Многообразие органических и неорганических веществ. Какие органические вещества входят в состав живой клетки

В состав живой клетки входят те же химические элементы, которые входят в состав неживой природы. Из 104 элементов периодической системы Д. И. Менделеева в клетках обнаружено 60.

Их делят на три группы:

  1. основные элементы - кислород, углерод, водород и азот (98% состава клетки);
  2. элементы, составляющие десятые и сотые доли процента,- калий, фосфор, сера, магний, железо, хлор, кальций, натрий (в сумме 1,9%);
  3. все остальные элементы, присутствующие в еще более малых количествах,- микроэлементы.

Молекулярный состав клетки сложный и разнородный. Отдельные соединения - вода и минеральные соли - встречаются также в неживой природе; другие - органические соединения: углеводы, жиры, белки, нуклеиновые кислоты и др.- характерны только для живых организмов.

НЕОРГАНИЧЕСКИЕ ВЕЩЕСТВА

Вода составляет около 80% массы клетки; в молодых быстрорастущих клетках - до 95%, в старых - 60%.

Роль воды в клетке велика.

Она является основной средой и растворителем, участвует в большинстве химических реакций, перемещении веществ, терморегуляции, образовании клеточных структур, определяет объем и упругость клетки. Большинство веществ поступает в организм и выводится из него в водном растворе. Биологическая роль воды определяется специфичностью строения: полярностью ее молекул и способностью образовывать водородные связи, за счет которых возникают комплексы из нескольких молекул воды. Если энергия притяжения между молекулами воды меньше, чем между молекулами воды и вещества, оно растворяется в воде. Такие вещества называют гидрофильными (от греч. «гидро» - вода, «филее» - люблю). Это многие минеральные соли, белки, углеводы и др. Если энергия притяжения между молекулами воды больше, чем энергия притяжения между молекулами воды и вещества, такие вещества нерастворимы (или слаборастворимы), их называют гидрофобными (от греч. «фобос» - страх) - жиры, липиды и др.

Минеральные соли в водных растворах клетки диссоциируют на катионы и анионы, обеспечивая устойчивое количество необходимых химических элементов и осмотическое давление. Из катионов наиболее важны К + , Na + , Са 2+ , Mg + . Концентрация отдельных катионов в клетке и во внеклеточной среде неодинакова. В живой клетке концентрация К высокая, Na + - низкая, а в плазме крови, наоборот, высокая концентрация Na + и низкая К + . Это обусловлено избирательной проницаемостью мембран. Разность в концентрации ионов в клетке и среде обеспечивает поступление воды из окружающей среды в клетку и всасывание воды корнями растений. Недостаток отдельных элементов - Fe, Р, Mg, Со, Zn - блокирует образование нуклеиновых кислот, гемоглобина, белков и других жизненно важных веществ и ведет к серьезным заболеваниям. Анионы определяют постоянство рН-клеточной среды (нейтральной и слабощелочной). Из анионов наиболее важны НРО 4 2- , Н 2 РO 4 — , Cl — , HCO 3 —

ОРГАНИЧЕСКИЕ ВЕЩЕСТВА

Органические вещества в комплексе образуют около 20-30% состава клетки.

Углеводы - органические соединения, состоящие из углерода, водорода и кислорода. Их делят на простые - моносахариды (от греч. «монос» - один) и сложные - полисахариды (от греч. «поли» - много).

Моносахариды (их общая формула С n Н 2n О n) - бесцветные вещества с приятным сладким вкусом, хорошо растворимы в воде. Они различаются по количеству атомов углерода. Из моносахаридов наиболее распространены гексозы (с 6 атомами С): глюкоза, фруктоза (содержащиеся в фруктах, меде, крови) и галактоза (содержащаяся в молоке). Из пентоз (с 5 атомами С) наиболее распространены рибоза и дезоксирибоза, входящие в состав нуклеиновых кислот и АТФ.

Полисахариды относятся к полимерам - соединениям, у которых многократно повторяется один и тот же мономер. Мономерами полисахаридов являются моносахариды. Полисахариды растворимы в воде, многие обладают сладким вкусом. Из них наиболее просты дисахариды, состоящие из двух моносахаридов. Например, сахароза состоит из глюкозы и фруктозы; молочный сахар - из глюкозы и галактозы. С увеличением числа мономеров растворимость полисахаридов падает. Из высокомолекулярных полисахаридов наиболее распространены у животных гликоген, у растений - крахмал и клетчатка (целлюлоза). Последняя состоит из 150-200 молекул глюкозы.

Углеводы - основной источник энергии для всех форм клеточной активности (движение, биосинтез, секреция и т. д.). Расщепляясь до простейших продуктов СO 2 и Н 2 O, 1 г углевода освобождает 17,6 кДж энергии. Углеводы выполняют строительную функцию у растений (их оболочки состоят из целлюлозы) и роль запасных веществ (у растений - крахмал, у животных - гликоген).

Липиды - это нерастворимые в воде жироподобные вещества и жиры, состоящие из глицерина и высокомолекулярных жирных кислот. Животные жиры содержатся в молоке, мясе, подкожной клетчатке. При комнатной температуре это твердые вещества. У растений жиры находятся в семенах, плодах и других органах. При комнатной температуре это жидкости. С жирами по химической структуре сходны жироподобные вещества. Их много в желтке яиц, клетках мозга и других тканях.

Роль липидов определяется их структурной функцией. Из них состоят клеточные мембраны, которые вследствие своей гидрофобности препятствуют смешению содержимого клетки с окружающей средой. Липиды выполняют энергетическую функцию. Расщепляясь до СO 2 и Н 2 O, 1 г жира выделяет 38,9 кДж энергии. Они плохо проводят тепло, накапливаясь в подкожной клетчатке (и других органах и тканях), выполняют защитную функцию и роль запасных веществ.

Белки - наиболее специфичны и важны для организма. Они относятся к непериодическим полимерам. В отличие от других полимеров их молекулы состоят из сходных, но нетождественных мономеров - 20 различных аминокислот.

Каждая аминокислота имеет свое название, особое строение и свойства. Их общую формулу можно представить в следующем виде

Молекула аминокислоты состоит из специфической части (радикала R) и части, одинаковой для всех аминокислот, включающей аминогруппу (- NH 2) с основными свойствами, и карбоксильную группу (СООН) с кислотными свойствами. Наличие в одной молекуле кислотной и основной групп обусловливает их высокую реактивность. Через эти группы происходит соединение аминокислот при образовании полимера - белка. При этом из аминогруппы одной аминокислоты и карбоксила другой выделяется молекула воды, а освободившиеся электроны соединяются, образуя пептидную связь. Поэтому белки называют полипептидами.

Молекула белка представляет собой цепь из нескольких десятков или сотен аминокислот.

Молекулы белков имеют огромные размеры, поэтому их называют макромолекулами. Белки, как и аминокислоты, обладают высокой реактивностью и способны реагировать с кислотами и щелочами. Они различаются по составу, количеству и последовательности расположения аминокислот (число таких сочетаний из 20 аминокислот практически бесконечно). Этим объясняется многообразие белков.

В строении молекул белков различают четыре уровня организации (59)

  • Первичная структура - полипептидная цепь из аминокислот, связанных в определенной последовательности ковалентными (прочными) пептидными связями.
  • Вторичная структура - полипептидная цепь, закрученная в тугую спираль. В ней между пептидными связями соседних витков (и другими атомами) возникают малопрочные водородные связи. В комплексе они обеспечивают довольно прочную структуру.
  • Третичная структура представляет собой причудливую, но для каждого белка специфическую конфигурацию - глобулу. Она удерживается малопрочными гидрофобными связями или силами сцепления между неполярными радикалами, которые встречаются у многих аминокислот. Благодаря их многочисленности они обеспечивают достаточную устойчивость белковой макромолекулы и ее подвижность. Третичная структура белков поддерживается также за счет ковалентных S - S (эс - эс) связей, возникающих между удаленными друг от друга радикалами серосодержащей аминокислоты - цистеина.
  • Четвертичная структура типична не для всех белков. Она возникает при соединении нескольких белковых макромолекул, образующих комплексы. Например, гемоглобин крови человека представляет комплекс из четырех макромолекул этого белка.

Такая сложность структуры белковых молекул связана с разнообразием функций, свойственных этим биополимерам. Однако строение белковых молекул зависит от свойств окружающей среды.

Нарушение природной структуры белка называют денатурацией . Она может возникать под воздействием высокой температуры, химических веществ, лучистой энергии и других факторов. При слабом воздействии распадается только четвертичная структура, при более сильном - третичная, а затем - вторичная, и белок остается в виде первичной структуры - полипептидной цепи, Этот процесс частично обратим, и денатурированный белок способен восстанавливать свою структуру.

Роль белка в жизни клетки огромна.

Белки - это строительный материал организма. Они участвуют в построении оболочки, органоидов и мембран клетки и отдельных тканей (волос, сосудов и др.). Многие белки выполняют в клетке роль катализаторов - ферментов, ускоряющих клеточные реакции в десятки, сотни миллионов раз. Известно около тысячи ферментов. В их состав, кроме белка, входят металлы Mg, Fe, Мn, витамины и т. д.

Каждая реакция катализируется своим особым ферментом. При этом действует не весь фермент, а определенный участок - активный центр. Он подходит к субстрату, как ключ к замку. Действуют ферменты при определенной температуре и рН среды. Особые сократительные белки обеспечивают двигательные функции клеток (движение жгутиковых, инфузорий, сокращение мышц и т. д.). Отдельные белки (гемоглобин крови) выполняют транспортную функцию, доставляя кислород ко всем органам и тканям тела. Специфические белки - антитела - выполняют защитную функцию, обезвреживая чужеродные вещества. Некоторые белки выполняют энергетическую функцию. Распадаясь до аминокислот, а затем до еще более простых веществ, 1 г белка освобождает 17,6 кДж энергии.

Нуклеиновые кислоты (от лат. «нуклеус» - ядро) впервые обнаружены в ядре. Они бывают двух типов - дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). Биологическая роль их велика, они определяют синтез белков и передачу наследственной информации от одного поколения к другому.

Молекула ДНК имеет сложное строение. Она состоит из двух спирально закрученных цепей. Ширина двойной спирали 2 нм 1 , длина несколько десятков и даже сотен микромикрон (в сотни или тысячи раз больше самой крупной белковой молекулы). ДНК - полимер, мономерами которой являются нуклеотиды - соединения, состоящие из молекулы фосфорной кислоты, углевода - дезоксирибозы и азотистого основания. Их общая формула имеет следующий вид:

Фосфорная кислота и углевод одинаковы у всех нуклеотидов, а азотистые основания бывают четырех типов: аденин, гуанин, цитозин и тимин. Они и определяют название соответствующих нуклеотидов:

  • адениловый (А),
  • гуаниловый (Г),
  • цитозиловый (Ц),
  • тимидиловый (Т).

Каждая цепь ДНК представляет полинуклеотид, состоящий из нескольких десятков тысяч нуклеотидов. В ней соседние нуклеотиды соединены прочной ковалентной связью между фосфорной кислотой и дезоксирибозой.

При огромных размерах молекул ДНК сочетание в них из четырех нуклеотидов может быть бесконечно большим.

При образовании двойной спирали ДНК азотистые основания одной цепи располагаются в строго определенном порядке против азотистых оснований другой. При этом против А всегда оказывается Т, а против Г - только Ц. Это объясняется тем, что А и Т, а также Г и Ц строго соответствуют друг другу, как две половинки разбитого стекла, и являются дополнительными или комплементарными (от греч. «комплемент» - дополнение) друг другу. Если известна последовательность расположения нуклеотидов в одной цепи ДНК, то по принципу комплементарности можно установить нуклеотиды другой цепи (см. приложение, задача 1). Соединяются комплементарные нуклеотиды при помощи водородных связей.

Между А и Т возникают две связи, между Г и Ц - три.

Удвоение молекулы ДНК - ее уникальная особенность, обеспечивающая передачу наследственной информации от материнской клетки дочерним. Процесс удвоения ДНК называется редупликацией ДНК. Он осуществляется следующим образом. Незадолго перед делением клетки молекула ДНК раскручивается и ее двойная цепочка под действием фермента с одного конца расщепляется на две самостоятельные цепи. На каждой половине из свободных нуклеотидов клетки, по принципу комплементарности, выстраивается вторая цепь. В результате вместо одной молекулы ДНК возникают две совершенно одинаковые молекулы.

РНК - полимер, по структуре сходный с одной цепочкой ДНК, но значительно меньших размеров. Мономерами РНК являются нуклеотиды, состоящие из фосфорной кислоты, углевода (рибозы) и азотистого основания. Три азотистых основания РНК - аденин, гуанин и цитозин - соответствуют таковым ДНК, а четвертое - иное. Вместо тимина в РНК присутствует урацил. Образование полимера РНК происходит через ковалентные связи между рибозой и фосфорной кислотой соседних нуклеотидов. Известны три вида РНК: информационная РНК (и-РНК) передает информацию о структуре белка с молекулы ДНК; транспортная РНК (т-РНК) транспортирует аминокислоты к месту синтеза белка; рибосомная РНК (р-РНК) содержится в рибосомах, участвует в синтезе белка.

АТФ - аденозинтрифосфорная кислота - важное органическое соединение. По структуре это нуклеотид. В его состав входит азотистое основание аденин, углевод - рибоза и три молекулы фосфорной кислоты. АТФ - неустойчивая структура, под влиянием фермента разрывается связь между «Р» и «О», отщепляется молекула фосфорной кислоты и АТФ переходит в

В конце девятого века нашей эры арабский ученый Абу Бакр ар-Рази разделил все известные на тот момент вещества на 3 группы в зависимости от их происхождения: минеральные, животные и растительные. Классификация просуществовала почти 1000 лет. Только в 19 веке 3 группы превратились в 2: органические и неорганические вещества.

Неорганические вещества

Неорганические вещества бывают простыми и сложными. Простыми называют те вещества, в составе которых есть атомы всего одного химического элемента. Их делят на металлы и неметаллы.

Металлы – вещества пластичные, хорошо проводящие тепло и электрический ток. Почти все они серебристо-белые и обладают характерным металлическим блеском. Такие свойства – следствие особого строения. В металлической кристаллической решетке частицы металлов (их называют ион-атомами) соединены подвижными общими электронами.

Примеры металлов может назвать даже тот, кто далек от химии. Это железо, медь, цинк, хром и другие простые вещества, образованные атомами химических элементов, символы которых расположены в ПСХЭ Д.И. Менделеева под диагональю B – At и выше нее в главных подгруппах.

Неметаллы, как следует из их названия, не обладают свойствами металлов. Они хрупкие, электрический ток, за редкими исключениями, не проводят, не блестят (кроме йода и графита). Свойства их более многообразны по сравнению с металлами.

Причина таких различий также кроется в строении веществ. В кристаллических решетках атомного и молекулярного типов нет свободно передвигающихся электронов. Здесь они, объединяясь попарно, образуют ковалентные связи. Всем известные неметаллы – кислород, азот, сера, фосфор и другие. Элементы – неметаллы в ПСХЭ располагаются выше диагонали B-At

Сложные неорганические вещества – это:

  • кислоты, состоящие из атомов водорода и кислотных остатков (HNO3, H2SO4);
  • основания, образованные атомами металлов и гидроксо-группами (NaOH, Ba(OH)2);
  • соли, формулы которых начинаются с символов металлов, а заканчиваются кислотными остатками (BaSO4, NaNO3);
  • оксиды, образованные двумя элементами, причем один из них – О в степени окисления -2 (BaO, Na2O);
  • другие бинарные соединения (гидриды, нитриды, пероксиды и т.д.)

Всего неорганических веществ известно несколько сотен тысяч.

Органические вещества

Органические соединения отличаются от неорганических, прежде всего, своим составом. Если неорганические вещества могут быть образованы любыми элементами Периодической системы, то в состав органических должны непременно входить атомы C и H. Такие соединения называют углеводородами (CH4 – метан, C6H6 – бензол). Углеводородное сырье (нефть и газ) приносит человечеству огромную пользу. Однако и распри вызывает нешуточные.

Производные углеводородов содержат в своем составе еще и атомы O и N. Представители кислородсодержащих органических соединений – спирты и изомерные им простые эфиры (C2H5OH и CH3-O-CH3), альдегиды и их изомеры – кетоны (CH3CH2CHO и CH3COCH3), карбоновые кислоты и сложные эфиры (CH3-COOH и HCOOCH3). К последним принадлежат также жиры и воски. Углеводы – тоже кислородсодержащие соединения.

Почему же ученые объединили вещества растительные и животные в одну группу – органические соединения и в чем их отличие от неорганических? Одного четкого критерия, позволяющего разделить органические и неорганические вещества, нет. Рассмотрим ряд признаков, объединяющих органические соединения.

  1. Состав (построены из атомов C, H, O, N, реже P и S).
  2. Строение (связи С- Н и С – С обязательны, они образуют разной длины цепи и циклы);
  3. Свойства (все органические соединения горючи, образуют при горении СО2 и H2O).

Среди органических веществ много полимеров природного (белки, полисахариды, натуральный каучук и др.), искусственного (вискоза) и синтетического (пластмассы, синтетические каучуки, полиэстер и другие) происхождения. Они обладают большой молекулярной массой и более сложным, по сравнению с неорганическими веществами, строением.

Наконец, органических веществ насчитывают более 25 миллионов.

Это лишь поверхностный взгляд на органические и неорганические вещества. О каждой из этих групп написан не один десяток научных трудов, статей и учебников.

Неорганические соединения – видео

Живая клетка любого организма состоит из органических компонентов на 25–30%.

К органическим составляющим относятся как полимеры, так и сравнительно некрупные молекулы – пигменты, гормоны, АТФ и пр.

Клетки живых организмов различаются между собой по структуре, функциям и по своему биохимическому составу. Однако каждая группа органических веществ имеет сходное определение в курсе биологии и выполняет одни и те же функции в любом типе клеток. Основные составляющие компоненты - это жиры, белки, углеводы и нуклеиновые кислоты.

Липиды

Липидами называются жиры и жироподобные вещества . Эта биохимическая группа отличается хорошей растворимостью в органических веществах, но при этом нерастворима в воде.

Жиры могут иметь твёрдую или жидкую консистенцию. Первая более характерна для животных жиров, вторая – для растительных.

Функции жиров заключаются в следующем:

Углеводы

Углеводы – это органические мономерные и полимерные вещества, которые в своём составе содержат углерод, водород и кислород. При их расщеплении клетка получает значительное количество энергии.

По химическому составу различают следующие классы углеводов:

По сравнению с животными клетками , растительные содержат в своём составе большее количество углеводов. Это объясняется способностью растительных клеток воспроизводить углеводы в процессе фотосинтеза .

Основными функциями углеводов в живой клетке являются энергетическая и структурная.

Энергетическая функция углеводов сводится к накоплению запасов энергии и высвобождению их по мере необходимости. Растительные клетки накапливают в вегетационный период крахмал, который откладывается в клубнях и луковицах. В организмах животных такую роль выполняет полисахарид гликоген, который синтезируется и накапливается в печени.

Структурную функцию углевод выполняют в растительных клетках. Практически вся клеточная стенка растений состоит из полисахарида целлюлозы.

Белки

Белки – органические полимерные вещества , которые занимают ведущее место как по количеству в живой клетке, так и по своему значению в биологии. Вся сухая масса животной клетки состоит из белка примерно наполовину. Этот класс органических соединений отличается поразительным многообразием. Только в организме человека насчитывается около 5 млн различных белков. Они не только отличаются между собой, но и имеют различия с белками других организмов. И все это колоссальное многообразие белковых молекул строится всего из 20 разновидностей аминокислот.

Если на белок воздействуют термические или химические факторы, в молекулах происходит разрушение водородных и бисульфидных связей. Это приводит к денатурации белка и изменению структуры и функций клеточной мембраны.

Все белки можно условно разделить на два класса: глобулярные (к ним относятся ферменты, гормоны и антитела), и фибриллярные – коллаген, эластин, кератин.

Функции белка в живой клетке:

Нуклеиновые кислоты

Нуклеиновые кислоты имеют важное значение в структуре и правильном функционировании клеток. Химическое строение этих веществ таково, что позволяет сохранять и передавать по наследству информацию о белковой структуре клеток. Эта информация передаётся дочерним клеткам и на каждом этапе их развития формируется определённый вид белков.

Поскольку подавляющее большинство структурных и функциональных особенностей клетки обусловлено их белковой составляющей, очень важна стабильность, которой отличаются нуклеиновые кислоты. В свою очередь, от стабильности структуры и функций отдельных клеток зависит развитие и состояние организма в целом.

Различают две разновидности нуклеиновых кислот – рибонуклеиновая (РНК) и дезоксирибонуклеиновая (ДНК).

ДНК представляет собой полимерную молекулу, которая состоит из пары спиралей нуклеотидов . Каждый мономер молекулы ДНК представлен в виде нуклеотида. В состав нуклеотидов входят азотистые основания (аденин, цитозин, тимин, гуанин), углевод (дезоксирибоза) и остаток фосфорной кислоты.

Все азотистые основания соединяются между собой строго определённым образом. Аденин всегда располагается всегда против тимина, а гуанин – против цитозина. Такое избирательное соединение называется комплементарностью и играет очень важное значение в формировании структуры белка.

Все соседние нуклеотиды между собой связываются остатком фосфорной кислоты и дезоксирибозой.

Рибонуклеиновая кислота имеет большое сходство с дезоксирибонуклеиновой. Различие заключается в том, что вместо тимина в структуре молекулы присутствует азотистое основание урацил. Вместо дезоксирибозы это соединение содержит углевод рибозу.

Все нуклеотиды в цепочке РНК соединяются через фосфорный остаток и рибозу.

По своей структуре РНК может быть одно- и двухцепочечным . У ряда вирусов двухцепочечные РНК выполняют функции хромосом – они являются носителями генетической информации. С помощью одноцепочечной РНК происходит перенос информации о составе белковой молекулы.

В прошлом ученые разделяли все вещества в природе на условно неживые и живые, включая в число последних царство животных и растений. Вещества первой группы получили название минеральных. А те, что вошли во вторую, стали называть органическими веществами.

Что под этим подразумевается? Класс органических веществ наиболее обширный среди всех химических соединений, известных современным ученым. На вопрос, какие вещества органические, можно ответить так – это химические соединения, в состав которых входит углерод.

Обратите внимание, что не все углеродсодержащие соединения относятся к органическим. Например, корбиды и карбонаты, угольная кислота и цианиды, оксиды углерода не входят в их число.

Почему органических веществ так много?

Ответ на этот вопрос кроется в свойствах углерода. Этот элемент любопытен тем, что способен образовывать цепочки из своих атомов. И при этом углеродная связь очень стабильная.

Кроме того, в органических соединениях он проявляет высокую валентность (IV), т.е. способность образовывать химические связи с другими веществами. И не только одинарные, но также двойные и даже тройные (иначе – кратные). По мере возрастания кратности связи цепочка атомов становится короче, а стабильность связи повышается.

А еще углерод наделен способностью образовывать линейные, плоские и объемные структуры.

Именно поэтому органические вещества в природе так разнообразны. Вы легко проверите это сами: встаньте перед зеркалом и внимательно посмотрите на свое отражение. Каждый из нас – ходячее пособие по органической химии. Вдумайтесь: не меньше 30% массы каждой вашей клетки – это органические соединения. Белки, которые построили ваше тело. Углеводы, которые служат «топливом» и источником энергии. Жиры, которые хранят запасы энергии. Гормоны, которые управляют работой органов и даже вашим поведением. Ферменты, запускающие химические реакции внутри вас. И даже «исходный код», цепочки ДНК – все это органические соединения на основе углерода.

Состав органических веществ

Как мы уже говорили в самом начале, основной строительный материал для органических веществ – это углерод. И практические любые элементы, соединяясь с углеродом, могут образовывать органические соединения.

В природе чаще всего в составе органических веществ присутствуют водород, кислород, азот, сера и фосфор.

Строение органических веществ

Многообразие органических веществ на планете и разнообразие их строения можно объяснить характерными особенностями атомов углерода.

Вы помните, что атомы углерода способны образовывать очень прочные связи друг с другом, соединяясь в цепочки. В результате получаются устойчивые молекулы. То, как именно атомы углерода соединяются в цепь (располагаются зигзагом), является одной из ключевых особенностей ее строения. Углерод может объединяться как в открытые цепи, так и в замкнутые (циклические) цепочки.

Важно и то, что строение химических веществ прямо влияет на их химические свойства. Значительную роль играет и то, как атомы и группы атомов в молекуле влияют друг на друга.

Благодаря особенностям строения, счет однотипным соединениям углерода идет на десятки и сотни. Для примера можно рассмотреть водородные соединения углерода: метан, этан, пропан, бутан и т.п.

Например, метан – СН 4 . Такое соединение водорода с углеродом в нормальных условиях пребывает в газообразном агрегатном состоянии. Когда же в составе появляется кислород, образуется жидкость – метиловый спирт СН 3 ОН.

Не только вещества с разным качественным составом (как в примере выше) проявляют разные свойства, но и вещества одинакового качественного состава тоже на такое способны. Примером могут служить различная способность метана СН 4 и этилена С 2 Н 4 реагировать с бромом и хлором. Метан способен на такие реакции только при нагревании или под ультрафиолетом. А этилен реагирует даже без освещения и нагревания.

Рассмотрим и такой вариант: качественный состав химических соединений одинаков, количественный – отличается. Тогда и химические свойства соединений различны. Как в случае с ацетиленом С 2 Н 2 и бензолом С 6 Н 6 .

Не последнюю роль в этом многообразии играют такие свойства органических веществ, «завязанные» на их строении, как изомерия и гомология.

Представьте, что у вас есть два на первый взгляд идентичных вещества – одинаковый состав и одна и та же молекулярная формула, чтобы описать их. Но строение этих веществ принципиально различно, откуда вытекает и различие химических и физических свойств. К примеру, молекулярной формулой С 4 Н 10 можно записать два различных вещества: бутан и изобутан.

Речь идет об изомерах – соединениях, которые имеют одинаковый состав и молекулярную массу. Но атомы в их молекулах расположены в различном порядке (разветвленное и неразветвленное строение).

Что касается гомологии – это характеристика такой углеродной цепи, в которой каждый следующий член может быть получен прибавлением к предыдущему одной группы СН 2 . Каждый гомологический ряд можно выразить одной общей формулой. А зная формулу, несложно определить состав любого из членов ряда. Например, гомологи метана описываются формулой C n H 2n+2 .

По мере прибавления «гомологической разницы» СН 2 , усиливается связь между атомами вещества. Возьмем гомологический ряд метана: четыре первых его члена – газы (метан, этан, пропан, бутан), следующие шесть – жидкости (пентан, гексан, гептан, октан, нонан, декан), а дальше следуют вещества в твердом агрегатном состоянии (пентадекан, эйкозан и т.д.). И чем прочнее связь между атомами углерода, тем выше молекулярный вес, температуры кипения и плавления веществ.

Какие классы органических веществ существуют?

К органическим веществам биологического происхождения относятся:

  • белки;
  • углеводы;
  • нуклеиновые кислоты;
  • липиды.

Три первых пункта можно еще назвать биологическими полимерами.

Более подробная классификация органических химических веществ охватывает вещества не только биологического происхождения.

К углеводородам относятся:

  • ациклические соединения:
    • предельные углеводороды (алканы);
    • непредельные углеводороды:
      • алкены;
      • алкины;
      • алкадиены.
  • циклические соединения:
    • соединения карбоциклические:
      • алициклические;
      • ароматические.
    • соединения гетероциклические.

Есть также иные классы органических соединений, в составе которых углерод соединяется с другими веществами, кроме водорода:

    • спирты и фенолы;
    • альдегиды и кетоны;
    • карбоновые кислоты;
    • сложные эфиры;
    • липиды;
    • углеводы:
      • моносахариды;
      • олигосахариды;
      • полисахариды.
      • мукополисахариды.
    • амины;
    • аминокислоты;
    • белки;
    • нуклеиновые кислоты.

Формулы органических веществ по классам

Примеры органических веществ

Как вы помните, в человеческом организме различного рода органические вещества – основа основ. Это наши ткани и жидкости, гормоны и пигменты, ферменты и АТФ, а также многое другое.

В телах людей и животных приоритет за белками и жирами (половина сухой массы клетки животных это белки). У растений (примерно 80% сухой массы клетки) – за углеводами, в первую очередь сложными – полисахаридами. В том числе за целлюлозой (без которой не было бы бумаги), крахмалом.

Давайте поговорим про некоторые из них подробнее.

Например, про углеводы . Если бы можно было взять и измерить массы всех органических веществ на планете, именно углеводы победили бы в этом соревновании.

Они служат в организме источником энергии, являются строительными материалами для клеток, а также осуществляют запас веществ. Растениям для этой цели служит крахмал, животным – гликоген.

Кроме того, углеводы очень разнообразны. Например, простые углеводы. Самые распространенные в природе моносахариды – это пентозы (в том числе входящая в состав ДНК дезоксирибоза) и гексозы (хорошо знакомая вам глюкоза).

Как из кирпичиков, на большой стройке природы выстраиваются из тысяч и тысяч моносахаридов полисахариды. Без них, точнее, без целлюлозы, крахмала, не было бы растений. Да и животным без гликогена, лактозы и хитина пришлось бы трудно.

Посмотрим внимательно и на белки . Природа самый великий мастер мозаик и пазлов: всего из 20 аминокислот в человеческом организме образуется 5 миллионов типов белков. На белках тоже лежит немало жизненно важных функций. Например, строительство, регуляция процессов в организме, свертывание крови (для этого существуют отдельные белки), движение, транспорт некоторых веществ в организме, они также являются источником энергии, в виде ферментов выступают катализатором реакций, обеспечивают защиту. В деле защиты организма от негативных внешних воздействий важную роль играют антитела. И если в тонкой настройке организма происходит разлад, антитела вместо уничтожения внешних врагов могут выступать агрессорами к собственным органам и тканям организма.

Белки также делятся на простые (протеины) и сложные (протеиды). И обладают присущими только им свойствами: денатурацией (разрушением, которое вы не раз замечали, когда варили яйцо вкрутую) и ренатурацией (это свойство нашло широкое применение в изготовлении антибиотиков, пищевых концентратов и др.).

Не обойдем вниманием и липиды (жиры). В нашем организме они служат запасным источником энергии. В качестве растворителей помогают протеканию биохимических реакций. Участвуют в строительстве организма – например, в формировании клеточных мембран.

И еще пару слов о таких любопытных органических соединениях, как гормоны . Они участвуют в биохимических реакциях и обмене веществ. Такие маленькие, гормоны делают мужчин мужчинами (тестостерон) и женщин женщинами (эстроген). Заставляют нас радоваться или печалиться (не последнюю роль в перепадах настроения играют гормоны щитовидной железы, а эндорфин дарит ощущение счастья). И даже определяют, «совы» мы или «жаворонки». Готовы вы учиться допоздна или предпочитаете встать пораньше и сделать домашнюю работу перед школой, решает не только ваш распорядок дня, но и некоторые гормоны надпочечников.

Заключение

Мир органических веществ по-настоящему удивительный. Достаточно углубиться в его изучение лишь немного, чтобы у вас захватило дух от ощущения родства со всем живым на Земле. Две ноги, четыре или корни вместо ног – всех нас объединяет волшебство химической лаборатории матушки-природы. Оно заставляет атомы углерода объединяться в цепочки, вступать в реакции и создавать тысячи таких разнообразных химических соединений.

Теперь у вас есть краткий путеводитель по органической химии. Конечно, здесь представлена далеко не вся возможная информация. Какие-то моменты вам, быть может, придется уточнить самостоятельно. Но вы всегда можете использовать намеченный нами маршрут для своих самостоятельных изысканий.

Вы также можете использовать приведенное в статье определение органического вещества, классификацию и общие формулы органических соединений и общие сведения о них, чтобы подготовиться к урокам химии в школе.

Расскажите нам в комментариях, какой раздел химии (органическая или неорганическая) нравится вам больше и почему. Не забудьте «расшарить» статью в социальных сетях, чтобы ваши одноклассники тоже смогли ею воспользоваться.

Пожалуйста, сообщите, если обнаружите в статье какую-то неточность или ошибку. Все мы люди и все мы иногда ошибаемся.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Органические вещества

Химический состав клетки

В земной коре встречается около 100 химических элементов, но только 16 из них необходимы для жизни. Наиболее распространены в живых организмах четыре элемента: водород, углерод, кислород и азот (на их долю приходится около 98% массы клеток. Важные функции в клетке выполняют такие элементы, как натрий, кальций, хлор, фосфор, сера, железо, магний. На их долю приходится около 1% массы клетки – это макроэлементы . Остальные элементы, такие как цинк, медь, йод, фтор содержатся в живых организмах в очень малых количествах (не более 0,02%) и относятся к группе микроэлементов.

Все химические элементы в организме находятся в виде ионов или входят в состав неорганических или органических веществ.

Неорганические вещества

Из неорганических соединений больше всего в организме находится воды – от 60 до 95% общей массы (содержание воды зависит от типа клеток: в клетках эмали зубов около 10%, а в клетках медузы до 98%) . В среднем, в клетках многоклеточного организма вода составляет около 80% массы тела.

Вода является хорошим растворителем и большинство химических реакций в клетке протекает между растворенными в воде веществами. Проникновение веществ в клетку и выведение продуктов метаболизма возможно только в растворенном виде.

Большая часть неорганических веществ в клетке находится в виде ионов или солей. Важнейшее значение в жизнедеятельности клетки имеют такие ионы как К + , Na + , Са 2+ . Нерастворимые минеральные соли, например соли кальция и кремния, обеспечивают прочность костной ткани позвоночных и раковин моллюсков.

Органические вещества

Органические вещества составляют в среднем 20-30% массы клетки живого организма. К ним относятся биологические полимеры – белки, нуклеиновые кислоты, углеводы, жиры, а также целый ряд небольших молекул – гормонов, витаминов, пигментов, аминокислот, АТФ и др.

Белки

Белки составляют 50-80% сухой массы клетки. Несмотря на свое разнообразие, все белки построены всего из 20 различных аминокислот.

По своему составу белки делятся на простые и сложные. Простые белки состоят только из аминокислот. Сложные белки помимо аминокислот имеют в своем составе другие органические соединения: белки содержащие нуклеиновые кислоты называются нуклеопротеиды, липиды – липопротеиды, углеводы – гликопротеиды

Функции белков:

1. Строительная функция: белки входят в состав всех клеточных мембран и органоидов клетки.

2. Каталитическая (ферментативная) функция: практически все химические реакции, протекающие в клетке, катализируются ферментами. По своей природе все ферменты являются белками и, таким образом, именно белки определяют течение всех химических реакций, необходимых для существования организма.

3. Двигательная функция живых организмов обеспечивается специальными сократительными белками (мерцание ресничек, биение жгутиков, сокращение мышц).

4. Транспортная функция белков заключается в переносе химических элементов или биологически активных веществ к различным тканям и органам (белки переносчики обеспечивают перенос необходимых клетке веществ через мембрану, гемоглобин переносит кислород с током крови по всему организму).

5. Защитная функция белков заключается в связывании и обезвреживании чужеродных организму веществ. Например, при поступлении в организм чужеродных веществ или микроорганизмов белые кровяные тельца (лейкоциты) образуют специальные белки – антитела, способные к обезвреживанию чужеродных агентов.

6. Энергетическая функция: белки служат источником энергии в клетке. При расщеплении 1 г белка выделяется 17,6 кДж энергии, необходимой для большинства жизненно важных процессов, протекающих в клетке.

7. Регуляторная функция: некоторые гормоны имеют белковую природу (инсулин, тироксин). Гормоны оказывают влияние на обмен веществ в организме, развитие тканей и органов. На клеточном уровне многие процессы регулируются специальными регуляторными белками.

8. Токсическая функция: биологические яды (токсины), имеют белковую природу. Токсины вырабатываются некоторыми микроорганизмами, растениями и животными (змеиный яд, дифтерийный токсин).

Углеводы

Углеводы построены всего из трех элементов – О, С, Н.

В животных клетках углеводы составляют всего 1-5%, тогда как в растительных их содержание может достигать 90% сухой массы (клубни картофеля).

Углеводы подразделяются на простые и сложные. Простые углеводы называются моносахаридами . Если в одной молекуле объединяются два моносахарида, то такое соединение называют дисахаридом . К дисахаридам относится сахар, состоящий из двух молекул – глюкозы и фруктозы. Сложные углеводы, образованные многими моносахаридами, называются полисахаридами. Мономером таких полисахаридов как крахмал, гликоген, целлюлоза, является моносахарид – глюкоза.

Функции углеводов:

1. Строительная. Например, целлюлоза образует стенки растительных клеток, сложный полисахарид хитин – структурный компонент наружного скелета членистоногих.

2. Энергетическая. Углеводы играют роль основного источника энергии в клетке (при окислении 1 г углеводов освобождается 17,6 кДж энергии). Такие полисахариды как крахмал и гликоген откладываются в клетках в качестве запасных веществ и служат энергетическим резервом.

Общая функция Углевод Функция углевода
Энергетическая Глюкоза Служит источником энергии для клеточного дыхания.
Мальтоза Служит источником энергии в прорастающих семенах.
Сахароза Основной продукт фотосинтеза в растениях (источник энергии).
Фруктоза Обеспечивает энергией многие биологические процессы, протекающие в организме.
Структурная (пластическая) Целлюлоза Обеспечивает устойчивость оболочек растительных клеток.
Хитин Обеспечивает прочность покровных структур грибов и членистоногих.
Рибоза и дезоксирибоза Являются структурными элементами нуклеиновых кислот ДНК, РНК.
Защитная Гепарин Препятствует свертыванию крови в животных клетках.
Камедь и слизь У растений образуются при повреждении тканей, выполняют защитную функцию.
Запасающая Лактоза Входит в состав молока млекопитающих.
Крахмал Образует запасные вещества в тканях растений.
Гликоген Образует запас полисахаридов в животных клетках.

Липиды

Липиды (жиры) – это соединения высокомолекулярных жирных кислот и трехатомного спирта глицерина. Жиры не растворяются в воде – они гидрофобны. Содержание жиров в клетке составляет 5-15% от массы сухого вещества (в клетках жировой ткани до 90%).

К молекулам липидов могут присоединяться функциональные группировки: остатки фосфорной кислоты (фосфолипиды), углеводы (гликолипиды), белки (липопротеиды). Вещества близкие по свойствам к липидам, но не содержащие жирных кислот, называют липоидами. К ним относятся стероиды (входят в состав желчи, выполняют функции половых гормонов) и терпены (входят в состав эфирных масел растений, хлорофилла и др.).

Функции липидов:

1. Строительная функция: липиды являются основой клеточных мембран (75-95% из них составляют фосфолипиды).

2. Энергетическая функция: накапливаясь в клетках жировой ткани животных, в семенах и плодах растений, жиры служат запасным источником энергии. При расщеплении 1 г жира освобождается 38,9 кДж.

3. Запасающая функция (в пустыне для многих животных жиры – источник воды: при окислении 100 г жира выделяется 107 г воды).

4. Функция терморегуляции. Жир обладает плохой теплопроводностью. У некоторых животных (тюлени, киты) он откладывается в подкожной жировой ткани и защищает организм от переохлаждения.

5. Регуляторная функция: некоторые липиды принимают участие в регуляции обменных процессов (витамины, предшественники гормонов).

Биология Лекция 4-5

Строение клетки

Все живые существа состоят из клеток, либо являются одноклеточными организмами. Слово «клетка» - это перевод с латинского слова cellula (клетка, комната). Термин ввел Р. Гук для обозначения ячеек, которые он наблюдал под микроскопом в срезе пробки. Лишь позднее клетками стали называть живое содержимое таких ячеек.

Клетка – это элементарная структурная и функциональная единица живых организмов, потому, что в природе нет более мелких систем, которым были бы присущи все без исключения признаки живого:

· Обмен веществ

· Рост, развитие

· Воспроизведение себе подобных

· Реагирование на внешние воздействия (раздражимость)

· Способность к движению

Таким образом, клетка является низшей ступенью организации живой материи.

К началу 19 в. представления о клеточном строении получили широкое распространение и признание. В 30-х годах 19 в. Роберт Броун – шотландский ученый обнаружил в растительных клетках ядро. Затем ядра были обнаружены и в других клетках. Сопоставление наблюдений за растительными и животными клетками обнаружило сходство в их строении и организации. В это же время были сформулированы основные положения клеточной теории.

В настоящее время положения клеточной тео рии формулируются так:

1. Клетка является основной структурной и функциональной единицей жизни. Все организмы состоят из клеток, жизнь организма обусловлена взаимодействием составляющих его клеток.

2. Клетки всех организмов сходны по своему химическому составу, строению и функциям

3. Все новые клетки образуются путем деления исходных клеток.

4. Все клетки состоят из 3-х основных частей:

· Клеточная мембрана

· Цитоплазма

· Клеточное ядро или его функциональный аналог.

Существуют два основных типа клеточного строения, которые отличаются друг от друга рядом фундаментальных признаков. Это прокариотические и эукариотические клетки.

Микроорганизмы, имеющие истинное ядро называются эукариоты. К ним относят микроскопические грибы, дрожжи, водоросли и простейшие. Микроорганизмы, не имеющие четко выраженного ядра, называются прокариотами. К ним относятся бактерии и сине-зеленые водоросли (цианобактерии).