующей терапии препаратами имеющихся заболеваний печени, генетики, что объясняет гепатотоксический избирательный эффект у некоторых больных.

Активность ферментов бывает интенсивная и слабая, соответственно метаболизм лекарственных веществ происходит быстро или медленно.

Препараты, метаболизируемые CYP2D6, имеют узкий терапевтический индекс, то есть между дозой, необходимой для достижения лечебного эффекта, и токсической дозой существует небольшая разница. При повышении концентрации препарата может проявиться токсическое действие, при снижении - потеря его эффективности.

Цитохром СУР3А4 - основной фермент печени (в общем количестве цитохромов он составляет 60%), метаболизирующий 60% лекарственных препаратов, относится к семейству цитохромов 3, подсемейству А, кодируется геном 4 и отвечает за индукцию или ингибирование микросомальных ферментов .

Во второй фазе биотрансформации лекарственные препараты или их метаболиты соединяются с одной, растворимой в воде, молекулой (глутатионом, сульфатом, глюкуронидами), утрачивая биологическую активность. В результате образуются растворимые в воде конъюгаты, элиминирующиеся почками или, если их относительная молекулярная масса превышает 200 кДа, с желчью.

Глюкуроновая кислота, образующаяся из глюкозы, относится к важным конъюгирующим веществам, растворимым в воде. Конъюгация веществ с глюкуроновой кислотой приводит к образованию полярных соединений, менее токсичных по сравнению с исходными неконъюгированными продуктами первой стадии.

Врожденная недостаточность образования конъюгатов с билирубином служит причиной гипербили-рубинемии с повышением уровня неконъюгирован-ного билирубина (синдром Жильбера).

Способность организма метаболизировать лекарственные средства изменяется под влиянием других веществ. Когда два активных препарата конкурируют за один участок связывания на ферменте, метаболизм препарата с меньшей активностью замедляется и срок его действия увеличивается .

Существуют препараты, способные изменять действие ферментов, вызывая быструю или медленную инактивацию других лекарств. Следовательно, врач должен изменить их дозу, чтобы компенсировать этот эффект.

При индукции препарат стимулирует синтез или уменьшает разрушение ферментов, вовлеченных в метаболизм другого лекарства. Вещества, индуцирующие ферменты, растворяются в жирах, служат субстратами ферментов, которые они индуцируют. Препараты, повышающие активность цитохрома Р450, называются стимуляторами. В результате повышается скорость метаболизма как самого препарата, вызвавшего индукцию фермента, так и других лекарственных веществ, метаболизи-рующихся при его участии.

Индукция ферментов характеризуется увеличением их количества и активности, что сопровождается гипертрофией эндоплазматического ретикулума печеночных клеток, в которых локализованы ме-таболизирующие ферменты.

Увеличение содержания ферментов системы цитохрома Р450 в результате индукции приводит к повышению выработки токсичных метаболитов.

Употребление алкоголя увеличивает токсичность парацетамола из-за индукции Р450-3а (Р450-П-Е1), который играет важную роль в образовании токсичных метаболитов.

Внезапная отмена или прекращение воздействия индуктора приводит к повышению плазменной концентрации препарата, который ранее интенсивно метаболизировался. Когда курильщики, употребляющие кофе, бросают курить, в плазме крови повышается концентрация кофеина из-за снижения активности СУР1А2, что проявляется головной болью и возбуждением.

Стимуляция метаболизма в организме относится к механизмам адаптации к воздействию инородных веществ, встречающихся в окружающей среде.

Индукция ферментов рассматривается как фактор, ответственный за индивидуальные различия в эффективности препаратов. Может развиваться толерантность к лекарственной терапии, так как эффективная доза становится на фоне индукторов недостаточной.

При врожденной неконьюгированной гиперби-лирубинемии (синдром Жильбера) желтуху можно нивелировать, используя индукторы.

Индукция ферментов, метаболизирующих лекарства, осуществляется приемом кофе, чая, алкоголя, курением.

Длительный прием лекарства приводит к индукции метаболизирующих его ферментов, в результате его метаболизм возрастает в 2-4 раза.

Быстрота развития и обратимость индукции ферментов зависит от индуктора и скорости синтеза новых ферментов. Этот адаптационный процесс медленный и занимает от нескольких дней до нескольких месяцев.

В отличие от фенобарбитала, развитие действия которого как индуктора требует нескольких недель, рифампицин как индуктор действует через 2-4 дня и достигает своего максимума через 6-10 дней. Индукция ферментов, вызванная рифампицином, приводит к выраженным взаимодействиям с варфари-ном и верапамилом, что требует наблюдения за больным и коррекцию доз препаратов.

Ингибирование метаболизма лекарственных средств является причиной медикаментозного взаимодействия, что приводит к нежелательному повышению концентрации препарата в крови. Это происходит, когда два лекарственных препарата конкурируют за связь с одним ферментом. Одни препараты метаболизируются первыми, затем вторые, пока энзимы Р450 не закончат работу с первым. Второй препарат теряет возможность метаболизироваться и избыточно накапливается в организме.

Если вещество угнетает цитохром, то оно изменяет и метаболизм препарата.

Этот эффект заключается в удлинении времени полужизни лекарства и повышении его концентрации. Некоторые ингибиторы (эритромицин) влияют сразу на несколько изоформ ферментов. Чем выше доза ингибитора, тем быстрее наступает его действие и тем больше оно выражено. Ингибирование развивается быстрее, чем индукция, и его можно зарегистрировать через 24 часа от момента назначения ингибиторов. Ингибирование изоформы 3А встречается часто и вызывается большим количеством препаратов (нифедипин, никардипин, верапамил и эритромицин). Это быстро обратимые ингибиторы. Путь введения лекарственного препарата влияет на скорость развития и выраженность угнетения активности фермента. Если препарат вводится внутривенно, то взаимодействие разовьется быстрее .

Характерными ингибиторами являются циме-тидин, ранитидин.

Если ингибитор и лекарство имеют короткий период полураспада, взаимодействие окажется максимальным на 2-4-й день. Столько же времени потребуется для прекращения эффекта взаимодействия. В случае одновременного применения варфарина и амиодарона для прекращения ингибиторного эффекта потребуется более месяца, что связано с длительным периодом полураспада последнего.

Этанол, гормоны (тестостерон, альдостерон, эстрадиол, прогестерон, гидрокортизон) угнетают лекарственную метаболическую активность окси-дазной системы микросом гепатоцита, поскольку их метаболизм происходит ферментами цитохрома Р450.

Лекарственное вещество или его метаболит вступают во взаимодействие с белковыми молекулами паренхимы печени, играя роль гаптена. Белок с измененной структурой становится мишенью

№01/2011 ЭКСПЕРИМЕНТАЛЬНАЯ И КЛИНИЧЕСКАЯ

для иммунной агрессии. На мембране гепатоцитов имеются изоферменты Р450, индукция которых приводит к образованию антител и иммунному повреждению гепатоцита.

При наличии генетического дефекта в печени лекарство превращается в токсический метаболит, связывается с клеточным белком (глутатионом), приводя к некрозу гепатоцита, а также стимулирует образование антигена (гаптена) и сенсибилизирует Т-лимфоцит, который запускает иммунную гепа-тотоксичность.

Повторное назначение лекарственного препарата приводит к усилению иммунной реакции.

Генетические различия активности фермента служат причиной развития идиосинкразии на лекарство, сопровождающейся появлением аутоантител, взаимодействующих с микросомами печени.

При приеме умеренного количества лекарств все системы компенсаторно увеличивают свою активность, однако при заболеваниях печени их активность снижена и нарушена способность гепатоцита метаболизировать препараты за счет изменения процессов окисления и глюкуронидизации.

При заболеваниях печени клиренс лекарственных средств уменьшается, а период их полувы-ведения возрастает в результате снижения экстракции их гепатоцитами и увеличения объема распределения.

Все лекарственные средства, вводимые внутрь, до поступления в системный кровоток проходят через печень, поэтому их разделяют на две группы - с высоким и с низким печеночным клиренсом.

Обычные дозы лекарств с высокой печеночной экстракцией обладают высоким риском передозировки, так как могут вызывать тяжелый токсический эффект при циррозе печени. Опасность кумуляции велика при повторном введении препаратов. Таким больным дозы препаратов должны быть уменьшены соответственно снижению печеночного кровотока.

Клиренс этих препаратов при отсутствии заболеваний печени зависит от интенсивности печеночного кровотока и от особенностей метаболических превращений. В норме после пассажа через печень перорально принятого лекарства этой

группы концентрация его в крови печеночной вены составляет незначительный процент от концентрации в воротной вене, то есть уже на этом этапе значительная часть лекарства метаболизируется. Снижению экстракции препаратов способствует наличие портосистемного и внутрипеченочного шунтирования, вследствие чего значительная часть лекарства из желудочно-кишечного тракта попадает в общий кровоток, минуя печень. При уменьшении печеночного кровотока и снижении метаболизирую-щих способностей печени происходит повышение концентрации препарата в плазме. Так, при снижении выделения препарата печенью с 95 до 90% концентрация его в плазме увеличивается в 2 раза.

Вторая группа веществ - лекарства с низкой печеночной экстракцией. При снижении метаболических возможностей гепатоцита до 70% в крови увеличивается содержание препаратов этой группы после введения однократной дозы, поэтому риск передозировки невелик, но метаболическая недостаточность при длительном назначении препаратов этой группы вызывает их кумуляцию. Печеночный клиренс лекарственных веществ второй группы зависит от емкости ферментативных систем печени.

Если же все ферменты вовлечены в метаболизм лекарственного вещества в связи с очень большой его дозой, скорость метаболизма становится максимальной и не зависит от концентрации в крови и дозы препарата, то это кинетика нулевого порядка. При кинетике первого порядка скорость метаболизма лекарства прямо пропорциональна его концентрации в крови, когда небольшая часть метаболизирующих ферментов вовлечена в процесс. По мере снижения концентрации лекарственных препаратов в крови кинетика может изменяться от процесса нулевого порядка к кинетике первого порядка.

Таким образом, для каждого человека характерен свой метаболизм лекарственных веществ, отличающийся от такового других людей. Индивидуальные особенности зависят от генетических факторов, возраста, пола, функциональных возможностей печени, характера питания больного и сопутствующей фармакотерапии.

ЛИТЕРАТУРА

1. Белоусов Ю. Б., Леонова М. В. Введение в клиническую фармакологию. - М.: Мед. информагентство, 2002. - 95 с.

2. Белоусов Ю. Б., Моисеев B. C., Лепахин В. К. Клиническая фармакология и фармакотерапия. - М.: Универсум паблишинг, 1997. - Вып. 2. - 530 с.

3. Белоусов Ю. Б., Моисеев В. С., Лепахин В. К. Клиническая фармакология и фармакотерапия. - М:. Универсум Паблишинг, 2000. - 67 с.

4. Белоусов Ю. Б.,Ханина Н. Ю. Подходы к выбору дозы лекарственных препаратов у пациентов с циррозом печени // Фарматека. - 2006. - № 1. - С. 76-84.

5. Каркищенко Н. Н., Хоронько В. В., Сергеева С. А., Каркищен-ко В. Н. Фармакокинетика. - Ростов-на-Дону: Феникс, 2001. - 384 с.

6. Кукес В. Г., Стародубцев А. К. Клиническая фармакология и фармакотерапия. - М.: ГЭОТАР-Мед, 2003. - 227 с.

7. Лоуренс Д. Р. Клиническая фармакология. - М:. Медицина,

8. Мирошниченко И. И. Основы фармакокинетики. - М.: ГЭОТАР-Мед, 2002. - 186 с.

9. Полунина Т.Е. Лекарственные поражения печени // Леч. врач. - 2005. - № 3.

10. Шульпекова Ю. О. Лекарственные поражения печени // Consilium medicum. - 2006. - Т. 8, № 7.

Гепатолог → О печени → Изменения печеночных ферментов при различных патологиях, их диагностическое значение

Группа белковых веществ, которые увеличивают активность различных обменных процессов, называется ферментами.

Успешное протекание биологических реакций требует специальных условий – повышенной температуры, определенного давления или присутствия некоторых металлов.

Ферменты помогают ускорить химические реакции без соблюдения этих условий.

Что такое ферменты печени

Исходя из своих функции, энзимы располагаются внутри клетки, на клеточной мембране, входят в состав различных клеточных структур и участвуют в реакциях внутри нее. По выполняемой функции выделяют следующие группы:


гидролазы – расщепляют молекулы веществ;синтетазы – участвуют в молекулярном синтезе;трансферазы – транспортируют участки молекул;оксиредуктазы – влияют на окислительно-восстановительные реакции в клетке;изомеразы – меняют конфигурацию молекул;лиазы – образуют дополнительные молекулярные связи.

Работа многих энзимов требует присутствия дополнительных ко-факторов. Их роль выполняют все витамины, микроэлементы.

Какие есть ферменты печени

Каждая клеточная органелла обладает своим набором веществ, которые определяют ее функцию в жизни клетки. На митохондриях расположены энзимы энергетического обмена, гранулярный эндоплазматический ретикулум завязан на синтезе белков, гладкий ретикулум участвует в липидном, углеводном обмене, лизосомы содержат ферменты гидролиза.

Ферменты, которые возможно обнаружить в плазме крови, условно делят на три группы:

Секреторные. Они синтезируются в печени и выделяются в кровь. Примером являются энзимы свертывания крови, холинэстераза.Индикаторные, или клеточные (ЛДГ, глутоматдегидрогеназа, кислая фосфотаза, АЛТ,АСТ). В норме обнаруживаются в сыворотке только их следы, т.к. расположение их внутриклеточное. Повреждение тканей вызывает выброс этих ферментов в кровь, по их количеству можно судить о глубине поражения.Экскреторные энзимы синтезируются и выделяются вместе с желчью (щелочная фосфотаза). Нарушение этих процессов ведет к увеличению их показателей в крови.

Какие ферменты используют в диагностике

Патологические процессы сопровождаются появлением синдромов холестаза и цитолиза. Для каждого из них характерны свои изменения в биохимических показателях сывороточных ферментов.

Холестатический синдром – это нарушение желчевыделения. Определяется по изменению активности следующих показателей:

увеличение экскреторных ферментов (щелочная фосфотаза, ГГТП, 5-нуклеотидаза, глюкуронидаза);повышение билирубина, фосфолипидов, желчных кислот, холестерина.

Цитолитический синдром говорит о разрушении гепатоцитов, повышении проницаемости клеточных мембран. Состояние развивается при вирусных, токсических повреждениях. Характерно изменение индикаторных ферментов – АЛТ, АСТ, альдолазы, ЛДГ.

Щелочная фосфотаза может быть как печеночного, так и костного происхождения. О холестазе говорит параллельный подъем ГГТП. Активность увеличивается при опухолях печени (желтушность может не проявиться). Если параллельно не происходит увеличение билирубина, можно предположить развитие амилоидоза, абсцесса печени, лейкоза или гранулёмы.

ГГТП повышается одновременно с увеличением щелочной фосфотазы и указывает на развитие холестаза. Изолированное увеличение ГГТП может быть при злоупотреблении алкоголем, когда еще нет грубых изменений печеночной ткани. Если развился фиброз, цирроз или алкогольный гепатит, одновременно повышается уровень других печеночных энзимов.

Трансаминазы представлены фракциями АЛТ и АСТ. Аспартатаминотрансфераза находится в митохондриях печени, сердца, почек и скелетной мускулатуры. Повреждение их клеток сопровождается выходом большого количества фермента в кровь. Аланинаминотрансфераза является ферментом цитоплазмы. Его абсолютное количество небольшое, но содержание в гепатоцитах наибольшее, по сравнению с миокардом и мышцами. Поэтому повышение АЛТ более специфично для повреждения клеток печени.

Имеет значение изменение соотношения АСТ/АЛТ. Если оно 2 и более, то это говорит о гепатите или циррозе. Особенно высокие ферменты наблюдаются при гепатитах с активным воспалением.

Лактатдегидрогеназа – фермент цитолиза, но не является специфичным для печени. Может увеличиваться у беременных, новорожденных, после тяжелых физических нагрузок. Значительно увеличивается ЛДГ после инфаркта миокарда, эмболии легких, обширных травм с разможжением мышц, при гемолитической и мегалобластной анемии. На уровень ЛДГ опираются при дифференциальной диагностике болезни Жильбера – синдром холестаза сопровождается нормальным показателем ЛДГ. При других желтухах в начале ЛДГ остается неизменным, а затем повышается.

Анализ на ферменты печени

Подготовку к анализу начинают за сутки. Нужно полностью исключить алкоголь, вечером не употреблять жирных и жареных блюд. За час до анализа не курить.

Выполняют забор венозной крови натощак утром.

Печеночный профиль включает в себя определение следующих показателей:

АЛТ;АСТ;щелочная фосфотаза;ГГТП;билирубин и его фракции.

Также обращают внимание на общий белок, отдельно уровень альбумина, фибриногена, показатели глюкозы, 5-нуклеотидаза, церулоплазмин, альфа-1-антитрипсин.

Диагностика и нормы

Нормальные биохимические показатели, характеризующие работу печени, отражены в таблице

Показатель Норма
Общий белок 65-85 г/л
Холестерин 3,5-5,5 ммоль/л
Общий билирубин 8,4-20,5 мкмоль/л
Прямой билирубин 2,2-5,1 мкммоль/л
Непрямой билирубин До 17,1 мкмоль/л
АЛТ У мужчин до 45 Ед/лУ женщин до 34 Ед/л
АСТ У мужчин до 37 Ед/лУ женщин до 30 Ед/л
Коэффициент Ритиса (соотношение АСТ/АЛТ) 0,9-1,7
Щелочная фосфотаза До 260 Ед/л
ГГТП У мужчин 10-71 Ед/лУ женщин 6-42 Ед/л

Печеночные энзимы при беременности

Большая часть лабораторных показателей во время беременности остаются в пределах нормы. Если возникают незначительные колебания ферментов, то они проходят вскоре после родов. В третьем триместре возможен значительный подъем щелочной фосфотазы, но не более 4 норм. Это связано с выделением фермента плацентой.

Повышение других печеночных энзимов, особенно в первой половине гестации, следует связывать с развитием патологии печени. Это может быть поражение печени, вызванное беременностью – внутрипеченочный холестаз, жировой гепатоз. Также изменение в анализах появится при тяжелом гестозе.

Цирроз и изменения в биохимии

Патология печени, связанная с перестройкой ткани, вызывает изменения во всех функциях органа. Отмечается повышение неспецифических и специфических ферментов. Высокий уровень последних характерен для цирроза. Это такие энзимы:

аргиназа;фруктозо-1-фосфатальдолаза;нуклеотидаза.

В биохимическом анализе можно заметить изменения и других показателей. Альбумин снижается менее 40 г/л, глобулины могут увеличиваться. Холестерин становится менее 2 ммоль/л, мочевина ниже 2,5 ммоль/л. Возможно увеличение гаптоглобина.

Значительно увеличивается билирубин за счет роста прямой и связанной формы.

Микросомальные ферменты

Эндоплазматический ретикулум гепатоцитов производит полостные образования – микросомы, содержащие на своих мембранах группу микросомальных ферментов. Их предназначение – обезвреживание ксенобиотиков и эндогенных соединений путем окисления. Система включает в себя несколько ферментов, среди них цитохром Р450, цитохром b5 и другие. Эти энзимы обезвреживают лекарственные препараты, алкоголь, токсины.

Окисляя лечебные вещества, микросомальная система ускоряет их выведение и снижает время действия на организм. Некоторые вещества способны повышать активность цитохрома, тогда говорят об индукции микросомальных энзимов. Это проявляется ускорением распада лекарства. Индукторами могут выступать алкоголь, рифампицин, фенитоин, карбамазепин.

Другие лекарственные препараты ингибируют миросомальные ферменты, что проявляется удлинением жизни лекарства и увеличением его концентрации. В роли ингибиторов могут выступать флюконазол, циклоспорин, дилтиазем, верапамил, эритромицин.

Внимание! Учитывая возможность ингибирования или индукции микросомальных реакций, только врач может правильно назначить несколько препаратов одновременно без вреда для больного.

Роль микросомального окисления в жизни организма сложно переоценить или не заметить. Инактивация ксенобиотиков (ядовитых веществ), распад и образование гормонов надпочечников, участие в обмене белков и сохранении генетической информации – это лишь малая известная толика проблем, которые решаются благодаря микросомальному окислению. Это автономный процесс в организме, который запускается после попадания триггерного вещества и заканчивающийся с его эллиминацией.

Определение

Микросомальное окисление – это каскад реакций, входящих в первую фазу преобразования ксенобиотиков. Суть процесса заключается в гидроксилировании веществ с использованием атомов кислорода и образованием воды. Благодаря этому меняется структура первоначального вещества, а его свойства могут как подавляться, так и усиливаться.

Микросомальное окисление позволяет перейти к реакции конъюгации. Это вторая фаза преобразования ксенобиотиков, в конце которой к уже существующей функциональной группе присоединятся молекулы, вырабатываемые внутри организма. Иногда образуются промежуточные вещества, вызывающие повреждение клеток печени, некроз и онкологическое перерождение тканей.

Окисление оксидазного типа

Реакции микросомального окисления происходят вне митохондрий, поэтому на них расходуется около десяти процентов всего кислорода, попадающего в организм. Основные ферменты в этом процессе – оксидазы. В их структуре присутствуют атомы металлов с переменной валентностью, такие как железо, молибден, медь и другие, а значит, они способны принимать электроны. В клетке оксидазы расположены в особых пузырьках (пероксисомах), которые находятся на внешних мембранах митохондрий и в ЭПР (зернистый эндоплазматический ретикулюм). Субстрат, попадая на пероксисомы, теряет молекулы водорода, которые присоединяются к молекуле воды и образуют перекись.

Существует всего пять оксидаз:

Моноаминооксигеназа (МАО) – помогает окислять адреналин и другие биогенные амины, образующиеся в надпочечниках;

Диаминооксигеназа (ДАО) – участвует в окислении гистамина (медиатор воспаления и аллергии), полиаминов и диаминов;

Оксидаза L-аминокислот (то есть левовращающихся молекул);

Оксидаза D-аминокислот (правовращающихся молекул);

Ксантиноксидаза – окислят аденин и гуанин (азотистые основания, входящие в молекулу ДНК).

Значение микросомального окисления по оксидазному типу состоит в устранении ксенобиотиков и инактивации биологически активных веществ. Образование перекиси, оказывающей бактерицидное действие и механическое очищение в месте повреждения, является побочным явлением, которое занимает важное место среди прочих эффектов.

Окисление оксигеназного типа

Реакции оксигеназного типа в клетке также происходят на зернистом эндоплазматическом ретикулуме и на внещних оболочках митохондрий. Для этого необходимы специфические ферменты – оксигеназы, которые мобилизуют молекулу кислорода из субстрата и внедряют ее в окисляемое вещество. Если внедряется один атом кислорода, то фермент называется монооксигеназа или гидроксилаза. В случае внедрения двух атомов (то есть целой молекулы кислорода), фермент носит название диаксигеназа.

Реакции окисления оксигеназного типа входят в трехкомпонентный мультиферментный комплекс, который участвует в переносе электронов и протонов из субстрата с последующей активацией кислорода. Весь этот процесс происходит с участием цитохрома Р450, о котором более подробно еще будет рассказано.

Примеры реакций оксигеназного типа

Как уже упоминалось выше, монооксигеназы для окисления используют только один атом кислорода из двух, имеющихся в наличии. Второй они присоединяют к двум молекулам водорода и образуют воду. Одним из примеров такой реакции может служить образование коллагена. Донором кислорода в таком случае выступает витамин С. Пролингидроксилаза отбирает у него молекулу кислорода и отдает его пролину, который, в свою очередь, входит в молекулу проколлагена. Этот процесс придает прочности и эластичности соединительной ткани. Когда в организме дефицит витамина С, то развивается подагра. Она проявляется слабостью соединительной ткани, кровотечениями, гематомами, выпадением зубов, то есть качество коллагена в организме становится ниже.

Еще одним примером могут служить гидроксилазы, которые преобразуют молекулы холестерина. Это один из этапов образования стероидных гормонов, в том числе и половых.

Малоспецифичные гидроксилазы

Это гидролазы, необходимые для окисления чужеродных веществ, таких как ксенобиотики. Смысл реакций заключается в том, чтобы сделать такие вещества более податливыми для выведения, более растворимыми. Этот процесс называется детоксикацией, а происходит он по большей части в печени.

За счет включения целой молекулы кислорода в ксенобиотики производится разрыв цикла реакций и распад одного сложного вещества на несколько более простых и доступных для обменных процессов.

Активные формы кислорода

Кислород является потенциально опасным веществом, так как, по сути, окисление – это процесс горения. В виде молекулы О2 или воды он стабилен и химически инертен, потому что его электрические уровни заполнены, и новые электроны не могут присоединиться. Но соединения, в которых у кислорода не у всех электронов есть пара, имеют высокую реакционную способность. Поэтому их называют активными.

Такие соединения кислорода:

В монооксидных реакциях образуется супероксид, который отделяется от цитохрома Р450.В оксидазных реакциях идет образование пероксидного аниона (перекиси водорода).Во время реоксигенации тканей, которые подверглись ишемии.

Самым сильным окислителем является гидроксильный радикал, он существует в свободном виде всего миллионную долю секунды, но за это время успевает пройти множество окислительных реакций. Его особенностью является то, что гидроксильный радикал воздействует на вещества только в том месте, в котором образовался, так как не может проникать через ткани.

Супероксиданион и перекись водорода

Эти вещества активны не только в месте образования, но и на некотором удалении от них, так как могут проникать через мембраны клеток.

Гидроксильная группа вызывает окисление остатков аминокислот: гистидина, цистеина и триптофана. Это приводит к инактивации ферментных систем, а также нарушению работы транспортных белков. Кроме того, микросомальное окисление аминокислот приводит к разрушению структуры нуклеиновых азотистых оснований и, как следствие, страдает генетический аппарат клетки. Окисляются и жирные кислоты, входящие в состав билипидного слоя клеточных мембран. Это влияет на их проницаемость, работу мембранных электролитных насосов и на расположение рецепторов.

Ингибиторы микросомального окисления – это антиоксиданты. Они содержатся в продуктах питания и вырабатываются внутри организма. Самым известным антиоксидантом является витамин Е. Эти вещества могут сдерживать микросомальное окисление. Биохимия описывает взаимодействие между ними по принципу обратной связи. То есть чем больше оксидаз, тем сильнее они подавляются, и наоборот. Это помогает сохранять равновесие между системами и постоянство внутренней среды.

Электротранспортная цепь

Микросомальная система окисления не имеет растворимых в цитоплазме компонентов, поэтому все ее ферменты собраны на поверхности эндоплазматического ретикулума. Эта система включает несколько белков, которые формируют электротранспортную цепь:

НАДФ-Р450-редуктаза и цитохром Р450;

НАД-цитохромВ5-редуктаза и цитохром В5;

Стеаторил-КоА-десатураза.

Донором электронов в подавляющем числе случаев выступает НАДФ (никотинамидадениндинуклеотидфосфа́т). Он окисляется НАДФ-Р450-редуктазой, который содержит два кофермента (ФАД и ФМН), для принятия электронов. В конце цепи ФМН окисляется при помощи Р450.

Цитохром Р450

Это фермент микросомального окисления, гем-содержащий белок. Связывает кислород и субстрат (как правило, это ксенобиотик). Название его связано с поглощением света с длинной волны в 450 нм. Биологи обнаружили его во всех живых организмах. На данный момент описано более одиннадцати тысяч белков, входящих в систему цитохром Р450. У бактерий это вещество растворено в цитоплазме, и считается, что такая форма является наиболее эволюционно древней, чем у человека. У нас цитохром Р450 – это пристеночный белок, зафиксированный на эндоплазматической мембране.

Ферменты данной группы участвуют в обмене стероидов, желчных и жирных кислот, фенолов, нейтрализации лекарственных веществ, ядов или наркотиков.

Свойства микросомального окисления

Процессы микросомального окисления обладают широкой субстратной специфичностью, а это, в свою очередь, позволяет обезвреживать разнообразные вещества. Одиннадцать тысяч белков цитохрома Р450 могут складываться более чем в сто пятьдесят изоформ этого фермента. Каждая из них имеет большое количество субстратов. Это дает возможность организму избавляться практически от всех вредных веществ, которые образуются внутри него или попадают извне. Вырабатываясь в печени, ферменты микросомального окисления могут действовать как на месте, так и на значительном удалении от этого органа.

Регуляция активности микросомального окисления

Микросомальное окисление в печени регулируется на уровне информационной РНК, а точнее ее функции – транскрипции. Все варианты цитохрома Р450, например, записаны на молекуле ДНК, и для того чтобы он появился на ЭПР, необходимо «переписать» часть информации с ДНК на информационную РНК. Затем иРНК направляется на рибосомы, где образуются молекулы белка. Количество этих молекул регулируется извне и зависит от объема веществ, которые необходимо деактивировать, а также от наличия необходимых аминокислот.

На данный момент описано более двухсот пятидесяти химических соединений, которые активируют в организме микросомальное окисление. К ним относятся барбитураты, ароматические углеводы, спирты, кетоны и гормоны. Несмотря на такое кажущееся разнообразие, все эти вещества липофильны (растворимы в жирах), а значит восприимчивы к цитохрому Р450.

Печень - самая крупная железа пищеварительного тракта. Она выполняет в организме функцию биохимической лаборатории и играет важную роль в белковом, углеводном и липидном обменах (см. ниже). В печени синтезируются важнейшие белки плазмы крови: альбумин, фибриноген, протромбин, церуло-плазмин, трансферрин, ангиотензиноген и др. Через эти белки опосредуется участие печени в таких важных процессах, как поддержание онкотического давления, регуляция АД и объёма циркулирующей крови, свёртывание крови, метаболизм железа и др.

Важнейшая функция печени - детоксикаци-онная (или барьерная). Она имеет существенное значение для сохранения жизни организма. В печени происходит обезвреживание таких веществ, как билирубин и продукты катаболизма аминокислот в кишечнике, а также инакти-вируются лекарственные препараты и токсические вещества экзогенного происхождения, NH 3 - продукт азотистого обмена, который в результате ферментативных реакций превращается в нетоксичную мочевину, гормоны и биогенные амины.

Вещества, поступающие в организм из окружающей среды и не используемые им для построения тканей организма или как источники энергии, называют чужеродными веществами, или ксенобиотиками. Эти вещества могут попадать в организм с пищей, через кожу или с вдыхаемым воздухом.

Чужеродные вещества, или ксенобиотики, делят на 2 группы:

Продукты хозяйственной деятельности человека (промышленность, сельское хозяйство, транспорт);

Вещества бытовой химии - моющие средства, вещества для борьбы с насекомыми, парфюмерия.

Гидрофильные ксенобиотики выводятся из организма в неизменённом виде с мочой, гидрофобные могут задерживаться в тканях, связываясь с белками или образуя комплексы

с липидами клеточных мембран. Со временем накопление в клетках тканей чужеродного вещества приведёт к нарушению их функций. Для удаления таких ненужных для организма веществ в процессе эволюции выработались механизмы их детоксикации (обезвреживания) и выведения из организма.

I. МЕХАНИЗМЫ ОБЕЗВРЕЖИВАНИЯ КСЕНОБИОТИКОВ

Обезвреживание большинства ксенобиотиков происходит путём химической модификации и протекает в 2 фазы (рис. 12-1). В результате этой серии реакций ксенобиотики становятся более гидрофильными и выделяются с мочой. Вещества, более гидрофобные или обладающие большой молекулярной массой (>300 кД), чаще выводятся с жёлчью в кишечник и затем удаляются с фекалиями.

Система обезвреживания включает множество разнообразных ферментов, под действием которых практически любой ксенобиотик может быть модифицирован.

Микросомальные ферменты катализируют реакции С-гидроксилирования, N-гидроксили-рования, О-, N-, S-дезалкилирования, окислительного дезаминирования, сульфоокисления и эпоксидирования (табл. 12-1).

В мембранах ЭР практически всех тканей локализована система микросомального окисления (монооксигеназного окисления). В эксперименте при выделении ЭР из клеток мембрана распадается на части, каждая из которых образует замкнутый пузырёк - микросому, отсюда и название - микросомальное окисление. Эта система обеспечивает первую фазу обезвреживания большинства гидрофобных веществ. В метаболизме ксенобиотиков могут принимать участие ферменты почек, лёгких, кожи и ЖКТ, но наиболее активны они в печени. К группе микросомальных ферментов относят специфические оксидазы, различные гидролазы и ферменты конъюгации.

Рис. 12-1. Метаболизм и выведение ксенобиотиков из организма. RH - ксенобиотик; К - группа, используемая при конъюгации (глутатион, глюкуронил и др.); М - молекулярная масса. Из множества цитохром Р 450 -зависимых реакций на рисунке приведена только одна - схема гидроксилирования ксенобиотика. В ходе первой фазы в структуру вещества RH вводится полярная группа ОН - . Далее происходит реакция конъюгации; конъюгат в зависимости от растворимости и молекулярной массы удаляется либо почками, либо с фекалиями.

Основные функции печени

Обмен углеводов

Глюконеогенез

Синтез и распад гликогена

Обмен липидов и их производных

Синтез жирных кислот и жиров из углеводов Синтез и выведение холестерина Формирование липопротеинов Кетогенез

Синтез жёлчных кислот 25-гидроксилирование витамина D 3

Обмен белков

Синтез белков плазмы крови (включая некоторые факторы свёртывания крови) Синтез мочевины (обезвреживание аммиака)

Обмен гормонов Метаболизм и выделение стероидных гормонов Метаболизм полипептидных гормонов

Метаболизм и экскреция билирубина Депонирование

гликогена витамина А витамина В 12 железа

Лекарства и чужеродные вещества

Метаболизм и экскреция

Таблица 12-1. Возможные модификации ксенобиотиков в первой фазе обезвреживания

Вторая фаза - реакции конъюгации, в результате которых чужеродное вещество, модифицированное ферментными системами ЭР, связывается с эндогенными субстратами - глюкуроновой кислотой, серной кислотой, глицином, глутатионом. Образовавшийся конъюгат удаляется из организма.

А. МИКРОСОМАЛЬНОЕ ОКИСЛЕНИЕ

Микросомальные оксидазы - ферменты, локализованные в мембранах гладкого ЭР, функционирующие в комплексе с двумя внемитохон-дриальными ЦПЭ. Ферменты, катализирующие восстановление одного атома молекулы О 2 с образованием воды и включение другого атома кислорода в окисляемое вещество, получили название микросомальных оксидаз со смешанной функцией или микросомальных монооксигеназ. Окисление с участием монооксигеназ обычно изучают, используя препараты микросом.

1. Основные ферменты микросомальных электронтранспортных цепей

Микросомальная система не содержит растворимых в цитозоле белковых компонентов, все ферменты - мембранные белки, активные центры которых локализованы на цитоплазма-тической поверхности ЭР. Система включает несколько белков, составляющих электронт-ранспортные цепи (ЦПЭ). В ЭР существуют две такие цепи, первая состоит из двух ферментов - NADPH-Р 450 редуктазы и цитохрома Р 450 , вторая включает фермент NADH-цитохром-b 5 редукта-зу, цитохром b 5 и ещё один фермент - стеароил-КоА-десатуразу.

Электронтранспортная цепь - NADPH-Р 450 редуктаза - цитохром Р 450 . В большинстве случаев донором электронов (ē) для этой цепи служит NADPH, окисляемый NADPH-Р 450 ре-дуктазой. Фермент в качестве простетической группы содержит 2 кофермента - флавинаде-ниндинуклеотид (FAD) и флавинмононуклеотид (FMN). Протоны и электроны с NADРH переходят последовательно на коферменты NADPH-Р 450 редуктазы. Восстановленный FMN (FMNH 2) окисляется цитохромом Р 450 (см. схему ниже).

Цитохром Р 450 - гемопротеин, содержит про-стетическую группу гем и имеет участки связывания для кислорода и субстрата (ксенобиотика). Название цитохром Р 450 указывает на то, что максимум поглощения комплекса цитохрома Р 450 лежит в области 450 нм.

Окисляемый субстрат (донор электронов) для NADH-цитохром Ь 5 -редуктазы - NADH (см. схему ниже). Протоны и электроны с NADH переходят на кофермент редуктазы FAD, следующим акцептором электронов служит Fe 3+ цитохрома b 5 . Цитохром b 5 в некоторых случаях может быть донором электронов (ē) для ци-тохрома Р 450 или для стеароил-КоА-десатуразы, которая катализирует образование двойных связей в жирных кислотах, перенося электроны на кислород с образованием воды (рис. 12-2).

NADH-цитохром b 5 редуктаза - двухдоменный белок. Глобулярный цитозольный домен связывает простетическую группу - кофермент FAD, а единственный гидрофобный «хвост» закрепляет белок в мембране.

Цитохром b 5 - гемсодержащий белок, который имеет домен, локализованный на поверхности мембраны ЭР, и короткий «заяко-


Рис. 12-2. Электронтранспортные цепи ЭР. RH - субстрат цитохрома Р 450 ; стрелками показаны реакции переноса электронов. В одной системе NADPH окисляется NADPH цитохром Р 450 -редуктазой, которая затем передаёт электроны на целое семейство цитохромов Р 450 . Вторая система включает в себя окисление NADH цитохром b 5 -редуктазой, электроны переходят на цитохром b 5 ; восстановленную форму цитохрома b 5 окисляет стеароил-КоА-десатураза, которая переносит электроны на О 2 .

ренный» в липидном бислое спирализованный домен.

NADH-цитохром b 5 -редуктаза и цитохром b 5 , являясь «заякоренными» белками, не фиксированы строго на определённых участках мембраны ЭР и поэтому могут менять свою локализацию.

2. Функционирование цитохрома Р 450

Известно, что молекулярный кислород в трип-летном состоянии инертен и не способен взаимодействовать с органическими соединениями. Чтобы сделать кислород реакционно-способным, необходимо его превратить в синглетный, используя ферментные системы его восстановления. К числу таковых принадлежит монок-сигеназная система, содержащая цитохром Р 450 . Связывание в активном центре цитохрома Р 450 липофильного вещества RH и молекулы кислорода повышает окислительную активность фермента. Один атом кислорода принимает 2 ē и переходит в форму О 2- . Донором электронов служит NADРH, который окисляется NADРH-цитохром Р 450 редуктазой. О 2- взаимодействует с протонами: О 2- + 2Н + → Н 2 О, и образуется вода. Второй атом молекулы кислорода включается в субстрат RH, образуя гидроксиль-ную группу вещества R-OH (рис. 12-3).

Суммарное уравнение реакции гидроксилиро-вания вещества RH ферментами микросомаль-ного окисления:

RH + O 2 + NADPH + H + → ROH + H 2 O + NADP + .

Субстратами Р 450 могут быть многие гидрофобные вещества как экзогенного (лекарственные препараты, ксенобиотики), так и эндогенного (стероиды, жирные кислоты и др.) происхождения.

Таким образом, в результате первой фазы обезвреживания с участием цитохрома Р 450 происходит модификация веществ с образованием функциональных групп, повышающих растворимость гидрофобного соединения. В результате модификации возможна потеря молекулой её биологической активности или даже формирование более активного соединения, чем вещество, из которого оно образовалось.

3. Свойства системы микросомального окисления

Важнейшие свойства ферментов микросо-мального окисления: широкая субстратная специфичность, которая позволяет обезвреживать самые разнообразные по строению вещества, и регуляция активности по механизму индукции.

Широкая субстратная специфичность. Изоформы Р 450

К настоящему времени описано около 150 генов цитохрома Р 450 , кодирующих различные изоформы фермента. Каждая из изоформ Р 450

Рис. 12-3. Транспорт электронов при монооксигеназном окислении с участием Р 450 . Связывание (1) в активном центре цитохрома Р 450 вещества RH активирует восстановление железа в геме - присоединяется первый электрон (2). Изменение валентности железа увеличивает сродство комплекса Р 450 -Fе 2+ -RH к молекуле кислорода (3). Появление в центре связывания цитохрома Р 450 молекулы О 2 ускоряет присоединение второго электрона и образование комплекса Р 450 -Fе 2 +О 2 - -RH (4). H следующем этапе (5) Fе 2+ окисляется, второй электрон присоединяется к молекуле кислорода Р 450 -Fе 3+ О 2 2- . Восстановленный атом кислорода (О 2-) связывает 2 протона, и образуется 1 молекула воды. Второй атом кислорода идёт на построение ОH-группы (6). Модифицированное вещество R-OH отделяется от фермента (7).

имеет много субстратов. Этими субстратами могут быть как эндогенные липофильные вещества, модификация которых входит в путь нормального метаболизма этих соединений, так и гидрофобные ксенобиотики, в том числе лекарства. Определённые изоформы цитохрома Р 450 участвуют в метаболизме низкомолекулярных соединений, таких как этанол и ацетон.

Регуляция активности микросомальной системы окисления

Регуляция активности микросомальной системы осуществляется на уровне транскрипции или посттранскрипционных изменений. Индукция синтеза позволяет увеличить количество ферментов в ответ на поступление или образование в организме веществ, выведение которых невозможно без участия системы микросомального окисления.

В настоящее время описано более 250 химических соединений, вызывающих индукцию микросомальных ферментов. К числу этих индукторов относят барбитураты, полицикли-

ческие ароматические углеводороды, спирты, кетоны и некоторые стероиды. Несмотря на разнообразие химического строения, все индукторы имеют ряд общих признаков; их относят к числу липофильных соединений, и они служат субстратами для цитохрома Р 450 .

Б. КОНЪЮГАЦИЯ - ВТОРАЯ ФАЗА ОБЕЗВРЕЖИВАНИЯ ВЕЩЕСТВ

Вторая фаза обезвреживания веществ - реакции конъюгации, в ходе которых происходит присоединение к функциональным группам, образующимся на первом этапе, других молекул или групп эндогенного происхождения, увеличивающих гидрофильность и уменьшающих токсичность ксенобиотиков (табл. 12-2).

1. Участие трансфераз в реакциях конъюгации

Все ферменты, функционирующие во второй фазе обезвреживания ксенобиотиков, относят к классу трансфераз. Они характеризуются широкой субстратной специфичностью.

Таблица 12-2. Основные ферменты и метаболиты, участвующие в конъюгации

УДФ-глюкуронилтрансферазы

Локализированные в основном в ЭР ури-диндифосфат (УДФ)-глюкуронилтрансферазы присоединяют остаток глюкуроновой кислоты к молекуле вещества, образованного в ходе мик-росомального окисления (рис. 12-4).

В общем виде реакция с участием УДФ-глю-куронилтрансферазы записывается так:

RОH + УДФ-C 6 H 9 O 6 = RO-C 6 H 9 O 6 + УДФ. Сульфотрансферазы

Цитоплазматические сульфотрансферазы катализируют реакцию конъюгации, в ходе которой остаток серной кислоты (-SО 3 Н) от 3"-фосфоаденозин-5"-фосфосульфата (ФАФС) присоединяется к фенолам, спиртам или аминокислотам (рис. 12-5).

Реакция с участием сульфотрансферазы в общем виде записывается так:

RОH + ФАФ-SO 3 H = RO-SO 3 H + ФАФ.

Рис. 12-4. Уридиндифосфоглюкуроновая кислота (УДФ-C 6 H 9 O 6).

Ферменты сульфотрансферазы и УДФ-глюку-ронилтрансферазы участвуют в обезвреживании ксенобиотиков, инактивации лекарств и эндогенных биологически активных соединений.

Глутатионтрансферазы

Особое место среди ферментов, участвующих в обезвреживании ксенобиотиков, инактивации нормальных метаболитов, лекарств, занимают глутатионтрансферазы (ГТ). Глутатионтранс-феразы функционируют во всех тканях и играют важную роль в инактивации собственных метаболитов: некоторых стероидных гормонов, простагландинов, билирубина, жёлчных кислот, продуктов ПОЛ.

Известно множество изоформ ГТ с различной субстратной специфичностью. В клетке ГТ в основном локализованы в цитозоле, но имеются варианты ферментов в ядре и митохондриях. Для работы ГТ требуется глутатион (GSH) (рис. 12-6).

Глутатион - трипептид Глу-Цис-Гли (остаток глутаминовой кислоты присоединён к цистеину карбоксильной группой радикала).

Рис. 12-5. 3"-Фосфоаденозин-5"-фосфосульфат (ФАФ-SО 3 Н).

Рис. 12-6. Глутатион (GSH).

ГТ обладают широкой специфичностью к субстратам, общее количество которых превышает 3000. ГТ связывают очень многие гидрофобные вещества и инактивируют их, но химической модификации с участием глутатиона подвергаются только те, которые имеют полярную группу. То есть субстратами служат вещества, которые, с одной стороны, имеют электрофильный центр (например, ОН-группу), а с другой стороны - гидрофобные зоны. Обезвреживание, т.е. химическая модификация ксенобиотиков с участием ГТ, может осуществляться тремя различными способами:

Путём конъюгации субстрата R с глутатио-ном (GSH):

R + GSH GSRH

В результате нуклеофильного замещения:

RX + GSH GSR + НХ,

Восстановления органических пероксидов до спиртов:

R-HC-O-OH + 2 GSH R-HC-O-OH + GSSG + Н 2 О.

В реакции: ООН - гидропероксидная группа, GSSG - окисленный глутатион.

Система обезвреживания с участием ГТ и глутатиона играет уникальную роль в формировании резистентности организма к самым различным воздействиям и является наиболее важным защитным механизмом клетки. В ходе биотрансформации некоторых ксенобиотиков под действием ГТ образуются тиоэфиры (конъ-югаты RSG), которые затем превращаются в меркаптаны, среди которых обнаружены токсические продукты. Но конъюгаты GSH с большинством ксенобиотиков менее реакционно-способны и более гидрофильны, чем исходные вещества, а поэтому менее токсичны и легче выводятся из организма (рис. 12-7).

Рис. 12-7. Обезвреживание 1-хлор, 2,4-динитробен-зола с участием глутатиона.

ГТ своими гидрофобными центрами могут нековалентно связывать огромное количество липофильных соединений (физическое обезвреживание), предотвращая их внедрение в липид-ный слой мембран и нарушение функций клетки. Поэтому ГТ иногда называют внутриклеточным альбумином.

ГТ могут ковалентно связывать ксенобиотики, являющиеся сильными электролитами. Присоединение таких веществ - «самоубийство» для ГТ, но дополнительный защитный механизм для клетки.

Ацетилтрансферазы, метилтрансферазы

Ацетилтрансферазы катализируют реакции конъюгации - переноса ацетильного остатка от ацетил-КоА на азот группы -SO 2 NH 2 , например в составе сульфаниламидов. Мембранные и цитоплазматические метилтрансферазы с участием SAM метилируют группы -Р=О, -NH 2 и SH-группы ксенобиотиков.

2. Роль эпоксидгидролаз в образовании диолов

Во второй фазе обезвреживания (реакции конъюгации) принимают участие и некоторые другие ферменты. Эпоксидгидролаза (эпоксид-гидратаза) присоединяет воду к эпоксидам бензола, бензпирена и другим полициклическим углеводородам, образованным в ходе первой фазы обезвреживания, и превращает их в дио-лы (рис. 12-8). Эпоксиды, образовавшиеся при микросомальном окислении, являются канцерогенами. Они обладают высокой химической активностью и могут участвовать в реакциях неферментативного алкилирования ДНК, РНК, белков (см. раздел 16). Химические модификации этих молекул могут привести к перерождению нормальной клетки в опухолевую.

Рис. 12-8. Обезвреживание бензантрацена. Е 1 - фермент микросомальной системы; Е 2 - эпоксидгидратаза.

В. ГНИЕНИЕ АМИНОКИСЛОТ В КИШЕЧНИКЕ. ОБЕЗВРЕЖИВАНИЕ И ВЫВЕДЕНИЕ ПРОДУКТОВ ГНИЕНИЯ ИЗ ОРГАНИЗМА

Аминокислоты, невсосавшиеся в клетки кишечника, используются микрофлорой толстой кишки в качестве питательных веществ. Ферменты бактерий расщепляют аминокислоты и превращают их в амины, фенолы, индол, скатол, сероводород и другие ядовитые для организма соединения. Этот процесс иногда называют гниением белков в кишечнике. В основе гниения лежат реакции декарбоксилирования и дезаминирования аминокислот.

Образование и обезвреживание n-крезола и фенола

Под действием ферментов бактерий из аминокислоты тирозина могут образовываться фенол и крезол путём разрушения боковых цепей аминокислот микробами (рис. 12-9).

Всосавшиеся продукты по воротной вене поступают в печень, где обезвреживание фенола и крезола может происходить путём конъюгации с сернокислотным остатком (ФАФС) или с глюку-роновой кислотой в составе УДФ-глюкуроната. Реакции конъюгации фенола и крезола с ФАФС

катализирует фермент сульфотрансфераза (рис. 12-10).

Конъюгация глюкуроновых кислот с фенолом и крезолом происходит при участии фермента УДФ-глюкуронилтрансферазы (рис. 12-11). Продукты конъюгации хорошо растворимы в воде и выводятся с мочой через почки. Повышение количества конъюгатов глюкуроновой кислоты с фенолом и крезолом обнаруживают в моче при увеличении продуктов гниения белков в кишечнике.

Образование и обезвреживание индола и скатола

В кишечнике из аминокислоты триптофана микроорганизмы образуют индол и скатол. Бактерии разрушают боковую цепь триптофана, оставляя нетронутой кольцевую структуру.

Индол образуется в результате отщепления бактериями боковой цепи, возможно, в виде серина или аланина (рис. 12-12).

Скатол и индол обезвреживаются в печени в 2 этапа. Сначала в результате микросомального окисления они приобретают гидроксильную группу. Так, индол переходит в индоксил, а затем вступает в реакцию конъюгации с ФАФС, образуя индоксилсерную кислоту, калиевая соль

Рис. 12-9. Катаболизм тирозина под действием бактерий. Е - бактериальные ферменты.

Рис. 12-10. Конъюгация фенола и крезола с ФАФС. Е - сульфотрансфераза.


Рис. 12-11. Участие УДФ-глюкуронилтрансферазы в обезвреживании крезола и фенола. Е - УДФ-глюку-ронилтрансфераза.

Рис. 12-12. Катаболизм триптофана под действием бактерий. Е - бактериальные ферменты.

которой получила название животного индикана

(рис. 12-13).

Обезвреживание бензойной кислоты

Синтез гиппуровой кислоты из бензойной кислоты и глицина протекает у человека и большинства животных преимущественно в печени (рис. 12-14). Скорость этой реакции отражает функциональное состояние печени.

В клинической практике используют определение скорости образования и выведения гиппуровой кислоты после введения в организм ксенобиотика бензойной кислоты (бензойно-кислого натрия) - проба Квика.

Г. СВЯЗЫВАНИЕ, ТРАНСПОРТ И ВЫВЕДЕНИЕ

КСЕНОБИОТИКОВ

В плазме крови множество как эндогенных, так и экзогенных липофильных веществ транспортируются альбумином и другими белками.

Альбумин - основной белок плазмы крови, связывающий различные гидрофобные вещества. Он может функционировать в качестве белка-переносчика билирубина, ксенобиотиков, лекарственных веществ.

Помимо альбуминов, ксенобиотики могут транспортироваться по крови в составе липопро-теинов, а также в комплексе с кислым α 1 -глико-протеином. Особенность этого гликопротеина

Рис. 12-13. Участие сульфотрансферазы в обезвреживании индола. Е - сульфотрансфераза.

Рис. 12-14. Образование гиппуровой кислоты из бензойной кислоты и глицина. Е - глицинтрансфераза.

состоит в том, что он является индуцируемым белком, участвующим в ответной реакции организма на изменения, происходящие в состоянии стресса, например, при инфаркте миокарда, воспалительных процессах; его количество в плазме увеличивается наряду с другими протеинами. Связывая ксенобиотики, кислый α 1 -гликопро-теин инактивирует их и переносит в печень, где комплекс с белком распадается, и чужеродные вещества обезвреживаются и выводятся из организма.

Участие Р-гликопротеина в выведении ксенобиотиков

Очень важный механизм выведения из клетки гидрофобных ксенобиотиков - функционирование Р-гликопротеина (транспортная АТФ-аза). Р-гликопротеин - фосфогликопротеин с молекулярной массой 170 кД, присутствующий в плазматической мембране клеток многих тканей, в частности почек и кишечника. Полипептидная цепь этого белка содержит 1280 аминокислотных остатков, образуя 12 трансмембранных доменов и два АТФ-связывающих центра (рис. 12-15).

В норме его функция состоит в экскреции ионов хлора и гидрофобных токсичных соединений из клеток.

Когда гидрофобное вещество (например, противоопухолевое лекарство) проникает в клетку, то оно удаляется из неё Р-гликопротеином с затратой энергии (рис. 12-16). Уменьшение количества лекарства в клетке снижает эффективность его применения при химиотерапии онкологических заболеваний.

Д. ИНДУКЦИЯ ЗАЩИТНЫХ СИСТЕМ

Многие ферменты, участвующие в первой и второй фазе обезвреживания, - индуцируемые белки. Ещё в древности царь Митридат знал, что если систематически принимать небольшие дозы яда, можно избежать острого отравления. «Эффект Митридата» основан на индукции определённых защитных систем (табл. 12-3).

В мембранах ЭР печени цитохрома Р 450 содержится больше (20%), чем других мембрано-связанных ферментов. Лекарственное вещество фенобарбитал активирует синтез цитохрома

Рис. 12-15. Строение Р-гликопротеина. Р-гликопротеин - интегральный белок, имеющий 12 трансмембранных доменов, пронизывающих бислой цитоплазматической мембраны. N- и С-концы белка обращены в цитозоль. Участки Р-гликопротеина на наружной поверхности мембраны гликозилированы. Область между шестым и седьмым доменами имеет центры для присоединения АТФ и аутофосфорилирования.

Рис. 12-16. Функционирование Р-гликопротеина.

Заштрихованный овал - противоопухолевое лекарство (гидрофобное вещество).

Р 450 , УДФ-глюкуронилтрансферазы и эпоксид гидролазы. Например, у животных, которым вводили индуктор фенобарбитал, увеличивается площадь мембран ЭР, которая достигает 90% всех мембранных структур клетки, и, как следствие, - увеличение количества ферментов, участвующих в обезвреживании ксенобиотиков или токсических веществ эндогенного происхождения.

При химиотерапии злокачественных процессов начальная эффективность лекарства часто постепенно падает. Более того, развивается множественная лекарственная устойчивость, т.е. устойчивость не только к этому лечебному препарату, но и целому ряду других лекарств. Это происходит потому, что противоопухолевые лекарства индуцируют синтез Р-глико-протеина, глутатионтрансферазы и глутатиона. Использование веществ, ингибирующих или активирующих синтез Р-гликопротеина, а также

ферменты синтеза глутатиона, повышает эффективность химиотерапии.

Металлы являются индукторами синтеза глутатиона и низкомолекулярного белка метал-лотионеина, имеющих SH-групггы, способные связывать их. В результате возрастает устойчивость клеток организма к ядам и лекарствам.

Повышение количества глутатионтрансфераз увеличивает способность организма приспосабливаться к возрастающему загрязнению внешней среды. Индукцией фермента объясняют отсутствие антиканцерогенного эффекта при применении ряда лекарственных веществ. Кроме того, индукторы синтеза глутатионтрансферазы - нормальные метаболиты - половые гормоны, йодтиронины и кортизол. Катехоламины через аденилатциклазную систему фосфорилируют глу-татионтрансферазу и повышают её активность.

Ряд веществ, в том числе и лекарств (например, тяжёлые металлы, полифенолы, S-алкилы глутатиона, некоторые гербициды), ингибируют глутатионтрансферазу.

ii. биотрансформация лекарственных веществ

Лекарства, поступившие в организм, проходят следующие превращения:

Всасывание;

Связывание с белками и транспорт кровью;

Взаимодействие с рецепторами;

Распределение в тканях;

Метаболизм и выведение из организма.

Механизм первого этапа (всасывание) определяется физико-химическими свойствами лекарства. Гидрофобные соединения легко проникают через мембраны простой диффузией, в то время

Таблица 12-3. Индукция систем, обеспечивающих защиту от ксенобиотиков

как лекарственные вещества, нерастворимые в липидах, проникают через мембраны путём трансмембранного переноса при участии разных типов транслоказ. Некоторые нерастворимые крупные частицы могут проникать в лимфатическую систему путём пиноцитоза.

Следующие этапы метаболизма лекарственного вещества в организме тоже определяются его химическим строением - гидрофобные молекулы перемещаются по крови в комплексе с альбумином, кислым α 1 -гликопротеином или в составе липопротеинов. В зависимости от структуры лекарственное вещество может поступать из крови в клетку или, являясь аналогами эндогенных веществ, связываться рецепторами клеточной мембраны.

Действие на организм большинства лекарств прекращается через определённое время после их приёма. Прекращение действия может происходить потому, что лекарство выводится из организма либо в неизменённом виде - это характерно для гидрофильных соединений, либо в виде продуктов его химической модификации (биотрансформации).

А. ХАРАКТЕР ИЗМЕНЕНИЙ ПРИ БИОТРАНСФОРМАЦИИ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ

Биохимические превращения лекарственных веществ в организме человека, обеспечивающие их инактивацию и детоксикацию, являются частным проявлением биотрансформации чужеродных соединений.

В результате биотрансформации лекарственных веществ может произойти:

Инактивация лекарственных веществ, т.е. снижение их фармакологической активности;

Повышение активности лекарственных веществ;

Образование токсических метаболитов.

Инактивация лекарственных веществ

Инактивация лекарственных веществ, как и всех ксенобиотиков, происходит в 2 фазы. Первая фаза - химическая модификация под действием ферментов монооксигеназной системы ЭР. Например, лекарственное вещество барбитурат в ходе биотрансформации превращается в гидроксибарбитурат, который далее участвует в реакции конъюгации с остатком глюкуроновой кислоты. Фермент глюкуронилтрансфераза катализирует образование барбитуратглюкуронида, в качестве источника глюкуроновой кислоты используется УДФ-глюкуронил (рис. 12-17).

В первую фазу обезвреживания под действием монооксигеназ образуются реакционно-способные группы -ОН, -СООН, -NH 2 , -SH и др. Химические соединения, уже имеющие эти группы, сразу вступают во вторую фазу обезвреживания - реакции конъюгации.

Повышение активности лекарств

В качестве примера повышения активности вещества в процессе его превращений в организме можно привести образование дезметилими-прамина из имипрамина. Дезметилимипрамин обладает выраженной способностью ослаблять депрессивное состояние при психических расстройствах (рис. 12-18).

Химические превращения некоторых лекарств в организме приводят к изменению характера их активности. Например, ипразид - антидепрессант, который в результате дезалкилирования превращается в изониазид, обладающий противотуберкулёзным действием (рис. 12-19).

Образование токсических продуктов в результате реакции биотрансформации. В отдельных случаях химические превращения лекарственных средств в организме могут приводить к появлению у них токсических свойств. Так,

Рис. 12-17. Метаболизм барбитуратов в печени. Е 1 - ферменты микросомального окисления; Е 2 - глюку-ронилтрансфераза.

Рис. 12-18. Активация имипрамина в результате реакции деметилирования.

Рис. 12-19. Образование изониазида в ходе дезалкилирования ипраниазида.

Рис. 12-20. Превращение фенацетина в токсический продукт - парафенетидин.

жаропонижающее, болеутоляющее, противовоспалительное средство фенацетин превращается в парафенетидин, вызывающий гипоксию за счёт образования метгемоглобина - неактивной формы Нb (рис. 12-20).

Реакции конъюгации лекарственных веществ

Вторая фаза инактивации - конъюгация (связывание) лекарственных веществ, как подвергшихся каким-либо превращениям на первом этапе, так и нативных препаратов. К продуктам, образованным ферментами микросомального окисления, может присоединяться глицин по карбоксильной группе, глюкуроновая кислота или остаток серной кислоты - по ОН-группе, ацетильный остаток - к NH 2 -группе.

В превращениях второй фазы инактивации лекарственных веществ принимают участие эндогенные соединения, образующиеся в организме с затратой энергии SAM: (АТФ), УДФ-

глюкуронат (УТФ), Ацетил-КоА (АТФ) и др. Поэтому можно сказать, что реакции конъюгации сопряжены с использованием энергии этих макроэргических соединений.

Примером реакции конъюгации может служить глюкуронирование гидроксибарбитурата под действием глюкуронилтрансферазы, описанным ранее (см. рис. 12-17). В качестве примера О-метилирования лекарства можно привести один из этапов биотрансформации препарата метилдофа, нарушающего образование адренер-гического медиатора и применяемого в качестве гипотензивного средства (рис. 12-21).

В неизменённом виде выделяются главным образом высокогидрофильные соединения. Из липофильных веществ исключение составляют средства для ингаляционного наркоза, основная часть которых в химические реакции в организме не вступает. Они выводятся лёгкими в том же виде, в каком были введены.

Рис. 12-21. Биотрансформация лекарственного вещества (метилдофа).

Б. ФАКТОРЫ, ВЛИЯЮЩИЕ НА АКТИВНОСТЬ

ФЕРМЕНТОВ БИОТРАНСФОРМАЦИИ ЛЕКАРСТВ

Лекарственные средства в результате химической модификации, как правило, теряют свою биологическую активность. Таким образом, эти реакции лимитируют во времени действие лекарств. При патологии печени, сопровождающейся снижением активности микросомальных ферментов, продолжительность действия ряда лекарственных веществ увеличивается.

Некоторые препараты снижают активность монооксигеназной системы. Например, левоми-цетин и бутадион ингибируют ферменты мик-росомального окисления. Антихолинэстеразные средства, ингибиторы моноаминооксидазы, нарушают функционирование фазы конъюгации, поэтому они пролонгируют эффекты препаратов, которые инактивируются этими ферментами. Кроме того, скорость каждой из реакций биотрансформации лекарственного вещества зависит от генетических, физиологических факторов и экологического состояния окружающей среды.

Возрастные особенности

Чувствительность к лекарственным средствам меняется в зависимости от возраста. Например, у новорождённых активность метаболизма лекарств в первый месяц жизни существенно отличается от взрослых. Это связано с недостаточностью многих ферментов, участвующих в биотрасформации лекарственных веществ, функции почек, повышенной проницаемостью гематоэнцефалического барьера, недоразвитием ЦНС. Так, новорождённые более чувствительны к некоторым веществам, влияющим на ЦНС (в частности, к морфину). Очень токсичен для них левомицетин; это объясняется тем, что в печени

у новорождённых малоактивны ферменты, необходимые для его биотрансформации.

В пожилом возрасте метаболизм лекарственных веществ протекает менее эффективно: снижается функциональная активность печени, нарушается скорость экскреции препаратов почками. В целом чувствительность к большинству лекарственных средств в пожилом возрасте повышена, в связи с чем их доза должна быть снижена.

Генетические факторы

Индивидуальные различия в метаболизме ряда препаратов и в реакциях на препараты объясняют генетическим полиморфизмом, т.е. существованием в популяции изоформ некоторых ферментов биотрансформации.

В ряде случаев повышенная чувствительность к лекарственным средствам может быть обусловлена наследственной недостаточностью некоторых ферментов, участвующих в химической модификации. Например, при генетической недостаточности холинэстеразы плазмы крови длительность действия миорелаксанта дитилина резко возрастает и может достигать 6-8 ч и более (в обычных условиях дитилин действует в течение 5-7 мин). Известно, что скорость ацетилирования противотуберкулёзного средства изониазида варьирует довольно широко. Выделяют лиц с быстрой и медленной метаболизирующей активностью. Считают, что у лиц с медленной инактивацией изониазида нарушена структура белков, регулирующих синтез фермента ацетилтрансферазы, обеспечивающего конъюгацию изониазида с ацетильным остатком.

Факторы окружающей среды

Существенное влияние на метаболизм лекарственных веществ в организме оказывают

также факторы окружающей среды, такие как ионизирующая радиация, температура, состав пищи и особенно различные химические вещества (ксенобиотики), в том числе и сами лекарственные вещества.

III. МЕТАБОЛИЗМ ЭТАНОЛА В ПЕЧЕНИ

Катаболизм этилового спирта осуществляется главным образом в печени. Здесь окисляется от 75% до 98% введённого в организм этанола.

Окисление алкоголя - сложный биохимический процесс, в который вовлекаются основные метаболические процессы клетки. Превращение этанола в печени осуществляется тремя путями с образованием токсического метаболита - ацет-альдегида (рис. 12-22).

А. ОКИСЛЕНИЕ ЭТАНОЛА NAD-ЗАВИСИМОЙ АЛКОГОЛЬДЕГИДРОГЕНАЗОЙ

Основную роль в метаболизме этанола играет цинксодержащий NAD + -зависимый фермент - алкогольдегидрогеназа, локализующаяся в основном в цитозоле и митохондриях печени (95%). В ходе реакции пpoиcxoдит дегидрирование этанола, образуются ацеталь-дегид и восстановленный кофермент NADH. Алкогольдегидрогеназа катализирует обратимую реакцию, направление которой зависит от концентрации ацетальдегида и соотношения NADH/NAD + в клетке.

С 9 H 5 ОН + NAD + ↔ CH 3 CHO + NADH + H + .

Фермент алкогольдегидрогеназа - димер, состоящий из идентичных или близких по первичной структуре полипептидных цепей, кодируемых аллелями одного гена. Существуют 3 изоформы алкогольдегидрогеназы (АДГ): АДГ 1 , АДГ 2 , АДГ 3 , различающиеся по строению протомеров, локализации и активности. Для европейцев характерно присутствие изоформ АДГ 1 и АДГ 3 . У некоторых восточных народов преобладает изоформа АДГ 2 , характеризующаяся высокой активностью, это может быть причиной их повышенной чувствительности к алкоголю. При хроническом алкоголизме количество фермента в печени не увеличивается, т.е. он не является индуцируемым ферментом.

Б. ОКИСЛЕНИЕ ЭТАНОЛА ПРИ УЧАСТИИ ЦИТОХРОМ Р 450 -ЗАВИСИМОЙ МИКРОСОМАЛЬ-НОЙ ЭТАНОЛОКИСЛЯЮЩЕЙ СИСТЕМЫ

Цитохром Р 450 -зависимая микросомальная эта-нолокисляющая система (МЭОС) локализована в мембране гладкого ЭР гепатоцитов. МЭОС играет незначительную роль в метаболизме небольших количеств алкоголя, но индуцируется этанолом, другими спиртами, лекарствами типа барбитуратов и приобретает существенное значение при злоупотреблении этими веществами. Этот путь окисления этанола происходит при участии одной из изоформ Р 450 - изофермента Р 450 II Е 1 . При хроническом алкоголизме окисление этанола ускоряется на 50-70% за счёт гипертрофии ЭР и индукции ци-тохрома Р 450 II Е 1 .

C 9 H 5 OH + NADPH + Н + + О 2 → CH 3 CHO + NADP + + 2 Н 2 О.

Рис. 12-22. Метаболизм этанола. 1 - окисление этанола NAD + -зависимой алкогольдегидрогеназой (АДГ); 9 - МЭОС - микросомальная этанолокисляющая система; 3 - окисление этанола каталазой.

Кроме основной реакции, цитохром Р 450 катализирует образование активных форм кислорода (О 2 - , Н 2 О 2), которые стимулируют ПОЛ в печени и других органах (см. раздел 8).

в. окисление этанола каталазой

Второстепенную роль в окислении этанола играет каталаза, находящаяся в пероксисомах цитоплазмы и митохондрий клеток печени. Этот фермент расщепляет примерно 2% этанола, но при этом утилизирует пероксид водорода.

СН 3 СН 2 ОН + Н 2 О 2 → СН 3 СНО +2 Н 2 О.

г. метаболизм и токсичность ацетальдегида

Ацетальдегид, образовавшийся из этанола, окисляется до уксусной кислоты двумя ферментами: FAD-зависимой альдегидоксидазой и NАD + -зависимой ацетальдегиддегидрогеназой (АлДГ).

CH 3 CHO + О 2 + Н 2 О → CH 3 COOH +Н 2 О 2 .

Повышение концентрации ацетальдегида в клетке вызывает индукцию фермента альдегид-оксидазы. В ходе реакции образуются уксусная кислота, пероксид водорода и другие активные формы кислорода, что приводит к активации

Другой фермент ацетальдегиддегидрогеназа (АлДГ) окисляет субстрат при участии кофер-мента NАD + .

CH 3 CHO + Н 2 О + NAD + → CH 3 COOH + + NADH + H + .

Полученная в ходе реакции уксусная кислота активируется под действием фермента ацетил-КоА-синтетазы. Реакция протекает с использованием кофермента А и молекулы АТФ. Образовавшийся ацетил-КоА, в зависимости от соотношения АТФ/АДФ и концентрации окса-лоацетата в митохондриях гепатоцитов, может «сгорать» в ЦТК, идти на синтез жирных кислот или кетоновых тел.

В разных тканях организма человека встречаются полиморфные варианты АлДГ. Они характеризуются широкой субстратной специфичностью, разным распределением по клеткам тканей (почки, эпителий, слизистая оболочка

желудка и кишечника) и в компартментах клетки. Например, изоформа АлДГ, локализованная в митохондриях гепатоцитов, обладает более высоким сродством к ацетальдегиду, чем цито-зольная форма фермента.

Ферменты, участвующие в окислении этанола, - алкогольдегидрогеназа и АлДГ по разному распределены: в цитозоле - 80%/20% и митохондриях - 20%/80%. При поступлении больших доз алкоголя (более 2 г/кг) из-за разных скоростей окисления этанола и ацетальдегида в цитозоле резко повышается концентрация последнего. Ацетальдегид - очень реакционно-способное соединение; он неферментативно может ацетилировать SH-, NН 2 -группыбелков и других соединений в клетке и нарушать их функции. В модифицированных (ацетилиро-ванных) белках могут возникать «сшивки», нехарактерные для нативной структуры (например, в белках межклеточного матрикса - эластине и коллагене, некоторых белках хроматина и липопротеинов, формирующихся в печени). Ацетилирование ядерных, цитоплаз-матических ферментов и структурных белков приводит к снижению синтеза экспортируемых печенью в кровь белков, например альбумина, который, удерживая поддерживает коллоидно-осмотическое давление, а также участвует в транспорте многих гидрофобных веществ в крови (см. раздел 14). Нарушение функций альбумина в сочетании с повреждающим действием ацетальдегида на мембраны сопровождается поступлением в клетки по градиенту концентрации ионов натрия и воды, происходит осмотическое набухание этих клеток и нарушение их функций.

Активное окисление этанола и ацетальдегида приводит к увеличению отношения NADH/ NAD + , что снижает активность NAD + -зависи-мых ферментов в цитозоле и менее значительно в митохондриях.

Равновесие следующей реакции смещается вправо:

Дигидроксиацетонфосфат + NADH + H + ↔ Глице-рол-3-фосфат + NAD+,

Пируват + NADH + H + ↔ Лактат +NAD + .

Восстановление дигидроксиацетонфосфата, промежуточного метаболита гликолиза и глю-конеогенеза, приводит к снижению скорости

глюконеогенеза. Образование глицерол-3-фос-фата повышает вероятность синтеза жира в печени. Увеличение концентрации NADH по сравнению с NAD + (NADH>NAD +) замедляет реакцию окисления лактата, увеличивается соотношение лактат/пируват и ещё больше снижается скорость глюконеогенеза (см. раздел 7). В крови возрастает концентрация лактата, это приводит к гиперлактацидемии и лактоацидозу

(рис. 12-23).

NADH окисляется ферментом дыхательной цепи NADH-дегидрогеназой. Возникновение трансмембранного электрического потенциала на внутренней митохондриальной мембране не приводит к синтезу АТФ в полном объёме. Этому препятствует нарушение структуры внутренней мембраны митохондрий, вызванное мембранотропным действием этилового спирта

и повреждающим действием ацетальдегида на мембраны.

Можно сказать, что ацетальдегид опосредованно активирует ПОЛ, так как связывая SH-группы глутатиона, он снижает количество активного (восстановленного) глутатиона в клетке, который необходим для функционирования фермента глутатионпероксидазы (см. раздел 8), участвующего в катаболизме H 2 О 2 . Hакопление свободных радикалов приводит к активации ПОЛ мембран и нарушению структуры липидного бислоя.

На начальных стадиях алкоголизма окисление ацетил-КоА в ЦТК - основной источник энергии для клетки. Избыток ацетил-КоА в составе цитрата выходит из митохондрий, и в цитоплазме начинается синтез жирных кислот. Этот процесс, помимо АТФ, требует участия NADPH,

Рисунок 12-23. Эффекты этанола в печени. 1→2→3 - окисление этанола до ацетата и превращение его в ацетил-КоА

(1 - реакция катализируется алкогольдегидрогеназой, 2 - реакция катализируется АлДГ). Скорость образования ацетальдегида (1)часто при приёме большого количества алкоголя выше, чем скорость его окисления (9), поэтому ацетальальдегид накапливается и оказывает влияние на синтез белков (4), ингибируя его, а также понижает концентрацию восстановленного глутатиона (5), в результате чего активируется ПОЛ. Скорость глюконеогенеза (6) снижается, так как высокая концентрация NADH образованного в реакциях окисления этанола (1, 9), ингибирует глюконеогенез (6). Лактат выделяется в кровь (7), и развивается лактоацидоз. Увеличение концентрации NADH замедляет скорость ЦТК; ацетил-КоА накапливается, активируется синтез кетоновых тел (кетоз) (8). Окисление жирных кислот также замедляется (9), увеличивается синтез жира (10), что приводит к ожирению печени и гипертриацилглицеролемии.

который образуется при окислении глюкозы в пентозофосфатном цикле. Из жирных кислот и глицерол-3-фосфата образуются ТАГ, которые в составе ЛПОHП секретируются в кровь. Повышенная продукция ЛПОHП печенью приводит к гипертриацижлицеролемии. При хроническом алкоголизме снижение синтеза фосфолипидов и белков в печени, в том числе и апобелков, участвующих в формировании ЛПОHП, вызывает внутриклеточное накопление ТАГ и ожирение печени.

Однако в период острой алкогольной интоксикации, несмотря на наличие большого количества ацетил-КоА, недостаток оксало-ацетата снижает скорость образования цитрата. В этих условиях избыток ацетил-КоА идёт на синтез кетоновых тел, которые выходят в кровь. Повышение в крови концентрации лактата, ацетоуксусной кислоты и β-гидроксибутирата служит причиной метаболического ацидоза при алкогольной интоксикации.

Как уже было сказано ранее, реакция образования ацетальдегида из этанола протекает под действием алкогольдегидрогеназы. Поэтому при повышении концентрации ацетальдегида и NADH в клетках печени направление реакции меняется - образуется этанол. Этанол - мемб-ранотропное соединение, он растворяется в ли-пидном бислое мембран и нарушает их функции. Это негативно отражается на трансмембранном переносе веществ, межклеточных контактах, взаимодействиях рецепторов клетки с сигнальными молекулами. Этанол может проходить через мембраны в межклеточное пространство и кровь и далее в любую клетку организма.

д. влияние этанола и ацетальдегида на метаболизм ксенобиотиков и лекарств в печени

Характер влияния этанола на метаболизм ксенобиотиков и лекарств зависит от стадии алкогольной болезни: начальная стадия алкоголизма, хронический алкоголизм или острая форма алкогольной интоксикации.

Микросомальная этанолокисляющая система (МЭОС) наряду с метаболизмом этанола участвует в детоксикации ксенобиотиков и лекарств. На начальной стадии алкогольной болезни биотрансформация лекарственных веществ протекает более активно вследствие индукции ферментов системы. Этим объясняют феномен лекарственной «устойчивости». Однако при острой интоксикации этиловым спиртом тормозится биотрансформация лекарственных веществ. Этанол конкурирует с ксенобиотиками за связывание с цитохромом Р 450 II Е 1 , вызывая гиперчувствительность (лекарственную «неустойчивость») к некоторым принятым одновременно с ним лекарственным препаратам.

Кроме того, у людей, страдающих хроническим алкоголизмом, наблюдают избирательную индукцию изоформы Р 450 II Е 1 и конкурентное ингибирование синтеза других изоформ, принимающих участие в метаболизме ксенобиотиков и лекарств. При злоупотреблении алкоголем индуцируется также синтез глюку-ронил-трансфераз, но снижается образование УДФ-глюкуроната.

Алкогольдегидрогеназа обладает широкой субстратной специфичностью и может окислять разные спирты, в том числе и метаболиты сердечных гликозидов - дигитоксина, дигоксина и гитоксина. Конкуренция этанола с сердечными гликозидами за активный центр алкогольде-гидрогеназы приводит к снижению скорости биотрансформации этой группы лекарств и повышает опасность их побочного эффекта у лиц, принимающих большие дозы алкоголя.

Повышение концентрации ацетальдегида вызывает целый ряд нарушений в структуре белков (ацетилирование), мембран (ПОЛ), модификацию глутатиона, необходимого для одного из самых важных ферментов обезвреживания ксенобиотиков - глутатионтрансферазы и фермента антиоксидазной защиты глутатионперок-сидазы. Таким образом, представленные данные свидетельствуют, что алкогольное поражение печени сопровождается нарушением важнейшей функции этого органа - детоксикационной.

В.Г. Кукес, Д.А. Сычёв, Г.В. Раменская, И.В. Игнатьев

Человек ежедневно подвергается воздействию множества инородных химических веществ, называемых «ксенобиотики». Ксенобиотики попадают в организм человека через лёгкие, кожу и из пищеварительного тракта в составе примесей воздуха, пищи, напитков, ЛС. Некоторые ксенобиотики не оказывают никакого воздействия на организм человека. Однако большинство ксенобиотиков могут вызывать биологические ответные реакции. Организм реагирует на ЛС так же, как и на любой другой ксенобиотик. При этом ЛС становятся объектами различных механизмов воздействия со стороны организма. Это, как правило, приводит к нейтрализации и элиминации (выведению) ЛС. Некоторые, легко растворимые в воде, ЛС элиминируются почками в неизменённом виде, другие вещества предварительно подвергаются воздействию ферментов, изменяющих их химическое строение. Таким образом, биотрансформация - общее понятие, включающее все химические изменения, происходящие с ЛС в организме. Результат биологической трансформации ЛС: с одной стороны - снижается растворимость веществ в жирах (липофильность) и повышается их растворимость в воде (гидрофильность), а с другой стороны - изменяется фармакологическая активность препарата.

Снижение липофильности и повышение гидрофильности лекарственных средств

Небольшое число ЛС способно выводиться почками в неизменён- ном виде. Чаще всего эти препараты представляют «малые молекулы» или они способны находиться в ионизированном состоянии при физиологических значениях рН. Большинство ЛС не обладают такими физико-химическими свойствами. Фармакологически активные органические молекулы чаще липофильны и остаются неионизированными при физиологических значениях рН. Эти ЛС обычно связаны с белками плазмы, плохо фильтруются в почечных клубочках и одновременно легко реабсорбируются в почечных канальцах. Биотрансформация (или система биотрансформации) направлена на повышение растворимости молекулы ЛС (повышение гидрофильности), что способствует выведению его из организма с мочой. Иными словами, липофильные ЛС превращаются в гидрофильные и, следовательно, в более легковыводимые соединения.

Изменение фармакологической активности лекарственных средств

Направления изменения фармакологической активности ЛС в результате биотрансформации.

Фармакологически активное вещество превращается в фармакологически неактивное (это характерно для большинства ЛС).

Фармакологически активное вещество на первом этапе превращается в другое фармакологически активное вещество (табл. 5-1).

Неактивное фармакологическое ЛС превращается в организме в фармакологически активное вещество; такие препараты называют «пролекарства» (табл. 5-2).

Таблица 5-1. Лекарственные средства, метаболиты которых сохраняют фармакологическую активность

Окончание таблицы 5-1

Таблица 5-2. Пролекарства

Окончание таблицы 5-2

* Фенацетин снят с производства из-за выраженных побочных эффектов, в частности, нефротоксичности («фенацетиновый нефрит»).

Следует отметить, что эффективность и безопасность применения ЛС (перечислены в табл. 5-1), имеющих активные метаболиты, зависят не только от фармакокинетики собственно ЛС, но и от фармакокинетики их активных метаболитов.

5.1. ПРОЛЕКАРСТВА

Одна из целей создания пролекарств - улучшение фармакокинетических свойств; это ускоряет и увеличивает всасывание веществ. Так, были разработаны сложные эфиры ампициллина (пивампицин p , талампицин p и бикампицин p), в отличие от ампициллина практически полностью всасывающиеся при приёме внутрь (98-99%). В печени эти препараты под действием карбоксиэстераз гидролизуются до ампициллина, обладающего антибактериальной активностью.

Биологическая доступность противовирусного ЛС валацикловира составляет 54%, в печени он превращается в ацикловир. Следует отметить, что биодоступность собственно ацикловира не превышает 20%. Высокая биодоступность валацикловира обусловлена наличием в его молекуле остатка аминокислоты валина. Именно поэтому валацикловир всасывается в кишечнике путём активного транспорта с помощью транспортёра олигопептидов PEPT 1.

Ещё один пример: ингибиторы аденозинпревращающего фермента, содержащие карбоксильную группу (эналаприл, периндоприл, трандолаприл, хвинаприл, спираприл, рамиприл и др.). Так, эналаприл всасывается при приёме внутрь на 60%, гидролизуется в печени под влиянием карбоксиэстераз до активного эналаприлата. Необходимо отметить: эналаприлат при введении внутрь всасывается лишь на 10%.

Другая цель разработки пролекарств - повышение безопасности лекарственных веществ. Например, учёные создали сулиндак p - НПВС. Данный препарат изначально не блокирует синтез простагландинов. Лишь в печени сулиндак p гидролизуется с образованием активного сульфида сулиндака p (именно это вещество обладает противовоспалительной активностью). Предполагали, что сулиндак p не будет обладать ульцерогенным действием. Однако ульцерогенность НПВС обусловлена не местным, а «системным» действием, поэтому, как показали исследования, частота возникновения эрозивно-язвенных поражений органов пищеварения при приёме сулиндака p и других НПВС примерно одинакова.

Ещё одна цель создания пролекарств - повышение избирательности действия ЛС; это увеличивает эффективность и безопасность препаратов. Дофамин используют для усиления почечного кровотока при острой почечной недостаточности, однако препарат влияет на миокард и сосуды. Отмечают повышение АД, развитие тахикардии и аритмий. Присоединение к дофамину остатка глутаминовой кислоты позволило создать новый препарат - глутамил-дофа p . Глутамил-дофа p гидролизуется до дофамина только в почках под влиянием глутамилтранспептидазы и декарбоксилазы L-ароматических аминокислот и таким образом практически не оказывает нежелательного действия на центральную гемодинамику.

Рис. 5-1. Фазы биотрансформации лекарственных средств (Katzung В., 1998)

5.2. ФАЗЫ БИОТРАНСФОРМАЦИИ ЛЕКАРСТВЕННЫХ СРЕДСТВ

Процессы биотрансформации большинства ЛС происходят в печени. Однако биотрансформация ЛС может протекать и в других органах, например, в пищеварительном тракте, лёгких, почках.

В целом, все реакции биотрансформации ЛС можно отнести к одной из двух категорий, обозначаемых как фаза биотрансформации I и фаза биотрансформации II.

Реакции I фазы (несинтетические реакции)

В процессе несинтетических реакций ЛС переходят в более полярные и лучше растворимые в воде (гидрофильные) соединения, чем исходное вещество. Изменения исходных физико-химических свойств ЛС обусловлены присоединением или освобождением активных функциональных групп: например, гидроксильных (-ОН), сульфгидрильных (-SH), аминогрупп (-NH 2). Основные реакции I фазы - реакции окисления. Гидроксилирование - наиболее распространённая реакция окисления - присоединение гидроксильного радикала (-ОН). Таким образом, можно считать, что в I фазу биотрансформации происходит «взлом» молекулы ЛС (табл. 5-3). Катализаторы указанных реакций - ферменты, называемые «оксидазы со смешанной функцией». В целом, субстратная специфичность этих ферментов очень низка, поэтому они окисляют различные лекарственные вещества. К другим, менее частым реакциям I фазы, относят процессы восстановления и гидролиза.

Реакции II фазы (синтетические реакции)

Реакции II фазы биотрансформации, или синтетические реакции, представляют соединение (конъюгацию) ЛС и/или его метаболитов с эндогенными веществами, в результате образуются полярные, хорошо растворимые в воде конъюгаты, легко выводимые почками или с желчью. Для вступления в реакцию II фазы молекула должна обладать химически активным радикалом (группировкой), к которому может присоединиться конъюгирующая молекула. Если активные радикалы присутствуют в молекуле ЛС изначально, тогда реакция конъюгации протекает, минуя реакции I фазы. Иногда молекула лекарственного вещества приобретает активные радикалы в ходе реакций I фазы (табл. 5-4).

Таблица 5-3. Реакции I фазы (Katzung 1998; с дополнениями)

Таблица 5-4. Реакции II фазы (Katzung 1998; с дополнениями)

Следует отметить, что препарат в процессе биотрансформации может превращаться только за счёт реакций I фазы, либо - исключительно за счёт реакций II фазы. Иногда часть ЛС метаболизируется путём реакций I фазы, а часть - путём реакций II фазы. Кроме того, существует возможность последовательного прохождения реакций I и II фазы (рис. 5-2).

Рис. 5-2. Функционирование системы оксидаз со смешанной функцией

Эффект первого прохождения через печень

Биотрансформация большинства ЛС осуществляется в печени. ЛС, метаболизм которых протекает в печени, подразделяют на две подгруппы: вещества с высоким печёночным клиренсом и вещества с низким печёночным клиренсом.

Для ЛС с высоким печёночным клиренсом характерна высокая степень извлечения (экстракции) из крови, что обусловлено значительной активностью (ёмкостью) метаболизирующих их ферментных систем (табл. 5-5). Поскольку такие ЛС быстро и легко метаболизируются в печени, клиренс их зависит от величины и скорости печёночного кровотока.

ЛС с низким печёночным клиренсом. Печёночный клиренс зависит не от скорости печёночного кровотока, а от активности ферментов и степени связывания ЛС с белками крови.

Таблица 5-5. Лекарственные средства с высоким печёночным клиренсом

При одинаковой ёмкости ферментных систем лекарственные вещества, в значительной степени связанные с белками (дифенин, хинидин, толбутамид), будут иметь низкий клиренс, по сравнению со слабосвязанными с белками ЛС (теофиллин, парацетамол). Ёмкость ферментных систем - не постоянная величина. Например, уменьшение ёмкости ферментных систем регистрируют при увеличении дозы ЛС (вследствие насыщения ферментов); это может привести к увеличению биологической доступности ЛС.

При приёме внутрь ЛС с высоким печёночным клиренсом, они всасываются в тонкой кишке и через систему воротной вены поступают в печень, где подвергаются активному метаболизму (на 50-80%) ещё до поступления в системное кровообращение. Этот процесс известен как пресистемная элиминация, или эффект «первого прохождения» («first-pass effect»). В результате такие ЛС имеют низкую биологическую доступность при приёме внутрь, при этом абсорбция их может составлять почти 100%. Эффект первого прохождения характерен для таких препаратов, как аминазин, ацетилсалициловая кислота, вера-

памил, гидралазин, изопреналин, имипрамин, кортизон, лабетолол, лидокаин, морфин. Метопролол, метилтестостерон, метоклопрамид, нортриптилин p , окспренолол p , органические нитраты, пропранолол, резерпин, салициламид, морацизин (этмозин) и некоторые другие препараты также подвергаются пресистемной элиминации. Следует отметить, что незначительная биотрансформация ЛС может проходить и в других органах (просвете и стенке кишечника, лёгких, плазме крови, почках и других органах).

Как показали исследования последних лет, эффект первого прохождения через печень зависит не только от процессов биотрансформации ЛС, но и от функционирования транспортёров ЛС, и, прежде всего, гликопротеина-Р и транспортёров органических анионов и катионов (см. «Роль транспортёров лекарственных средств в фармакокинетических процессах»).

5.3. ФЕРМЕНТЫ I ФАЗЫ БИОТРАНСФОРМАЦИИ ЛЕКАРСТВЕННЫХ СРЕДСТВ

Микросомальная система

Многие ферменты, метаболизирующие ЛС, располагаются на мембранах эндоплазматического ретикулума (ЭПР) печени и других тканей. При изоляции мембран ЭПР путём гомогенизации и фракционирования клетки, мембраны преобразуются в везикулы, называемые «микросомы». Микросомы сохраняют большинство морфологических и функциональных характеристик интактных мембран ЭПР, включая свойство шероховатости или гладкости поверхности, соответственно шероховатого (рибосомального) и гладкого (нерибосомального) ЭПР. В то время как шероховатые микросомы в основном связаны с синтезом белка, гладкие - относительно богаты ферментами, ответственными за окислительный метаболизм лекарственных веществ. В частности, гладкие микросомы содержат ферменты, известные как оксидазы со смешанной функцией, или монооксигеназы. Активность этих ферментов требует присутствия как восстанавливающего агента - никотинамидадениндинуклеотидфосфата (НАДФ-Н), так и молекулярного кислорода. При типичной реакции расходуется (восстанавливается) одна молекула кислорода на одну молекулу субстрата, при этом один кислородный атом включается в продукт реакции, а другой образует молекулу воды.

В этом окислительно-восстановительном процессе ключевую роль играют два микросомальных фермента.

Флавопротеин НАДФ-Н-цитохром Р-450-редуктаза. Один моль этого фермента содержит по одному молю флавинмононуклеотида и флавинадениндинуклеотида. Поскольку цитохром С может служить акцептором электрона, то указанный фермент часто называют НАДФ-цитохром С-редуктазой.

Гемопротеин, или цитохром Р-450 выполняет функцию конечной оксидазы. В действительности микросомальная мембрана содержит множество форм данного гемопротеина, и эта множественность возрастает при повторном введении ксенобиотиков. Относительное изобилие цитохрома Р-450, по сравнению с редуктазой печени, делает процесс восстановления гема цитохрома Р-450 лимитирующей стадией в процессе окисления лекарственных веществ в печени.

Процесс микросомального окисления ЛС требует участия цитохрома Р-450, цитохрома Р-450-редуктазы, НАДФ-Н и молекулярного кислорода. Упрощённая схема окислительного цикла представлена на рисунке (рис. 5-3). Окисленный (Fe3+) цитохром Р-450 соединяется с лекарственным субстратом с образованием бинарного комплекса. НАДФ-Н - донор электрона для флавопротеинредуктазы, которая, в свою очередь, восстанавливает окисленный комплекс цитохром Р-450-лекарство. Второй электрон переходит от НАДФ-Н через ту же флавопротеинредуктазу, восстанавливающую молекулярный кислород и формирующую комплекс «активированный кислород»-цитохром Р-450-субстрат. Этот комплекс переносит «активированный кислород» на лекарственный субстрат с образованием окисленного продукта.

Цитохром Р-450

Цитохром Р-450, в литературе часто обозначаемый CYP, представляет группу ферментов, осуществляющих не только метаболизм ЛС и других ксенобиотиков, но и участвующих в синтезе глюкокортикоидных гормонов, желчных кислот, простаноидов (тромбоксана А2, простациклина I2), холестерина. Впервые цитохром Р-450 идентифицировали Klingenberg и Garfincell в микросомах печени крысы в 1958 году. Филогенетические исследования показали, что цитохромы Р-450 появились в живых организмах около 3,5 млрд лет назад. Цитохром Р-450 - гемопротеин: он содержит гем. Название цитохрома Р-450 связано с особыми свойствами этого гемопротеина. В восстановлен-

ной форме цитохром Р-450 связывает монооксид углерода с образованием комплекса с максимальным поглощением света при длине волны 450 нм. Это свойство объясняют тем, что в геме цитохрома Р-450 железо связано не только с атомами азота четырёх лигандов (при этом образуя порфириновое кольцо). Существуют также пятый и шестой лиганды (сверху и снизу кольца гема) - атом азота гистидина и атом серы цистеина, входящие в состав полипептидной цепи белковой части цитохрома Р-450. Наибольшее количество цитохрома Р-450 располагается в гепатоцитах. Однако цитохром Р-450 обнаруживают и в других органах: в кишечнике, почках, лёгких, надпочечниках, головном мозге, коже, плаценте и миокарде. Важнейшее свойство цитохрома Р-450 - способность метаболизировать практически все известные химические соединения. Наиболее важная реакция - гидроксилирование. Как уже указывалось, цитохромы Р-450 ещё называют монооксигеназами, так как они включают один атом кислорода в субстрат, окисляя его, а один - в воду, в отличие от диоксигеназ, которые включают оба атома кислорода в субстрат.

Цитохром Р-450 имеет множество изоформ - изоферментов. В настоящее время выделено более 1000 изоферментов цитохрома Р-450. Изоферменты цитохрома Р-450, по классификации Nebert (1987), принято разделять по близости (гомологии) нуклеотид/амино- кислотной последовательности на семейства. В свою очередь, семейства подразделяют на подсемейства. Изоферменты цитохрома Р-450 с идентичностью аминокислотного состава более 40% объединены в семейства (выделено 36 семейств, 12 из них обнаружены у млекопитающих). Изоферменты цитохрома Р-450 с идентичностью аминокислотного состава более 55% объединены в подсемейства (выделено 39 подсемейств). Семейства цитохромов Р-450 принято обозначать римскими цифрами, подсемейства - римскими цифрами и латинской буквой.

Схема обозначения отдельных изоферментов.

Первый символ (вначале) - арабская цифра, обозначающая семейство.

Второй символ - латинская буква, обозначающая подсемейство.

В конце (третий символ) указывают арабскую цифру, соответствующую изоферменту.

Например, изофермент цитохрома Р-450, обозначенный как CYP3A4, принадлежит к семейству 3, подсемейству IIIA. Изоферменты цитохрома Р-450 - представители различных семействи подсемейств-

различаются регуляторами активности (ингибиторы и индукторы) и субстратной специфичностью 1 . Например, CYP2C9 метаболизирует исключительно S-варфарин, в то время как R-варфарин метаболизируют изоферменты CYP1A2 и CYP3A4.

Однако члены отдельных семейств, подсемейств и отдельные изоферменты цитохрома Р-450 могут обладать перекрёстной субстратной специфичностью, а также иметь перекрёстные ингибиторы и индукторы. Например, ритонавир (противовирусный препарат) метаболизируют принадлежащие к различным семействам и подсемействам 7 изоферментов (CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4). Циметидин одновременно ингибирует 4 изофермента: CYP1A2, СYP2C9, CYP2D6 и CYP3A4. В метаболизме ЛС принимают участие изоферменты цитохрома Р-450 I, II и III семейств. CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2D6, CYP2C9, CYP209, CYP2E1, CYP3A4 - наиболее важные для метаболизма лекарственных веществ и хорошо изученные изоферменты цитохрома Р-450. Содержание различных изоферментов цитохрома Р-450 в печени человека, а также их вклад в окисление ЛС различны (табл. 5-6). Лекарственные вещества - субстраты, ингибиторы и индукторы изоферментов цитохрома Р-450 представлены в приложении 1.

Таблица 5-6. Содержание изоферментов цитохрома Р-450 в печени человека и их вклад в окисление лекарственных средств (Lewis и соавт., 1999)

1 Некоторые изоферменты цитохрома Р-450 обладают не только субстратной специфичностью, но и стереоспецифичностью.

До сих пор не известны эндогенные субстраты для изоферментов семейства CYPI. Эти изоферменты метаболизируют ксенобиотики: некоторые ЛС и ПАУ - основные компоненты табачного дыма и продукты сжигания органического топлива. Отличительная особенность изоферментов семейства СYPI - их способность к индукции под действием ПАУ, в том числе, диоксина и 2,3,7,8-тетрахлорди- бензо-р-диоксина (TCDD). Поэтому семейство СYPI в литературе называют «цитохром, индуцибельный ПАУ»; «диоксин-индуцибельный цитохром» или «ТСDD-индуцибельный цитохром». В организме человека семейство СYPI представлено двумя подсемействами: IА и IB. В состав подсемейства IA входят изоферменты 1А1 и 1А2. В состав подсемейства IB входит изофермент 1В1.

Изофермент 1А1 цитохрома Р-450 (CYP1A1) обнаруживают в основном в лёгких, в меньшей степени - в лимфоцитах и плаценте. CYP1A1 не участвует в метаболизме ЛС, однако в лёгких этот изофермент активно метаболизирует ПАУ. При этом некоторые ПАУ, например, бензопирен и нитрозамины превращаются в канцерогенные соединения, способные спровоцировать развитие злокачественных новообразований, в первую очередь - рака лёгких. Этот процесс получил название «биологическая активация канцерогенов». Как и другие цитохромы семейства CYPI, CYP1A1 индуцируется ПАУ. При этом изучен механизм индукции CYP1A1 под влиянием ПАУ. Проникнув в клетку, ПАУ соединяются с Аh-рецептором (белок из класса регуляторов транскрипции); образовавшийся комплекс ПАУ-Ап-рецептор проникает в ядро при помощи другого белка - ARNT, а затем стимулирует экспрессию гена CYP1A1, связываясь со специфическим диоксин-чувствительным участком (сайтом) гена. Таким образом, у курящих людей процессы индукции CYP1A1 протекают наиболее интенсивно; это приводит к биологической активации канцерогенов. Именно этим объясняют высокий риск возникновения рака легких у курильщиков.

Изофермент 1А2 цитохрома Р-450 (CYP1A2) обнаруживают в основном в печени. В отличие от цитохрома CYP1A1, CYP1A2 метаболизирует не только ПАУ, но и ряд ЛС (теофиллин, кофеин и другие препараты). В качестве маркёрных субстратов для фенотипирования CYP1A2 используют фенацетин, кофеин и антипирин. При этом фенацетин подвергают О-деметилированию, кофеин - 3-деметилированию, а антипирин - 4-гидроксилированию. Оценка

клиренса кофеина - важный диагностический тест, позволяющий определить функциональное состояние печени. В связи с тем, что CYP1A2 - главный метаболизирующий фермент кофеина, по сути, в данном тесте определяют активность указанного изофермента. Пациенту предлагают принять внутрь кофеин, меченный радиоактивным изотопом углерода С 13 (С 13 -кофеин), затем выдыхаемый пациентом воздух в течение часа собирают в специальный резервуар и анализируют. При этом в выдыхаемом пациентом воздухе содержится радиоактивный углекислый газ (С 13 О 2 - образован радиоактивным углеродом) и обычный углекислый газ (С 12 О 2). По соотношению в выдыхаемом воздухе С 13 О 2 к С 12 О 2 (измеряют с помощью масс-спектроскопии) определяют клиренс кофеина. Существует модификация этого теста: методом высокоэффективной жидкостной хроматографии определяют концентрацию кофеина и его метаболитов в плазме крови, моче и слюне, взятых натощак. В этом случае определённый вклад в метаболизм кофеина вносят цитохромы CYP3A4 и CYP2D6. Оценка клиренса кофеина - надёж- ный тест, позволяющий оценить функциональное состояние печени при её выраженном поражении (например, при циррозе печени) и определить степень нарушений. К недостаткам теста относят его недостаточную чувствительность при умеренном поражении печени. На результат теста влияют курение (индукция CYP1A2), возраст, совместное применение ЛС, изменяющих активность изоферментов цитохрома Р-450 (ингибиторов или индукторов).

Подсемейство цитохрома Р-450 CYPIIA

Из изоферментов подсемейства CYPIIA наиболее важную роль в метаболизме ЛС играет изофермент цитохрома Р-450 2А6 (CYP2A6). Общее свойство изоферментов подсемейства CYPIIA - способность к индукции под действием фенобарбитала, поэтому подсемейство CYPIIA называют фенобарбитал-индуцибельными цитохромами.

Изофермент цитохрома Р-450 2А6 (CYP2A6) обнаруживают, в основном, в печени. CYP2A6 метаболизирует небольшое число ЛС. С помощью данного изофермента происходит превращение никотина в котинин, а также котинина в 3-гидроксикотинин; 7-гидроксили- рование кумарина; 7-гидроксилирование циклофосфана. CYP2A6 вносит определённый вклад в метаболизм ритонавира, парацетамола и вальпроевой кислоты. CYP2A6 принимает участие в биологической активации компонентов табачного дыма нитрозоаминов - канцерогенов, вызывающих рак лёгких. CYP2A6 способствует биоактивации

мощных мутагенов: 6-амино-(х)-ризена и 2-амино-3-метилмидазо- (4,5-f)-кванолина.

Подсемейство цитохрома Р450 CYPIIB

Из изоферментов подсемейства CYPIIB наиболее важную роль в метаболизме ЛС играет изофермент CYP2В6. Общее свойство изоферментов подсемейства CYPIIB - способность к индукции под действием фенобарбитала.

Изофермент цитохрома Р-450 2В6 (CYP2В6) участвует в метаболизме небольшого числа ЛС (циклофосфамид, тамоксифен, S-метадон p , бупропион р, эфавиренз). В основном CYP2В6 метаболизирует ксенобиотики. Маркёрный субстрат для CYP2В6 - антиконвульсант.

S-мефенитоин p при этом CYP2В6 подвергает S-мефенитоин p N-деметилированию (определяемый метаболит - N-деметилмефени- тоин). CYP2В6 принимает участие в метаболизме эндогенных стероидов: катализирует 16α-16β-гидроксилирование тестостерона.

Подсемейство цитохрома Р-450 CYPIIU

Из всех изоферментов подсемейства цитохрома CYPIIC наиболее важную роль в метаболизме ЛС играют изоферменты цитохрома Р-450 2С8, 2С9, 2С19. Общее свойство цитохромов подсемейства CYPIIC - 4-гидроксилазная активность по отношению к мефенитоину р (противосудорожное ЛС). Мефенитоин р - маркёрный субстрат изоферментов подсемейства CYPIIC. Именно поэтому изоферменты подсемейства CYPIIC называют ещё мефенитоин-4-гидроксилазами.

Изофермент цитохрома Р-450 2С8 (CYP2C8) принимает участие в метаболизме целого ряда лекарственных веществ (НПВС, статины и другие средства). Для многих ЛС CYP2C8 - «альтернативный» путь биотрансформации. Однако для таких препаратов, как репаглинид (гипогликемическое ЛС, принимаемое внутрь) и таксол (цитостатик), CYP2С8 - основной фермент метаболизма. CYP2С8 катализирует реакцию 6а-гидроксилирования таксола. Маркёрный субстрат CYP2С8 - паклитаксел (цитостатический препарат). В ходе взаимодействия паклитаксела с CYP2С8 происходит 6-гидроксилирование цитостатика.

Изофермент цитохрома Р-450 2С9 (CYP2C9) содержится, в основном, в печени. CYP2С9 отсутствует в фетальной печени, его обнаруживают только через месяц после рождения. Активность CYP2С9 не меняется в течение всей жизни. CYP2С9 метаболизирует различные лекарственные вещества. CYP2С9 - главный фермент метаболизма

многих НПВС, в том числе селективных ингибиторов циклоокси- геназы-2, ингибиторов ангиотензиновых рецепторов (лозартана и ирбесартана), гипогликемических препаратов (производных сульфонилмочевины), фенитоина (дифенина ♠), непрямых антикоагулянтов (варфарина 1 , аценокумарола 2), флувастатина 3 .

Следует отметить, что CYP2С9 имеет «стереоселективность» и метаболизирует в основном S-варфарин и S-аценокумарол, в то время как биотрансформация R-варфарина и R-аценокумарола происходит при помощи других изоферментов цитохрома Р-450: CYP1A2, CYP3A4. Индукторы CYP2С9 - рифампицин и барбитураты. Следует отметить, что практически все сульфаниламидные антибактериальные препараты ингибируют CYP2С9. Однако обнаружен специфический ингибитор CYP2С9 - сульфафеназол р. Существуют данные, что экстракт эхинацеи, пурпурной ингибирует CYP2С9 в исследованиях in vitro и in vivo, а гидролизованный экстракт сои (за счёт содержащихся в нём изофлавонов) ингибирует данный изофермент in vitro. Совместное применение ЛС-субстратов CYP2С9 с его ингибиторами приводит к угнетению метаболизма субстратов. В результате могут возникнуть нежелательные лекарственные реакции субстратов CYP2С9 (вплоть до интоксикации). Например, совместное применение варфарина (субстрат CYP2С9) с сульфаниламидными препаратами (ингибиторы CYP2С9) приводит к усилению антикоагулянтного эффекта варфарина. Именно поэтому при сочетании варфарина с сульфаниламидами рекомендуют выполнять строгий (по крайней мере, 1-2 раза в неделю) контроль международного нормализованного отношения. CYP2С9 обладает генетическим полиморфизмом. «Медленные» аллельные варианты CYP2C9*2 и CYP2C9*3- однонуклеотидные полиморфизмы гена CYP2C9, изученные в настоящее время наиболее полно. У носителей аллельных вариантов CYP2C9*2 и CYP2C9*3 отмечают снижение активности CYP2C9; это приводит к снижению скорости биотрансформации ЛС, метаболизирующихся данным изоферментом и к повышению их концентрации в плазме

1 Варфарин - рацематическая смесь изомеров: S-варфарина и R-вафрарина. Следует отметить, что большей антикоагулянтной активностью обладает S-варфарин.

2 Аценокумарол - рацематическая смесь изомеров: S-аценокумарола и R-ацено- кумарола. Однако, в отличие от варфарина, эти два изомера обладают одинаковой антикоагулянтной активностью.

3 Флувастатин - единственное ЛС из группы гиполипидемических препаратов ингибиторов ГМГ-КоА-редуктазы, метаболизм которого происходит при участии CYP2C9, а не CYP3A4. При этом CYP2C9 метаболизирует оба изомера флувастатина: активный (+)-3R,5S-энантиомер и неактивный (-)-3S,5R-энантиомер.

крови. Поэтому гетерозиготы (CYP2C9*1/*2, CYP2C9*1/*3) и гомозиготы (CYP2C9*2/*2, CYP2C9*3/*3, CYP2C9*2/*3) - «медленные» метаболизаторы по CYP2C9. Так, именно у этой категории пациентов (носителей перечисленных аллельных вариантов гена CYP2C9) наиболее часто отмечают нежелательные лекарственные реакции при применении ЛС, метаболизм которых происходит под влиянием CYP2C9 (непрямые антикоагулянты, НПВС, применяемые внутрь гипогликемические ЛС - производные сульфонилмочевины).

Изофермент цитохрома Р-450 2С18 (CYP2C18) содержится в основном в печени. CYP2Cl8 отсутствует в фетальной печени, его обнаруживают только через месяц после рождения. Активность CYP2Cl8 не изменяется в течение всей жизни. CYP2Cl8 вносит определённый вклад в метаболизм таких ЛС, как напроксен, омепразол, пироксикам, пропранолол, изотретиноин (ретиноевая кислота) и варфарин.

Изофермент цитохрома Р-450 2С19 (CYP2C19) - основной фермент метаболизма ингибиторов протонного насоса. При этом метаболизм отдельных ЛС из группы ингибиторов протонного насоса имеет свои особенности. Так, у омепразола обнаружили два пути метаболизма.

Под действием CYP2C19 омепразол превращается в гидроксиомепразол. Под действием CYP3A4 гидроксиомепразол переходит в омепразол гидроксисульфон.

Под действием CYP3A4 омепразол превращается в сульфид омепразола и сульфон омепразола. Под действием CYP2C19 сульфид омепразола и сульфон омепразола переходят в омепразол гидроксисульфон.

Таким образом, вне зависимости от пути биологической трансформации, конечный метаболит омепразола - омепразол гидроксисульфон. Однако следует отметить, что указанные пути метаболизма характерны, прежде всего, для R-изомера омепразола (S-изомер в значительно меньшей степени подвергается биотрансформации). Понимание этого феномена позволило создать эзопразол р - препарат, представляющий S-изомер омепразола (ингибиторы и индукторы CYP2C19, а также генетический полиморфизм этого изофермента в меньшей степени влияют на фармакокинетику эзопразола р).

Метаболизм лансопразола идентичен метаболизму омепразола. Рабепразол метаболизируется при участии CYP2C19 и CYP3A4 до диметилрабепразола и рабепразол сульфона соответственно.

CYP2C19 участвует в метаболизме тамоксифена, фенитоина, тиклопидина, таких психотропных ЛС, как трициклические антидепрессанты, диазепам, некоторые барбитураты.

Для CYP2C19 характерен генетический полиморфизм. Медленные метаболизаторы по CYP2Cl9 - носители «медленных» аллельных вариантов. Применение у медленных метаболизаторов по CYP2CL9 препаратов - субстратов этого изофермента приводит к более частому возникновению нежелательных лекарственных реакций, особенно при использовании препаратов с узкой терапевтической широтой: трициклических антидепрессантов, диазепама, некоторых барбитуратов (мефобарбитала, гексобарбитала). Однако наибольшее количество исследований посвящено влиянию полиморфизма гена CYP2C19 на фармакокинетику и фармакодинамику блокаторов ингибиторов протонного насоса. Как показали фармакокинетические исследования, проведённые при участии здоровых добровольцев, площадь под фармакокинетической кривой, значения максимальной концентрации омепразола, лансопразола и рабепразола достоверно выше у гетерозигот и, особенно, у гомозигот по «медленным» аллельным вариантам гена CYP2C19. Кроме того, более выраженное подавление желудочной секреции при применении омепразола, лансорпразола, рабепразола наблюдали у пациентов (гетерозиготы и гомозиготы по «медленным» аллельным вариантам CYP2C19), страдающих язвенной болезнью и рефлюкс-эзофагитом. Однако частота нежелательных лекарственных реакций ингибиторов протонного насоса не зависит от генотипа по CYP2C19. Существующие данные позволяют предположить, что для достижения «целевого» подавления желудочной секреции у гетерозигот и гомозигот по «медленным» аллельным вариантам гена CYP2C19 необходимы меньшие дозы ингибиторов протонного насоса.

Подсемейство цитохрома Р-450 CYPIID

В состав подсемейства цитохрома Р-450 CYPIID входит единственный изофермент - 2D6 (CYP2D6).

Изофермент цитохрома Р-450 2D6 (CYP2D6) обнаруживают в основном в печени. CYP2D6 метаболизирует около 20% всех известных ЛС, в том числе нейролептики, антидепрессанты, транквилизаторы, β-адреноблокаторы. Доказано: CYP2D6 - главный фермент биотрансформации и трициклического антидепрессанта амитриптилина. Однако, как показали исследования, незначительная часть амитриптилина метаболизируется и другими изоферментами цитохрома Р-450 (CYP2C19, CYP2C9, CYP3A4) до неактивных метаболитов. Дебризохин р, декстрометорфан и спартеин - маркёрные субстраты, используемые для фенотипирования изофермента 2D6. CYP2D6, в отличие от других изоферментов цитохрома Р-450, не имеет индукторов.

Ген CYP2D6 обладает полиморфизмом. Еще в 1977 году Iddle и Mahgoub обратили внимание на различие гипотензивного эффекта у больных артериальной гипертензией, применявших дебризохин р (препарат из группы α-адреноблокаторов). Тогда же сформулировали предположение о различии скорости метаболизма (гидроксилирования) дебризохина р у разных индивидуумов. У «медленных» метаболизаторов дебризохина р зарегистрировали наибольшую выраженность гипотензивного эффекта данного препарата. Позднее доказали, что у «медленных» метаболизаторов дебризохина р замедлен метаболизм и некоторых других ЛС, в том числе фенацетина, нортриптилина р, фенформина р, спартеина, энкаинида р, пропранолола, гуаноксана р и амитриптилина. Как показали дальнейшие исследования, «медленные» метаболизаторы по CYP2D6 - носители (как гомозиготы, так и гетерозиготы) функционально дефектных аллельных вариантов гена CYP2D6. Результат этих вариантов - отсутствие синтеза CYP2D6 (аллельный вариант CYP2D6x5), синтез неактивного белка (аллельные варианты CYP2D6x3, CYP2D6x4, CYP2D6x6, CYP2D6x7, CYP2D6x8, CYP2D6x11, CYP2D6x12, CYP2D6x14, CYP2D6x15, CYP2D6x19, CYP2D6x20), синтез дефектного белка со сниженной активностью (варианты CYP2D6x9, CYP2D6x10, CYP2D6x17,

CYP2D6x18, CYP2D6x36). С каждым годом растёт количество найденных аллельных вариантов гена CYP2D6 (их носительство приводит к изменению активности CYP2D6). Однако ещё Saxena (1994) указывал, что 95% всех «медленных» метаболизаторов по CYP2D6 - носители вариантов CYP2D6x3, CYP2D6x4, CYP2D6x5, остальные варианты обнаруживают гораздо реже. По данным Rau и соавт. (2004), частота аллельного варианта CYP2D6x4 среди пациентов, у которых наблюдали нежелательные лекарственные реакции на фоне приёма трициклических антидепрессантов (артериальная гипотензия, седативный эффект, тремор, кардиотоксичность), почти в 3 раза (20%) превышает таковую у пациентов, при лечении которых указанными препаратами осложнений не регистрировали (7%). Аналогичное влияние генетического полиморфизма CYP2D6 обнаружили и на фармакокинетику и фармакодинамику нейролептиков, в результате продемонстрировали наличие ассоциаций между носительством некоторых аллельных вариантов гена CYP2D6 и развитием индуцированных нейролептиками экстрапирамидных нарушений.

Однако носительство «медленных» аллельных вариантов гена CYP2D6 может сопровождаться не только увеличением риска развития нежелательных лекарственных реакций при применении препа-

ратов, метаболизирующихся данным изоферментом. Если ЛС - пролекарство, а активный метаболит образуется именно под действием CYP2D6, то у носителей «медленных» аллельных вариантов отмечают низкую эффективность препарата. Так, у носителей «медленных» аллельных вариантов гена CYP2D6 регистрируют менее выраженный анальгезирующий эффект кодеина. Этот феномен объясняют снижением О-деметилирования кодеина (в ходе указанного процесса образуется морфин). Обезболивающее действие трамадола также обусловлено активным метаболитом О-деметилтрамадолом (образуется под действием CYP2D6). У носителей «медленных» аллелельных вариантов гена CYP2D6 отмечают значительное уменьшение синтеза О-деметилтрамадола; это может привести к недостаточному анальгезирующему эффекту (аналогично процессам, возникающим при использовании кодеина). Так, Stamer и соавт. (2003), изучив анальгезирующий эффект трамадола у 300 пациентов, перенёсших операции на брюшной полости, обнаружили, что гомозиготы по «медленным» аллельным вариантам гена CYP2D6 не «отвечали» на терапию трамадолом в 2 раза чаще, чем пациенты, не несущие данных аллелей (46,7% против 21,6% соответственно, р=0,005).

В настоящее время выполнили множество исследований, посвя- щённых влиянию генетического полиморфизма CYP2D6 на фармакокинетику и фармакодинамику β-адреноблокаторов. Результаты этих исследований имеют клиническое значение для индивидуализации фармакотерапии данной группой ЛС.

Подсемейство цитохрома Р-450 CYPIIB

Из изоферментов подсемейства цитохрома IIE наиболее важную роль в метаболизме ЛС играет изофермент цитохрома Р-450 2Е1. Общее свойство изоферментов подсемейства CYPIIE - способность к индукции под влиянием этанола. Именно поэтому второе название подсемейства CYPIIE - этанол-индуцибельные цитохромы.

Изофермент цитохрома Р-450 2Е1 (CYP2E1) содержится в печени взрослых. CYP2E1 составляет около 7% всех изоферментов цитохрома Р-450. Субстраты CYP2E1 - малое количество ЛС, а также некоторые другие ксенобиотики: этанол, нитрозоамины, «небольшие» ароматические углеводороды типа бензола и анилина, алифатические хлоруглеводороды. CYP2E1 катализирует превращение дапсона в гидроксиламиндапсон, n1-деметилирование и N7-деметилирование кофеина, дегалогенизацию хлорфторуглеводородов и средств для ингаляционного наркоза (галотан) и некоторые другие реакции.

CYP2E1 вместе с CYP1A2 катализируют важную реакцию превращения парацетамола (ацетаминофена) в N-ацетилбензохинонимин, обладающий мощным гепатотоксическим действием. Существуют данные об участии цитохрома CYP2E1 ватерогенезе. Например, известно, что CYP2E1 - наиболее важный изофермент цитохрома Р-450, окисляющий холестерин липопротеидов низкой плотности (ЛНП). В процессе окисления ЛНП также принимают участие цитохромы и другие изоферменты цитохрома Р-450, а также 15-липооксигеназа и НАДФ-Н-оксидазы. Продукты окисления: 7а-гидроксихолестерол, 7β -гидроксихолестерол, 5β -6β -эпоксихолестерол, 5 α-6β -эпоксихолестерол, 7-кетохолестерол, 26-гидроксихолестерол. Процесс окисления ЛНП происходит в эндотелиоцитах, гладкой мускулатуре кровеносных сосудов, макрофагах. Окисленные ЛНП стимулируют формирование пенистых клеток и таким образом способствуют образованию атеросклеротических бляшек.

Подсемейство цитохрома Р-450 CYPIIIA

Подсемейство цитохрома Р-450 CYPIIIA включает четыре изофермента: 3А3, 3А4, 3А5 и 3А7. Цитохромы подсемейства IIIA составляют 30% всех изоферментов цитохрома Р-450 в печени и 70% всех изоферментов стенки пищеварительного тракта. При этом в печени преимущественно локализован изофермент 3А4 (CYP3A4), в стенках желудка и кишечника - изоферменты 3А3 (CYP3A3) и 3А5 (CYP3A5). Изофермент 3А7 (CYP3A7) обнаруживают только в печени плода. Из изоферментов подсемейства IIIA наиболее важную роль в метаболизме ЛС играет CYP3A4.

Изофермент цитохрома Р-450 3А4 (CYP3A4) метаболизирует около 60% всех известных ЛС, в том числе блокаторы медленных кальциевых каналов, макролидные антибиотики, некоторые антиаритмики, статины (ловастатин, симвастатин, аторвастатин), клопидогрел 1 и другие препараты.

CYP3A4 катализирует реакцию 6β-гидроксилирования эндогенных стероидов, в том числе тестостерона, прогестерона, кортизола p . Маркёрные субстраты для определения активности CYP3A4 - дапсон, эритромицин, нифедипин, лидокаин, тестостерон и кортизол p .

Метаболизм лидокаина протекает в гепатоцитах, где через оксидативное N-деэтилирование CYP3A4 образуется моноэтилглицинксилидид (MEGX).

1 Клопидогрел - пролекарство, под действием CYP3A4 он превращается в активный метаболит, обладающий антиагрегантным действием.

Определение активности CYP3A4 по MEGX (метаболит лидокаина) - наиболее чувствительный и специфичный тест, позволяющий оценить функциональное состояние печени при острых и хронических её заболеваниях, а также при синдроме системного воспалительного ответа (сепсисе). При циррозе печени концентрация MEGX коррелирует с прогнозом заболевания.

В литературе существуют данные о внутривидовой вариабельности метаболизма ЛС под действием CYP3A4. Однако молекулярные подтверждения генетического полиморфизма CYP3A4 появились только в последнее время. Так, A. Lemoin и соавт. (1996) описали случай интоксикации такролимусом (субстрат CYP3A4) у больного после пересадки печени (в клетках печени активность CYP3A4 обнаружить не удалось). Только после обработки клеток пересаженной печени глюкокортикоидами (индукторы CYP3A4) можно определить активность CYP3A4. Существует предположение, что нарушение экспрессии факторов транскрипции гена, кодирующего CYP3A4, - причина вариабельности метаболизма данного цитохрома.

Изофермент цитохрома Р-450 3А5 (CYP3A5), по последним данным, может играть существенную роль в метаболизме некоторых лекарственных веществ. Следует отметить, что CYP3A5 экспрессируется в печени 10-30% взрослых людей. У этих индивидуумов вклад CYP3A5 в активность всех изоферментов подсемейства IIIA составляет от 33 (у европейцев) до 60% (у афроамериканцев). Как показали исследования, под влиянием CYP3A5 происходят процессы биотрансформации тех ЛС, которые традиционно рассматривают как субстраты CYP3A4. Следует отметить, что индукторы и ингибиторы CYP3A4 обладают аналогичным действием и в отношении CYP3A5. Активность CYP3A5 у различных индивидуумов варьирует более чем в 30 раз. Впервые различия активности CYP3A5 описали Paulussen и соавт. (2000): они наблюдали in vitro существенные различия скорости метаболизма мидазолама под влиянием CYP3A5.

Дигидропиримидин дегидрогеназа

Физиологическая функция дигидропиримидин дегидрогеназы (ДПДГ) - восстановление урацила и тимидина - первая реакция трёхэтапного метаболизма этих соединений до β-аланина. Кроме того, ДПДГ - основной фермент, метаболизирующий 5-фторура- цил. Указанный препарат применяют в составе комбинированной химиотерапии рака молочной железы, яичников, пищевода, желудка, толстой и прямой кишки, печени, шейки матки, вульвы. Также

5-фторурацил используют при лечении рака мочевого пузыря, простаты, опухолей головы, шеи, слюнных желёз, надпочечников, поджелудочной железы. В настоящее время известна аминокислотная последовательность и количество аминокислотных остатков (их всего 1025), входящих в состав ДПДГ; молекулярная масса фермента составляет 111 кД. Идентифицировали ген ДПДГ, локализованный в хромосоме 1 (локус 1р22). Цитоплазма клеток различных тканей и органов содержит ДПДГ, особенно большое количество фермента обнаруживают в клетках печени, в моноцитах, лимфоцитах, гранулоцитах, тромбоцитах. Однако в эритроцитах активность ДПДГ не отмечена (Van Kuilenburg и соавт., 1999). С середины 80-х годов появились сообщения о серьёзных осложнениях, возникающих при применении 5-фторурацила (причина осложнений - наследственно обусловленная низкая активность ДПДГ). Как показали Diasio и соавт. (1988), низкая активность ДПДГ наследуется по аутосомнорецессивному типу. Таким образом, ДПДГ - фермент, обладающий генетическим полиморфизмом. В будущем, по-видимому, произой- дёт внедрение методов фенотипирования и генотипирования ДПДГ в онкологическую практику для обеспечения безопасности химиотерапии 5-фторурацилом.

5.4. ФЕРМЕНТЫ II ФАЗЫ БИОТРАНСФОРМАЦИИ ЛЕКАРСТВЕННЫХ СРЕДСТВ

Глюкуронилтрансферазы

Глюкуронирование - наиболее важная реакция II фазы метаболизма лекарственных веществ. Глюкуронирование представляет присоединение (конъюгацию) к субстрату уридиндифосфат-глюкуроновой кислоты (УДФ-глюкуроновой кислоты). Эта реакция катализируется надсемейством ферментов, называемых «УДФ-глюкуронилтрансферазы» и обозначаемых как UGT. Надсемейство УДФ-глюкуронилтрансфераз включает два семейства и более двадцати изоферментов, локализованных в эндоплазматической системе клеток. Они катализируют глюкуронирование большого количества ксенобиотиков, включая ЛС и их метаболиты, пестициды и канцерогены. К соединениям, подвергающимся глюкуронированию, относят простые и сложные эфиры; соединения, содержащие карбоксильные, карбомоильные, тиольные и карбонильные группы, а также нитрогруппы. Глюкуронирование

приводит к увеличению полярности химических соединений, что облегчает их растворимость в воде и элиминацию. УДФ-глюкуронилтрансферазы обнаруживают у всех позвоночных животных: от рыб до человека. В организме новорождённых регистрируют низкую активность УДФ-глюкуронилтрансфераз, однако через 1-3 мес жизни активность данных ферментов можно сравнить с таковой у взрослых. УДФ-глюкуронилтрансферазы содержатся в печени, кишечнике, лёг- ких, головном мозге, обонятельном эпителии, почках, но печень - главный орган, в котором происходит глюкуронирование. Степень экспрессии различных изоферментов УДФ-глюкуронилтрансферазы в органах неодинакова. Так, изофермент УДФ-глюкуронилтрансферазы UGT1A1, катализирующий реакцию глюкуронирования билирубина, экспрессируется главным образом в печени, но не в почках. Изоферменты УДФ-глюкуронилтрансферазы UGT1A6 и UGT1A9, ответственные за глюкуронирование фенола, экспрессируются и в печени, и в почках одинаково. Как указывалось выше, по идентичности аминокислотного состава надсемейство УДФ-глюкуронилтрансфераз подразделяют на два семейства: UGT1 и UGT2. Изоферменты, семейства UGT1 сходны по аминокислотному составу на 62-80%, а изоферменты семейства UGT2 - на 57-93%. Изоферменты, входящие в состав семейств УДФ-глюкуронилтрансферазы человека, а также локализация генов и маркёрные субстраты изоферментов для фенотипирования представлены в таблице (табл. 5-7).

Физиологическая функция УДФ-глюкуронилтрансфераз - глюкуронирование эндогенных соединений. Продукт катаболизма гема - билирубин - наиболее хорошо изученный эндогенный субстрат УДФ-глюкуронилтрансферазы. Глюкуронирование билирубина предотвращает накопление токсичного свободного билирубина. При этом билирубин выделяется с желчью в виде моноглюкуронидов и диглюкуронидов. Другая физиологическая функция УДФ-глюкуронилтрансферазы - участие в метаболизме гормонов. Так, тироксин и трийодтиронин подвергаются глюкуронированию в печени и выводятся в виде глюкуронидов с желчью. УДФ-глюкуронилтрансферазы также участвуют в метаболизме стероидных гормонов, желчных кислот, ретиноидов, однако эти реакции в настоящее время изучены недостаточно.

Глюкуронированию подвергаются ЛС разных классов, многие из них имеют узкую терапевтическую широту, например, морфин и хлорамфеникол (табл. 5-8).

Таблица 5-7. Состав семейств УДФ-глюкуронилтрансферазы человека, локализация генов и маркёрные субстраты изоферментов

Таблица 5-8. Лекарственные средства, метаболиты и ксенобиотики, подвергающиеся глюкоуронированию различными изоферментами УДФ-глюкуронилтрансферазы

Окончание таблицы 5-8

Лекарственные средства (представители разных химических групп), подвергающиеся глюкуронированию

Фенолы: пропофол, ацетаминофен, налоксон.

Спирты: хлорамфеникол, кодеин, оксазепам.

Алифатические амины: циклопироксоламин p , ламотриджин, амитриптилин.

Карбоновые кислоты: ферпазон p , фенилбутазон, сульфинпиразон.

Карбоксильные кислоты: напроксен, зомепирал p , кетопрофен. Таким образом, глюкуронированию подвергаются соединения,

содержащие разные функциональные группы, выполняющие функции акцепторов для УДФ-глюкуроновой кислоты. Как указывалось выше, в результате глюкуронирования образуются полярные неактивные метаболиты, легко выводящиеся из организма. Однако существует пример, когда в результате глюкуронирования образуется активный метаболит. Глюкуронирование морфина приводит к образованию морфин-6-глюкуронида, обладающего значительным анальгезирующим эффектом и реже, чем морфин, вызывающего тошноту и рвоту. Также глюкуронирование может способствовать биологической активации канцерогенов. К канцерогенным глюкуронидам относят N-глюкуронид 4-аминобифенила, N-глюкуронид N-ацетил- бензидина,О-глюкуронид-4-((гидрокисметил)-нитрозоамино)-1-(3-пи- ридил)-1-бутанона.

Давно известно о существовании наследственных нарушений глюкуронирования билирубина. К ним относят синдром Жильбера и синдром Криглера-Найяра. Синдром Жильбера - наследственное заболевание, наследуемое по аутосомно-рецессивному типу. Распространённость синдрома Жильбера среди населения составляет 1-5%. Причина развития данного заболевания - точечные мутации (как правило, замены в нуклеотидной последовательности) в гене UGT1. При этом образуется УДФ-глюкуронилтрансфераза, характеризующаяся малой активностью (25-30% от нормального уровня). Изменение глюкуронирования лекарственных веществ у больных с синдромом Жильбера изучено мало. Существуют данные о снижении клиренса толбутамида, парацетамола (ацетаминофена ♠) и рифампина p у больных с синдромом Жильбера. Изучали частоту побочных эффектов нового цитостатического препарата иринотекана у пациентов, страдающих одновременно колоректальным раком и синдромом Жильбера и у больных колоректальным раком. Иринотекан (СТР-11) - новый высокоэффективный препарат, обладающий цитостатическим действием, ингибирующий топоизомеразу I и применяемый при колоректальном раке при наличии резистентности к фторурацилу. Иринотекан в печени под действием карбоксиэстераз превращает-

ся в активный метаболит 7-этил-10-гидроксикамптотекин (SN-38). Главный путь метаболизма SN-38 - глюкуронирование с помощью UGT1A1. В ходе исследований побочные эффекты иринотекана (в частности, диарею) достоверно чаще регистрировали у больных, имеющих синдром Жильбера. Учёные доказали: носительство аллельных вариантов UGT1A1x1B, UGT1A1x26, UGT1A1x60 ассоциируется с более частым развитием гипербилирубинемии при применении иринотекана, при этом регистрировали низкие значения площади под фармакокинетической кривой глюкуронида SN-38. В настоящее время Американским управлением по контролю над пищевыми продуктами и медикаментами (Food and drug administration - FDA) одобрено определение аллельных вариантов гена UGT1A1 для выбора режима дозирования иринотекана. Существуют данные о влиянии носительства аллельных вариантов генов, кодирующих и другие изоформы UGT, на фармакокинетику и фармакодинамику различных ЛС.

Ацетилтрансферазы

Ацетилирование эволюционно представляет один из самых ранних механизмов адаптации. Реакция ацетилирования необходима для синтеза жирных кислот, стероидов, функционирования цикла Кребса. Важная функция ацетилирования - метаболизм (биотрансформация) ксенобиотиков: ЛС, бытовых и промышленных ядов. На процессы ацетилирования влияет N-ацетилтрансфераза, а также кофермент А. Контроль интенсивности ацетилирования в организме человека происходит при участии β 2 -адренорецепторов и зависит от метаболических резервов (пантотеновой кислоты, пиридоксина, тиамина, липоевой кислоты *) и генотипа. Кроме того, интенсивность ацетилирования зависит от функционального состояния печени и других органов, содержащих N-ацетилтрансферазу (хотя ацетилирование, как и другие реакции II фазы, мало изменяется при заболеваниях печени). Между тем ацетилирование ЛС и других ксенобиотиков происходит преимущественно в печени. Выделено два изофермента N-ацетилтрансферазы: N-ацетилтрансфераза 1 (NAT1) и N-ацетилтрансфераза 2 (NAT2). NAT1 ацетилирует небольшое количество ариламинов и не обладает генетическим полиморфизмом. Таким образом, основной фермент ацетилирования - NAT2 . Ген NAT2 расположен в хромосоме 8 (локусы 8р23.1, 8р23.2 и 8р23.3). NAT2 ацетилирует различные ЛС, в том числе изониазид и сульфаниламиды (табл. 5-9).

Таблица 5-9. Лекарственные средства, подвергающиеся ацетилированию

Наиболее важным свойством NAT2 считают генетический полиморфизм. Впервые полиморфизм ацетилирования описал в 1960-е годы Evans; он выделил медленные и быстрые ацетиляторы изониазида. Также отметили, что у «медленных» ацетиляторов, в связи с накоплением (кумуляцией) изониазида, чаще возникают полиневриты. Так, у «медленных» ацетиляторов период полувыведения изониазида составляет 3 ч, в то время как у «быстрых» ацетиляторов - 1,5 ч. Развитие полиневритов обусловлено влиянием изониазида: препарат тормозит переход пиридоксина (витамина В 6) в активный кофермент дипиридоксинфосфат, необходимый для синтеза миелина. Предполагали, что у «быстрых» ацетиляторов применение изониазида с большей вероятностью приведёт к развитию гепатотоксического эффекта из-за более интенсивного образования ацетилгидразина, однако практического подтверждения это предположение не получило. Индивидуальная скорость ацетилирования существенно не влияет на режим дозирования препарата при ежедневном приёме, но может уменьшать эффективность терапии при периодическом использовании изониазида. Проанализировав результаты лечения изониазидом 744 больных туберкулёзом, выяснили, что у «медленных» ацетиляторов закрытие полостей в лёгких происходит быстрее. Как показало исследование, проведённое Sunahara в 1963 году, «медленные» ацетиляторы - гомозиготы по «медленной» аллели NAT2, а «быстрые» метаболизаторы - гомозиготы либо гетерозиготы по «быстрой» аллели NAT2. В 1964 году Evans опубликовал данные о том, что полиморфизм ацетилирования характерен не только для изониазида, но и для гидралазина и сульфаниламидов. Затем наличие полиморфизма ацетили-

рования доказали и для других лекарственных средств. Применение прокаинамида и гидралазина у «медленных» ацетиляторов гораздо чаще вызывает поражение печени (гепатотоксичность), таким образом, и для этих препаратов характерен полиморфизм ацетилирования. Однако в случае с дапсоном (также подвергается ацетилированию) не удалось обнаружить различий в частоте возникновения волчаночноподобного синдрома при применении данного препарата «медленными» и «быстрыми» ацетиляторами. Распространённость «медленных» ацетиляторов варьирует: от 10-15% среди японцев и китайцев до 50% среди представителей европеоидной расы. Только в конце 80-х годов начали идентифицировать аллельные варианты гена NAT2, носительство которых обусловливает медленное ацетилирование. В настоящее время известно около 20 мутантных аллелей гена NAT2. Все указанные аллельные варианты наследуются по аутосомно-рецессивному типу.

Тип ацетилирования определяют, используя методы фенотипирования и генотипирования NAT2. В качестве маркёрных субстратов ацетилирования используют дапсон, изониазид и сульфадимин (сульфадимезин *). Отношение концентрации моноацетилдапсона к концентрации дапсона менее 0,35 в плазме крови через 6 ч после введения препарата характерно для «медленных» ацетиляторов, а более 0,35 - для «быстрых» ацетиляторов. Если в качестве маркерного субстрата используют сульфадимин, то наличие менее 25% сульфадимина в плазме крови (анализ выполняют через 6 ч) и менее 70% в моче (собранной через 5-6 ч после введения препарата) свидетельствует о фенотипе «медленного» ацетилирования.

Тиопурин S-метилтрансфераза

Тиопурин S-метилтрансфераза (ТРМТ) - фермент, катализирующий реакцию S-метилирования производных тиопурина - основной путь метаболизма цитостатических веществ из группы антагонистов пурина: 6-меркаптопурина, 6-тиогуанина, азатиоприна. 6-мер- каптопурин используют в составе комбинированной химиотерапии миелобластного и лимфобластного лейкоза, хронического миелолейкоза, лимфосаркомы, саркомы мягких тканей. При острых лейкозах применяют, как правило, 6-тиогуанин. В настоящее время известна аминокислотная последовательность и количество аминокислотных остатков, входящих в состав ТРМТ, - 245. Молекулярная масса ТРМТ составляет 28 кДа. Также идентифицировали ген ТРМТ, локализованный в хромосоме 6 (локус 6q22.3). ТРМТ располагается в цитоплазме кроветворных клеток.

В 1980 году Weinshiboum изучал активность ТРМТ у 298 здоровых добровольцев и обнаружил значительные различия активности ТРМТ у людей: 88,6% обследованных имели высокую активность ТРМТ, 11,1% - промежуточную. Низкую активность ТРМТ (или полное отсутствие активности фермента) зарегистрировали у 0,3% обследованных добровольцев. Так впервые описали генетический полиморфизм ТРМТ. Как показали более поздние исследования, для людей с низкой активностью ТРМТ характерна повышенная чувствительность к 6-меркаптопурину, 6-тиогуанину и азатиоприну; при этом развиваются опасные для жизни гематотоксические (лейкопения, тромбоцитопения, анемия) и гепатотоксические осложнения. В условиях низкой активности ТРМТ, метаболизм 6-меркаптопурина идёт по альтернативному пути - до высокотоксичного соединения 6-тио- гуанина нуклеотида. Lennard и соавт. (1990) изучали концентрацию 6-тиогуанина нуклеотида в плазме крови и активность ТРМТ в эритроцитах 95 детей, получавших 6-меркаптопурин по поводу острого лимфобластного лейкоза. Авторы выяснили: чем меньше активность ТРМТ, тем выше концентрации 6-TGN в плазме крови и тем более выражены побочные эффекты 6-меркаптопурина. В настоящее время доказано, что низкая активность ТРМТ наследуется по аутосомнорецессивному типу, причём у гомозигот регистрируют низкую активность ТРМТ, а у гетерозигот - промежуточную. Генетические исследования последних лет, выполненные методом полимеразной цепной реакции, позволили обнаружить мутации гена ТРМТ, определяющие низкую активность данного фермента. Безопасные дозы 6-меркапто- пурина: при высокой активности ТРМТ (нормальный генотип) назначают по 500 мг/(м 2 ×сутки), при промежуточной активности ТРМТ (гетерозиготы) - по 400 мг/(м 2 ×сутки), при медленной активности ТРМТ (гомозиготы) - по 50 мг/(м 2 ×сутки).

Сульфотрансферазы

Сульфатирование - реакция присоединения (конъюгации) к субстрату остатка серной кислоты, при этом образуются сложные эфиры серной кислоты или сульфоматы. Сульфатированию в организме человека подвергаются экзогенные соединения (в основном фенолы) и эндогенные соединения (гормоны щитовидной железы, катехоламины, некоторые стероидные гормоны). В качестве кофермента реакции сульфатирования выступает 3"-фосфоаденилсульфат. Затем происходит превращение 3"-фосфоаденилсульфата в аденозин- 3",5"-бифосфонат. Реакция сульфатирования катализируется над-

семейством ферментов, называемых «сульфотрансферазы» (SULT). Сульфотрансферазы локализуются в цитозоле. В организме человека обнаружили три семейства. В настоящее время идентифицировали около 40 изоферментов сульфотрансферазы. Изоферменты сульфотрансферазы в организме человека кодируются, по крайней мере, 10 генами. Наибольшая роль в сульфатировании лекарственных веществ и их метаболитов принадлежит изоферментам сульфотрансферазы семейства 1 (SULT1). SULT1A1 и SULT1A3 - самые важные изоферменты данного семейства. Изоферменты SULT1 локализованы главным образом в печени, а также толстой и тонкой кишке, лёгких, головном мозге, селезёнке, плаценте, лейкоцитах. Изоферменты SULT1 имеют молекулярную массу около 34 кДа и состоят из 295 аминокислотных остатков, ген изоферментов SULT1 локализован в 16 хромосоме (локус 16р11.2). SULT1A1 (термостабильная сульфотрансфераза) катализирует сульфатирование «простых фенолов», в том числе лекарственных веществ фенольной структуры (миноксидил р, ацетаминофен, морфин, салициламид, изопреналин и некоторые другие). Следует отметить, что сульфатирование миноксидила р приводит к образованию его активного метаболита - миноксидила сульфата. SULT1A1 сульфатирует метаболиты лидокаина: 4-гидрокси-2,6-ксилидин(4-гидроксил) и ропивакаина: 3-гид- роксиропивакаин, 4-гидроксиропивакаин, 2-гидроксиметилропива- каин. Кроме того, SULT1A1 сульфатирует 17β-эстрадиол. Маркёрный субстрат SULT1A1 - 4-нитрофенол. SULT1A3 (термолабильная сульфотрансфераза) катализирует реакции сульфатирования фенольных моноаминов: дофамина, норадреналина, серотонина. Маркёрный субстрат SULT1A3 - дофамин. Изоферменты сульфотрансферазы семейства 2 (SULT2) обеспечивают сульфатирование дигидроэпиандростерона, эпиандростерона, андростерона. Изоферменты SULT2 участвуют в биологической активации канцерогенов, например, ПАУ (5-гидроксиметилхризен, 7,12-дигидроксиметилбенз[а]антрацен), N-гидрокси-2-ацетиламинофлуорен. Изоферменты сульфотрансферазы семейства 3 (SULT3) катализируют N-сульфатирование ациклических ариламинов.

Эпоксидгидролаза

Водная конъюгация играет важную роль в детоксикации и биологической активации большого количества ксенобиотиков, таких, как арены, алифатические эпоксиды, ПАУ, афлотоксин В1. Реакции водной конъюгации катализирует особый фермент - эпоксидгидролаза

(ЕРНХ). Наибольшее количество данного фермента обнаружено в печени. Учёные выделили две изоформы эпоксидгидролазы: ЕРНХ1 и ЕРНХ2. ЕРНХ2 состоит из 534 аминокислотных остатков, имеет молекулярную массу 62 кДа; ген ЕРНХ2 располагается в хромосоме 8 (локус 8р21-р12). ЕРНХ2 локализуется в цитоплазме и пероксисомах; данная изоформа эпоксидгидролазы играет небольшую роль в метаболизме ксенобиотиков. Большую часть реакций водной конъюгации катализирует ЕРНХ1. ЕРНХ1 состоит из 455 аминокислотных остатков, имеет молекулярную массу 52 кДа. Ген ЕРНХ1 располагается в хромосоме 1 (локус 1q42.1). Велико значение ЕРНХ1 в водной конъюгации токсических метаболитов лекарственных веществ. Противосудорожное средство фенитоин окисляется цитохромом Р-450 до двух метаболитов: парагидроксилатеда и дигидродиола. Указанные метаболиты - активные электрофильные соединения, способные ковалентно связываться с макромолекулами клеток; это приводит к гибели клетки, формированию мутаций, озлокачествлению, дефектам митоза. Кроме того, парагидроксилатед и дигидродиол, действуя как гаптены, могут вызывать и иммунологические реакции. Гиперплазия дёсен, а также тератогенные эффекты - токсические реакции фенитоина зарегистрированы у животных. Доказано, что эти эффекты обусловлены действием метаболитов фенитоина: парагидроксилатеда и дигидродиола. Как показали Buecher и соавт. (1990), низкая активность ЕРНХ1 (меньше 30% от нормы) в амниоцитах - серьёзный фактор риска развития врождённых аномалий плода у женщин, принимающих во время беременности фенитоин. Доказано также, что основная причина снижения активности ЕРНХ1 - точечная мутация в экзоне 3 гена ЕРНХ1; в результате синтезируется дефектный фермент (тирозин в 113 положении заменён на гистидин). Мутация наследуется по аутосомнорецессивному типу. Снижение активности ЕРНХ1 наблюдают только у гомозигот по этой мутантной аллели. Данные о распространённости гомозигот и гетерозигот по этой мутации отсутствуют.

Глутатионтрансферазы

Конъюгации с глутатионом подвергаются ксенобиотики с различной химической структурой: эпоксиды, ареноксиды, гидроксиламины (некоторые из них обладают канцерогенным действием). Среди лекарственных веществ конъюгации с глутатионом подвергаются этакриновая кислота (урегит ♠) и гепатотоксичный метаболит парацетамола (ацетаминофена ♠) - N-ацетилбензохинонимин, превраща-

ющийся при этом в нетоксичное соединение. В результате реакции конъюгации с глутатионом образуются цистеиновые конъюгаты, называемые «тиоэстеры». Конъюгацию с глутатионом катализируют ферменты глутатион SH-S-трансферазы (GST). Эта группа ферментов локализована в цитозоле, хотя описана и микросомальная GST (однако её роль в метаболизме ксенобиотиков изучена мало). Активность GST в эритроцитах человека у различных индивидуумов различается в 6 раз, однако зависимость активности фермента от пола при этом отсутствует). Тем не менее, как показали исследования, существует чёткая корреляция активности GST у детей и их родителей. По идентичности аминокислотного состава у млекопитающих выделяют 6 классов GST: α- (альфа-), μ- (мю-), κ- (каппа-), θ- (тета-), π- (пи-) и σ- (сигма-) GST. В организме человека в основном экспрессируются GST классов μ (GSTM), θ (GSTT и π (GSTР). Среди них наибольшее значение в метаболизме ксенобиотиков имеют GST класса μ, обозначаемые как GSTM. В настоящее время выделено 5 изоферментов GSTM: GSTM1, GSTM2, GSTM3, GSTM4 и GSTM5. Ген GSTM локализован в хромосоме 1 (локус 1р13.3). GSTM1 экспрессируется в печени, почках, надпочечниках, желудке; слабая экспрессия данного изофермента найдена в скелетных мышцах, миокарде. GSTM1 не экспрессируется в плодной печени, фибробластах, эритроцитах, лимфоцитах и тромбоцитах. GSTM2 («мышечная» GSTM) экспрессируется во всех вышеперечисленных тканях (особенно в мышечной), кроме фибробластов, эритроцитов, лимфоцитов, тромбоцитов и фетальной печени. Экспрессия GSTM3 («мозговая» GSTM) осуществляется во всех тканях организма, особенно в ЦНС. Важная роль в инактивации канцерогенов принадлежит GSTM1. Косвенным подтверждением этого считают достоверное увеличение частоты злокачественных заболеваний среди носителей нулевых аллелей гена GSTM1, у которых отсутствует экспрессия GSTM1. Harada и соавт. (1987), изучив образцы печени, изъятые у 168 трупов, обнаружили, что нулевая аллель гена GSTM1 достоверно чаще встречается у больных с гепатокарциномой. Board и соавт. (1987) впервые выдвинули гипотезу: в организме носителей нулевых аллелей GSTM1 не происходит инактивация некоторых электрофильных канцерогенов. По данным Board и соавт. (1990), распро- странённость нулевой аллели GSTM1 среди европейского населения составляет 40-45%, в то время как у представителей негроидной расы - 60%. Существуют данные о более высокой частоте рака лёгких у носителей нулевой аллели GSTM1. Как показали Zhong и соавт. (1993),

70% больных раком ободочной кишки - носители нулевой аллели GSTM1. Другой изофермент GST, принадлежащий к классу π, - GSTР1 (локализуется главным образом в печени и структурах гематоэнцефалического барьера) участвует в инактивации пестицидов и гербицидов, широко используемых в сельском хозяйстве.

5.5. ФАКТОРЫ, ВЛИЯЮЩИЕ НА БИОТРАНСФОРМАЦИЮ ЛЕКАРСТВЕННЫХ СРЕДСТВ

Генетические факторы, влияющие на систему биотрансформации и транспортёры лекарственных средств

Генетические факторы, представляющие однонуклеотидные полиморфизмы генов, кодирующих ферменты биотрансформации и транс- портёры ЛС, могут в значительной степени влиять на фармакокинетику ЛС. Межиндивидуальные различия в скорости метаболизма ЛС, которые можно оценить по отношению концентрации ЛС-субстрата к концентрации его метаболита в плазме крови или в моче (метаболическое отношение), позволяют выделить группы индивидуумов, различающиеся по активности того или иного изофермента метаболизма.

«Экстенсивные» метаболизаторы (extensive metabolism, ЕМ) - лица с «нормальной» скоростью метаболизма определённых ЛС, как правило, гомозиготы по «дикой» аллели гена соответствующего фермента. К группе «экстенсивных» метаболизаторов принадлежит большинство населения.

«Медленные» метаболизаторы (poor metabolism, РМ) - лица со сниженной скоростью метаболизма определённых ЛС, как правило, гомозиготы (при аутосомно-рецессивном типе наследования) или гетерозиготы (при аутосомно-доминантном типе наследования) по «медленной» аллели гена соответствующего фермента. У этих индивидуумов происходит синтез «дефектного» фермента, либо вообще отсутствует синтез фермента метаболизма. В результате происходит снижение ферментативной активности. Нередко обнаруживают полное отсутствие ферментативной активности. У этой категории лиц регистрируют высокие показатели отношения концентрации ЛС к концентрации его метаболита. Следовательно, у «медленных» метаболизаторов ЛС накапливается в организме в высоких концентрациях; это приводит к разви-

Тию выраженных нежелательных лекарственных реакций, вплоть до интоксикации. Именно поэтому таким пациентам (медленным метаболизаторам) необходимо выполнять тщательный подбор дозы ЛС. «Медленным» метаболизаторам назначают меньшие дозы ЛС, чем «активным». «Сверхактивные», или «быстрые» метаболизаторы (ultraextensive metabolism, UM) - лица с повышенной скоростью метаболизма определённых ЛС, как правило, гомозиготы (при аутосомнорецессивном типе наследования) или гетерозиготы (при аутосомно-доминантном типе наследования) по «быстрой» аллели гена соответствующего фермента или, что наблюдают чаще, несущие копии функциональных аллелей. У этой категории лиц регистрируют низкие значения отношения концентрации ЛС к концентрации его метаболита. В результате концентрация ЛС в плазме крови недостаточна для достижения терапевтического эффекта. Таким пациентам («сверхактивным» метаболизаторам) назначают более высокие дозы ЛС, чем «активным» метаболизаторам. Если присутствует генетический полиморфизм того или иного фермента биотрансформации, то распределение индивидуумов по скорости метаболизма ЛС-субстратов данного фермента приобретает бимодальный (если существует 2 типа метаболизаторов) или тримодальный (если существует 3 типа метаболизаторов) характер.

Полиморфизм характерен и для генов, кодирующих транспортёры ЛС, при этом фармакокинетика ЛС может изменяться в зависимости от функции данного транспортёра. Клиническое значение наиболее значимых ферментов биотрансформации и транспортёров рассмотрено ниже.

Индукция и ингибирование системы биотрансформации и транспортёров

Под индукцией фермента биотрансформации или транспортёра понимают абсолютное увеличение его количества и (или) активности вследствие воздействия определённого химического агента, в частности, ЛС. В случае с ферментами биотрансформации это сопровождается гипертрофией ЭПР. Индукции могут подвергаться как ферменты I фазы (изоферменты цитохрома Р-450) и II фазы биотрансформации (УДФ-глюкуронилтрансфераза и др.), так и транспортёры ЛС (гликопротеин-Р, транспортёры органических анионов и катионов). ЛС, индуцирующие ферменты биотрансформации и транспортёры, не обладают очевидным структурным сходством, однако для них харак-

терны некоторые общие признаки. Такие вещества растворимы в жирах (липофильны); служат субстратами ферментов (которые они индуцируют) и имеют, чаще всего, длительный период полувыведения. Индукция ферментов биотрансформации ведёт к ускорению биотрансформации и, как правило, к снижению фармакологической активности, а следовательно, и к эффективности совместно применяемых с индуктором ЛС. Индукция транспортёров ЛС может приводить к различным изменениям концентрации ЛС в плазме крови, в зависимости от функций данного транспортёра. Различные субстраты способны индуцировать ферменты биотрансформации ЛС и транспортёры ЛС с неодинаковыми молекулярной массой, субстратной специфичностью, иммунохимическими и спектральными характеристиками. Кроме того, существуют значительные межиндивидуальные различия в интенсивности индукции ферментов биотрансформации и транспортёров ЛС. Один и тот же индуктор может повышать активность фермента или транспортёра у различных индивидуумов в 15-100 раз.

Основные типы индукции

«Фенобарбиталовый» тип индукции - непосредственное воздействие молекулы-индуктора на регуляторную область гена; это приводит к индукции фермента биотрансформации или транс- портёра ЛС. Такой механизм наиболее характерен для аутоиндукции. Под аутоиндукцией понимают увеличение активности фермента, метаболизирующего ксенобиотик, под действием самого ксенобиотика. Аутоиндукцию рассматривают как адаптивный механизм, выработанный в процессе эволюции для инактивации ксенобиотиков, в том числе растительного происхождения. Так, аутоиндукцией по отношению к цитохромам подсемейства IIВ обладает фитонцид чеснока - диалил сульфид. Барбитураты (индукторы изоферментов цитохрома Р-450 3А4, 2С9, подсемейства IIВ) - типичные аутоиндукторы (среди лекарственных веществ). Именно поэтому данный тип индукции получил название «фенобарбиталовый».

«Рифампицин-дексаметазоновый» тип - индукция изоферментов цитохрома Р-450 1А1, 3А4, 2В6 и гликопротеина-Р опосредована взаимодействием молекулы индуктора со специфическими рецепторами, их относят к классу белков-регуляторов транскрипции: прегнан-Х-рецептор (PXR), Ah-рецептор, CAR-рецеп- тор. Соединяясь с этими рецепторами, ЛС-индукторы образуют комплекс, который, проникая в ядро клетки, воздействует на

Регуляторную область гена. В результате происходит индукция фермента биотрансформации ЛС, или транспортёра. По этому механизму рифампины, глюкокортикоиды, препараты зверобоя и некоторые другие вещества индуцируют изоферменты цитохрома Р-450 и гликопротеин-Р. «Этаноловый» тип - стабилизация молекулы фермента биотрансформации ЛС вследствие образования комплекса с некоторыми ксенобиотиками (этанол, ацетон). Например, этанол индуцирует изофермент 2Е1 цитохрома Р-450 на всех этапах его образования: от транскрипции до трансляции. Полагают, что стабилизирующий эффект этанола связан с его способностью активировать систему фосфорилирования в гепатоцитах через ЦАМФ. По данному механизму изониазид индуцирует изофермент 2Е1 цитохрома Р-450. С «этаноловым» механизмом связывают процесс индукции изофермента 2Е1 цитохрома Р-450 при голодании и сахарном диабете, в данном случае в качестве индукторов изофермента 2Е1 цитохрома Р-450 выступают кетоновые тела. Индукция ведёт к ускорению биотрансформации ЛС-субстратов соответствующих ферментов, и, как правило, к снижению их фармакологической активности. Среди индукторов наиболее часто применяют в клинической практике рифампицин (индуктор изоферментов 1А2, 2С9, 2С19, 3A4, 3А5, 3А6, 3А7 цитохрома Р-450; гликопротеин-Р) и барбитураты (индукторы изоферментов 1A2, 2В6, 2C8, 2С9, 2С19, 3A4, 3А5, 3А6, 3А7 цитохрома Р-450). Для развития индуцирующего эффекта барбитуратов требуется несколько недель. В отличие от барбитуратов, рифампицин, как индуктор, действует быстро. Эффект рифампицина можно обнаружить уже через 2-4 дня. Максимальный эффект препарата регистрируют через 6-10 дней. Индукция ферментов, или транспортёров ЛС, вызванная рифампицином и барбитуратами, иногда приводит к снижению фармакологической эффективности непрямых антикоагулянтов (варфарина, аценокумарола), циклоспорина, глюкокортикоидов, кетоконазола, теофиллина, хинидина, дигоксина, фексофенадина и верапамила (это требует коррекции режима дозирования данных ЛС т.е. увеличения дозы). Следует подчеркнуть, что при отмене индуктора ферментов биотрансформации ЛС дозу сочетаемого ЛС следует снижать, так как происходит увеличение его концентрации в плазме крови. Примером такого взаимодействия можно считать комбинацию антикоагулянтов непрямого действия и фенобарбитала. Как показали исследования, в 14% случаев кровотечения при лечении

непрямыми антикоагулянтами развиваются вследствие отмены ЛС, индуцирующих ферменты биотрансформации.

Некоторые соединения могут ингибировать активность ферментов биотрансформации и транспортёров ЛС. Причём при снижении активности ферментов, метаболизирующих ЛС, возможно развитие побочных эффектов, связанных с длительной циркуляцией этих соединений в организме. Ингибирование транспортёров ЛС может приводить к различным изменениям концентрации ЛС в плазме крови в зависимости от функций данного транспортёра. Некоторые лекарственные вещества способны ингибировать как ферменты I фазы биотрансформации (изоферменты цитохрома Р-450) и II фазы биотрансформации (N-ацетилтрансфераза и др.), так и транспортёры ЛС.

Основные механизмы ингибирования

Связывание с регуляторной областью гена фермента биотрансформации или транспортёра ЛС. По данному механизму происходит ингибирование ферментов биотрансформации ЛС под действием большого количества препарата (циметидин, флуоксетин, омепразол, фторхинолоны, макролиды, сульфаниламиды и т.д.).

Некоторые препараты, обладающие высоким аффинитетом (сродством) к определённым изоферферментам цитохрома Р-450 (верапамил, нифедипин, исрадипин, хинидин), ингибируют биотрансформацию ЛС с более низким аффинитетом к этим изоферментам. Подобный механизм называют конкурентным метаболическим взаимодействием.

Прямая инактивация изоферментов цитохрома Р-450 (гастоден р). Угнетение взаимодействия цитохрома Р-450 с НАДФ-Н-цитохром Р-450 редуктазой (фумарокумарины сока грейпфрута и лайма).

Снижение активности ферментов биотрансформации ЛС под действием соответствующих ингибиторов ведёт к повышению концентрации в плазме крови этих ЛС (субстратов для ферментов). При этом происходит удлинение периода полувыведения лекарственных веществ. Всё это служит причиной развития побочных эффектов. Некоторые ингибиторы влияют на несколько изоферментов биотрансформации одновременно. Для угнетения нескольких изоформ ферментов могут потребоваться большие концентрации ингибитора. Так, флуконазол (противогрибковый препарат) в дозе 100 мг в сутки угнетает активность изофермента 2С9 цитохрома Р-450. При повышении дозы данного ЛС до 400 мг отмечают также угнетение

активности изофермента 3А4. Кроме того, чем выше доза ингибитора, тем быстрее развивается (и тем выше) его эффект. Ингибирование вообще развивается быстрее, чем индукция, обычно его можно зарегистрировать уже через 24 ч с момента назначения ингибиторов. На скорость ингибирования активности фермента влияет также путь введения ЛС-ингибитора: если ингибитор вводят внутривенно, то процесс взаимодействия произойдёт быстрее.

Ингибиторами и индукторами ферментов биотрансформации и транспортёров ЛС могут служить не только ЛС, но и фруктовые соки (табл. 5-10), и фитопрепараты (приложение 2) - всё это имеет клиническое значение при применении ЛС, выполняющих функции субстратов для данных ферментов и транспортёров.

Таблица 5-10. Влияние фруктовых соков на активность системы биотрансформации и транспортёров лекарственных средств

5.6. ЭКСТРАГЕПАТИЧЕСКАЯ БИОТРАНСФОРМАЦИЯ

Роль кишечника в биотрансформации лекарственных средств

Кишечник считают вторым по значимости органом (после печени), выполняющим биотрансформацию ЛС. В стенке кишечника осуществляются как реакции I фазы, так и реакции II фазы биотрансформации. Биотрансформация ЛС в стенке кишечника имеет большое значение в эффекте первого прохождения (пресистемной биотрансформации). Уже доказана существенная роль биотрансформации в стенке кишечника в эффекте первого прохождения таких ЛС, как циклоспорин А, нифедипин, мидазолам, верапамил.

Ферменты I фазы биотрансформации лекарственных средств в стенке кишечника

Среди ферментов I фазы биотрансформации ЛС, в стенке кишечника в основном локализованы изоферменты цитохрома Р-450. Среднее содержание изоферментов цитохрома Р-450 в стенке кишечника человека составляет 20 пмоль/мг микросомального белка (в печени - 300 пмоль/мг микросомального белка). Установлена чёткая закономерность: содержание изоферментов цитохрома Р-450 уменьшается от проксимальных отделов кишечника к дистальным (табл. 5-11). Кроме того, содержание изоферментов цитохрома Р-450 максимально на вершине ворсинок кишечника и минимально - в криптах. Преобладающийвкишечникеизоферментцитохрома Р-450 - CYP3А4 составляет 70% от всех изоферментов цитохрома Р-450 кишечника. По данным разных авторов, содержание CYP3А4 в стенке кишечника варьирует, что объясняют межиндивидульными различиями цитохрома Р-450. Также имеют значение и способы очистки энтероцитов.

Таблица 5-11. Содержание изофермента 3А4 цитохрома Р-450 в стенке кишечника и печени человека

В стенке кишечника идентифицированы также другие изоферменты: CYP2C9 и CYP2D6. Однако, по сравнению с печенью, содержание указанных ферментов в стенке кишечника незначительно (в 100-200 раз меньше). Проведённые исследования продемонстрировали незначительную, по сравнению с печенью, метаболическую активность изоферментов цитохрома Р-450 стенки кишечника (табл. 5-12). Как показали исследования, посвященные изучению индукции изоферментов цитохрома Р-450 стенки кишечника, индуцибельность изоферментов стенки кишечника ниже, чем у изоферментов цитохрома Р-450 печени.

Таблица 5-12. Метаболическая активность изоферментов цитохромов Р-450 стенки кишечника и печени

Ферменты II фазы биотрансформации лекарственных средств в стенке кишечника

УДФ-глюкуронилтрансфераза и сульфотрансфераза - наиболее хорошо изученные ферменты II фазы биотрансформации ЛС, расположенные в стенке кишечника. Распределение этих ферментов в кишечнике аналогично изоферментам цитохрома Р-450. Cappiello и соавт. (1991) изучали активность УДФ-глюкуронилтрансферазы в стенке кишечника и печени человека по метаболическому клиренсу 1-нафтола, морфина и этинилэстрадиола (табл. 5-13). Как показали исследования, метаболическая активность УДФ-глюкуронилтрансферазы стенки кишечника ниже УДФ-глюкуронилтрансферазы печени. Подобная закономерность характерна и для глюкуронирования билирубина.

Таблица 5-13. Метаболическая активность УДФ-глюкуронилтрансферазы в стенке кишечника и в печени

Cappiello и соавт. (1987) изучали также активность сульфотрансферазы стенки кишечника и печени по метаболическому клиренсу 2-нафтола. Полученные данные свидетельствуют о наличии различий показателей метаболического клиренса (причём клиренс 2-нафтола в стенке кишечника ниже, чем в печени). В подвздошной кишке величина данного показателя составляет 0,64 нмоль/(минхмг), в сигмовидной кишке - 0,4 нмоль/(минхмг), в печени - 1,82 нмоль/(минхмг). Однако существуют препараты, сульфатирование которых происходит в основном в стенке кишечника. К ним относят, например, β 2 -адреномиметики: тербуталин и изопреналин (табл. 5-14).

Таким образом, несмотря на определённый вклад в биотрансформацию лекарственных веществ, стенка кишечника по своей метаболической способности значительно уступает печени.

Таблица 5-14. Метаболический клиренс тербуталина и изопреналина в стенке кишечника и печени

Роль лёгких в биотрансформации лекарственных средств

В лёгких человека присутствуют как ферменты I фазы биотрансформации (изоферменты цитохрома Р-450), так и ферменты II фазы

(эпоксидгидролаза, УДФ-глюкуронилтрансфераза и др.). В лёгочной ткани человека удалось идентифицировать различные изоферменты цитохрома Р-450: CYP1A1, CYP1B1, CYP2А, CYP2A10, CYP2A11, CYP2В, CYP2E1, CYP2F1, CYP2F3. Общее содержание цитохрома Р-450 в лёгких человека составляет 0,01 нмоль/мг микросомального белка (это в 10 раз меньше, чем в печени). Существуют изоферменты цитохрома Р-450, которые экспрессируются преимущественно в лёг- ких. К ним относят CYP1A1 (найден у человека), CYP2В (у мыши), CYP4В1 (у крысы) и CYP4В2 (у крупного рогатого скота). Эти изоферменты имеют большое значение в биологической активации ряда канцерогенов и пульмонотоксичных соединений. Информация об участии CYP1A1 в биологической активации ПАУ изложена выше. У мышей окисление бутилированного гидрокситолуена изоферментом CYP2В приводит к образованию пневмотоксичного электрофильного метаболита. Изоферменты CYP4В1 крыс и CYP4В2 крупного рогатого скота способствуют биологической активации 4-ипоменола (4-ипоме- нол - сильнодействующий пневмотоксичный фуранотерпеноид грибка сырого картофеля). Именно 4-импоменол стал причиной массового падежа крупного рогатого скота в 70-е годы в США и Англии. При этом 4-ипоменол, окисленный изоферментом CYP4В2, вызывал интерстициальную пневмонию, приводившую к летальному исходу.

Таким образом, экспрессия в лёгких специфичных изоферментов объясняет избирательную пульмонотоксичность некоторых ксенобиотиков. Несмотря на наличие в лёгких и других отделах дыхательных путей ферментов, их роль в биотрансформации лекарственных веществ ничтожна. В таблице приведены ферменты биотрансформации ЛС, обнаруженные в дыхательных путях человека (табл. 5-15). Определение локализации ферментов биотрансформации в дыхательных путях затруднено из-за использования в исследованиях гомогенизата лёгких.

Таблица 5-15. Ферменты биотрансформации, обнаруженные в дыхательных путях человека

Роль почек в биотрансформации лекарственных средств

Исследования, выполненные в течение последних 20 лет, показали, что почки принимают участие в метаболизме ксенобиотиков и лекарственных веществ. При этом, как правило, происходит снижение биологической и фармакологической активности, однако в некоторых случаях возможен и процесс биологической активации (в частности, биоактивации канцерогенов).

В почках обнаружены как ферменты I фазы биотрансформации, так и ферменты II фазы. Причём ферменты биотрансформации локализованы и в корковом, и в мозговом веществе почек (табл. 5-16). Однако, как показали исследования, большее количество изоферментов цитохрома Р-450 содержит именно корковый слой почек, а не мозговой. Максимальное содержание изоферментов цитохрома Р-450 обнаружили в проксимальных почечных канальцах. Так, почки содержат изофермент CYP1A1, ранее считавшийся специфичным для лёгких, и CYP1A2. Причём указанные изоферменты в почках подвергаются индукции ПАУ (например, β-нафтовлавоном, 2-ацетиламино- флурином) так же, как и в печени. В почках обнаружили активность CYP2B1, в частности, описали окисление парацетамола (ацетаминофена ♠) в почках под действием этого изофермента. Позднее продемонстрировали, что именно образование токсичного метаболита N-ацетибензахинонимина в почках под действием CYP2E1 (по аналогии с печенью) - основная причина нефротоксического действия данного препарата. При совместном применении парацетамола с индукторами CYP2E1 (этанолом, тестостероном и т.д.) риск поражения почек возрастает в несколько раз. Активность CYP3A4 в почках регистрируют не всегда (только в80% случаев). Следует отметить: вклад изоферментов цитохрома Р-450 почек в биотрансформацию лекарственных веществ скромен и, видимо, в большинстве случаев не имеет клинического значения. Однако для некоторых ЛС биохимическое преобразование в почках - основной путь биотрансформации. Как показали исследования, тропизетрон р (противорвотное ЛС), главным образом, окисляется в почках под действием изоферментов CYP1A2 и CYP2E1.

Среди ферментов II фазы биотрансформации в почках наиболее часто определяют УДФ-глюкуронилтрансферазу и β-лиазу. Следует отметить, что активность β-лиазы в почках выше, чем в печени. Обнаружение этой особенности позволило разработать некоторые «пролекарства», при активации которых образуются активные мета-

болиты, селективно действующие на почки. Так, создали цитостатический препарат для лечения хронического гломерулонефрита - S-(6-пуринил)-L-цистеин. Это соединение - изначально неактивное, в почках под действием β-лиазы превращается в активный 6-мер- каптопурин. Таким образом, 6-меркуптопурин производит эффект исключительно в почках; это значительно снижает частоту и выраженность нежелательных лекарственных реакций.

Глюкуронированию в почках подвергаются такие ЛС, как парацетамол (ацетаминофен ♠), зидовудин (азидотимидин ♠), морфин, сульфаметазон р, фуросемид (лазикс ♠) и хлорамфеникол (левомицетин ♠).

Таблица 5-16. Распределение ферментов биотрансформации лекарственных средств в почках (Lohr и соавт., 1998)

* - содержание фермента достоверно выше.

Литература

Кукес В.Г. Метаболизм лекарственных средств: клинико-фармакологические аспекты. - М.: Реафарм, 2004. - С. 113-120.

Середенин С.Б. Лекции по фармакогенетике. - М.: МИА, 2004. -

Diasio R.B., Beavers T.L., Carpenter J.T. Familial deficiency of dihydropyrimidine dehydrogenase: biochemical basis for familial pyrimidinemia and severe 5-fluorouracil-induced toxicity // J. Clin. Invest. - 1988. - Vol. 81. -

Lemoine A., Daniel A., Dennison A., Kiffel L. et al. FK 506 renal toxicity and lack of detectable cytochrome P-450 3A in the liver graft of a patient undergoing liver transplantation // Hepatology. - 1994. - Vol. 20. - P. 1472-1477.

Lewis D.F.V., Dickins M., Eddershaw P.J. et al. Cytochrome-P450 Substrate Specificities, Substrate structural Templates and Enzyme Active Site Geometries // Drug Metabol. Drug Interact. - 1999. - Vol. 15. - P. 1-51.

Ферменты (энзимы) – это специфические белки, которые участвуют в биохимических реакциях, могут ускорять или замедлять их течение. В печени вырабатывается большое количество таких соединений в связи с ее важной ролью в обмене жиров, белков и углеводов. Их активность определяется по результатам биохимического анализа крови. Такие исследования важны для оценки состояния печени и для диагностики многих заболеваний.

Что это такое?

Ферменты печени – это группа биологически активных белков, которые могут вырабатываться исключительно клетками этого органа. Они могут находиться на внутренней или наружной мембране, внутри клеток или в крови. В зависимости от роли энзимов, их разделяют на несколько категорий:

  • гидролазы – ускоряют расщепление сложных соединений на молекулы;
  • синтетазы – принимают участие в реакциях синтеза сложных биологических соединений из простых веществ;
  • трансферазы – участвуют в транспорте молекул через мембраны;
  • оксиредуктазы – являются основным условием нормального течения окислительно-восстановительных реакциях на клеточном уровне;
  • изомеразы – необходимы для процессов изменения конфигурации простых молекул;
  • лиазы – формируют дополнительные химические связи между молекулами.

ВАЖНО! На активность ферментов влияет в том числе наличие других соединений (ко-факторов). К ним относятся белки, витамины и витаминоподобные вещества.

Группы печеночных энзимов

От локализации печеночных ферментов зависит их функция в процессах клеточного обмена. Так, митохондрии участвуют в обмене энергии, гранулярная эндоплазматическая сеть синтезирует белки, гладкая – жиры и углеводы, на лизосомах находятся белки-гидролазы. Все энзимы, которые вырабатывает печень, можно обнаружить в крови.

В зависимости от того, какие функции выполняют энзимы и где они находятся в организме, их разделяют на 3 большие группы:

  • секреторные – после секреции клетками печени поступают в кровь и находятся здесь в максимальной концентрации (факторы свертываемости крови, холинэстераза);
  • индикаторные – в норме содержатся внутри клеток и высвобождаются в кровь только при их повреждении, поэтому могут служить индикаторами степени поражения печени при ее заболеваниях (АЛТ, АСТ и другие);
  • экскреторные – выводятся из печени с желчью, а повышение их уровня в крови свидетельствует о нарушении этих процессов.

Для диагностики состояния печени имеет значение каждый из энзимов. Их активность определяют при подозрении на основные патологии печени и для оценки степени повреждения печеночной ткани. Для получения более полной картины может потребоваться также диагностика пищеварительных ферментов, энзимов желудочно-кишечного тракта, поджелудочной железы и желчевыводящих путей.

Для определения печеночных ферментов необходима венозная кровь, собранная утром натощак

Ферменты, которые определяют для диагностики болезней печени

Биохимия крови – это важный этап диагностики болезней печени. Все патологические процессы в этом органе могут происходить с явлениями холестаза или цитолиза. Первый процесс представляет собой нарушение оттока желчи, которую выделяют гепатоциты. При остальных нарушениях происходит разрушение здоровых клеточных элементов с высвобождением их содержимого в кровь. По наличию и количеству энзимов печени в крови можно определить стадию болезни и характер патологических изменений в органах гепатобилиарного тракта.

Показатели холестаза

Синдром холестаза (затруднение желчеотделения) сопровождает воспалительные заболевания печени, нарушение секреции желчи и патологии желчевыводящих путей. Эти явления вызывают следующие изменения в биохимическом анализе:

  • экскреторные энзимы повышены;
  • увеличены также компоненты желчи, в том числе билирубин, желчные кислоты, холестерин и фосфолипиды.

Отток желчи может нарушаться при механическом давлении на желчные протоки (воспаленной тканью, новообразованиями, камнями), сужении их просвета и других явлениях. Комплекс характерных изменений показателей крови становится основанием для более подробного исследования состояния желчного пузыря и желчевыводящих путей.

Индикаторы цитолиза

Цитолиз (разрушение гепатоцитов) может происходить при инфекционных и незаразных гепатитах либо при отравлениях. В таком случае содержимое клеток высвобождается, а индикаторные ферменты появляются в крови. К ним относятся АЛТ (аланинаминотрансфераза), АСТ (аспартатаминотрансфераза), ЛДГ (лактатдегидрогеназа) и альдолаза. Чем выше показатели этих соединений в крови, тем обширнее степень поражения паренхимы органа.

Определение щелочной фосфатазы

Щелочная фосфатаза, которая обнаруживается в крови, может иметь не только печеночное происхождение. Небольшое количество этого фермента вырабатывается костным мозгом. О заболеваниях печени можно говорить, если происходит одновременное повышение уровня ЩФ и гамма-ГГТ. Дополнительно может обнаруживаться увеличение показателей билирубина, что говорит о патологиях желчного пузыря.

Гамма-глютамилтранспептидаза в крови

ГГТ обычно повышается с щелочной фосфатазой. Эти показатели свидетельствуют о развитии холестаза и о возможных заболеваниях желчевыводящей системы. Если этот фермент повышается изолированно, есть риск незначительного повреждения печеночной ткани на начальных стадиях алкоголизма или других отравлениях. При более серьезных патологиях наблюдается одновременное увеличение печеночных энзимов.


Окончательный диагноз можно поставить только на основании комплексного обследования, которое включает УЗИ

Трансаминазы печени (АЛТ, АСТ)

АЛТ (аланинаминотрансфераза) – это наиболее специфичный фермент печени. Он находится в цитоплазме и других органов (почек, сердца), но именно в печеночной паренхиме он присутствует в наибольшей концентрации. Его повышение в крови может указывать на различные заболевания:

  • гепатит, интоксикации с повреждением печени, цирроз;
  • инфаркт миокарда;
  • хронические заболевания сердечно-сосудистой системы, которые проявляются некрозом участков функциональной ткани;
  • травмы, повреждения или ушибы мышц;
  • тяжелая степень панкреатита – воспаления поджелудочной железы.

АСТ (аспартатдегидрогеназа) находится не только в печени. Ее также можно обнаружить в митохондриях сердца, почек и скелетных мускулов. Повышение этого фермента в крови указывает на разрушение клеточных элементов и развитие одной из патологий:

  • инфаркта миокарда (одна из наиболее распространенных причин);
  • заболеваний печени в острой или хронической форме;
  • сердечной недостаточности;
  • травм, воспаления поджелудочной железы.

ВАЖНО! В исследовании крови и определении трансфераз имеет значение соотношение между ними (коэффициент Ритиса). Если он АСТ/АЛС превышает 2, можно говорить о серьезных патологиях с обширным разрушением паренхимы печени.

Лактатдегидрогеназа

ЛДГ относится к цитолитическим ферментам. Она не является специфичной, то есть обнаруживается не только в печени. Однако ее определение имеет важное значение при диагностике желтушного синдрома. У пациентов с болезнью Жильбера (генетическим заболеванием, которое сопровождается нарушением связывания билирубина) она находится в пределах нормы. При остальных видах желтух ее концентрация повышается.

Как определяют активность веществ?

Биохимический анализ крови на ферменты печени – это одно из основных диагностических мероприятий. Для этого потребуется венозная кровь, собранная натощак в утреннее время. В течение суток перед исследованием необходимо исключить все факторы, которые могут влиять на работу печени, в том числе прием алкогольных напитков, жирных и острых блюд. В крови определяют стандартный набор ферментов:

  • АЛТ, АСТ;
  • общий билирубин и его фракции (свободный и связанный).

На активность ферментов печени могут влиять и некоторые группы медикаментов. Также они могут изменяться в норме при беременности. Перед анализом необходимо уведомить врача о приеме любых лекарств и о хронических заболеваниях любых органов в анамнезе.

Нормы для пациентов разного возраста

Для лечения болезней печени обязательно проводят полную диагностику, которая включает в том числе биохимический анализ крови. Активность ферментов исследуют в комплексе, поскольку различные показатели могут свидетельствовать о разных нарушениях. В таблице представлены нормальные значения и их колебания.

Соединение Показатели нормы
Общий белок 65-85 г/л
Холестерин 3,5-5,5 ммоль/л
Общий билирубин 8,5-20,5 мкмоль/л
Прямой билирубин 2,2-5,1 мкмоль/л
Непрямой билирубин Не более 17,1 мкмоль/л
АЛТ Для мужчин - не более 45 ед/л;

Для женщин - не более 34 ед/л

АСТ Для мужчин - не более 37 ед/л;

Для женщин - не более 30 ед/л

Коэффициент Ритиса 0,9-1,7
Щелочная фосфатаза Не более 260 ед/л
ГГТ Для мужчин - от 10 до 70 ед/л;

Для женщин - от 6 до 42 ед/л

Фермент АЛС имеет наиболее важное диагностическое значение при подозрении на гепатит, жировую дистрофию или цирроз печени. Его значения в норме меняются со временем. Это соединение измеряют в единицах на 1 литр. Нормальные показатели в разном возрасте составят:

  • у новорожденных – до 49;
  • у детей до 6 месяцев – 56 и более;
  • до года – не более 54;
  • от 1 до 3 лет – до 33;
  • от 3 до 6 лет – 29;
  • у детей более старшего возраста и у подростков – до 39.


Лекарственные средства накапливаются в паренхиме печени и могут вызывать повышение активности ее ферментов

ВАЖНО! Биохимический анализ крови – это важное, но не единственное исследование, по которому определяют состояние печени. Также проводят УЗИ и дополнительные обследования по необходимости.

Особенности определения при беременности

При нормальном течении беременности практически все показатели ферментов остаются в пределах нормы. На поздних сроках возможно незначительное повышение уровня щелочной фосфатазы в крови – явление связано с образованием этого соединения плацентой. Повышенные ферменты печени могут наблюдаться при гестозе (токсикозе) либо свидетельствуют об обострении хронических заболеваний.

Изменение активности энзимов при циррозе

Цирроз – это наиболее опасное состояние, при котором здоровая паренхима печени замещается рубцами из соединительной ткани. Эта патология не лечится, поскольку восстановление органа возможно только за счет нормальных гепатоцитов. В крови наблюдается повышение всех специфических и неспецифических ферментов, увеличение концентрации связанного и несвязанного билирубина. Уровень белка, наоборот, снижается.

Особая группа – микросомальные ферменты

Микросомальные ферменты печени – это особая группа белков, которые вырабатываются эндоплазматической сетью. Они принимают участие в реакциях обезвреживания ксенобиотиков (веществ, которые являются чужеродными для организма и могут вызывать симптомы интоксикации). Эти процессы проходят в две стадии. В результате первой из них водорастворимые ксенобиотики (с низкой молекулярной массой) выводятся с мочой. Нерастворимые вещества проходят ряд химических превращений с участием микросомальных ферментов печени, а затем элиминируются в составе желчи в тонкий отдел кишечника.

Основной элемент, который вырабатывается эндоплазматической сетью клеток печени, – цитохром Р450. Для лечения некоторых заболеваний применяют препараты-ингибиторы или индукторы микросомальных ферментов. Они оказывают влияние на активность этих белков:

  • ингибиторы – ускоряют действие ферментов, благодаря чему действующие вещества препаратов быстрее выводятся из организма (рифампицин, карбамазепин);
  • индукторы – снижают активность ферментов (флюконазол, эритромицин и другие).

ВАЖНО! Процессы индукции или ингибирования микросомальных ферментов учитывают при подборе схемы лечения любого заболевания. Одновременный прием лекарственных средств этих двух групп противопоказан.

Ферменты печени – это важный диагностический показатель для определения заболеваний печени. Однако для комплексного исследования необходимо также провести дополнительные анализы, в том числе УЗИ. Окончательный диагноз ставят на основании клинического и биохимического анализов крови, мочи и кала, УЗИ органов брюшной полости, по необходимости – рентгенографии, КТ, МРТ или других данных.