Кровеносная система рыб кратко. Анисимова И.М., Лавровский В.В. Ихтиология. Строение и некоторые физиологические особенности рыб. Кровеносная система. Функции и свойства крови. Птицы и млекопитающие

Рыбы относятся к позвоночным животным. Такие организмы имеют череп, позвоночник и парные конечности, в данном случае плавники. Надкласс Рыбы разделен на два класса:

  • Костные рыбы.
  • Хрящевые рыбы.

Класс костные рыбы, в свою очередь, подразделяется на несколько надотрядов:

  • Хрящевые ганоиды.
  • Двоякодышащие рыбы.
  • Кистеперые рыбы.
  • Костистые рыбы.

Главное отличие всех рыб - это наличие одного круга кровообращения, а также двухкамерного сердца, которое наполнено венозной кровью, исключение составляют лишь кистеперые и двоякодышащие рыбы. Строение кровеносной системы рыб (костных и хрящевых) похоже, но все же имеет некоторые отличия. Ниже будут рассмотрены обе схемы.

Кровеносная система хрящевых рыб

Сердце хрящевых рыб состоит из двух частей - камер. Эти камеры называются так: желудочек и предсердие. Возле предсердия находится широкий тонкостенный венозный синус, в него вливается венозная кровь. У конечной (если смотреть со стороны тока крови) части желудочка находится артериальный конус, который является частью желудочка, но выглядит как начало брюшной аорты. Во всех частях сердца находится поперечно-полосатая мускулатура.

Брюшная аорта отходит от артериального конуса. Пять пар жаберных артерий берут начало у брюшной аорты и отходят к жабрам. Артерии, в которых течет кровь в сторону жаберных лепестков, называются приносящими жаберными артериями, а в которых течет окисленная кровь от жаберных лепестков - выносящими жаберными артериями.

Выносящие артерии впадают в корни аорты, а они, в свою очередь, сливаются и образуют спинную аорту - основной артериальный ствол. Он находится под позвоночником и снабжает кровью все внутренние органы рыбы. От корней аорты к голове тянутся сонные артерии.

От головы венозная кровь течет по парным кардинальным венам, которые также называют яремными. Кровь от туловища струится по парным задним кардинальным венам. Они возле сердца сливаются с яремными венами и образуют кювьеровы протоки соответствующей стороны, далее впадают в венозный синус.

В почках кардинальные вены образуют так называемую воротную систему кровообращения. В подкишечную вену кровь поступает из кишечника. В печени образуется воротная система кровообращения: кишечная вена приносит кровь, а печеночная вена выносит ее в венозный синус.

Кровеносная система костных рыб

Почти у всех видов костных рыб брюшная аорта имеет вздутие, которое называют артериальной луковицей. Она состоит из гладкой мускулатуры, но внешне похожа на артериальный конус кровеносной системы хрящевых рыб. Стоит отметить, что артериальная луковица не может самостоятельно пульсировать.

Артериальных дуг (приносящих и выносящих артерий) всего четыре пары. У большинства видов костистых рыб венозная система устроена так, что правая кардинальная вена непрерывна, а левая образует в левой почке воротную систему кровеносной циркуляции.

Кровеносная система рыб устроена проще, чем у амфибий и пресмыкающихся, но имеет некоторые зачатки сосудов как у лягушек и змей.

Надотряд Двоякодышащие

Рассматривая, как устроена кровеносная система рыб, стоит отдельное внимание уделить двоякодышащим, т. к. они имеют некоторые особенности.

Самая важная особенность данного надотряда - это наличие, кроме жаберного дыхания, легочного. В качестве органов для легочного дыхания выступают один-два пузыря, которые открываются возле пищевода на брюшной стороне. Но эти образования не сходны по строению с плавательным пузырем костистых рыб.

Кровь течет в легкие по сосудам, которые ответвляются от четвертой пары жаберных артерий. Они схожи по строению с легочными артериями. От так называемых легких идут сосуды. По ним кровь поступает в сердце. Эти специальные сосуды гомологичные по строению легочным венам наземных животных.

Предсердие частично разделено небольшой перегородкой на правую и левую части. Из легочных вен кровь поступает в левую половину предсердия, а вся кровь из задней полой вены и протоков кювьеровых - в правую половину. Полая вена отсутствует у рыб, характерна она только для наземных видов животных.

Кровеносная система рыб надотряда Двоякодышащие эволюционированная и является предвестником развития данной системы наземных позвоночных животных.

Состав крови

  • Бесцветная жидкость - плазма.
  • Эритроциты - красные тельца крови. В них содержится гемоглобин, окрашивающий кровь в красный цвет. Эти же элементы переносят кислород по крови.
  • Лейкоциты - белые тельца крови. Принимают участие в уничтожении инородных микроорганизмов, попавших в организм животного.
  • Тромбоциты влияют на свертываемость крови.
  • Другие элементы крови.

Относительная масса крови к массе тела у рыб составляет примерно 2-7%. Это самый маленький процент среди всех позвоночных.

Значение кровеносной системы многофункционально. Благодаря ей ткани, органы и клетки живого организма получают кислород, минеральные вещества, жидкость. Кровь выносит некоторые продукты обмена веществ: газ углекислый, шлаки и др.

Стоит отметить, что посредником между кровью и тканями выступает лимфатическая система. Лимфатическая система - это система сосудов, в которой содержится бесцветная жидкость, именуемая лимфой.

Общие выводы

Кровь относится к соединительной ткани. Она проникает в кровеносное русло из межклеточного пространства. Кровеносная система рыб мало чем отличается от остальных позвоночных.


Кровь. Основными функциями крови являются:

1) транспортная (переносит питательные вещества, кислород, продукты обмена, желез внутренней секреции и др.);

2) защитная (защищает от вредных веществ и микроорганизмов).

Количество крови у круглоротых колеблется от 4 до 5% от общей массы тела, у рыб - от 1,5 (скат) до 7,3% (ставрида).

Кровь рыбы состоит из:

1) плазмы (или кровяной жидкости);

2) форменных элементов: эритроцитов (красных), лейкоцитов (белых) и тромбоцитов (кровяных пластинок).

Рыбы по сравнению с млекопитающими имеют более сложную морфологическую структуру крови, в кровяном русле у рыб имеются форменные элементы на всех фазах их развития, так как наряду со специализированными органами в кроветворении участвуют также стенки кровеносных сосудов.

Эритроциты рыб имеют эллипсоидную форму и содержат ядро. Их количество зависит от пола, возраста рыб, условий внешней среды и колеблется от 90 тыс./мм 3 (акула) до 4 млн./мм 3 (пеламида). Эритроциты содержат гемоглобин (дыхательный пигмент), переносящий кислород от органов дыхания ко всем клеткам тела. Содержание гемоглобина в крови рыб зависит от их подвижности, у быстроплавающих видов оно выше. Содержание гемоглобина в крови скатов колеблется в пределах 0,84,5 г%, акул - 3,4-6,5 г%, костных рыб - 1,1-17,4 г%. Большинство рыб имеет красную кровь, у некоторых антарктических видов кровь и жабры бесцветны, кровь почти не содержит эритроцитов (ледяная рыба). В условиях низкой температуры воды и высокого содержания в ней кислорода дыхание этих видов рыб осуществляется путем диффузии кислорода в плазму крови через капилляры кожи и жабр. Это малоподвижные рыбы и отсутствие гемоглобина у них компенсируется усиленной работой крупного сердца и всей системы кровообращения.

Лейкоциты защищают организм рыб от вредных веществ и микроорганизмов. Их количество у рыб велико и зависит от вида, пола, физиологического состояния, наличия заболеваний и др. У ерша их насчитывается от 75 до 325 тыс./мм 3 (у человека их 6-8 тыс./мм 3). Большое количество лейкоцитов у рыб свидетельствует о высокой защитной функции крови.

Лейкоциты подразделяются на:

1) зернистые (гранулоциты);

2) незернистые (агранулоциты).

У рыб нет общепринятой классификации лейкоцитов.

Тромбоциты - относительно крупные клетки с ядром, у рыб многочисленны, участвуют в свертывании крови.

Таким образом, для крови рыб характерно:

наличие ядра в эритроцитах и тромбоцитах;

сравнительно небольшое количество эритроцитов и малое содержание гемоглобина;

большое количество лейкоцитов и тромбоцитов.

Первые два признака говорят о примитивности кровеносной системы рыб, третий - о ее высокой специализации.

Кроветворные органы. В кроветворении рыб участвуют различные специализированные органы и участки. У осетровых кроветворение в основном происходит в лимфоидном органе, который расположен под крышей черепа, у костистых рыб - за черепом, перед почками (здесь формируются все типы форменных элементов крови).

Органами кроветворения у рыб также являются:

1) головная почка;

2) селезенка;

4) жаберный аппарат;

5) слизистая оболочка кишечника;

6) стенки кровеносных сосудов;

7) перикард у костистых и эндокард у осетровых рыб.

Головная почка у рыб не отделена от туловищной и состоит из лимфоидной ткани (здесь образуются эритроциты и лимфоциты).

Селезенка у рыб имеет разнообразную форму и расположение. У миног сформировавшейся селезенки нет, ее ткань расположена в оболочке спирального клапана кишечника. У большинства рыб селезенка представляет собой отдельный орган, где образуются эритроциты, лейкоциты и тромбоциты, а также происходит разрушение погибших эритроцитов. Кроме того, селезенка выполняет защитную функцию (фагоцитоз лейкоцитов) и является депо крови.

Тимус (зобная или вилочковая железа) расположен в жаберной полости. В нем различают поверхностный, корковый и мозговой слои. В тимусе образуются лимфоциты, он стимулирует также образование их в других органах. Лимфоциты тимуса способны к продуцированию антител, участвующих в выработке иммунитета.

Кровеносная система включает в себя сердце и систему кровеносных сосудов. Сердце у рыб расположено вблизи жабр в небольшой околосердечной полости, у миног - в хрящевой капсуле. Сердце у рыб двухкамерное (одно предсердие и один желудочек) и включает четыре отдела:

1) предсердие (atrium);

2) желудочек (ventriculus cordis);

3) венозный синус, или венозная пазуха (sinus venosus);

4) артериальный конус (conus arteriosus).

Венозный синус представляет собой небольшой тонкостенный мешок, в котором скапливается венозная кровь. Из венозного синуса она поступает в предсердие, а затем в желудочек. Все отверстия между отделами сердца снабжены клапанами, что предупреждает обратный ток крови.

У хрящевых рыб артериальный конус примыкает к желудочку, стенка артериального конуса образована, как и желудочка, сердечной поперечнополосатой мускулатурой, а на внутренней поверхности имеется система клапанов (рис. 19).

У костистых рыб и круглоротых вместо артериального конуса имеется луковица аорты (bulbus aortae), представляющая собой расширенную часть брюшной аорты. В отличие от артериального конуса луковица аорты состоит из гладкой мускулатуры и клапанов не имеет.

Двоякодышащие рыбы имеют более сложное строение сердца в связи с развитием легочного дыхания. Предсердие почти полностью разделено на две части свисающей сверху перегородкой, которая в виде складки продолжается в желудочек и артериальный конус. В левую часть поступает артериальная кровь из легких, в правую - венозная кровь из венозной пазухи, таким образом, в левой части сердца течет более артериальная кровь, а в правой - более венозная.

Сердце круглоротых и рыб (за исключением двоякодышащих) содержит только венозную кровь.

Частота сокращений сердца специфична для каждого вида и зависит от возраста, физиологического состояния рыбы, температуры воды. У взрослых особей сердце сокращается довольно медленно - 20-35 раз в минуту, а у молоди значительно чаще (например, у мальков осетра - до 142 раз в минуту). При повышении температуры частота сокращений сердца увеличивается, а при понижении уменьшается. У многих видов в период зимовки сердце сокращается 1-2 раза в минуту (лещ, сазан). Кровяное давление в брюшной аорте у хрящевых рыб колеблется в пределах 7-45 мм рт.ст., у костных рыб 18-120 мм рт.ст.

Кровеносная система рыб замкнутая и включает:

1) артерии (сосуды, выносящие кровь из сердца);

2) вены (сосуды, приносящие кровь к сердцу).

Артерии и вены распадаются в органах и тканях рыб на капилляры. У рыб (кроме двоякодышащих) имеется только один круг кровообращения (рис. 20).

У костистых рыб венозная кровь из сердца через луковицу аорты поступает в брюшную аорту (aorta ventralis), а из нее по четырем приносящим жаберным артериям - в жабры. Окислившись в жабрах артериальная кровь по четырем выносящим жаберным артериям попадает в корни спинной аорты, проходящие по дну черепа и смыкающиеся впереди, образуя головной круг, от которого в разные части головы отходят сосуды. Позади жаберного отдела корни спинной аорты сливаются и образуют спинную аорту (a. dorsalis), которая проходит в туловищном отделе под позвоночником. От спинной аорты ответвляются артерии, снабжающие артериальной кровью внутренние органы, мышцы, кожу. Далее

спинная аорта уходит в гемальныи канал хвостового отдела позвоночника и называется хвостовоИ артерией (a. caudalis). Все артерии распадаются на сеть капилляров, через стенки которых происходит обмен веществами между кровью и тканями. Из капилляров кровь собирается в вены.

Основными венозными сосудами являются передние и задние кардинальные вены.

Из головного отдела венозная кровь собирается от верхней части головы в передние кардинальные вены (vena cardinalis anterior); от нижней части головы (в основном от висцерального аппарата) - в непарную яремную (югулярную) вену (v. jugularis inferior); из грудных плавников - в подключичные вены (v. subclavia).

Из хвостового отдела венозная кровь собирается в хвостовую вену (vena caudalis), проходящую в гемаль- ном канале позвоночника под хвостовой артерией. На уровне заднего края почек хвостовая вена разделяется на две воротные вены почек (v. portae renalis), которые, разветвляясь в почках на сеть капилляров, образуют воротную систему почек. Венозные сосуды, выходящие из почек, называются задними кардинальными венами (v. cardinalis posterior). По пути к сердцу они принимают вены от органов размножения, стенок тела. На уровне заднего конца сердца задние кардинальные вены сливаются с передними и образуют парные кювьеро- вы протоки (ductus cuvieri), несущие кровь в венозный синус.

От пищеварительного тракта, пищеварительных желез, селезенки, плавательного пузыря кровь собирается в воротную вену печени (v. portae hepatis), которая входит в печень и, разветвляясь на сеть капилляров, образует воротную систему печени. Из печени кровь собирается в печеночную вену (v. hepatica) и впадает непосредственно в венозный синус.

Таким образом, рыбы имеют две воротные системы - почек и печени. У костистых рыб строение воротной системы почек и задних кардинальных вен неодинаково. Так, у некоторых рыб в правой почке воротная система почек недоразвита, и часть крови, минуя воротную систему, сразу проходит в задние кардинальные вены (щука, окунь, треска).

Рыбы имеют существенные различия в схеме кровообращения.

Круглоротые имеют восемь приносящих и столько же выносящих жаберных артерий. Наджаберный сосуд непарный, корней аорты нет. У них отсутствуют воротная система почек и кювьеровы протоки, нет нижней яремной вены.

Хрящевые рыбы имеют пять приносящих и десять выносящих жаберных артерий. Имеются подключичные артерии и вены, которые обеспечивают кровоснабжение грудных плавников и плечевого пояса, а также боковые вены, начинающиеся от брюшных плавников. Они проходят по боковым стенкам брюшной полости и в области сердца сливаются с подключичными венами. Задние кардинальные вены на уровне грудных плавников образуют расширения - кардинальные синусы.

У двоякодышащих рыб более артериальная кровь, сконцентрированная в левой половине сердца, по брюшной артерии преимущественно поступает в передние приносящие жаберные артерии, из которых она направляется в голову и спинную аорту; более венозная кровь из правой половины сердца преимущественно проходит в задние приносящие жаберные артерии, а затем в легкие. При воздушном дыхании кровь в легких обогащается кислородом и по легочным венам поступает в левую часть сердца. У двоякодышащих рыб кроме легочных вен имеются брюшная и большие кожные вены, а вместо правой кардинальной образуется задняя полая вена.

Лимфатическая система рыб является незамкнутой. Лимфа представляет собой тканевую жидкость, по составу близкую к плазме крови, из форменных элементов крови она содержит лишь лимфоциты. Лимфатическая система связана с кровеносной системой и играет большую роль в обмене веществ. Во время циркуляции крови часть плазмы, омывая клетки тканей, попадает в лимфатические капилляры, а затем по лимфатической системе обратно в кровь.

Лимфатическая система состоит из лимфатических капилляров, которые переходят в средние и более крупные лимфатические сосуды, по которым лимфа движется к сердцу. Лимфатическая система, дополняя функцию венозной системы, осуществляет отток тканевой жидкости.

Наиболее крупными лимфатическими сосудами у рыб являются:

1) парные подпозвоночные (проходят по сторонам спинной аорты от хвоста до головы);

2) парные боковые (проходят под кожей вдоль боковой линии).

Через эти и головные сосуды лимфа изливается в задние кардинальные вены у кювьеровых протоков.

У рыб также имеются непарные лимфатические сосуды: дорзальный, вентральный, спинальный. У рыб нет лимфатических узлов, у некоторых видов рыб под последним позвонком находятся парные лимфатические сердца в виде овальных тел, которые проталкивают лимфу к сердцу. Движению лимфы также способствуют работа туловищной мускулатуры и дыхательные движения. У хрящевых рыб лимфатические сердца и боковые лимфатические сосуды отсутствуют. У круглоротых лимфатическая система обособлена от кровеносной системы.



Кровь вместе с лимфой и межклеточной жидкостью составляет внутреннюю среду организма, т. е. среду, в которой функционируют клетки, ткани и органы. Чем стабильнее окружающая среда тем эффективнее действуют внутренние структуры организма, так как в основе их функционирования лежат биохимические процессы, контролируемые ферментными системами, которые, в свою очередь, имеют температурный оптимум и очень чувствительны к изменению рН и химического состава растворов. Контроль и поддержание постоянства внутренней среды - важнейшая функция нервной и гуморальной систем.

Гомеостаз обеспечивают многие (если не все) физиологические системы организма

рыб - органы выделения, дыхания, пищеварения, кровообращения и др. Механизм поддержания гомеостаза у рыб не так совершенен (из-за их эволюционного положения), как у теплокровных животных. Поэтому пределы изменения констант внутренней среды организма у рыб шире, чем у теплокровных животных. Следует подчеркнуть, что кровь рыб имеет существенные физико-химические отличия. Общее количество крови в организме у рыб меньше, чем у теплокровных животных. Оно варьирует в зависимости от условий жизни, физиологического состояния, видовой принадлежности, возраста. Количество крови у костистых рыб составляет в среднем 2-3 % массы их тела. У малоподвижных видов рыб крови не более 2 %, у активных - до 5 %.

В общем объеме жидкостей тела рыб кровь занимает незначительную долю, что видно на примере миноги и карпа (табл. 6.1).

6.1. Распределение жидкости в организме рыб, %

Общее количество жидкости

Внутриклеточная жидкость

Внеклеточная жидкость

52
-
56

Как и у других животных, кровь у рыб делится на циркулирующую и депонируемую. Роль депо крови у них выполняют почки печень, селезенка, жабры и мышцы. Распределение крови по отдельным органам неодинаково. Так, например, в почках кровь составляет 60% массы органа, в жабрах -57, в сердечной ткани - 30, в красных мышцах - 18, в печени - 14 %. Доля крови в процентах от всего объема крови в организме рыб высока в почтах и сосудах (до 60 %), белых мышцах (16 %), жабрах (8 %), красных мышцах(6 %).

Физико-химические характеристики крови рыб

Кровь рыб имеет ярко-красный цвет, маслянистую на ощупь консистенцию, солоноватый вкус, специфический запах рыбьего жира.

Осмотическое давление крови костистых пресноводных 6 - 7 атм, температура замерзания минус 0,5 "С. рН крови рыб колеблется от 7,5 до 7,7 (табл. 6.2).

Наибольшую опасность представляют кислые метаболиты. Для характеристики защитных свойств крови по отношению к кислым метоболитам используют щелочной резервуар (запас бикарбонатов плазмы).

Щелочной резерв крови рыб разными авторами оценивается в 5-25см/100мл. Для стабилизации рН крови у рыб существуют те же самые буферные механизмы, что и у высших позвоночных. Самой эффективной буферной системой является система гемоглобина, на долю которой приходится 70-75 % буферной емкости крови. Далее по функциональным возможностям следует карбонатная система (20- 25%). Активируется карбонатная система не только (а возможно и не столько) эритроцитарной карбоангидразой, но и карбоангидразой слизистой жаберного аппарата и других специфических органов дыхания. Роль фосфатной и буферной систем белков плазмы менее значительна, так как концентрация компонентов крови, из которых они состоят, может изменяться у одной и той же особи в широких пределах (в 3-5 раз).

Осмотическое давление крови имеет также широкие пределы колебаний, поэтому состав изотонических растворов для разных видов рыб неодинаков (табл. 6.3).

6.3. Изотонические растворы для рыб (NaCI, %)

Концентрация NaCI, % Концентрация NaCI, %

Белый амур, толстолобик, севрюга

0,60 0,83

Серебряный карась

0,65 1,03

Карп, сазан, щука

0,75 2,00

Скумбрия, морской петух

0,75 + 0,2% Мочевина

Различия ионного состава плазмы крови диктуют особый подход к приготовлению физиологических растворов для манипуляций с кровью и другими тканями и органами in vitro. Приготовление физиологического раствора предполагает использование не большого количества солей. Его состав, а также физико- химические свойства приближены к таковым морской воды (табл. 6.4).

6.4. Состав физиологических растворов, %

Пресноводные (в среднем)

Лососевые

Морские костистые

Пластинчатожаберные

Толерантность рыб к изменению солевого состава окружающей среды в значительной мере зависит от возможностей клеточных мембран. Эластичность и избирательную проницаемость мембран характеризует показатель осмотической резистентности эритроцитов.

Осмотическая резистентность эритроцитов рыб имеет большую изменчивость в пределах класса. Она также зависит от возраста, сезона года, физиологического состояния рыб. В группе teleosts она оценивается в среднем 0,3-0,4 % NaCl. Существенным изменениям подвержен и такой жесткий у теплокровных животных показатель, как содержание белков в плазме крови. Для рыб допустимо пятикратное изменение концентрации плазменных белков (альбуминов и глобулинов), что абсолютно несовместимо с жизнью у птиц и млекопитающих.

В благоприятные периоды жизни содержание плазменных белков в крови рыб выше, чем после их голодания, зимовки, нереста, а также болезней. Так, например, у форели оно в среднем составляет 6-7%, у сеголетков карпа - 2-3 %, у более старших рыб-5-6%. В целом отмечается увеличение концентрации плазменных белков с возрастом рыб, а также в течение вегетационного периода. Например, у сазана в двухмесячном возрасте она составляет ] ,5 %, в годовалом возрасте - 3 %, в 30- месячном возрасте - 4 %-. а у производителей в конце нагульного периода - 5-6 %. Возможны также и половые различия (0,5-1,0 %).

Спектр белков плазмы представлен типичными группами, т.е. альбуминами и глобулинами, однако как физиологическая норма, у рыб в плазме обнаруживаются и другие белки - гемоглобин, гептоглобин. Например, из плазмы крови арктических видов рыб выделили группу гликопротеидов. играющих роль антифризов, т. е. веществ, препятствующих кристаллизации клеточной и тканевой воды и разрушению мембран.

Естественно, при такой динамике белкового состава плазмы можно ожидать и непостоянства соотношения альбуминов и глобулинов крови, например, в процессе роста рыбы (табл. 6.5).

6.5. Онтогенетические изменения белкового спектра сыворотки крови карпа, %

* фракции: альфа/бета/гамма.

Заметно изменяется фракционный состав белков плазмы и в течение вегетационного периода. Так, например, у сеголетков карпа различия в содержании белка к осени достигают 100 % по отношению к моменту посадки в выростные пруды (табл. 6.6). Содержание в крови молоди карпа альбуминов и бета-глобулинов находится в прямой зависимости от температуры воды. Кроме того, гипоксия, плохая кормовая база в водоемах также приводят к снижению обеспеченности организма рыбы альфа- и бета-глобулинами.

В хороших условиях при обильном питании отмечают рост концентрации сывороточного белка за счет альбуминовой фракции, В конечном счете обеспеченность рыбы альбуминами (г/кг живой массы) качественно и количественно характеризует питание рыбы, по крайней мере, в периоды ее интенсивного роста. По обеспеченности организма рыбы альбуминами можно составить прогноз на выход сеголетков из предстоящей зимовки.

6.6. Белковый состав сыворотки крови сеголетков карпа в зависимости от сезона года, %

Например, в водоемах Московской области хорошие результаты выращивания сеголетков и максимальный выход годовиков после зимовки (80-90 %) отмечены у рыб с общим количеством белка в плазме крови около 5 % и содержанием альбуминов около 6 г/кг живой массы. Особи с количеством белка в сыворотке крови до 3,5 % и содержанием альбуминов 0,4 г/кг живой массы и чаще погибали в процессе роста (выход сеголетков менее70%) и тяжелее переносили зимовку (выход годовиков менее 50%)

Очевидно, что альбумины плазмы крови рыб выполняют функцию резерва пластического и энергетического материалов, который используется организмом в условиях вынужденного голодания. Высокая обеспеченность организма альбуминами и гамма-глобулинами создает благоприятные предпосылки для оптимизации обменных процессов и гарантирует высокую неспецифическую резистентность,

Клетки крови рыб

Морфологическая картина крови рыб имеет яркую классовую и видовую специфичность. Зрелые эритроциты у рыб крупнее, чему теплокровных животных, имеют овальную форму и содержат ядро (рис. 6.1 и 6.3). Наличием ядра специалисты объясняют большую продолжительность жизни красных клеток (до года), поскольку наличие ядра предполагает повышенную способность клеточной мембраны и цитозольных структур к реставрации.

Вместе с тем наличие ядра ограничивает способность эритроцита связывать кислород и адсорбировать на своей поверхности различные вещества. Однако отсутствие эритроцитов в крови личинок угря, многих арктических и антарктических рыб свидетельствует о том, что функции эритроцитов у рыб дублируются другими структурами.

Гемоглобин рыб по своим физико-химическим свойствам отличается от гемоглобина других позвоночных. При кристаллизации он дает специфическую картину (рис. 6.2).

Количество эритроцитов в крови рыб в 5-10 раз меньше, чем в крови млекопитающих. У пресноводных костистых рыб их в 2 раза меньше чем, в крови морских рыб. Однако даже внутри одного вида возможны многократные изменения, которые могут быть вызваны факторами внешней среды и физиологическим состоянием рыбы.

Анализ табл. 6.7 показывает, что зимовка рыб оказывает существенное влияние на характеристику красной крови. Общее количество гемоглобина за зиму может снизиться на 20 %. Однако при пересадке годовиков в нагульные пруды эритропоэз настолько активизируется, что показатели красной крови восстанав-ливаются до осеннего уровня за 10-15 дней нагула. В это время в крови рыб можно наблюдать повышенное содержание незрелых форм всех клеток.


Рис. 6.1. Клетки крови осетра:

1-гемоцитобласт; 2- миелобласт; 3- эритробласт; 4- эритроциты; 5- лимфоциты; 6- моноцит; 7- нейтрофильный миелоцит; 8- сегментоядерный эозинофил; 9- монобласт; 10- промиелоцит; 11 - базофильный нормобласт; 12- полихроматофильный нормобласт; 13- лимфобласт; 14- эозинофильный метамиелоцит; 15- палочкоядерный эозинофил; 16- профильный метамиелопит; 17- палочкоядерный кейтрофил; 18- сегментоядерный нейтрофил; 19 - тромбоциты; 20- эозинофильный миелоцит; 21 - клетки с вакуолизированной цитоплазмой

Характеристика красной крови зависит от факторов внешней среды. Обеспеченность рыбы гемоглобином определяется температурой воды. Выращивание рыбы в условиях пониженного содержания кислорода сопровождается увеличением общего объема крови, плазмы, что повышает эффективность газообмена.

Характерной особенностью рыб является полиморфизм красных - одновременное присутствие в кровяном русле эритроцитных клеток различной степени зрелости (табл. 6.8).

6.8. Эритроцитарный ряд форели (%)

Длина рыбы, см

Незрелые формы эритроцитов

Зрелые эритроциты
эритробласт нормобласт базофильный полихромофильный

Увеличение количества незрелых форм эритроцитов связано с сезонным усилением обмена веществ, кровопотерями, а также с возрастными и половыми особенностями рыб. Так, у производителей наблюдается 2-3-кратное увеличение незрелых эритроцитов по мере созревания гонад, достигающее 15 % у самцов перед нерестом. В эволюции красных клеток крови рыб выделяют три этапа, каждый из которых характеризуется образованием морфологически довольно самостоятельных клеток - эритробласта, нормобластов и собственно эритроцита.

Эритробласт является самой незрелой клеткой эритроидного ряда. Эритробласты рыб можно отнести к средним и крупным клеткам крови, так как их размеры составляют от 9 до 14 мкм. Ядро этих клеток имеет красно-фиолетовый цвет (в мазке). Хроматин равномерно распределяется по ядру, образуя сетчатую структуру. При большом увеличении в ядре можно обнаружить от 2 до 4 ядрышек. Цитоплазма этих клеток резко базофильна. Она образует сравнительно правильное кольцо вокруг ядра.

Базофильный нормобласт образуется из эритробласта. Эта клетка имеет более плотное ядро меньшего размера, которое занимает Центральную часть клетки. Цитоплазма характеризуется слабовыраженными базофильными свойствами. Полихроматофилъный нормобласт отличается еще меньшим, с резко очерченными краями ядром, которое несколько смещается от центра клетки. Другой его особенностью является то, что ядерный хроматин располагается радиально, образуя довольно правильные сектора в пределах ядра. Цитоплазма клеток в мазке имеет не базофильное, а грязно-розовое (светло-сиреневое) окрашивание.


Рис. 6.2. Кристаллы гемоглобина рыб

Оксифильный нормобласт имеет округлую форму с центрально расположенным округлым и плотным ядром. Цитоплазма располагается широким кольцом вокруг ядра и имеет хорошо различимую розовую окраску.

Эритроциты рыб завершают эритроидный ряд. Они имеют овальную форму с повторяющим их форму плотным ядром красно-фиолетового цвета. Хроматин образует скопления в виде специфических глыбок. В целом зрелый эритроцит похож на оксифильный нормобласт как по характеру окраски ядра- и цитоплазмы в мазке, так и по микроструктуре протоплазмы. Его отличает лишь вытянутая форма. Скорость оседания эритроцитов (СОЭ) у рыб в норме составляет 2-10 мм/ч. Белые клетки крови (лейкоциты). Лейкоциты крови рыб представлены в большем количестве, чем таковые у млекопитающих. Для рыб характерен лимфоцитарный профиль, т. е. более 90 % белых клеток составляют лимфоциты (табл. 6.9, 6.10).

6.9. Количество лейкоцитов в 1 мм

6.10. Лейкоцитарная формула, %

Вид и масса рыб, г

Лимфоциты

Моноциты

ПМЯ клетки

Эозинофилы

Нейтрофилы

Толстолобик 100

Фагоцитирующими формами являются моноциты и полиморфноядерные клетки. На протяжении жизненного цикла лейкоцитарная формула меняется под влиянием факторов внешней среды. Во время нереста снижается количество лимфоцитов в пользу моноцитов и полиморфноядерных клеток.

В крови рыб присутствуют полиморфноядерные клетки (гранулоциты), находящиеся на разных стадиях зрелости. Родоначальником всех гранулоцитов следует рассматривать миелобласт (рис. 6.3).


Рис. 6.3. Клетки крови карася:

1 - гемоцитобласт; 2- миелобласт; 3 - эритробласт; 4-эритроциты; 5 - лимфоциты; 6- моноцит; 7- нейтрофильный миелоцит; 8- псевдоэозинофильный миелоцит; 9- монобласт; 10- промиелоцит; 11 - базофильный нормобласт; 12 -- полихроматофильный нормобласт; 13 - лимфобласт; 14- нейтрофильный метамиелоиит; 15- псевдоэозинофильный метамиелоцит; 16- палочколдерный нейтрофил; 17 - сегментоядерный нейтрофил; 18- псевдобазофил; 19- тромбоцит Эта клетка отличается крупными размерами и большим ядром красно-фиолетового цвета, которое занимает большую ее часть. Размеры миелобластов колеблются от 12 до 20 мкм. Микроструктура клеток характеризуется обилием рибосом, митохондрий, а также интенсивным развитием комплекса Гольджи. При созревании миелобласт переходит в промиелоцит.

Промиелоцит сохраняет размеры своей предшественницы, т.е. является крупной клеткой. По сравнению с миелобластом промиелоцит имеет более плотное ядро красно-фиолетового цвета с 2-4 ядрышками и слабобазофильную цитоплазму зернистой структуры. Кроме того, в этой клетке меньше рибосом. Миелоцит мельче предыдущих клеток (10-15 мкм). Плотное круглое ядро утрачивает ядрышки. Цитоплазма занимает больший объем, имеет ярко выраженную зернистость, которая выявляется кислыми, нейтральными и основными красителями.

Метамиелоцит отличается ядром вытянутой формы с пятнистым хроматином. Цитоплазма клеток имеет неоднородную гранулярную структуру. Палочкоядерный гранулоцит представляет собой дальнейший этап эволюции гранулоиитов. Отличительным признаком его является форма плотного ядра. Оно у него вытянутое, с обязательным перехватом. К тому же ядро занимает меньшую часть объема клетки.

Сегментоядерный гранулоцит представляет конечную стадию созревания миелобласта, т.е. является наиболее зрелой клеткой гранулярного ряда крови рыб. Его отличительной особенностью является сегментированное ядро. В зависимости

от того, какой краской окрашиваются гранулы цитоплазмы, сегментоядерные клетки дополнительно классифицируют на нейтрофилы, эозинофилы, базофилы, а также на псевдоэозинофилы и псевдобазофилы. Некоторые исследователи отрицают наличие базофильных форм гранулоцитов у осетровых рыб.

Полиморфизм клеток отмечается и у лимфоцитов крови рыб. Наименее зрелой клеткой лимфоидного ряда считают лимфобласт, формирующийся из гемоцитобласта.

Лимфобласт отличается крупным округлым ядром красно-фиолетового цвета с сетчатой структурой хроматина. На долю цитоплазмы приходится узкая полоска, окрашиваемая основными красителями. При изучении клетки под большим увеличением обнаруживается много рибосом и митохондрий на фоне слабого развития комплекса Гольджи и эндоплазматического ретикулума. Пролимфоцит представляет собой промежуточную стадию развития клеток лимфоидного ряда. От предшественника пролимфоцит отличается структурой хроматина в ядре: он утрачивает сетчатое строение.

Лимфоцит имеет красно-фиолетовое ядро различной формы (округлое, овальное, палочковидное, дольчатое), которое располагается в клетке асимметрично. Хроматин распределен в пределах ядра неравномерно. Поэтому на окрашенных препаратах в пределах ядра видны облаковидные структуры. Цитоплазма располагается асимметрично относительно ядра и часто образует псевдоподии, что придает клетке амебовидную форму.

Лимфоцит рыб - мелкая клетка (5-10 мкм). При микроскопировании мазков крови лимфоциты можно спутать с другими мелкими клетками крови- тромбоцитами. При их распознавании следует учитывать различия в форме клеток, ядра и границ распределения цитоплазмы вокруг ядра. К тому же и окрашенность цитоплазмы у этих клеток неодинакова: у лимфоцитов она синяя, у тромбоцитов -- розовая. В свою очередь, лимфоциты крови - неоднородная группа клеток, различающихся по морфофункциональным признакам. Здесь довольно упомянуть о том, что выделяют Т- и В-лимфоциты, которые имеют неодинаковое происхождение и свои собственные уникальные функции в реакциях клеточного и гуморального иммунитета.

Моноцитоидный ряд белой крови рыб представляют, по крайней мере, три типа довольно крупных (11 - 17 мкм) клеток.

Монобласт является наименее зрелой клеткой этого ряда. Он выделяется крупным ядром красно-фиолетового цвета неправильной формы: бобовидной, подковообразной, серповидной. Клетки имеют широкий слой цитоплазмы со слабобазофильными свойствами.

Промоноцит отличается от монобласта более рыхлой структурой ядра и хроматином дымчатого вида (после окрашивания). Неравномерно окрашивается и цитоплазма этих клеток, отчего приобретает дымчатость.

Моноцит - наиболее зрелая клетка ряда. Имеет крупное ядро красно-фиолетового цвета с относительно небольшим количеством хроматинового вещества. Форма ядра чаще неправильная. На окрашенных препаратах цитоплазма сохраняет дымчатость. Ухудшение условий содержания рыбы (гипоксия, бактериальная и химическая загрязненность водоема, голодание) приводит к увеличению фагоцитирующих форм. В процессе зимовки карпа отмечают 2-16-кратный рост количества моноцитов и полиморфноядерных клеток при одновременном уменьшении на 10-30 % количества лимфоцитов. Таким образом, за физиологическую норму следует принимать показатели рыб, выращенных в хороших условиях. Тромбоциты крови рыб. Нет более противоречивой информации о морфологии и происхождении клеток крови, чем сведения о тромбоцитах рыб. Отдельными авторами существование этих клеток вообще отрицается. Однако более убедительной выглядит точка зрения о большом морфологическом разнообразии и высокой изменчивости тромбоцитов в организме рыб. Не последнее место в этом споре занимают особенности методических приемов при исследовании тромбоцитов.

В мазках крови, сделанных без применения антикоагулянтов, многие исследователи обнаруживают, как минимум, четыре морфологические формы тромбоцитов - шиловидную, веретенообразную, овальную и округлую. Овальные тромбоциты внешне практически неотличимы от мелких лимфоцитов. Поэтому при подсчете тромбоцитов в мазке крови их количественная характеристика в 4 %, вероятно, занижается при использовании данной методики.

Более совершенные методы, например иммунофлюоресцентный со стабилизацией крови гепарином, позволили определить соотношение лимфоциты: тромбоциты как 1: 3. Концентрация тромбоцитов в 1 мм3 при этом составила 360 000 клеток. Остается открытым вопрос о происхождении тромбоцитов у рыб. Распространенная точка зрения о едином с лимфоцитами происхождении из мелких лимфоидных гемобластов в последнее время подвергается сомнению. Ткань, производящая тромбоциты, у рыб не описана. Однако обращает на себя внимание то, что в отпечатках от срезов селезенки практически всегда обнаруживается большое количество овальных клеток, сильно напоминающих овальные формы тромбоцитов. Следовательно, есть основания полагать, что тромбоциты рыб образуются в селезенке.

Таким образом, можно определенно говорить о существовании тромбоцитов в классе рыб de facto, отметив при этом их большое морфологическое и функциональное разнообразие.

Количественная характеристика этой группы клеток не отличается от таковой у других классов животных.

Среди исследователей крови рыб существует единая точка зрения относительно функциональной значимости тромбоцитов. Подобно тромбоцитам других классов животных у рыб они осуществляют процесс свертывания крови. У рыб время свертывания крови - довольно нестабильный показатель, который зависит не только от способа взятия крови, но и от факторов внешней среды, физиологического состояния рыбы (табл. 6.11).

Стресс-факторы повышают скорость свертывания крови у рыб, что свидетельствует о значительном влиянии центральной Нервной системы на этот процесс (табл. 6.12).

6.12. Влияние стресса на время свертывания крови у форели, с

До стресса

Через 30 мин

Через 1 мин

Через 60 мин

Через 20 мин

Через 180 мин

Данные табл. 6.12 свидетельствуют о том, что реакция адаптации у рыб включает в себя механизм защиты организма от кровопотерь. Первый этап свертывания крови, т. е. образование тромбопластина, контролируется гипоталамо-гипофизарной системой и адреналином. Кортизол, вероятно, не затрагивает этот процесс. В литературе описаны и межвидовые различия свертывания крови у рыб (табл. 6.13). Однако к этим данным следует относиться с определенным скептицизмом, помня о том, что отловленная рыба - это рыба, подвергнутая резкому стрессу. Поэтому межвидовые различия, описанные в специальной литературе, вполне могут оказаться результатом различной устойчивости рыб к стрессам.

Таким образом, организм рыб надежно защищен от больших кровопотерь. Зависимость времени свертывания крови рыб от состояния нервной системы является дополнительным защитным фактором, поскольку крупные кровопотери возможны скорее всего в стрессовых ситуациях (нападение хищника, драки).



Любого вида, как и рыб хрящевых, имеет единое строение. В организме их присутствует лишь один круг кровообращения. Схематически отделы кровеносной системы рыбы представляют собой следующую цепочку, последовательно идущих составляющих: сердце, брюшная аорта, артерии на жабрах, спинная аорта, артерии, капилляры и вены.

Имеет всего лишь две камеры и не приспособлено, как у других существ, для выполнения функции отделения тока крови, обогащенной кислородом, от крови, не обогащенной кислородом. Структурно сердце представляет собой четыре камеры, расположенные друг за другом. Все эти камеры заполнены особой венозной кровью, и каждый из отделов сердца имеет свое название - венозный синус, артериальный конус, предсердие и желудочек. Отделы сердца отделяются друг от друга клапаном, в результате чего кровь при сокращении сердечных мышц может перемещаться только в одну сторону - по направлению от венозного синуса до артериального конуса. Кровеносная система рыб устроена таким образом, что ток крови осуществляется исключительно в этом направлении и никак иначе.

Роль каналов для распределения по телу рыбы питательных веществ и кислорода выполняют артерии и вены. Артерии выполняют функцию транспортировки крови от сердца, а вены - к сердцу. В артерии содержится насыщенная кислородом (оксигенированная) кровь, а в венах - менее богатая кислородом кровь (дезоксигенированная).

Венозная кровь поступает в специальную венозную пазуху, после чего током доставляется в предсердие, желудочек и брюшную аорту. Брюшная аорта соединена с жабрами посредством четырех пар выносящих артерий. Эти артерии распадаются на множество капилляров в области жаберных лепестков. Именно в жаберных капиллярах и происходит процесс газообмена, после чего эти капилляры сливаются в выносящие жаберные артерии. Выносящие артерии входят в состав спинной аорты.

Ближе к голове ответвления спинной аорты переходят в сонные артерии. Кровеносная система рыбы подразумевает разделение каждой сонной артерии на два канала - внутренний и внешний. Внутренняя отвечает за снабжение кровью мозга, а внешняя выполняет функцию кровоснабжения висцеральной части черепа.

Ближе к задней части тела рыбы корни аорты сливаются в единую спинную аорту. Последовательно от нее ветвятся непарные и парные артерии, и кровеносная система рыб в этой части снабжает кровью соматический отдел тела и важные внутренние органы. Заканчивается спинная аорта хвостовой артерией. Все артерии разветвляются на множество капилляров, в которых и происходит процесс изменения состава крови. В капиллярах кровь превращается в венозную.

И ее дальнейший ток осуществляется по следующей схеме. В области головы кровь концентрируется в передних кардинальных венах, а в нижнем отделе головы она собирается в яремных венах. Проходящая от головы к хвосту вена, в задней части разделяется на две части - левую и правую почечные воротные вены. Далее левая воротная вена ветвится, образуя систему капилляров, которые образуют воротную систему почки, расположенной слева. У большинства костных видов кровеносная система рыб устроена так, что правая воротная система почки, как правило, редуцирована.

Из почек кровеносная система рыб прогоняет кровь в полость задних кардинальных вен. Передние, задние, а также кардинальные вены с каждой стороны тела сливаются в так называемые кювьеровы протоки. Кювьеровы протоки с каждой стороны соединяются с венозной пазухой. В результате кровь, перемещаемая током из внутренних органов, поступает в воротную вену печени. В области печени воротная система ветвится на множество капилляров. После этого капилляры вновь сливаются воедино и образуют которая и соединена с венозной пазухой.

ГЛАВА I
СТРОЕНИЕ И НЕКОТОРЫЕ ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ РЫБ

КРОВЕНОСНАЯ СИСТЕМА. ФУНКЦИИ И СВОЙСТВА КРОВИ

Главным отличием кровеносной системы рыб от других позвоночных является наличие одного круга кровообращения и двухкамерного сердца, наполненного венозной кровью (за исключением двоякодышащих и кистёперых).

Сердце состоит из одного желудочка и одного предсердия и помещается в околосердечной сумке, сразу за головой, позади последних жаберных дуг, т. е. по сравнению с другими позвоночными сдвинуто вперед. Перед предсердием имеется венозная пазуха, или венозный синус, со спадающими стенками; через эту пазуху кровь поступает в предсердие, а из него – в желудочек.

Расширенный начальный участок брюшной аорты у низших рыб (акулы, скаты, осетровые, двоякодышащие) образует сокращающийся артериальный конус, а у высших рыб – луковицу аорты, стенки которой сокращаться не могут. Обратному току крови препятствуют клапаны.

Схема кровообращения в самом общем виде представлена следующим образом. Венозная кровь, заполняющая сердце, при сокращениях сильного мускульного желудочка через артериальную луковицу по брюшной аорте направляется вперед и поднимается в жабры по приносящим жаберным артериям. У костистых рыб их четыре с каждой стороны головы – по числу жаберных дуг. В жаберных лепестках кровь проходит через капилляры и, окисленная, обогащенная кислородом, направляется по выносящим сосудам (их также четыре пары) в корни спинной аорты, которые затем сливаются в спинную аорту, идущую вдоль тела назад, под позвоночником. Соединение корней аорты спереди образует характерный для костистых рыб головной круг. Вперед от корней аорты ответвляются сонные артерии.

От спинной аорты идут артерии к внутренним органам и мускулатуре. В хвостовом отделе аорта переходит в хвостовую артерию. Во всех органах и тканях артерии распадаются на капилляры. Собирающие венозную кровь венозные капилляры впадают в вены, несущие кровь к сердцу. Хвостовая вена, начинающаяся в хвостовом отделе, войдя в полость тела, разделяется на воротные вены почек. В почках разветвления воротных вен образуют воротную систему, а выйдя из них, сливаются в парные задние кардинальные вены. В результате слияния вен задних кардинальных с передними кардинальными (яремными), собирающими кровь из головы, и подключичными, приносящими кровь из грудных плавников, образуется два Кювьерова протока, по которым кровь попадает в венозный синус. Кровь из пищеварительного тракта (желудка, кишечника) и селезенки, идущая по нескольким венам, собирается в воротную вену печени, разветвления которой в печени образуют воротную систему. Собирающая кровь из печени печеночная вена впадает прямо в венозный синус (рис. 21). В спинной аорте радужной форели обнаружена эластичная связка, выполняющая роль нагнетающего насоса, который автоматически увеличивает циркуляцию крови во время плавания, особенно в мускулатуре тела. Производительность этого ‛дополнительного сердца“ зависит от частоты движений хвостового плавника.

Рис. 21. Схема кровеносной системы костистой рыбы (по Наумову, 1980):
1 – венозная пазуха, 2 – предсердие, 3 – желудочек, 4 - луковица аорты, 5 – брюшная аорта, 6 – приносящие жаберные артерии, 7 – выносящие жаберные артерии, 8 – корни спинной аорты, 9 – передняя перемычка, соединяющая корни аорты, 10 – сонная артерия, 11– спинная аорта, 12 -подключичная артерия, 13 – кишечная артерия, 14 – брыжеечная артерия, 15– хвостовая артерия, 16 – хвостовая вена, 17– воротные вены почек, 18 – задняя кардинальная вена, 19 – передняя кардинальная вена, 20 – подключичная вена, 21 – Кювьеров проток, 22 – воротная вена печени, 23 – печень, 24 – печеночная вена; черным показаны сосуды с венозной кровью,
белым – с артериальной

У двоякодышащих рыб появляется неполная перегородка предсердия. Это сопровождается и возникновением ‛лёгочного“ круга кровообращения, проходящего через плавательный пузырь, превращенный в легкое.
Сердце рыб относительно очень мало и слабо, гораздо меньше и слабее, чем у наземных позвоночных. Масса его обычно не превышает 0,33–2,5%, в среднем 1 % массы тела, тогда как у млекопитающих оно достигает 4,6%, а у птиц даже 10–16%.

Кровяное давление (Па) у рыб низкое – 2133,1 (скат), 11198,8 (щука), 15998,4 (лосось), тогда как в сонной артерии лошади – 20664,6.

Невелика и частота сокращений сердца – 18–30 ударов в минуту, причем она сильно зависит от температуры: при низких температурах у рыб, зимующих на ямах, она уменьшается до 1–2 ;у рыб, переносящих вмерзание в лед, пульсация сердца на этот период прекращается.

Количество крови у рыб относительно меньше, чем у всех остальных позвоночных животных (1,1 – 7,3% от массы тела, в том числе у карпа 2,0–4,7%, сома – до 5, щуки – 2, кеты – 1,6, тогда как у млекопитающих – 6,8% в среднем).

Это связано с горизонтальным положением тела (нет необходимости проталкивать кровь вверх) и меньшими энергетическими тратами в связи с жизнью в водной среде. Вода является гипогравитационной средой, т. е. сила земного притяжения здесь почти не сказывается.

Морфологическая и биохимическая характеристика крови различна у разных видов в связи с систематическим положением, особенностями среды обитания и образа жизни. Внутри одного вида эти показатели колеблются в зависимости от сезона года, условий содержания, возраста, пола, состояния особей.

Количество эритроцитов в крови рыб меньше, чем у высших позвоночных, а лейкоцитов, как правило, больше. Это связано, с одной стороны, с пониженным обменом рыб, а с другой – с необходимостью усилить защитные функции крови, так как окружающая среда изобилует болезнетворными организмами. По средним данным, в 1 мм3крови количество эритроцитов составляет (млн.): у приматов –9,27; копытных– 11,36; китообразных – 5,43; птиц – 1,61–3,02; костистых рыб– 1,71 (пресноводные), 2,26 (морские), 1,49 (проходные).

Количество эритроцитов у рыб колеблется в широких пределах, прежде всего в зависимости от подвижности рыб: у карпа – 0,84–1,89 млн. /мм3 крови, щуки – 2,08, пеламиды – 4,12 млн. /мм3. Количество лейкоцитов составляет у карпа 20–80, у ерша – 178 тыс. /мм3. Клетки крови рыб отличаются большим разнообразием, чем у какой-либо другой группы позвоночных. У большинства видов рыб в крови имеются и зернистые (нейтрофилы, эозинофилы) и незернистые (лимфоциты, моноциты) формы лейкоцитов.

Среди лейкоцитов преобладают лимфоциты, на долю которых приходится 80–95%, моноциты составляют 0,5–11%; среди зернистых форм преобладают нейтрофилы–13–31%; эозинофилы встречаются редко (у карповых, амурских растительноядных, некоторых окуневых).

Соотношение разных форм лейкоцитов в крови карпа зависит от возраста и условий выращивания.

Общее количество лейкоцитов в крови рыб сильно изменяется в течение года, у карпа оно повышается летом и понижается зимой при голодании в связи со снижением интенсивности обмена.

Кровь окрашена гемоглобином в красный цвет, но есть рыбы и с бесцветной кровью. Так, у представителей семейства Chaenichthyidae (из подотряда нототениевых), обитающих в антарктических моряхв условиях низкой температуры (<2°С), в воде, богатой кислородом, эритроцитов и гемоглобина в крови нет. Дыхание у них происходит через кожу, в которой очень много капилляров (протяженность капилляров на 1 мм2 поверхности тела достигает 45 мм). Кроме того, у них ускорена циркуляция крови в жабрах.

Количество гемоглобина в организме рыб значительно меньше, чему наземных позвоночных: на 1 кг массы тела у них приходится 0,5–4 г, тогда как у млекопитающих этот показатель возрастает до 5–25 г. У быстра передвигающихся рыб обеспеченность гемоглобином выше, чем у малоподвижных (у проходного осетра 4 г/кг, у налима 0,5 г/кг). Количество гемоглобина в крови рыб колеблется в зависимости от сезона (у карпа повышается зимой и понижается летом), гидрохимического режима водоема (в воде с кислым значением рН, равным 5,2, количество гемоглобина в крови возрастает), условий питания (карпы, выращенные на естественной пище и дополнительных кормах, имеют разную обеспеченность гемоглобином). Ускорение темпа роста рыб коррелирует с повышенной обеспеченностью их организма гемоглобином.

Способность гемоглобина крови извлекать кислород из воды у разных рыб неодинакова. У быстро плавающих рыб – макрели, трески, форели – гемоглобина в крови много, и они очень требовательны к содержанию кислорода в окружающей воде. У многих морских придонных рыб, а также угря, карпа, карасей и некоторых других, наоборот, гемоглобина в крови мало, но он может связывать кислород из среды даже с незначительным количеством кислорода.

Например, судаку для насыщения крови кислородом (при 16°С) необходимо содержание в воде 2,1–2,3 О2 мг/л; при наличии в воде 0,56–0,6 О2 мг/л кровь начинает его отдавать, дыхание оказывается невозможным и рыба гибнет.

Лещу при этой же температуре для полного насыщения гемоглобина крови кислородом достаточно присутствия в литре воды 1,0–1,06 мг кислорода.

Чувствительность рыб к изменениям температуры воды также связана со свойствами гемоглобина: при повышении температуры воды потребность организма в кислороде увеличивается, но способность гемоглобина связывать его падает.

Угнетает способность гемоглобина связывать кислород и углекислота: для того чтобы насыщенность кислородом крови угря достигла 50% при содержании в воде 1% СО2, необходимо давление кислорода в 666,6 Па, а в отсутствии СО2 для этого достаточно давления кислорода почти вдвое меньшего – 266,6– 399,9 Па.

Группы крови у рыб впервые были определены на байкальском омуле и хариусе в 30-х годах. К настоящему времени установлено, что групповая антигенная дифференцировка эритроцитов широко распространена; выявлено 14 систем групп крови, включающих более 40 эритроцитарных антигенов. При помощи иммуносерологических методов изучается изменчивость на разных уровнях; выявлены различия между видами и подвидами и даже между внутривидовыми группировками у лососевых (при изучении родства форелей), осетровых (при сравнении локальных стад) и других рыб.

Кровь, будучи внутренней средой организма, содержит в плазме белки, углеводы (гликоген, глюкоза и др.) и другие вещества, играющие большую роль в энергетическом и пластическом обмене, в создании защитных свойств.

Уровень этих веществ в крови зависит от биологических особенностей рыб и абиотических факторов, а подвижность состава крови позволяет использовать ее показатели для оценки физиологического состояния.

Костного мозга, являющегося основным органом образования форменных элементов крови у высших позвоночных, и лимфатических желез (узлов) у рыб нет.

Кроветворение у рыб по сравнению с высшими позвоночными отличается рядом особенностей:
1. Образование клеток крови происходит во многих органах. Очагами кроветворения у рыб являются: жаберный аппарат (эндотелий сосудов и ретикулярный синцитий, сосредоточенный у основания жаберных лепестков), кишечник (слизистая), сердце (эпителиальный слой и эндотелий сосудов), почки (ретикулярный синцитий между канальцами), селезёнка, сосудистая кровь, лимфоидный орган (скопления кроветворной ткани – ретикулярного синцития – под крышей черепа). На отпечатках этих органов видны кровяные клетки разных стадий развития.
2. У костистых рыб наиболее активно гемопоэз происходит в лимфоидных органах, почке и селезенке, причем главным органом кроветворения являются почки (передняя часть). В почках и селезенке происходит как образование эритроцитов, лейкоцитов, тромбоцитов, так и распад эритроцитов.
3. Наличие в периферической крови рыб и зрелых и молодых эритроцитов является нормальным и не служит патологическим показателем в отличие от крови взрослых млекопитающих.
4. В эритроцитах, как и у других водных животных, в отличие от млекопитающих имеется ядро.

Селезёнка рыб располагается в передней части полости тела, между петлями кишечника, но независимо от него. Это плотное компактное тёмно-красное образование различной формы (шарообразной, лентовидной), но чаще вытянутой. Селезёнка быстро меняет объём под влиянием внешних условий и состояния рыбы. У карпа она увеличивается зимой, когда в связи с пониженным обменом веществ ток крови замедляется и она скапливается в селезенке, печени и почках, которые служат депо крови, тоже наблюдается при острых заболеваниях. При недостатке кислорода, перевозке и сортировке рыбы, облове прудов запасы крови из селезенки поступают в кровяное русло.

Изменение размеров селезенки в связи с периодами усиленной активности установлено на ручьевой и радужной форелях и других рыбах.

Одним из важнейших факторов внутренней среды является осмотическое давление крови, так как от него зависит в значительной степени взаимодействие крови и клеток тела, водный обмен в организме и т. д.

Лимфатическая система рыб не имеет желез. Она представлена рядом парных и непарных лимфатических стволов, в которые лимфа собирается из органов и по ним же выводится в конечные участки вен, в частности в Кювьеровы протоки.