Функции системы комплемента. Система комплемента: общее представление

Система комплемента

Мембраноатакующий комплекс, вызывающий лизис клетки.

Система комплемента - комплекс сложных белков, постоянно присутствующих в крови. Это каскадная система протеолитических ферментов , предназначенная для гуморальной защиты организма от действия чужеродных агентов, она участвует в реализации иммунного ответа организма. Является важным компонентом как врождённого, так и приобретённого иммунитета.

История понятия

В конце XIX столетия было установлено, что сыворотка крови содержит некий «фактор», обладающий бактерицидными свойствами. В 1896 году молодой бельгийский ученый Жюль Борде , работавший в Институте Пастера в Париже, показал, что в сыворотке имеются два разных вещества, совместное действие которых приводит к лизису бактерий: термостабильный фактор и термолабильный (теряющий свои свойства при нагревании сыворотки) фактор. Термостабильный фактор, как оказалось, мог действовать только против определенных микроорганизмов, в то время как термолабильный фактор имел неспецифическую антибактериальную активность. Термолабильный фактор позднее был назван комплементом . Термин «комплемент» ввел Пауль Эрлих в конце 1890-х годов. Эрлих был автором гуморальной теории иммунитета и ввел в иммунологию много терминов, которые впоследствии стали общепринятыми. Согласно его теории, клетки, ответственные за иммунные реакции, имеют на поверхности рецепторы , которые служат для распознавания антигенов . Эти рецепторы мы сейчас называем «антителами » (основой вариабельного рецептора лимфоцитов является прикреплённое к мембране антитело класса IgD, реже IgM. Антитела других классов в отсутствие соответствующего антигена не прикреплены к клеткам). Рецепторы связываются с определенным антигеном, а также с термолабильным антибактериальным компонентом сыворотки крови. Эрлих назвал термолабильный фактор «комплементом» потому, что этот компонент крови «служит дополнением» к клеткам иммунной системы.

Эрлих полагал, что имеется множество комплементов, каждый из которых связывается со своим рецептором, подобно тому, как рецептор связывается со специфическим антигеном. В противоположность этому Борде утверждал, что существует «дополнение» только одного типа. В начале XX века спор был разрешен в пользу Борде; выяснилось, что комплемент может активироваться с участием специфических антител или самостоятельно, неспецифическим способом.

Общее представление

Компоненты системы комплемента

Комплемент - система белков, включающая около 20 взаимодействующих компонентов: С1 (комплекс из трех белков), С2, СЗ, …, С9, фактор В, фактор D и ряд регуляторных белков. Все эти компоненты - растворимые белки с мол. массой от 24 000 до 400 000, циркулирующие в крови и тканевой жидкости. Белки комплемента синтезируются в основном в печени и составляют приблизительно 5 % от всей глобулиновой фракции плазмы крови. Большинство из них неактивны до тех пор, пока не будут приведены в действие или в результате иммунного ответа (с участием антител), или непосредственно внедрившимся микроорганизмом (см. ниже). Один из возможных результатов активации комплемента - последовательное объединение так называемых поздних компонентов (С5, С6, С7, С8 и С9) в большой белковый комплекс, вызывающий лизис клеток (литический, или мембраноатакующий, комплекс). Агрегация поздних компонентов происходит в результате ряда последовательных реакций протеолитической активации с участием ранних компонентов (С1, С2, С3, С4, фактора В и фактора D). Большинство этих ранних компонентов - проферменты, последовательно активируемые путем протеолиза . Когда какой-либо из этих проферментов специфическим образом расщепляется, он становится активным протеолитическим ферментом и расщепляет следующий профермент, и т. д. Поскольку многие из активированных компонентов прочно связываются с мембранами, большинство этих событий происходит на поверхностях клеток. Центральный компонент этого протеолитического каскада - С3. Его активация путем расщепления представляет собой главную реакцию всей цепи активации комплемента. С3 может быть активирован двумя основными путями - классическим и альтернативным. В обоих случаях С3 расщепляется ферментным комплексом, называемым С3-конвертазой. Два разных пути приводят к образованию разных С3-конвертаз, однако обе они образуются в результате спонтанного объединения двух компонентов комплемента, активированных ранее в цепи протеолитического каскада. С3-конвертаза расщепляет С3 на два фрагмента, больший из которых (С3b) связывается с мембраной клетки-мишени рядом с С3-конвертазой; в результате образуется ферментный комплекс еще больших размеров с измененной специфичностью - С5-конвертаза. Затем С5-конвертаза расщепляет С5 и тем самым инициирует спонтанную сборку литического комплекса из поздних компонентов - от С5 до С9. Поскольку каждый активированный фермент расщепляет много молекул следующего профермента, каскад активации ранних компонентов действует как усилитель: каждая молекула, активированная в начале всей цепи, приводит к образованию множества литических комплексов.

Основные этапы активации системы комплемента.

Классический и альтернативный пути активации системы комплемента.

Система комплемента работает как биохимический каскад реакций. Комплемент активируется тремя биохимическими путями: классическим, альтернативным и лектиновым путем. Все три пути активации производят разные варианты C3-конвертазы (белка, расщепляющего С3). Классический путь (он был открыт первым, но эволюционно является новым) требует антител для активации (специфический иммунный ответ, приобретённый иммунитет), в то время как альтернативный и лектиновый пути могут быть активизированы антигенами без присутствия антител (неспецифический иммунный ответ, врождённый иммунитет). Итог активации комплемента во всех трёх случаях одинаков: C3-конвертаза гидролизует СЗ, создавая C3a и C3b и вызывая каскад дальнейшего гидролиза элементов системы комплемента и событий активации. В классическом пути для активации С3-конвертазы необходимо образование комплекса С4bC2a. Этот комплекс образуется при расщеплении С2 и С4 С1-комплексом. С1-комплекс, в свою очередь, для активации должен связаться с иммуноглобулинами класса М или G. C3b связывается с поверхностью болезнетворных микроорганизмов, что приводит к большей «заинтересованности» фагоцитов к связанным с СЗb клеткам (опсонизация). C5a - важный хемоаттрактант, помогающий привлекать в район активации системы комплемента новые иммунные клетки. И C3a, и C5a имеют анафилотоксическую активность, непосредственно вызывая дегрануляцию тучных клеток (как следствие - выделение медиаторов воспаления). C5b начинает формирование мембраноатакующих комплексов (МАК), состоящим из C5b, C6, C7, C8 и полимерного C9. МАК - цитолитический конечный продукт активации системы комплемента. МАК формирует трансмембранный канал, вызывающий осмотический лизис клетки-мишени. Макрофаги поглощают помеченные системой комплемента болезнетворные микроорганизмы.

Биологические функции

Сейчас выделяют следующие функции:

  1. Опсонизирующая функция. Сразу вслед за активацией системы комплемента образуются опсонизирующие компоненты, которые покрывают патогенные организмы или иммунные комплексы, привлекая фагоцитов. Наличие на поверхности фагоцитирующих клеток рецептора к С3b усиливает их прикрепление к опсонизированным бактериям и активирует процесс поглощения. Такое более тесное прикрепление С3b-связанных клеток или иммунных комплексов к фагоцитирующим клеткам получило название феномена иммунного прикрепления .
  2. Солюбилизация (т.е. растворение) иммунных комплексов (молекулой C3b). При недостаточности комплемента развивается иммунокомплексная патология (СКВ-подобные состояния). [СКВ = системная красная волчанка]
  3. Участие в воспалительных реакциях. Активация системы комплемента приводит к выделению из тканевых базофилов (тучных клеток) и базофильных гранулоцитов крови биологически активных веществ (гистамина, серотонина, брадикинина), которые стимулируют воспалительную реакцию (медиаторов воспаления). Биологически активные компоненты, которые образуются при расщеплении С3 и С5 , приводят к высвобождению вазоактивных аминов, таких как гистамин , из тканевых базофилов (тучных клеток) и базофильных гранулоцитов крови. В свою очередь это сопровождается расслаблением гладкой мускулатуры и сокращением клеток эндотелия капилляров, усилением сосудистой проницаемости. Фрагмент С5а и другие продукты активации комплемента содействуют хемотаксису , агрегации и дегрануляции нейтрофилов и образованию свободных радикалов кислорода. Введение С5а животным приводило к артериальной гипотонии, сужению легочных сосудов и повышению проницаемости сосудов из-за повреждения эндотелия.
    Фукнции С3а:
    • выступать в роли хемотаксического фактора, вызывая миграцию нейтрофилов по направлению к месту его высвобождения;
    • индуцировать прикрепление нейтрофилов к эндотелию сосудов и друг к другу;
    • активировать нейтрофилы, вызывая в них развитие респираторного взрыва и дегрануляцию;
    • стимулировать продукцию нейтрофилами лейкотриенов.
  4. Цитотоксическая, или литическая функция. В конечной стадии активации системы комплемента образуется мембраноатакующий комплекс (МАК) из поздних компонентов комплемента, который атакует мембрану бактериальной или любой другой клетки и разрушает ее.
Фактор С3е, образующийся при расщеплении фактора С3b, обладает способностью вызывать миграцию нейтрофилов из костного мозга, и в таком случае быть причиной лейкоцитоза .

Активация системы комплемента

Классический путь

Классический путь запускается активацией комплекса С1 (он включает одну молекулу С1q и по одной молекуле С1r и С1s). Комплекс С1 связывается с помощью С1q с иммуноглобулинами классов М и G, связанными с антигенами. Гексамерный C1q по форме напоминает букет нераскрытых тюльпанов, «бутоны» которого могут связываться с участком антител. Для инициации этого пути достаточно единственной молекулы IgM , активация молекулами IgG менее эффективна и требует больше молекул IgG.

С1q связывается прямо с поверхностью патогена, это ведет к конформационным изменениям молекулы С1q, и вызывает активацию двух молекул сериновых протеаз С1r. Они расщепляют С1s (тоже сериновую протеазу). Потом комплекс С1 связывается с С4 и С2 и затем расщепляет их, образуя С2а и С4b. С4b и С2а связываются друг с другом на поверхности патогена, и образуют С3-конвертазу классического пути, С4b2а. Появление С3-конвертазы приводит к расщеплению С3 на С3а и С3b. С3b образует вместе с С2а и С4b С5-конвертазу классического пути. С5 расщепляется на C5a и C5b.C5b остается на мембране и соединяется с комплексом C4b2a3b.Потом соединяются С6, С7, С8 и С9,которая полимеризуется и возникает трубочка внутри мембраны. Тем самым нарушается осмотический баланс и в результате тургора бактерия лопается. Классический путь действует более точно, поскольку так уничтожается любая чужеродная клетка.

Альтернативный путь

Альтернативный путь запускается гидролизом C3 прямо на поверхности патогена. В альтернативном пути участвуют факторы В и D. С их помощью происходит образование фермента СЗbВb. Стабилизирует его и обеспечивает его длительное функционирование белок P. Далее РС3bВb активирует С3, в результате образуется С5-конвертаза и запускается образование мембраноатакующего комплекса. Дальнейшая активация терминальных компонентов комплемента происходит так же, как и по классическому пути активации комплемента. В жидкости в комплексе CЗbВb В заменяется Н фактором и под воздействием дезактивирующего соединения(Н) превращается в С3bi.Когда микробы попадают в организм комплекс СЗbВb начинает накапливаться на мембране. Он соединяется с С5, который расщепляется на C5a и C5b. C5b остается на мембране. Потом соединяются С6, С7, С8 и С9.После соединения С9 с С8, происходит полимеризация С9 (до 18 молекул сшиваются друг с другом) и образуется трубочка, которая пронизывает мембрану бактерии, начинается закачка воды и бактерия лопается.

Альтернативный путь отличается от классического следующим: при активации системы комплемента не нужно образование иммунных комплексов, он происходит без участия первых компонентов комплемента - С1, С2, С4. Он также отличается тем, что срабатывает сразу же после появления антигенов - его активаторами могут быть бактериальные полисахариды и липополисахариды(являются митогенами), вирусные частицы, опухолевые клетки.

Лектиновый (маннозный) путь активации системы комплемента

Лектиновый путь гомологичен классическому пути активации системы комплемента. Он использует лектин, связывающий маннозу, (MBL) - белок, подобный C1q классического пути активации, который связывается с маннозными остатками и другими сахарами на мембране, что позволяет распознавать разнообразные болезнетворные микроорганизмы. MBL - сывороточный белок, принадлежащий к группе белков коллектинов, который синтезируется преимущественно в печени и может активировать каскад комплемента, непосредственно связываясь с поверхностью патогена.

В сыворотке крови MBL формирует комплекс с MASP-I и MASP-II (Mannan-binding lectin Associated Serine Protease, связывающие MBL сериновые протеазы). MASP-I и MASP-II весьма схожи с C1r и C1s классического пути активации и, возможно, имеют общего эволюционного предшественника. Когда несколько активных центров MBL связываются с определенным образом ориентированными маннозными остатками на фосфолипидном бислое болезнетворного микроорганизма, MASP-I и MASP-II активируются и расщепляют белок C4 на C4a и C4b, а белок С2 на C2a и C2b. Затем C4b и C2a объединяются на поверхности болезнетворного микроорганизма, формируя C3-конвертазу, а C4a и C2b действуют как хемоаттрактанты для клеток иммунной системы.

Регуляция системы комплемента

Система комплемента может быть очень опасной для тканей хозяина, поэтому ее активация должна хорошо регулироваться. Большинство компонентов активны только в составе комплекса, при этом их активные формы способны существовать очень короткое время. Если в течение этого времени они не встретятся со следующим компонентом комплекса, то активные формы теряют связь с комплексом и становятся неактивными. Если концентрация какого-то из компонентов ниже пороговой (критической), то работа системы комплемента не приведет к физиологическим последствиям. Система комплемента регулируется специальными белками, которые находятся в плазме крови даже в большей концентрации, чем сами белки системы комплемента. Эти же белки представлены на мембранах собственных клеток организма, предохраняя их от атаки со стороны белков системы комплемента.

Регуляторные механизмы в основном действуют в трех точках.

  1. С1. Ингибитор С1 контролирует классический и лектиновый пути активации. Действует двумя путями: ограничивает действие С4 и С2 с помощью связывания C1r- и С1s-протеаз и подобным образом выключает лектиновый путь, удаляя ферменты MASP из MBP-комплекса.
  2. С3-конвертаза. Время жизни С3-конвертазы уменьшают факторы ускорения распада. Некоторые из них находятся на поверхности собственных клеток (например, DAF и CR1). Они действуют на С3-конвертазы и классического, и альтернативного путей активации. DAF ускоряет распад С3-конвертазы альтернативного пути. СR1 (C3b/C4b receptor) расположен главным образом на поверхности эритроцитов и отвечает за удаление из плазмы крови опсонизированных иммунных комплексов. Другие регуляторные белки производятся печенью и в неактивном состоянии растворены в плазме крови. Фактор I - сериновая протеаза, расщепляющая C3b и C4b. С4-связывающий белок (C4BP) расщепляет С4 и помогает фактору I расщеплять C4b.Фактор H связывается с гликозаминогликанами, которые есть на собственных клетках, но не на клетках патогенов. Этот белок является кофактором фактора I, а также ингибирует активность C3bBb.
  3. С9. CD59 и Гомологичный Фактор Ограничения ингибируют полимеризацию С9 во время образования мембраноатакующего комплекса, не давая ему сформироваться.

Роль системы комплемента при болезнях

Система комплемента играет большую роль во многих болезнях, связанных с иммунитетом.

Система комплемента — это сложный комплекс сывороточных глобулинов. Это каскадная система протеолитических ферментов предназначена для гуморальной защиты организма от действия чужеродных агентов и участвует в реализации иммунного ответа организма. Белки системы комплемента обеспечивают быстрый и эффективный ответ на на первично слабый сигнал и доведение его до функциональных последствий. Компоненты системы комплемента принято обозначать латинскими буквами.

Существуют два механизма активации системы комплемента:

    классический;

    альтернативный.

Эти механизмы соединяются на уровне 5-го компонента и затем протекают одинаково.

Классический путь.

Пусковым механизмом является образование комплекса "антиген-антитело" (АГ-АТ) на поверхности клетки-мишени. При этом в молекуле иммуноглобулина (он обозначается: Ig или АТ) происходят конформационные изменения. В результате этих изменений Ig приобретает способность связывать С 1 q-компонент комплемента. К ним присоединяются C 1 r и C 1 s, и уже весь этот комплекс подвергается конформационной перестройке и превращается в С 1 -эстеразу, которая действует на С 4 , отщепляется С 4 а, а С 4 b входит в состав комплекса. Затем к комплексу присоединяется С 2 , формируя новый субстрат для действия С 1 s, отщепляется С 2 b, а С 2 a входит в состав комплекса.

Образовавшийся комплекс называется "С 3 -конвертаза", и под его действием отщепляется пептид С 3 a, а С 3 b входит в состав комплекса, который теперь называется "С 5 -конвертаза". С5-конвертаза действует на С5, отщепляет от него С 5 а, а С 5 b входит в состав комплекса.

После этого с С 5 b последовательно связываются С 6 , С 7 и С 8 . В результате образуется комплекс, способный присоединять 2 молекулы С 9 .

Если этот процесс протекает на поверхности клетки-мишени, то компоненты комплекса С 5 b-C 9 образуют мембраноатакующий комплекс, который формирует на поверхности клетки-мишени трансмембранные каналы, полностью проницаемые для электролитов и воды. Клетка-мишень погибает.

Побочные (неосновные) продукты процесса С 3 а и С 5 а обладают свойствами анафилотоксинов.

Регуляция классического пути.

Большинство компонентов активны только в составе комплекса. Их активные формы способны существовать очень короткое время. Если в течение этого времени они не встретятся со следующим компонентом, то активные формы теряют связь с комплексом и становятся неактивными. Если концентрация какого-то компонента ниже пороговой (критической), то работа системы комплемента не приведет к физиологическим последствиям.

В регуляции работы системы комплемента также принимают участие эндогенные ингибиторы протеиназ. Самым эффективным из них является С 1 -ингибитор.

Альтернативный путь.

Отличие альтернативного пути от классического заключается в том, что для его запуска не нужно образования иммунных комплексов.

Пусковым механизмом альтернативного пути является образование С 3 b из С 3 под действием какого-либо пускового фактора: например, полисахаридов бактериальной клеточной стенки.

С3b образует комплекс с фактором "В" (С 3 bB), который подвергается действию протеазы D (всегда активна в плазме крови!). В результате отщепляется "Ва" и образуется комплекс С3bBb, который обладает протеолитической активностью в отношении С 5 — отщепляет от него С 5 а.

После этого реакции протекают так же, как и в классическом пути.

Субстратом для С 3 b является и С 3 , в результате чего образуется еще большее количество С 3 b — наблюдается положительная обратная связь. Поэтому достаточно даже небольших количеств С 3 bBb, чтобы получать все больше и больше его активной формы (усиление первично слабого сигнала).

Альтернативный путь в норме работает всегда и очень активно, что обеспечивает быстрый неспецифический ответ на внедрение чужеродных клеток.

В регуляции работы системы комплемента принимают участие специфические ингибиторы, которые регулируют скорость работы ферментов ключевых реакций.

Комплемент - это система, состоящая из собственно белков комплемен-та, мембранных рецепторов к комплементу, плазменных и мембранных регуля-торов активности комплемента.

Белки системы комплемента

Собственно белки комплемента — это ряд гликопротеиновых и белковых фак-торов плазмы крови, включающий 9 различных компонентов. Они образуют мульти ферментный молекулярный каскад, при котором продукт одной реакции является субстратом для последующей. При этом происходит постепенное на-ращивание литического потенциала и первоначально слабый инициирующий стимул приводит к мощному конечному противомикробному эффекту.

Рецепторы к системе комплемента

Различают 4 типа рецепторов к компонентам комплемента (complement receptor, CR — I, II, Ш, IV). Рецептор первого типа (CR,) содержится на поверхности антигенпрезентирующих клеток и эритроцитов. Он опосредует захват патогена, к которому присоединены опсонины C3b и C4b. Связывание эритроцитами им-мунных комплексов обеспечивает их транспорт в печень и селезенку, где содер-жатся макрофаги. Рецептор второго типа (CR II) экспрессируется на В-лимфоцитах и фолликулярных дендритных клетках . Он принимает участие в фиксации ука-занными клетками: иммунных комплексов в зародышевых центрах фолликулов лимфатических узлов, обуславливая дальнейший соматический гипермутагенез иммуноглобулиновых рецепторов В-лимфоцитов и формирование В-клеток па-мяти. CR III и CR IV по своей природе принадлежат к β 2 -интегринам (ад-гезионным молекулам) и являются специфическими к iC3b (инактивированного под влиянием фактора Н) и С3d. Указанные рецепторы содержатся преимущест-венно на фагоцитах и выполняют двоякую функцию. Во-первых, они способству-ют миграции фагоцитов в очаг воспаления , поскольку могут взаимодействовать с адгезионными мембранными молекулами ICAM-1 и ICAM-2, экспрессия ко-торых на клетках тканей является одним из ориентиров для направленного перемещения. Во-вторых, фагоциты, проникая в очаг благодаря именно CR III CR IV , распознают компоненты комплемента, что способствует фагоцитозу меченною опсонинами патогена.

Ингибиторы системы комплемента

Наряду с многочисленными компонентами комплемента в плазме крови цир-кулируют белки со свойствами антагонистов, которые ограничивают активацию системы комплемента во время обезвреживают патогена. Один из наиболее важных — ингибитор первого компонента (С1-ингибитор), дефицит которого обуславливает повышенный риск развития наследственного ангионевротическо-го отека. Так называемый фактор Н обеспечивает инактивацию C3b, способствуя его дальнейшему расщеплению на фрагменты C3c и C3d, а фактор I разрушает C3b и C4b.

Как видно, сразу 2 плазменных фактора нейтрализуют C3b. Это необходимо для корректной работы альтернативного пути, так как излишек указанного фрагмен-та обуславливает необоснованную гиперактивацию комплемента, вызывающую сильное самоповреждение. Инициация каскада происходит именно за счет C3b, образующегося при спонтанном гидролизе С3. Следует отме-тить, что спонтанный гидролиз всегда носит ограниченный характер, что предупре-ждает возможную гиперактивацию системы. В то же время под действием С3-конвертазы фрагмент C3b образуется в количестве, достаточном для инициирования нового каскада, при разворачивании которого высвобождается дополнительная порция C3b. За счет указанной положительной обратной связи комплемент на-ращивает литический потенциал при неизменном количестве патогена. Однако, если описанный процесс не контролируется надлежащим образом, вполне воз-можна необоснованная гиперактивация комплемента но альтернативному пути и, как следствие — повреждение собственных тканей. Причем потенцировать аль-тернативный механизм может и C3b, высвободившийся в результате параллельно реализующегося классического пути активации. Поэтому для корректной работы всей системы необходима адекватная инактивация образующегося C3b.

Поскольку комплемент осуществляет шаблонное распознавание, а мембран-ные структуры собственных клеток в норме претерпевают динамические изме-нения, существует потенциальная опасность комплемент-опосредованной ауто-агрессии. Для ее предотвращения в мембраны собственных клеток «вмонтирова-ны» защитные белки, инактивирующие каскад комплемента. Речь идет о факторе, ускоряющем распад (англ. Decay accelerating factor, DAF), который содержится на форменных элементах крови , эпителиоцитах и клетках эндотелия. Он усиливает катаболизм ключевых ферментов каскада — С3- и С5-конвертаз. К мембранным защитным белкам относится также мембранный кофакторный протеин (МСР), яв-ляющийся кофактором в протеолизе C3b и C4b с помощью 1-фактора.

Роль системы комплемента

Роль системы комплемента заключается в: Материал с сайта

  • Обеспечение цитолиза (разрушения модифицированных собственных клеток) и бактерицидности (деструкции бактерий). В этом смысле комплемент дополняет (лат. complementare — дополнять) действие ли-зоцима.
  • Образование анафилатоксинов (C3a, C4a и C5a), которые индуцируют высвобождение гистамина и других биологически активных веществ из тучных клеток и базофилов, обуславливая развитие вазодилатации, плазморрагии и сокращения гладкой мускулатуры бронхов.
  • Реализация хемотаксического влияния на нейтрофилы , эозинофилы и мо-ноциты, что приводит к клеточной инфильтрации очага воспаления.
  • Обеспечение адгезии, опсонизации и фагоцитоза, что способствует унич-тожению патогенов.
  • Обеспечение резистентности к вирусам (фрагменты С1 —С9 способны ли-зировать вирусы; C3b -фрагмент является опсонином; отдельные компо-ненты комплемента блокируют пенетрацию вируса в клетку).
  • Участие в осуществлении клиренса иммунных комплексов, которые раз-рушаются как непосредственно комплементом, так и макрофагами селе-зенки и печени, содержащими рецепторы к комплементу (в первую оче-редь, к Clq).
  • Обеспечение профилактики самоповреждения при воспалении, так как за счет разрушения циркулирующих иммунных комплексов предотвра-щается возможность развития иммунокомплексной патологии (гломерулонефрита, васкулитов).
  • Осуществление активации

Комплемент — важнейший элемент иммунной системы позвоночных животных и человека, играющий ключевую роль в гуморальном механизме защиты организма от патогенов. Термин впервые ввел Эрлих для обозначения компонента кровяной сыворотки, без которого ее бактерицидные свойства пропадали. Впоследствии было выяснено, что этот функциональный фактор представляет собой набор белков и гликопротеидов, которые при взаимодействии друг с другом и с чужеродной клеткой вызывают ее лизис.

Комплемент в буквальном смысле переводится как "дополнение". Изначально он считался всего лишь еще одним элементом, обеспечивающим бактерицидные свойства живой сыворотки. Современные представления об этом факторе значительно шире. Установлено, что комплемент представляет собой сложнейшую, тонко регулируемую систему, взаимодействующую как с гуморальными, так и с клеточными факторами иммунного ответа и оказывающую мощное влияние на развитие воспалительной реакции.

Общая характеристика

В иммунологии системой комплемента называют проявляющую бактерицидные свойства группу взаимодействующих друг с другом белков сыворотки крови позвоночных, представляющую собой врожденный механизм гуморальной защиты организма от патогенов, способный действовать как самостоятельно, так и в комплексе с иммуноглобулинами. В последнем случае комплемент становится одним из рычагов специфического (или приобретенного) ответа, поскольку антитела сами по себе не могут уничтожать чужеродные клетки, а действуют опосредованно.

Эффект лизирования достигается за счет образования пор в мембране чужеродной клетки. Таких отверстий может быть множество. Перфорирующий мембрану комплекс системы комплемента называется МАК. В результате ее действия поверхность чужеродной клетки становится дырчатой, что приводит к выходу цитоплазмы наружу.

На долю комплемента приходится около 10% всех белков сыворотки. Его компоненты всегда присутствуют в крови, не оказывая никакого действия до момента активации. Все эффекты комплемента являются результатом последовательных реакций - либо расщепляющих входящие в его состав белки, либо приводящих к образованию их функциональных комплексов.

Каждый этап такого каскада подвержен строгой обратной регуляции, которая в случае необходимости может остановить процесс. Активированные компоненты комплемента проявляют большой комплекс иммунологических свойств. При этом эффекты могут оказывать на организм как положительное, так и негативное воздействия.

Основные функции и эффекты комплемента

Действие активированной системы комплемента включает:

  • Лизис чужеродных клеток бактериальной и небактериальной природы. Осуществляется за счет образования специального комплекса, который встраивается в мембрану и проделывает в ней дыру (перфорирует).
  • Активацию удаления иммунных комплексов.
  • Опсонизацию. Присоединяясь к поверхностям мишеней, компоненты комплемента делают их привлекательными для фагоцитов и макрофагов.
  • Активация и хемотаксическое привлечение лейкоцитов в очаг воспаления.
  • Образование анафилотоксинов.
  • Облегчение взаимодействия антигенпрезентирующих и В-клеток с антигенами.

Таким образом, комплемент оказывает комплексное стимулирующее воздействие на всю иммунную систему. Однако чрезмерная активность этого механизма может негативно повлиять на состояние организма. К отрицательным комплемента относят:

Дефекты системы комплемента могут приводить к аутоиммунным реакциям, т.е. к повреждению здоровых тканей организма собственной иммунной системой. Именно поэтому имеет место такой строгий многоступенчатый контроль активации данного механизма.

Белки комплемента

Функционально белки системы комплемента подразделяются на компоненты:

  • Классического пути (C1-C4).
  • Альтернативного пути (факторы D, B, C3b и пропердин).
  • Мембраноатакующего комплекса (C5-C9).
  • Регуляторной фракции.

Номера С-белков соответствуют последовательности их обнаружения, но не отражают очередность их активации.

К регуляторным белкам системы комплемента относят:

  • Фактор H.
  • C4-связывающий белок.
  • Мембранный кофакторный белок.
  • Рецепторы комплемента первого и второго типа.

C3 является ключевым функциональным элементом, поскольку именно после его распада образуется фрагмент (C3b), который присоединяется к мембране клетки-мишени, начиная процесс формирования литического комплекса и запуская так называемую петлю усиления (механизм положительной обратной связи).

Активация системы комплемента

Активация комплемента представляет собой каскадную реакцию, в которой каждый фермент катализирует активацию последующего. Этот процесс может происходить как с участием компонентов приобретенного иммунитета (иммуноглобуллинов), так и без них.

Есть несколько способов активации комплемента, которые отличаются последовательностью реакций и набором участвующих в ней белков. Однако все эти каскады приводят к одному итогу — образованию конвертазы, расщепляющей белок C3 на C3a и C3b.

Существуют три пути активации системы комплемента:

  • Классический.
  • Альтернативный.
  • Лектиновый.

Среди них только первый связан с системой приобретенного иммунного ответа, а остальные имеют неспецифический характер действия.

Во всех путях активации можно выделить 2 этапа:

  • Пусковой (или собственно активационный) — включает весь каскад реакций до момента образования C3/C5-конвертазы.
  • Цитолитический — обозначает формирование мембраноатакующего комплекса (МКФ).

Вторая часть процесса во всех стадиях схожа и задействует белки C5, C6, C7, C8, C9. При этом только C5 подвергается гидролизу, а остальные просто присоединяются, образуя гидрофобный комплекс, способный встроиться и перфорировать мембрану.

Первый этап основан на последовательном запуске ферментативной активности белков C1, C2, C3 и C4 путем гидролитического расщепления на большие (тяжелые) и малые (легкие) фрагменты. Образовавшиеся единицы обозначаются малыми буквами а и b. Одни из них осуществляют переход к цитолитическому этапу, а другие выполняют роль гуморальных факторов иммунного ответа.

Классический путь

Классический путь активации комплемента начинается со взаимодействия ферментного комплекса C1 с группой антиген - антитело. C1 представляет собой фракцию из 5 молекул:

  • C1q (1).
  • C1r (2).
  • C1s (2).

На первой ступени каскада с иммуноглобулином связывается C1q. Это вызывает конформационную перестройку всего комплекса C1, что приводит к его автокаталитической самоактивации и образованию действующего фермента C1qrs, расщепляющего белок C4 на C4a и C4b. При этом все остается прикрепленным к иммуноглобулину и, следовательно, к мембране патогена.

После осуществления протеолитического эффекта группа антиген - C1qrs присоединяет к себе фрагмент C4b. Такой комплекс становится подходящим для связывания с C2, которая под действием C1s тут же расщепляется на C2a и C2b. В результате создается C3-конвертаза C1qrs4b2a, действие которой формирует C5-конвертазу, запускающую образование МАК.

Альтернативный путь

Такая активация иначе называется холостой, поскольку гидролиз C3 происходит самопроизвольно (без участия посредников), что приводит к периодическому беспричинному образования C3-конвертазы. Альтернативный путь осуществляется тогда, когда к возбудителю еще не сформировался. При этом каскад состоит из следующих реакций:

  1. Холостой гидролиз C3 с образованием фрагмента C3i.
  2. C3i связывается с фактором В, формируя комплекс C3iB.
  3. Связанный фактор В становится доступен для расщепления D-белком.
  4. Фрагмент Ba удаляется и остается комплекс C3iBb, который и является C3-конвертазой.

Суть холостой активации заключается в том, что в жидкой фазе C3-конвертаза нестабильна и быстро гидролизуется. Однако при столкновении с мембраной возбудителя стабилизируется и запускает цитолитическую стадию с формированием МАК.

Лектиновый путь

Лектиновый путь очень похож на классический. Основное отличие заключается в первой ступени активации, которая осуществляется не через взаимодействие с иммуноглобулином, а через связывание C1q с концевыми маннановыми группами, присутствующими на поверхности бактериальных клеток. Дальнейшая активация осуществляется полностью идентично классическому пути.

А. Система комплемента участвует в инактивации микроорганизмов , в т.ч. опосредует действие на микробы антител.

Б. Активные фракции системы комплемента активируют фагоцитоз (опсонины - С3b и C5b).

В. Активные фракции системы комплемента принимают участие в формировании воспалительной реакции .

    Действие их на тучные клетки вызывает дегрануляцию последних.

    Анафилотоксины действуют также на гладкие мышцы, вызывая их сокращение.

    Действуют они и на стенку сосуда: вызывают активацию эндотелия и повышение его проницаемости, что создает условия для экстравазации (выхода) из сосудистого русла жидкости и клеток крови в ходе развития воспалительной реакции.

    С3а выступает в роли иммуносупрессора (т.е. подавляет иммунный ответ).

    С5а является иммуностимулятором (т.е. усиливает иммунный ответ).

Комплекс С5bС6С7С8С9, образующийся в результате активации комплемента, называется мемранатакующим комплексом (МАК).

Для осуществления бактериолиза или цитолиза требуется активация компонентов комплемента от СЗ до С9 по классическому или альтернативному пути. В роли опсонинов выступают большие фрагменты СЗб, С4б - адсорбируясь на поверхности клеток, они усиливают фагоцитарную реакцию, способствуют иммунному прилипанию комплекса АГ-АТ-комплемент к поверсности иммунокомпетентных клеток (В-лимфоциты). Низкомолекулярныё фрагмента -полипептиды - СЗа, С5а способствуют высвобождению биогенных аминов (гистамина, серотонина) из тучных клеток, вызывают сокращение гладкой мускулатуры, повышают сосудистую проницаемость, вызывают хемотаксис нейтрофилов и моноцитов в очаг воспаления. Компоненты CI-C4 нейтрализуют некоторые вирусы. Синтез белков комплемента осуществляется клетками системы мононуклеарных фагоцитов, фибластов, печенью. У человека встречаются генетические дефекты по большинству компонентов комплемента. Клинически они проявляются в форме синдрома системной красной волчанки, рецидивирующих пиогенных инфекций, ангионевротическим отеком.

Данные о функциональной активности белков комплемента и их концентрации дают очень важную информацию о протекании заболевания, могут быть использованы для оценки тяжести течения, эффективности терапевтических мероприятий, прогноза заболевания.

Методы исследования системы комплемента

I. Определение общей гемолитической активности классического пути. Сыворотку крови разводят физиологическим раствором 1:10 и вносят в пробирки в объеме от 0,05 до. 0,5 мл. Объем проб доводят до 1,5 мл физиологическим раствором и вносят по 1,5 мл гемолитической системы (смесь равных объемов 3% взвесей бараньих эритроцитов и гемолитической сыворотки). Пробирки инкубируют при 37°С 45 минут,- охлаждают при 4°С для остановки реакции и центрифугируют при 1500 оборотов 4-5 минут. После центрифугирования определяют объем сыворотки, вызывающий лизис 50% сенсибилизированных эритроцитов (условную гемолитическую единицу активности комлемента - СН 50), затем рассчитывают количество СН 50 на мл цельной сыворотки. У здоровых людей титр комлемента (СН 50 на мл) составляет примерно 40-60 СН 50.

Гемолитическую активность альтернативного пути комлемента определятт также, но вместо сенсибилизированных бараньих эритроцитов используют несенсибилизированные кроличьи эритроциты и физиологический раствор, содержащий ионы Mg, но без Са для блокирования классического пути активации.

2.Определение функциональной активности отдельных компонентов. Этот метод позволяет определить численность функционально активных молекул в I мл сыворотки крови. Для этого к сенсибилизированным эритроцитам добавляют реагент на определенный компонент комплемента (в качестве реагента используют либо смесь компонентов комлемента, исключая искомый, либо сывоттку крови, лишенную активности этого компонента. Сыворотку для титрования компонентов классического пути разводят в 40-50 -раз, а альтернативного - в 5-7 раз. Таким образом можно уста­новить дефект определенных компонентов и определить профиль комплемента при различных заболеваниях.

3. Иммунохимическое определение концентрации компонентов комплемента. Данный метод исследования позволяет определить концентрацию каждого из белков комплемента, используя антисыворотки (антитела) к ним. Концентрация белков выражается в г\л. Для определения используют метод радиальной иммунодиффузии в arapе.

4 Определение активности комплемента и его компонентов методом радиального гемолиза в агаровом геле. Гемолитическую систему смешивают с расплавленным агаром в соотношении 1:7 и быстро выли­вают в стерильные чашки Петри. После застывания в агаре проделывают лунки диаметром 4.мм- (до 15 лунок на 1-ой чашке). Лунки заполняются испытуемыми сыворотками и помещают чашки в холодильник при 4°С на 21 час для диффузии белков комплемента в агар. Затем чашки помещают в термостат на 60 минут для проявления зон гемолиза. Критерием активности комплемента служит квадрат диаметра зон гемолиза.