Как числа фибоначчи используются в рекламе. Числа Фибоначчи в массовой культуре. Основной целью ланного реферата является изучение основных свойствчисел Фибоначчи и их применение в практике трендового анализа

(числа Фибоначчи, англ. Fibonacci sequence, Fibonacci numbers) – ряд чисел, выведенный известным математиком Фибоначчи. Имеет следующий вид: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181 и др.

История ряда Фибоначчи

Леонардо из Пизы (Фибоначчи) пришел в математику из-за практической потребности в установлении деловых контактов. В молодости Фибоначчи много путешествовал, сопровождал отца в разных деловых поездках, что позволяло ему общаться с местными учеными.

Ряд чисел, который сегодня носит его имя, был выведен благодаря проблеме с кроликами, которую автор изложил в книге под названием «Liber abacci» (1202 год): один человек посадил в загон, со всех сторон окруженный стеной, пару кроликов. Вопрос: сколько пар кроликов может произвести эта пара за год, если известно, что ежемесячно, начиная со второго месяца, каждая пара производит на свет еще одну пару кроликов.

В итоге Фибоначчи определил, что число пар кроликов в каждый из последующих двенадцати месяцев будет соответственно:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Где каждое последующее число - это сумма двух предыдущих. Это ряд (числа) Фибоначчи. Данная последовательность имеет множество свойств, интересных с математической точки зрения. Например, если разделить линию на 2 сегмента таким образом, чтобы соотношение между меньшим и большим сегментом было пропорционально соотношению между большим сегментом и всей линией, получится коэффициент пропорциональности, известный как «золотое сечение». Он приблизительно равен 0,618. Ученые эпохи Возрождения считали, что именно эта пропорция, если ее соблюдать в архитектурных сооружениях, способна больше всего радовать глаз.

Применение ряда Фибоначчи

Ряд Фибоначчи нашел широкое применение в самых разных областях науки и жизни. Например, в природе: в строении ураганов, раковин и даже галактик. Не стал исключением и валютный рынок Форекс, где последовательный ряд чисел стал использоваться для прогнозирования трендов. Следует отметить, что между этими числами есть неизменные отношения. Например, как упоминалось выше, отношение предыдущего числа к следующему асимптотически стремится к 0,618 (золотое сечение). Отношения некоторого числа к предыдущему также стремится к величине 0,618.

Помимо прогнозирования трендов, числа Фибоначчи на Форекс используются для прогноза направления движения цены. Например, разворот тренда по золотому сечению происходит на уровне около 61,8% от предыдущего изменения цены (см. рис. 1). Соответственно, самым выгодным вариантом в таком случае будет закрытие позиции чуть ниже данного уровня. Опираясь на ряд Фибоначчи можно рассчитывать наиболее выгодные моменты закрытия и открытия сделок.

Также, одним из способов применения последовательных чисел ряда Фибоначчи на рынке Форекс является построение дуг. Выбор центра для такой дуги происходит в точке важного дна или потолка. Радиус дуг рассчитывается при помощи умножения коэффициентов Фибоначчи на значение предыдущего существенного подъема или спада цен.

Выбираемые коэффициенты имеют значения 0.333, 0.382, 0.4, 0.5, 0.6, 0.618, 0.666. Расположение дуг определяет их роль: поддержки или сопротивления. Чтобы получить представление также о времени возникновения движений цены, дуги, как правило, используют совместно со скоростными или веерными линиями.

Принцип их построения аналогичен: нужно выбрать точки прошлых экстремумов и построить горизонтальную линию из вершины первого из них и вертикальную – из вершины второго. Затем следует поделить получившийся вертикальный отрезок на соответствующие коэффициентам части, нарисовать лучи, идущие из первой точки сквозь только что избранные. При использовании отношений 2/3 и 1/3 получаются скоростные линии, при более строгих 0,618, 0,5 и 0,382 – веерные линии. Все они служат линиями поддержки или сопротивления для ценового тренда (см. рис. 2).

Пересечения веерных дуг и линий служат сигналами для определения поворотных точек тренда – как по времени, так и по цене.

(Рис. 2 – Ряд Фибоначчи, построение дуг)

Более волатильные пары валют характеризуются достижением больших уровней Фибоначчи по сравнению с менее волатильными. Максимальные движения фиксируются по парам Доллар/Франк и Фунт/Доллар, затем идут Доллар/Йена и Евро/Доллар.

Использование ряда Фибоначчи на валютном рынке Форекс имеет одну особенность – их можно применять лишь для хороших импульсных движений.

Последовательность Фибоначчи, ставшая известной большинству благодаря фильму и книге «Код да Винчи», это ряд чисел, выведенный итальянским математиком Пизанским Леонардо, более известным под псевдонимом Фибоначчи, в тринадцатом веке. Последователи ученого заметили, что формула, которой подчинен данный ряд цифр, находит свое отображение в окружающем нас мире и перекликается с другими математическими открытиями, тем самым открывая для нас дверь в тайны мироздания. В этой статье мы расскажем, что такое последовательность Фибоначчи, рассмотрим примеры отображения этой закономерности в природе, а также сравним с другими математическими теориями.

Формулировка и определение понятия

Ряд Фибоначчи - это математическая последовательность, каждый элемент которой равен сумме двух предыдущих. Обозначим некой член последовательности как х n. Таким образом, получим формулу, справедливую для всего ряда: х n+2 =х n +х n+1. При этом порядок последовательности будет выглядеть так: 1, 1, 2, 3, 5, 8, 13, 21, 34. Следующим числом будет 55, так как сумма 21 и 34 равна 55. И так далее по такому же принципу.

Примеры в окружающей среде

Если мы посмотрим на растение, в частности, на крону из листьев, то заметим, что они распускаются по спирали. Между соседними листьями образуются углы, которые, в свою очередь, образуют правильную математическую последовательность Фибоначчи. Благодаря этой особенности каждый отдельно взятый листочек, который растет на дереве, получает максимальное количество солнечного света и тепла.

Математическая загадка Фибоначчи

Известный математик представил свою теорию в виде загадки. Звучит она следующим образом. Можно поместить пару кроликов в замкнутое пространство для того, чтобы узнать, какое количество пар кроликов родится в течении одного года. Учитывая природу этих животных, то, что каждый месяц пара способна производить на свет новую пару, а готовность к размножению у них появляется по достижении двух месяцев, в итоге он получил свой знаменитый ряд чисел: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 - где показано количество новых пар кроликов в каждом месяце.

Последовательность Фибоначчи и пропорциональное соотношение

Этот ряд имеет несколько математических нюансов, которые обязательно нужно рассмотреть. Он, приближаясь медленнее и медленнее (асимптотически), стремится к некоему пропорциональному соотношению. Но оно иррациональное. Другими словами, представляет собой число с непредсказуемой и бесконечной последовательностью десятичных чисел в дробной части. Например, соотношение любого элемента ряда варьируется около цифры 1,618, то превосходя, то достигая его. Следующее по аналогии приближается к 0,618. Что есть обратно пропорциональным к числу 1,618. Если мы поделим элементы через один, то получим 2,618 и 0,382. Как вы уже поняли, они также являются обратно пропорциональными. Полученные числа называются коэффициентами Фибоначчи. А теперь объясним, для чего мы выполняли эти вычисления.

Золотое сечение

Все окружающие нас предметы мы различаем по определенным критериям. Один из них - форма. Какие-то нас привлекают больше, какие-то меньше, а некоторые и вовсе не нравятся. Замечено, что симметричный и пропорциональный объект гораздо легче воспринимается человеком и вызывает чувство гармонии и красоты. Цельный образ всегда включает в себя части различного размера, которые находятся в определенном соотношении друг с другом. Отсюда вытекает ответ на вопрос о том, что называют Золотым сечением. Данное понятие означает совершенство соотношений целого и частей в природе, науке, искусстве и т. д. С математической точки зрения рассмотрим следующий пример. Возьмем отрезок любой длины и разделим его на две части таким образом, чтобы меньшая часть относилась к большей как сумма (длина всего отрезка) к большей. Итак, примем отрезок с за величину один. Его часть а будет равна 0,618, вторая часть b , выходит, равна 0,382. Таким образом, мы соблюдаем условие Золотого сечения. Отношение отрезка c к a равняется 1,618. А отношение частей c и b - 2,618. Получаем уже известные нам коэффициенты Фибоначчи. По такому же принципу строятся золотой треугольник, золотой прямоугольник и золотой кубоид. Стоит также отметить, что пропорциональное соотношение частей тела человека близко к Золотому сечению.

Последовательность Фибоначчи - основа всего?

Попробуем объединить теорию Золотого сечения и известного ряда итальянского математика. Начнем с двух квадратов первого размера. Затем сверху добавим еще квадрат второго размера. Подрисуем рядом такую же фигуру с длиной стороны, равной сумме двух предыдущих сторон. Аналогичным образом рисуем квадрат пятого размера. И так можно продолжать до бесконечности, пока не надоест. Главное, чтобы величина стороны каждого последующего квадрата равнялась сумме величин сторон двух предыдущих. Получаем серию многоугольников, длина сторон которых является числами Фибоначчи. Эти фигуры называются прямоугольниками Фибоначчи. Проведем плавную линию через углы наших многоугольников и получим… спираль Архимеда! Увеличение шага данной фигуры, как известно, всегда равномерно. Если включить фантазию, то полученный рисунок можно проассоциировать с раковиной моллюска. Отсюда можем сделать вывод, что последовательность Фибоначи - это основа пропорциональных, гармоничных соотношений элементов в окружающем мире.

Математическая последовательность и мироздание

Если присмотреться, то спираль Архимеда (где-то явно, а где-то завуалированно) и, следовательно, принцип Фибоначчи прослеживаются во многих привычных природных элементах, окружающих человека. Например, все та же раковина моллюска, соцветия обычной брокколи, цветок подсолнечника, шишка хвойного растения и тому подобное. Если заглянем подальше, то увидим последовательность Фибоначчи в бесконечных галактиках. Даже человек, вдохновляясь от природы и перенимая ее формы, создает предметы, в которых прослеживается вышеупомянутый ряд. Тут самое время вспомнить и о Золотом сечении. Наряду с закономерностью Фибоначчи прослеживаются принципы данной теории. Существует версия, что последовательность Фибоначчи - это своего рода проба природы адаптироваться к более совершенной и фундаментальной логарифмической последовательности Золотого сечения, которая практически идентична, но не имеет своего начала и бесконечна. Закономерность природы такова, что она должна иметь свою точку отсчета, от чего отталкиваться для создания чего-то нового. Отношение первых элементов ряда Фибоначчи далеки от принципов Золотого сечения. Однако чем дальше мы его продолжаем, тем больше это несоответствие сглаживается. Для определения последовательности необходимо знать три его элемента, которые идут друг за другом. Для Золотой последовательности же достаточно и двух. Так как она является одновременно арифметической и геометрической прогрессией.

Заключение

Все-таки, исходя из вышесказанного, можно задать вполне логичные вопросы: "Откуда появились эти числа? Кто этот автор устройства всего мира, попытавшийся сделать его идеальным? Было ли всегда все так, как он хотел? Если да, то почему возник сбой? Что будет дальше?" Находя ответ на один вопрос, получаешь следующий. Разгадал его - появляются еще два. Решив их, получаешь еще три. Разобравшись с ними, получишь пять нерешенных. Затем восемь, далее тринадцать, двадцать один, тридцать четыре, пятьдесят пять…

Последовательность Фибоначчи , известная всем по фильму "Код Да Винчи" - ряд цифр, описанный в виде загадки Итальянским математиком Леонардо Пизанским, более известным под прозвищем Фибоначчи, в XIII веке. Вкратце суть загадки:

Кто-то поместил пару кроликов в некоем замкнутом пространстве, чтобы узнать, сколько пар кроликов родится при этом в течении года, если природа кроликов такова, что каждый месяц пара кроликов производит на свет другую пару, а способность к производству потомства у них появляется по достижению двухмесячного возраста.


В итоге получается такой ряд цифр: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 , где через запятую показано количество пар кроликов в каждом из двенадцати месяцев. Его можно продолжать бесконечно долго. Его суть в том, что каждое следующее число является суммой двух предыдущих.

У этого ряда есть несколько математических особенностей, которых обязательно нужно коснуться. Он асимптотически (приближаясь все медленнее и медленнее) стремится к некоторому постоянному соотношению. Однако, это соотношение иррационально, то есть представляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифр в дробной части. Его невозможно выразить точно.

Так отношение какого-либо члена ряда к предшествующему ему колеблется около числа 1,618 , через pаз то превосходя, то не достигая его. Отношение к следующему аналогично приближается к числу 0,618 , что обратно пропорционально 1,618 . Если мы будем делить элементы через одно, то получим числа 2,618 и 0,382 , которые так же являются обратно пропорциональными. Это так называемые коэффициенты Фибоначчи.

К чему всё это? Так мы приближаемся к одному из самых загадочных явлений природы. Смекалистый Леонардо по сути не открыл ничего нового, он просто напомнил миру о таком явлении, как Золотое Сечение , которое не уступает по значимости теореме Пифагора.

Все окружающие нас предметы мы различаем в том числе и по форме. Какие-то нам нравятся больше, какие-то меньше, некоторые вовсе отталкивают взгляд. Иногда интерес может быть продиктован жизненной ситуацией, а порой красотой наблюдаемого объекта. Симметричная и пропорциональная форма, способствует наилучшему зрительному восприятию и вызывает ощущение красоты и гармонии. Целостный образ всегда состоит из частей разного размера, находящихся в определённом соотношении друг с другом и целым. Золотое сечение - высшее проявление совершенства целого и его частей в науке, искусстве и природе.

Если на простом примере, то Золотое Сечение - это деление отрезка на две части в таком соотношении, при котором большая часть относится к меньшей, как их сумма (весь отрезок) к большей.


Если мы примем весь отрезок c за 1 , то отрезок a будет равен 0,618 , отрезок b - 0,382 , только так будет соблюдено условие Золотого Сечения (0,618/0,382=1,618 ; 1/0,618=1,618 ) . Отношение c к a равно 1,618 , а с к b 2,618 . Это всё те же, уже знакомые нам, коэффициенты Фибоначчи.

Разумеется есть золотой прямоугольник, золотой треугольник и даже золотой кубоид. Пропорции человеческого тела во многих соотношениях близки к Золотому Сечению.

Изображение: marcus-frings.de

Но самое интересное начинается, когда мы объединим полученные знания. На рисунке наглядно показана связь между последовательностью Фибоначчи и Золотым сечением. Мы начинаем с двух квадратов первого размера. Сверху добавляем квадрат второго размера. Подрисовываем рядом квадрат со стороной, равной сумме сторон двух предыдущих, третьего размера. По аналогии появляется квадрат пятого размера. И так далее пока не надоест, главное, чтобы длина стороны каждого следующего квадрата равнялась сумме длин сторон двух предыдущих. Мы видим серию прямоугольников, длины сторон, которых являются числами Фибоначчи, и, как не странно, они называются прямоугольниками Фибоначчи.

Если мы проведём плавную линий через углы наших квадратов, то получим ни что иное, как спираль Архимеда, увеличение шага которой всегда равномерно.


Ничего не напоминает?


Фото: ethanhein on Flickr

И не только в раковине моллюска можно найти спирали Архимеда, а во многих цветах и растениях, просто они не такие явные.

Алое многолистный:


Фото: brewbooks on Flickr


Фото: beart.org.uk
Фото: esdrascalderan on Flickr
Фото: mandj98 on Flickr

И тут самое время вспомнить о Золотом Сечении! Ни одни ли из самых прекрасных и гармоничных творений природы изображены на этих фотографиях? И это далеко не все. Присмотревшись, можно найти похожие закономерности во многих формах.

Конечно заявление, что все эти явление построены на последовательности Фибоначчи звучит слишком громко, но тенденция на лицо. Да и к тому же сама она далека от совершенства, как и всё в этом мире.

Есть предположение, что ряд Фибоначчи - это попытка природы адаптироваться к более фундаментальной и совершенной золотосечённой логарифмической последовательности, которая практически такая же, только начинается из ниоткуда и уходит в никуда. Природе же обязательно нужно какое-то целое начало, от которого можно оттолкнуться, она не может создать что-то из ничего. Отношения первых членов последовательности Фибоначчи далеки от Золотого Сечения. Но чем дальше мы продвигаемся по ней, тем больше эти отклонения сглаживаются. Для определения любого ряда достаточно знать три его члена, идущие друг за другом. Но только не для золотой последовательности, ей достаточно двух, она является геометрической и арифметической прогрессией одновременно. Можно подумать, будто она основа для всех остальных последовательностей.

Каждый член золотой логарифмической последовательности является степенью Золотой Пропорции (z ). Часть ряда выглядит примерно так: ... z -5 ; z -4 ; z -3 ; z -2 ; z -1 ; z 0 ; z 1 ; z 2 ; z 3 ; z 4 ; z 5 ... Если мы округлим значение Золотой пропорции до трёх знаков, то получим z=1,618 , тогда ряд выглядит так: ... 0,090 0,146; 0,236; 0,382; 0,618; 1; 1,618; 2,618; 4,236; 6,854; 11,090 ... Каждый следующий член может быть получен не только умножением предыдущего на 1,618 , но и сложением двух предыдущих. Таким образом экспоненциальный рост обеспечивается путем простого сложения двух соседних элементов. Это ряд без начала и конца, и именно на него пытается быть похожей последовательность Фибоначчи. Имея вполне определённое начало, она стремится к идеалу, никогда его не достигая. Такова жизнь.

И всё-таки, в связи со всем увиденным и прочитанным, возникают вполне закономерные вопросы:
От куда взялись эти числа? Кто этот архитектор вселенной, попытавшийся сделать её идеальной? Было ли когда-то всё так, как он хотел? И если да, то почему сбилось? Мутации? Свободный выбор? Что же будет дальше? Спираль скручивается или раскручивается?

Найдя ответ на один вопрос, получишь следующий. Разгадаешь его, получишь два новых. Разберёшься с ними, появится ещё три. Решив и их, обзаведёшься пятью нерешёнными. Потом восемью, потом тринадцатью, 21, 34, 55...

Источники: ; ; ;

Министерство образования и науки Украины

Одесский государственный экономический университет

кафедра________________________

Реферат по курсу "Экономический анализ"

на тему:

"Числа Фибоначчи: технический анализ".

Выполнил: студент 33 группы ФМЭ

Кушниренко Сергей

Научный руководитель:

Коптельцева Лидия Васильевна

Одесса

Введение. 3

История и свойства последовательности. 3

Использование чисел Фибоначчи в изменении тренда. 5

Множественные ценовые цели по Фибоначчи. 8

Заключение. 11

Список литературы.. 12

Введение.

Итальянский купец Леонардо из Пизы (1180-1240), более известный под прозвищем Фибоначчи был, безусловно, самым значительным математиком средневековья. Роль его книг в развитии математики и распространении в Европе математических знаний трудно переоценить.
Жизнь и научная карьера Леонарда теснейшим образом связана с развитием европейской культуры и науки.
В век Фибоначчи возраждение было еще далеко, однако история даровала Италии краткий промежуток времени, который вполне можно было назвать репетицией надвигающейся эпохи Ренессанса. Этой репетицией руководил Фридрих 2, император (с 1220 года) "Священной Римской империи Германской Нации". Воспитанный в традициях южной Италии Фридрих II был внутренне глубоко далек от европейского христианского рыцарства. Поэтому к преподаванию в основанном им Неаполитанском университете, наряду с христианскими учеными, он привлек арабов и евреев.
Столь любимые его дедом рыцарские турниры, на которых сражающиеся калечили друг друга на потеху публике, Фридрих II совсем не признавал. Вместо этого он культивировал гораздо менее кровавые математические соревнования, на которых противники обменивались не ударами, а задачами.
На таких турнирах и заблистал талант Леонарда Фибоначчи. Этому способствовало хорошее образование, которое дал сыну купец Боначчи, взявший его с собой на Восток и приставивший к нему арабских учителей.
Впоследствии Фибоначчи пользовался неизменным покровительством Фридриха II.
Это покровительство стимулировало выпуск научных трактатов Фибоначчи:
обширнейшей "Книге абака", написанной в 1202 году, но дошедшей до нас во втором своем варианте, который относится к 1228 г.; "Практики геометрии"(1220г.); "Книги квадратов"(1225г.). По этим книгам, превосходящим по своему уровню арабские и средневековые европейские сочинения, учили математику чуть ли не до времен Декарта (17 в.).

Наибольший интерес представляет сочинение "Книга абака". Эта книга представляет собой объемный труд, содержащий почти все арифметические и алгебраические сведения того времени и сыгравший значительную роль в развитии математики в Западной Европе в течении нескольких следующих столетий. В частности, именно по этой книге европейцы познакомились с индусскими ("арабскими") цыфрами.

Основной целью ланного реферата является изучение основных свойствчисел Фибоначчи и их применение в практике трендового анализа.

История и свойства последовательности.

Леонард Фибоначчи – один из величайших математиков Средневековья. В одном и своих трудов “Книга вычислений” Фибоначчи описал индо-арабскую систему исчисления и преимущества ее использования перед римской.

Числовая последовательность Фибоначчи имеет много интересных свойств. Например, сумма двух соседних чисел последовательности дает значение следующего за ними (например, 1+1=2; 2+3=5 и т.д.), что подтверждает существование так называемых коэффициентов Фибоначчи, т.е. постоянных соотношений.

Одно из самых главных следствий этих свойств различных членов последовательности определяются следующим образом:

1.Отношение каждого числа к последующему более и более стремится к 0.618 по увеличении порядкового номера. Отношение же каждого числе к предыдущему стремится к 1.618 (обратному к 0.618). Число 0.618 называют (ФИ), и мы поговорим о нем подробнее немного позже.

2.При делении каждого числа на следующее за ним через одно получаем число 0.382; наоборот – соответственно 2.618.

3.Подбирая таким образом соотношения, получаем основной набор фибоначчиевских коэффициентов: … 4.235, 2.618, 1.618, 0.618, 0.382, 0.236. упомянем также 0.5 (1/2). Все они играют особую роль в природе, и в частности – в техническом анализе.

Важно отметить, что Фибоначчи как бы напомнил свою последовательность человечеству. Она была известна еще древним грекам и египтянам. И действительно, с тех пор в природе, архитектуре, изобразительном искусстве, математике, физике, астрономии, биологии и многих других областях были найдены закономерности, описываемые коэффициентами Фибоначчи.

Например, число 0.618 представляет собой постоянный коэффициент в так называемом золотом сечении (рис.1), где любой отрезок делится таким образом, что соотношение между его меньшей и большей частью равно соотношению между большей частью и всем отрезком. Таким образом, число 0.618 известно еще как золотой коэффициент или золотая середина. Такого типа пропорцию можно встретить абсолютно везде (рис.2).

Рисунок 1. Золотое сечение


Рисунок 2. Примеры соотношений Фибоначчи



Золотой коэффициент используется природой для построения ее частей, начиная от больших и заканчивая малыми. Современная наука считает, что Вселенная развивается по так называемой золотой спирали (рис.3), которая строится именно с помощью золотого коэффициента. Эта спираль в буквальном смысле не имеет конца и начала. Меньшие витки никогда не сходятся в одну и ту же точку, а большие неограниченно развиваются в пространстве.

Рисунок 3. Золотая спираль

Некоторые из соблюдающихся соотношений:

Самое важное заключается в том, что с помощью всех этих, в каком-то роде мистических, чисел, описываются разнородные процессы во Вселенной.

Использование чисел Фибоначчи в изменении тренда.

Изучив вышеизложенную последовательность, можно предположить использование последовательность Фибоначчи при прогнозировании цены, то есть. в техническом анализе.

Эту мысль высказал еще в 30-е годы один из самых известных людей, внесших вклад в теорию технического анализа – Ральф Нельсон Эллиотт. С тех пор конкретная польза применения этой идеи практически во всех методах технического анализа не вызывает сомнения.

Ральф Hельсон Эллиотт был инженером. После серьезной болезни в начале 1930х гг. он занялся анализом биржевых цен, особенно индекса Доу-Джонса. После ряда весьма успешных предсказаний Эллиотт опубликовал в 1939 году серию статей в журнале Financial World Magazine. В них впервые была представлена его точка зрения, что движения индекса Доу-Джонса подчиняются определенным ритмам. Согласно Эллиотту, все эти движения следуют тому же закону, что и приливы - за приливом следует отлив, за действием (акцией) следует противодействие (реакция). Эта схема не зависит от времени, поскольку структура рынка, взятого как единое целое, остается неизменной.

Эллиотт писал: "Закон природы включает в рассмотрение важнейший элемент- ритмичность. Закон природы - это не некая система, не метод игры на рынке, а явление, характерное, видимо, для хода любой человеческой деятельности. Его применение в прогнозировании революционно."

Этот шанс предсказать движения цен побуждает легионы аналитиков трудиться денно и нощно. Вводя свой подход, Эллиотт был очень конкретен. Он писал: "любой человеческой деятельности присущи три отличительных особенности: форма, время и отношение, -и все они подчиняются суммационной последовательности Фибоначчи".

Один из простейших способов применения чисел Фибоначчи на практике – определение отрезков времени, через которое произойдет то или иное событие, например, изменение тренда. Аналитик отсчитывает определенное количество фибоначчиевских дней или недель (13, 21, 34, 55 и т.д.) от предыдущего сходного события.

Числа Фибоначчи имеют широкое применение при определении длительности периода в Теории Циклов. За основу каждого доминантного цикла берется определенное количество дней, недель, месяцев, связанное с числами Фибоначчи. Например, длина Цикла (Волны) Кондратьева равна 54 годам. Отметим близость этой величины к фибоначчиевскому числу 55.

Один из способов применения числа Фибоначчи – построение дуг (рис.4).

Рисунок 4. Дуги.


Центр для такой дуги выбирается в точке важного потолка (top) или дна (bottom). Радиус дуг вычисляется с помощью умножения коэффициентов Фибоначчи на величину предыдущего значительного спада или подъема цен.

Выбираемые при этой коэффициенты имеют значения 38.2%, 50%, 61.8%. В соответствии со своим расположением дуги будут играть роль сопротивления или поддержки.

Последовательность чисел Фибоначчи на протяжении многих веков, начиная с эпохи великого Леонардо и вплоть до сегодняшних дней, привлекает к себе внимание. Может быть последний пример - нашумевший роман Дэна Брауна "Код Давинчи".

Прежде всего, несколько слов о числах Фибоначчи вообще и об их производном - золотом сечении в частности. Известно, что в ряд Фибоначчи - это бесконечная последовательность чисел, каждое из которых является суммой двух предыдущих.

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,….

Происхождение этой последовательности обычно связывается с именем итальянского купца Леонардо Пизанского, более известного под прозвищем Фибоначчи. Он был великим математиком своего времени и его роль в развитии математики трудно переоценить. По его трудам, превосходящим арабские и средневековые европейские сочинения, учили математику до XVI-XVII веков.

Фибоначчи как бы напомнил человечеству то, что было известно ему еще с древнейших времен, как "золотое сечение". Геометрический смысл этой пропорции, заключается в таком делении отрезка, когда он весь относится к его большей части, как самая большая часть относится к меньшей. Значение золотого сечения иррационально, то есть оно не может быть вычислено абсолютно точно. Однако его можно приблизительно получить, разделив два соседних числа в ряде Фибоначчи, причем, чем больше величины чисел, тем точнее будет результат. Деление большего числа на меньшее дает значение Ф*=1.618…., а разделив меньшее на большее приблизительно получим Ф=0.618…...

По дошедшим до нас памятникам архитектуры и образцам материальной культуры далеких эпох можно предположить о знании древними этих соотношений. Хотя обычно считается, что понятие золотого сечения ввел Пифагор (VI в. до н.э), но вполне возможно, что это знание более древнее и он позаимствовал эти знания у египтян или вавилонян. Пропорции пирамиды Хеопса, храмов, барельефов того времени, некоторых предметов быта и украшений, из гробницы Тутанхамона соответствуют соотношениям золотого сечения. Французский архитектор Ле Kорбюзье нашел эти соответствия в пропорциях на рельефах изображающих фараонов, они присутствуют в фасаде храмового комплекса Парфенона. На древних рельефах из египетских гробниц люди держат в руках измерительные инструменты, в которых зафиксированы эти замечательные пропорции.

О золотом сечении знал Платон (IV в до н.э), это отношение упоминается в "Началах" Евклида. После Евклида подобными исследованиями занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с ним познакомились по арабским переводам "Начал" Евклида. Переводчик Дж.Kампано из Наварры (III в.) сделал к переводу комментарии. Надо отметить, что в то время эти знания были тайными, тщательно оберегались от непосвященных и хранились в строгой тайне.

В эпоху Возрождения золотому сечению уделяли внимание Леонардо да Винчи, Альбрехт Дюрер и творец начертательной геометрии монах Лука Пачоли. Он нашел в нем "божественную суть" - выражение триединства Бога сына, Бога отца и Бога духа Святого. Подразумевалось, что малый отрезок - олицетворение Бога сына, больший отрезок - Бога отца, а все вместе дух Святой.

В последующие века изучение этой пропорции продолжались. В 1855 г. немецкий и профессор Цейзинг опубликовал труд "Эстетические исследования", где объявил пропорцию золотого сечения универсальным для всех явлений природы и искусства. На основании исследования размеров несколько тысяч человеческих тел он пришел к выводу, что оно выражает средний статистический закон и пропорции человеческого тела описываются отношениями членов ряда Фибоначчи. Это проявляется в отношении самых разных частей тела - длины плеча, предплечья и кисти, кисти и пальцев и т.д.

Золотое сечение встречается не только в искусстве и архитектуре, но и в природе. Пропорции ряда Фибоначчи присутствуют в расположении листьев на деревьях, различных семян, в биоритмах и функционировании головного мозга и зрительного восприятия, музыкальных тонах, стихотворных размерах, в генных структурах живых организмов и тому подобное.

Проявление чисел Фибоначчи не ограничивается законами восприятия и живой природой. Из истории астрономии известно, что в XVIII в. немецкий астроном И. Тициус, с помощью ряда Фибоначчи нашел закономерность в расстояниях между планетами солнечной системы. Сегодня имеются многочисленные данные по проявлению золотого сечения в самых различных физических системах - в энергетических переходах элементарных частиц, в строении некоторых химических соединений и т.д. Установлены связи золотого сечения со свойствами воды, громкости и частоты звука, спектра видимого света, физико-механических свойств твердых тел и т.п. Эти факты - свидетельства независимости числового ряда от условий его проявления, что является одним из признаков его универсальности. Известны даже попытки создания хронологии человеческого общества на основе ряда Фибоначчи.

В качестве причин, объясняющих эти явления обычно приводятся результаты исследований показавших, что наиболее устойчивые природные и социальные конфигурации имеют Фибоначчи-подобную форму, так как являются оптимальными в смысле энергетики и экономии ресурсов.

В XX веке на основе последовательности Фибоначчи была создана одна из наиболее успешных методик анализа финансовых, товарных и иных рынков - волновая теория Эллиота. При наличии некоторого воображения можно усмотреть вполне очевидные аналогии между рынком финансовым и тем, что назовем "рынком политическим". Под последним, будем понимать политическую систему регулирования гражданского общества, где присутствуют интересы различных групп населения, а возможные противоречия между ними разрешаются путем договоренностей в рамках демократических процедур. Вообще, общеизвестно, что политика - это искусство компромисса. А компромисс - это всегда сделка, причем не очень неважно, торговая, посредническая или политическая. В этом смысле все политические деятели - игроки политического рынка.

При этом совершенно не важно, что движет политиками: великие идеи, личные амбиции, интересы поддерживающих их финансово-промышленных групп или определенных групп населения, либо просто, собственная корысть. Важно то, что они, проявляя свою активность, создают политические партии, продвигают некие проекты, реализуемые в законотворческой или иной деятельности. Здесь мы имеем тот же парадокс рыночной экономики. В том случае, если деятельность политиков происходит в правовом поле, независимо от мотивации она объективно полезна обществу, так как своей суетой и мельтешением эти "брокеры политического рынка" решают задачи саморегуляции общественного организма. Продолжая аналогии можно сказать, что "трейдерами и инвесторами политического рынка" можно считать те силы, которые финансируют политическую деятельность.

Если это так, то возникает соблазн применить методы анализа финансовых рынков к рынкам политическим. Одним из таких методов технического анализа является использование волнового закона Эллиота. Более шестидесяти лет тому назад Ральф Эллиотт разработал теорию поведения рынка, которую в наиболее полном виде изложил в книге "Закон природы - секрет Вселенной", вышедшей в 1946 году. Он уже тогда был уверен в том, что его теория охватывает не только поведение фондовых индексов, но и более общие законы природы, управляющие деятельностью человеческого общества.

Суть подхода Эллиота сводится к тому, что общество развивается и изменяется в виде распознаваемых моделей. Он выделил более десятка типов моделей движения ("волн"), которые возникают в потоке рыночных цен, повторяющихся по форме, но не обязательно по времени или амплитуде. Им были даны названия, определения и иллюстрация этих моделей.

Согласно его теории движение происходит по "старому доброму принципу" три шага вперед два шага назад и волны разделяются - импульсные (вперед) и корректирующие (назад). Действительно, достаточно даже беглого взгляда на график индекса Доу-Джонса или на поведение курса валют на рынке FOREX, чтобы увидеть волновое движение огромного количества больших и малых волн. Их отличает свойство, называемое "самоподобием", присущее так называемым фракталам.

Эллиот утверждал, что независимо от размера, форма волн достаточно стабильна, а порядок их чередования поддается разумному объяснению. Закон волн - это модель развития и упадка. Соотношения между отдельными волнами базируются на числах, полученных из ряда Фибоначчи и в частности на золотом сечении.

Некоторые авторы пытаются применить волновой закон Эллиота даже для анализа истории человечества, его глобального развития. Не ставя перед собой столь масштабных задач, попробуем рассмотреть с позиций применимости последовательности Фибоначчи для анализа длительности некоторых процессов, происходивших в России в XX веке, и даже попытаемся дать некий прогноз на первые десятилетия века XXI.

Необходимо отметить, что если для фондового рынка сегодня разработаны и широко используются разнообразные индексы (Доу-Джонса, NASDAQ и др.), что позволяет строить и анализировать графики их изменения во времени. Для рынка политического, такие показатели, возможно, еще предстоит создать в будущем. Интуитивно понятно, что эти гипотетические аналоги индекса Доу-Джонса должны иметь вероятностную, энтропийную природу.