Гипоксия патофизиология. Гипоксия. патофизиология внешнего дыхания. Острая и хроническая гипоксии

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Гипоксия - нарушение окислительных процессов в тканях, возникающее при недостаточном поступлении кислорода или нарушении его утилизации в процессе биологического окисления (кислородная недостаточность, кислородное голодание).

В зависимости от этиологического фактора, темпа нарастания и продолжительности гипоксического состояния, степени гипоксии, реактивности организма и т.д. проявление гипоксии может значительно варьировать. Возникающие в организме изменения представляют собой совокупность:

1) непосредственных последствий воздействия гипоксического фактора;

2) вторично возникающих нарушений ;

3) развивающихся компенсаторных и приспособительных реакций. Эти явления находятся в тесной связи и не всегда подаются четкому разграничению.

Классификация основных типов гипоксий:

1) гипоксическая;

2) дыхательная;

3) кровяная;

4) циркуляторная;

5) тканевая;

6) гипербарическая;

7) гипероксическая;

8) гипоксия нагрузки;

9) смешанная - сочетание различных видов гипоксий.

Классификация гипоксий по тяжести :

1) скрытая (выявляется только при нагрузке);

2) компенсированная (тканевой гипоксии в состоянии покоя нет за счет напряжения систем доставки кислорода);

3) выраженная - с явлениями декомпенсации (в покое недостаточность кислорода в тканях);

4) некомпенсированная - выраженные нарушения обменных процессов с явлениями отравления;

5) терминальная - необратимая.

По темпу развития и продолжительности течения различают:

а) молниеносную форму - в течение нескольких десятков секунд;

б) острую - несколько минут или десятков минут (острая сердечная недостаточность);

в) подострую - несколько часов;

г) хроническую - недели, месяцы, годы.

Гипоксическая гипоксия - экзогенный тип гипоксии - развивается при уменьшении барометрического давления кислорода (высотная и горная болезнь) или при снижении парциального давления кислорода во вдыхаемом воздухе. При этом развивается гипоксемия (снижается РО2 в артериальной крови), насыщение гемоглобина (Hb) кислородом и общее содержание его в крови. Отрицательное влияние оказывает и гипокапния , развивающаяся в связи с компенсаторной гипервентиляцией легких. Гипокапния приводит к ухудшению кровоснабжения мозга и сердца, алкалозу, нарушению баланса электролитов во внутренней среде организма и повышению потребления тканями кислорода.

Дыхательный (легочный) тип гипоксиивозникает в результате недостаточности газообмена в легких в связи с альвеолярной гиповентиляцией, нарушениями вентиляционно-перфузионных отношений, или при затруднении диффузии кислорода, нарушения проходимости дыхательных путей, либо расстройства центральной регуляции дыхания.

Уменьшается минутный объем вентиляции, снижается парциальное давление кислорода в альвеолярном воздухе и напряжение кислорода в крови и к гипоксии присоединяется гиперкапния.

Кровяная гипоксия (гемический тип) возникает как следствие уменьшения кислородной емкости крови при анемиях, гидремии и нарушении способности Hb связывать, транспортировать и отдавать тканям кислород при отравлении угарным газом, при образовании метгемоглобина (МетHb) и некоторых аномалиях Hb. Для гемической гипоксии характерно сочетание нормального напряжения кислорода в артериальной крови с пониженным его содержанием в тяжелых случаях до 4-5 об%. При образовании карбоксигемоглобина (СОHb) и метгемоглобина (МетHb) насыщение оставшегося Hb и диссоциация оксиHb в тканях могут быть затруднены, и поэтому напряжение кислорода в тканях и венозной крови оказывается значительно пониженным при одновременном уменьшении артерио-венозной разницы по кислороду.

Циркуляторная гипоксия (сердечно-сосудистый тип) возникает при нарушениях кровообращения, приводящих к недостаточному кровоснабжению органов и тканей при массивной кровопотере, обезвоживании организма, падении сердечно-сосудистой деятельности. Циркуляторная гипоксия сосудистого происхождения развивается при чрезмерном увеличении емкости сосудистого русла вследствие рефлекторных и центрогенных нарушений вазомоторной регуляции недостаточности глюкокортикоидов, при повышении вязкости крови и наличии других факторов, препятствующих нормальному продвижению крови через капиллярную сеть. Для газового состава крови характерно нормальное напряжение и содержание кислорода в артериальной крови, снижение их в венозной и высокая артерио-венозная разница по кислороду.

Тканевая гипоксия (гистотоксическая) возникает вследствие нарушения способности тканей поглощать кислород из крови или в связи с уменьшением эффективности биологического окисления из-за резкого уменьшения сопряжения окисления и фосфорилирования при угнетении биологического окисления различными ингибиторами, нарушения синтеза ферментов или повреждения мембранных структур клетки, например, отравление цианидами, тяжелыми металлами, барбитуратами, токсинами микробов. При этом напряжение, насыщение и содержание кислорода в артериальной крови может до определенного момента быть нормальными, а в венозной крови значительно превышают нормальные величины. Уменьшение артерио-венозной разницы по кислороду характерно для нарушения тканевого дыхания.

Гипербарическая гипоксия может быть при лечении кислородом под повышенным давлением. При этом устранение нормальной гипоксической активности периферических хеморецепторов ведет к снижению возбудимости ДЦ и угнетению легочной вентиляции. Это ведет к повышению артериального pСО2, вызывающего расширение кровеносных сосудов мозга. Гиперкапния ведет к увеличению минутного объема дыхания и гипервентиляции. В результате pСО2 в артериальной крови падает, сосуды мозга суживаются и pО2 в тканях мозга уменьшается. Начальное токсическое действие кислорода на клетку связано с ингибицией дыхательных ферментов и с накоплением перекисей липидов, вызывающих повреждение клеточных структур (особенно SH ферментные группы), изменением метаболизма в цикле трикарбоновых кислот и нарушением синтеза высокоэнергетических фосфатных соединений и образованием свободных радикалов.

Гипероксическая гипоксия (в авиации, при кислородотерапии) - может быть в виде 2х форм кислородного отравления - легочной и судорожной. Патогенез легочной формы связывают с исчезновением "опорной" функции инертного газа, токсическим действием кислорода на эндотелий сосудов легких - повышением их проницаемости, вымыванием сурфактантанта, спадением альвеол и развитием ателектаза и отека легких. Судорожная форма связана с резким возбуждением всех отделов ЦНС (особенно ствола мозга) и нарушением тканевого дыхания.

Смешанный тип гипоксии наблюдается весьма часто и представляет сочетание 2х или более основных типов гипоксии. Часто гипоксический фактор сам по себе влияет на несколько звеньев физиологических систем транспорта и утилизации кислорода. Угарный газ активно вступает в связь с 2х валентным железом Hb, в повышенных концентрациях оказывает непосредственное токсическое действие на клетки, ингибируя цитохромэнзимную систему; барбитураты подавляют окислительные процессы в тканях и одновременно угнетают ДЦ, вызывая гиповентиляцию.

Изменения обмена веществ раньше всего возникают со стороны углеводного и энергетического обмена. Во всех случаях гипоксии первичным сдвигом является дефицит макроэргов. Усиливается гликолиз, это приводит к падению содержания гликогена, нарастанию пирувата и лактата. Избыток молочной, пировиноградной и других органических кислот способствует развитию метаболического ацидоза .

Возникает отрицательный азотистый баланс. В результате расстройств липидного обмена развивается гиперкетонемия.

Нарушается обмен электролитов и в первую очередь процессы активного перемещения и распределения ионов на биологических мембранах, возрастает количество внеклеточного калия.

Последовательность изменений в клетке при гипоксии: повышение проницаемости клеточной мембраны - нарушение ионного равновесия - набухание митохондрий - стимуляция гликолиза - уменьшение гликогена - подавление синтеза и усиление распада белков - деструкция митохондрий - эргастоплазмы, внутриклеточного сетчатого аппарата - жировая декомпозиция клетки - разрушение мембран лизосом - выход гидролитических ферментов - аутолиз и полный распад клетки .

Приспособительные и компенсаторные реакции. При воздействии факторов, вызывающих гипоксию, сразу же включаются реакции, направленные на сохранение гомеостаза. Различают реакции, направленные на приспособление к относительно кратковременной острой гипоксии (возникают немедленно) и реакции, обеспечивающие приспособление к менее выраженной, но длительно существующей или повторяющейся гипоксии.

Реакции системы дыхания на гипоксию - это увеличение альвеолярной вентиляции за счет углубления и учащения дыхательных экскурсий и мобилизации резервных альвеол. Увеличение вентиляции сопровождается усилением легочного кровотока. Компенсаторная гипервентиляция может вызвать гипокапнию, которая в свою очередь компенсируется обменом ионов между плазмой и эритроцитами, усиленным выведением бикарбонатов и основных фосфатов с мочой.

Реакции системы кровообращения выражаются учащением сердечных сокращений, увеличением массы циркулирующей крови за счет опорожнения кровяных депо, увеличения венозного притока, ударного и минутного объема сердца, скорости кровотока и перераспределения крови в пользу мозга и сердца. При адаптации к длительной гипоксии может происходить образование новых капилляров. В связи с гиперфункцией сердца и изменениями нейро-эндокринной регуляции может наступить гипертрофия миокарда, имеющая компенсаторно-приспособительный характер.

Реакции системы крови проявляются повышением кислородной емкости крови за счет усиленного вымывания эритроцитов из костного мозга и активации эритропоэза за счет усиленного образования эритропоэтических факторов. Большое значение имеют свойства Hb связывать почти нормальное количество кислорода даже при значительном снижении парциального давления кислорода в альвеолярном воздухе и в крови легочных капилляров. Вместе с тем Hb способен отдавать большее количество кислорода даже при умеренном снижении pО2 в тканевой жидкости. Усилению диссоциации оксигемоглобина способствует ацидоз.

Тканевые приспособительные механизмы - ограничение функциональной активности органов и тканей, непосредственно не участвующих в обеспечении транспорта кислорода, увеличение сопряженности окисления и фосфорилирования, усиление анаэробного синтеза АТФ за счет активации гликолиза. Увеличивается синтез глюкокортикоидов, которые стабилизируют мембраны лизосом, активируют ферментные системы дыхательной цепи. Увеличивается количество митохондрий на единицу массы клетки.

Принципы диагностики.

Диагностика основывается на признаках поражения головного мозга и динамике неврологических расстройств, данных исследования гемодинамики (А/Д, ЭКГ, сердечный выброс), газообмена, определения кислорода во вдыхаемом воздухе, содержания газов в альвеолах, диффузии газов через мембрану альвеол; определение транспорта кислорода с кровью; определение pО2 в крови и тканях, определение КЩР, буферных свойств крови, биохимических показателей (молочная и пировиноградная кислота, сахар и мочевина крови).

Терапия и профилактика.

В связи с тем, что в клинической практике обычно встречаются смешанные формы гипоксии, лечение ее должно быть комплексным, и связанным с причиной гипоксии в каждом конкретном случае.

Во всех случаях гипоксии - дыхательной, кровяной, циркуляторной универсальным приемом является гипербарическая оксигенация. Необходимо разорвать порочные круги при ишемиях, сердечной недостаточности. Так при давлении 3 атмосферы в плазме растворяется достаточное количество кислорода (6 объемных %) даже без участия эритроцитов, в ряде случаев бывает необходимо добавить 3-7 % СО2 для стимуляции ДЦ, расширения сосудов мозга и сердца, предотвращения гипокапнии.

При циркуляторной гипоксии назначают сердечные и гипертензионные средства, переливание крови. При гемическом типе:

Переливают кровь или эритромассу, стимулируют гемопоэз, применяют искусственные переносчики кислорода - субстраты перфторуглеводов (перфторан);

Удаление продуктов метаболизма - гемосорбция, плазмофорез;

Борьба с осмотическим отеком - растворы с осмотическими веществами;

При ишемии - антиоксиданты, стабилизаторы мембран, стероидные гормоны;

Введение субстратов, заменяющих функцию цитохромов - метиленовая синь, витамин С;

Повышение энергетического снабжения тканей - глюкоза.

В начале этого подраздела приведем некоторые обозначения и нормативные величины.

Экзогенный тип гипоксии.

Этот тип гипоксии возникает вследствие уменьшения парциального давления кислорода во вдыхаемом воздухе.

Гипобарическая гипоксия.

Данный тип гипоксии обусловлен общим снижением барометрического давления и наблюдается при подъеме в горы или в негерметичных летательных аппаратах без индивидуальных кислородных систем (горная, или высотная, болезнь).

Заметные нарушения обычно отмечаются при Ро примерно 100 мм рт.ст. (что соответствует высоте около 3 500 м): при 50-55 мм рт.ст. (8000-8 500 м) возникают тяжелые расстройства, несовместимые с жизнью. В специальных целях дозированную гипобарическую гипоксию вызывают путем постепенного откачивания воздуха из барокамер, в которых находятся испытуемые люди или экспериментальные животные, имитируя тем самым подъем на высоту.

Нормобарическая гипоксия.

Такой тип гипоксии развивается при нормальном общем барометрическом давлении, но сниженном парциальном давлении кислорода во вдыхаемом воздухе, например, при нахождении в замкнутых помещениях малого объема, работах в шахтах, при неисправностях систем кислородообеспечения в кабинах летательных аппаратов, подводных лодках, специальных защитных костюмах, а также при некоторых неисправностях или неправильном использовании наркозно-дыхательной аппаратуры.

Патогенетической основой экзогенного типа гипоксии во всех случаях является артериальная гипоксемия, т.е. уменьшение напряжения кислорода £ плазме артериальной крови, приводящее к недостаточному насыщению гемоглобина кислородом и общему со-держанию его в крови. Дополнительное отрицательное влияние на организм может оказывать гипокапния. нередко развивающаяся при экзогенной гипоксии в результате компенсаторной гипервентиляции легких и приводящая к ухудшению кровоснабжения мозга, сердца, нарушениям электролитного баланса и газовому алкалозу.

Дыхательный (респираторный) тип гипоксии.

Эта гипоксия возникает в результате недостаточности газообмена в легких в связи с альвеолярной гиповентиляцией, нарушениями легочного кровотока, вентиляционно-перфузионных соотношений, избыточным вне- и внутрилегочным шунтированием венозной крови пли при затруднении диффузии кислорода в легких. Патогенетической основой респираторной гипоксии, гак же как и экзогенной, является артериальная гипоксия, в большинстве случаев сочетающаяся с гиперкапнией. В отдельных случаях в связи с тем, что СО 2 диффундирует через альвеолокапиллярную мембрану примерно в 20 раз легче, чем О 2 , возможна гипоксемия без гиперкапнии.

Сердечно-сосудистый (циркуляторный) тип гипоксии.

Болезнь развивается при нарушениях кровообращения, приводящих к недостаточному кровоснабжению органов и тканей и, следовательно, к недостаточному их снабжению кислородом. Уменьшение количества крови, протекающей через капилляры в единицу времени, может быть обусловлено обшей гиповолемией, т.е. уменьшением объема крови в сосудистом русле (при массивной кровопотере или плазмопотере, обезвоживании организма) и нарушениями функций сердца и сосудов. Расстройства сердечной деятельности могут быть следствием повреждения миокарда, перегрузки сердца и нарушений экстракардиальной регуляции, приводящих к уменьшению минутного объема сердца. Циркуляторная гипоксия сосудистого происхождения может быть связана с чрезмерным увеличением емкости сосудистого русла и депонированной фракции крови вследствие пареза сосудистых стенок в результате экзо- и эндогенных токсических влияний, аллергических реакций, нарушений электролитного баланса, при недостаточности глюкокортикоидов. минералокортикоидов и некоторых других гормонов, а также при нарушениях рефлекторной и центрогенной вазомоторной регуляции и других патологических состояниях, сопровождающихся падением тонуса сосудов.

Гипоксия может возникать в связи с первичными расстройствами микроциркуляции: распространенными изменениями стенок микрососудов, агрегацией форменных элементов крови, повышением ее вязкости, свертываемости и другими факторами, затрудняющими продвижение крови через капиллярную сеть, вплоть до полного стаза. Причиной нарушений микроциркуляции может стать избыточное артериоловенулярное шунтирование крови, обусловленное спазмом прекапиллярных сфинктеров (например, при острой кровопотере).

Особое место занимает гипоксия, связанная с нарушением транспорта кислорода в клетки на внесосудистом участке микроциркуляторной системы: периваскулярном, межклеточном и внутриклеточном пространствах, базальной и клеточной мембранах. Такая форма гипоксии возникает при ухудшении проницаемости мембран для кислорода, при интерстициальном отеке, внутриклеточной гипергидратации и других патологических изменениях межклеточной среды.

Циркуляторная гипоксия может носить локальный характер при недостаточном притоке крови к отдельному органу или участку ткани или затруднении оттока крови при ишемии, венозной гиперемии.

Отдельные гемодинамические показатели в разных случаях циркуляторной гипоксии могут варьировать в широких пределах. Для газового состава крови в типичных случаях характерно нормальное напряжение и содержание кислорода в артериальной крови, снижение этих показателей в смешанной венозной крови и соответственно высокая артериовенозная разница по кислороду. Исключением могут стать случаи распространенного прекапиллярного шунтирования, когда значительная часть крови переходит из артериальной системы в венозную, минуя обменные микрососуды, в результате чего в венозной крови остается больше кислорода, и степень венозной гипоксемии не отражает реальную тяжесть гипоксии лишенных капиллярного кровотока органов и тканей.

Следовательно, для оценки генерализованной циркуляторной гипоксии такой интегральный показатель, как Р аО2 (при условии нормальных значений P аО2 , S аО2 и V аО2), должен использоваться с учетом возможных искажений его значения для реально существующей в организме ситуации.

Кровяной (гемический) тип гипоксии.

Данное состояние возникает в результате уменьшения эффективной кислородной емкости крови вследствие недостаточного содержания гемоглобина при анемиях (Гемический тип гипоксии иногда называют «анемическим», что неправильно. Анемическая гипоксия является лишь одной из многочисленных форм гемической гипоксии.), гидремии и при нарушении способности гемоглобина связывать, транспортировать и отдавать тканям кислород.

Выраженные анемии могут быть обусловлены подавлением костномозгового кроветворения в результате его истощения, повреждения токсическими факторами, ионизирующей радиацией, лейкозным процессом и метастазами опухолей, а также при дефиците компонентов, необходимых для нормального эритролоэза и синтеза гемоглобина (железа, витаминов, эритропоэтина и др.), и при усиленном гемолизе эритроцитов.

Кислородная емкость крови понижается при гемодилюции различного происхождения, например во второй стадии постгеморрагического периода, при вливании значительных объемов физиологического раствора, различных кровезаменителей.

Нарушения кислородтранспортных свойств крови могут развиваться при качественных изменениях гемоглобина.

Наиболее часто такая форма гемической гипоксии наблюдается при отравлении оксидом углерода (угарным газом), приводящем к образованию карбоксигемоглобина (НЬСО - комплекс ярко-красного цвета); метгемоглобинообразователями, при некоторых врожденных аномалиях гемоглобина, а также при нарушениях физико-химических свойств внутренней среды организма, влияющих на процессы его оксигенации в капиллярах легких и дезоксигенации в тканях.

Оксид углерода обладает чрезвычайно высоким сродством к гемоглобину, почти в 300 раз превосходя сродство к нему кислорода и образуя лишенный способности транспортировать и отдавать кислород карбоксигемоглобин,

Интоксикация оксидом углерода возможна в различных производственных условиях: металлургических цехах, на коксохимических, кирпичных и цементных заводах, различных химических производствах, а также в гаражах, на городских магистралях с интенсивным автотранспортным движением, особенно при значительном скоплении автотранспорта в безветренную погоду и т.п. Случаи отравления оксидом углерода нередки в жилых помещениях при неисправности газовых приборов или печного отопления, а также при пожарах. Даже при относительно небольших концентрациях оксида углерода в воздухе тяжелая гипоксия может наступить через несколько минут; при длительном вдыхании опасны даже минимальные концентрации оксида углерода. Так, при содержании примерно 0,005 % оксида углерода в воздухе до 30 % гемоглобина превращается в НbСО; при концентрации 0,01 % образуется около 70 % НbСО, что является смертельным. При устранении СО из вдыхаемого воздуха происходит медленная диссоциация НbСО и восстановление нормального гемоглобина.

Метгемоглобии - MtHb (окрашенный в темно-коричневый цвет) - отличается от нормального Нb тем, что железо гема в нем находится не в виде Fe 2+ , а окислено до Fe 3+ Таким образом, MtHb представляет собой «истинно» окисленную форму Нb, причем к дополнительной валентности железа в качестве лиганда обычно присоединяется ион гидроксила (ОН»). Вылолнять транспорт кислорода MtHb не способен. Небольшие «физиологические» количества метгемоглобина постоянно образуются в организме под воздействием активных форм кислорода; патологическая метгемоглобинемия возникает при воздействии большой группы веществ - так называемых метгемоглобинообразователей. К ним относятся нитраты и нитриты, оксиды азота, производные анилина, бензола, некоторые токсины инфекционного происхождения, лекарственные вещества (фенозепам, амидопирин, сульфаниламиды) и др. Значительные количества MtHb могут образоваться при накоплении в организме энлогенных пероксидов и других активных радикалов). При этом важно, что в каждом из четырех гемов молекулы гемоглобина атом железа окисляется практически независимо от других гемов той же молекулы. Возникающие в результате частично «искаженные» молекулы лишены нормального «гем-гем» взаимодействия, определяющего оптимальную способность гемоглобина связывать кислород в легких и отдавать его в тканях по закону S-образной кривой диссоциации оксигемоглобина. В связи с этим превращение, например, 40% НЬ в MtHb приводит к ухудшению снабжения организма кислородом в гораздо большей степени, чем, например, дефицит 40% гемоглобина при анемиях, гемодилюции и т.п.

Процесс образования MtHb носит обратимый характер, однако его восстановление в нормальный гемоглобин происходит относительно медленно в течение многих часов.

Кроме НbСО и MtHb при различных интоксикациях возможно образование и других соединений Нb, которые плохо переносят О 2: нитрокси-Нb , карбиламин-Hb и др.

Ухудшение транспортных свойств гемоглобина может быть обусловлено наследственными дефектами строения его молекулы. Такие патологические формы Нb могут обладать как пониженным, так и значительно повышенным сродством к O 2 , что сопровождается затруднением присоединения 0 2 в легких или его отдачи в тканях.

Неблагоприятное влияние на условия оксигенации и дезоксигенации НЬ могут оказывать некоторые сдвиги физико-химических свойств среды: pH, Р СОз, концентрации электролитов и др. Смещение кривой насыщения Нb может также возникать при гипероксии в результате повреждения системы гликолиза в эритроцитах и изменения содержания в них 2,3-дифосфоглицерата. Значительное ухудшение переноса и отдачи кровью 0 2 наступает также при изменениях физических свойств эритроцитов, их значительной агрегации и сладже.

Для гемической гипоксии характерно сочетание нормального напряжения кислорода в артериальной крови с пониженным его объемным содержанием. Напряжение и содержание О 2 в венозной крови понижены.

Тканевый (или первично-тканевый) тип гипоксии.

Развивается тканевый тип гипоксии вследствие нарушения способности клеток поглощать кислород (при нормальной его доставке в клетки) или в связи с уменьшением эффективности биологического окисления в результате разобщения окисления и фосфорилирования.

Утилизация О 2 тканями может затрудняться в результате действия различных ингибиторов ферментов биологического окисления, неблагоприятных изменений физико-химических условий их действия, нарушения синтеза ферментов и дезинтеграции биологических мембран клетки.

Ингибирование ферментов может происходить тремя основными путями:

  1. специфическое связывание активных центров фермента, например, весьма активное связывание трехвалентного железа окисленной формы геминфермента ионом CN — при отравлении цианидами, подавление активных центров дыхательных ферментов ионом сульфида, некоторыми антибиотиками и др.;
  2. связывание функциональных групп белковой части молекулы фермента (ионы тяжелых металлов, алкилирующие агенты);
  3. конкурентное торможение путем блокады активного центра ферментов «псевдосубстрагами», например, ингибирование сукцинатдегидрогеназы малоновой и другими дикар-боновыми кислотами.

Отклонения физико-химических параметров внутренней среды организма : pH, температуры, концентрации электролитов, возникающие при разнообразных заболеваниях и патологических процессах, также могут существенно снижать активность ферментов биологического окисления.

Нарушение синтеза ферментов может возникать при дефиците специфических компонентов, необходимых для их образования: витаминов В 1 (тиамина), В 3 (РР, никотиновой кислоты) и других, а также при кахексии различного происхождения и других патологических состояниях, сопровождающихся грубыми нарушениями белкового обмена.

Дезинтеграция биологических мембран является одним из важнейших факторов, приводящих к нарушению утилизации О 2 . Такая дезинтеграция может быть обусловлена многочисленными патогенными воздействиями, вызывающими повреждения клетки: высокой и низкой температурой, экзогенными ядами и эндогенными продуктами нарушенного метаболизма, инфекционно-токсическими агентами, проникающей радиацией, свободными радикалами и др. Нередко повреждение мембран возникает как осложнение гипоксии респираторного, циркуляторного или гемического типа. Практически любое тяжелое состояние организма содержит элемент тканевой гипоксии такого рода.

Гипоксия разобщения представляет собой своеобразный вариант гипоксии тканевого типа, возникающий при резко выраженном уменьшении сопряженности окисления и фосфорилирования вдыхательной цепи. Потребление тканями 0 2 при этом обычно возрастает, однако значительное увеличение доли энергии, рассеиваемой в виде избыточно образующегося тепла приводит к энергетическому обесцениванию тканевого дыхания и его относительной недостаточности. Разобщающими свойствами обладают многие вещества экзо- и эндогенного происхождения: избыток ионов Н 4 и Са 24 , свободных жирных кислот, адреналина, тироксина и трийодтиронина, а также некоторые лекарственные вещества (дикумарин, грамицидин и др.). микробные токсины и другие агенты.

Инволюционная гипоксия , возникающая при старении организма, по своим механизмам также в значительной степени связана с процессами, приводящими к нарушению эффективной утилизации клетками кислорода. К таким процессам относятся: разрушение мембран митохондрий и разрыв цепи переноса электронов; увеличение внутриклеточного фонда свободных жирных кислот; перекрестное связывание макромолекул и их иммобилизация и ряд других процессов.

Газовый состав крови в типичных случаях тканевой гипоксии характеризуется нормальными параметрами клслорода в артериальной крови , значительным их повышением в венозной крови и соответственно уменьшением артериовенозной разницы по кислороду (при гипоксии разобщения могут складываться другие соотношения).

Перегрузочный тик гипоксии («гипоксия нагрузки»).

Такой тип гипоксии возникает при чрезмерно напряженной деятельности какого-либо органа или ткани, когда функциональные резервы систем транспорта и утилизации кислорода и субстратов даже без наличия в них патологических изменений оказываются недостаточными для обеспечения резко увеличенной потребности. Практическое значение эта форма гипоксии имеет в основном применительно к тяжелым нагрузкам на мышечные органы — скелетную мускулатуру и миокард.

При чрезмерной нагрузке на сердце возникают относительная коронарная недостаточность, циркуляторная гипоксия сердца и вторичная общая циркуляторная гипоксия. При чрезмерной мышечной работе наряду с гипоксией самой скелетной мускулатуры возникают конкурентные отношения в распределении кровотока, приводящие к ишемии других тканей и развитою распространенной циркуляторной гипоксии. Для гипоксии нагрузки характерны значительная кислородная «задолженность», венозная гипоксемия и гиперкапния.

Субстратный тип гипоксии.

В абсолютном большинстве случаев гипоксия связана с недостаточным транспортом или нарушением утилизации О 2 . В нормальных условиях запас субстратов биологического окисления в организме достаточно велик и немного превосходит резервы О 2 . Однако в некоторых случаях при нормальной доставке О 2 , нормальном состоянии мембран и ферментных систем возникает первичный дефицит субстратов, приводящий к нарушению работы всех взаимосвязанных звеньев биологического окисления. Почти в большинстве случаев такая гипоксия связана с дефицитом в клетках глюкозы. Так. прекращение поступления глюкозы в головной мозг уже через 5 - 8 мин (т.е. примерно через такой же срок, как после прекращения доставки О 2) ведет к гибели наиболее чувствительных нервных клеток. Углеводное голодание инсулинзависимых тканей возникает при некоторых формах сахарного диабета и других расстройствах углеводного обмена. Подобная форма гипоксии может развиться и при дефиците некоторых других субстратов (например, жирных кислот в миокарде, при общем тяжелом голодании и др.). Потребление кислорода при данной форме гипоксии в результате недостатка субстратов окисления также обычно снижено.

Смешанный тип гипоксии.

Этот тип гипоксии наблюдается наиболее часто и представляет собой сочетание двух и более основных ее типов.

В некоторых случаях гипоксический фактор сам по себе отрицательно влияет на несколько звеньев транспорта и утилизации О 2 (например, барбитураты подавляют окислительные процессы в клетках и одновременно угнетают дыхательный центр, вызывая легочную гиповентиляцию; нитриты наряду с образованием метгемоглоби-на могут выступать в качестве разобщающих агентов и т.п.). Аналогичные состояния возникают при одновременном действии на организм нескольких различных по точкам приложения гипоксических факторов.

Еще один часто встречающийся механизм смешанных форм гипоксии связан с тем, что первично возникающая гипоксия любого типа, достигнув определенной степени, вызывает нарушения других органов и систем, участвующих в обеспечении биологического окисления.

Во всех подобных случаях возникают гипоксические состояния смешанного типа: кровяного и тканевого, тканевого и дыхательного и т.д. Примерами могут служить травматический и другие виды шока, коматозные состояния различного происхождения и др.

Характеристика гипоксических состояний по различным критериям

По критерию распространенности принято различать местную и общую гипоксии.

Местная гипоксия чаще всего связана с локальными нарушениями кровоснабжения в виде ишемии, венозной гиперемии и локального стаза, т.е. относится к циркуляторному типу. В некоторых случаях может возникать местное нарушение утилизации кислорода и субстратов в результате локального повреждения клеточных мембран и подавления активности ферментов, вызванного каким-либо патологическим процессом (например воспалением). Другие участки аналогичной ткани гипоксию при этом не испытывают. Однако в таком случае обычно в области повреждения в той или иной степени страдает также сосудистая система и, следовательно, наблюдается смешанная форма гипоксии: тканевая и циркуляторная.

Общая гипоксия является более сложным понятием. Из названия вытекает, что данная форма гипоксии не имеет точных геометрических границ и носит распространенный характер.

Однако известно, что устойчивость различных органов и тканей к гипоксии неодинакова и достаточно сильно колеблется. Некоторые ткани (например, кости, хрящи, сухожилия) относительно малочувствительны к гипоксии и могут сохранять нормальную структуру и жизнеспособность в течение многих часов при полном прекращении снабжения кислородом; поперечнополосатые мышцы выдерживают аналогичную ситуацию около 2 ч; сердечная мышца 20 - 30 мин; почки, печень примерно столько же. Наиболее чувствительна к гипоксии нервная система. Различные ее отделы также отличаются неодинаковой чувствительностью к гипоксии, которая убывает в ряду: кора больших полушарий, мозжечок, зрительный бугор, гиппокамп, продолговатый мозг, спинной мозг, ганглии вегетативной нервной системы. При полном прекращении снабжения кислородом признаки повреждения в коре мозга обнаруживаются через 2,5-3 мин, в продолговатом мозге через 10-15 мин, в ганглиях симпатической нервной системы и нейронах кишечных сплетений более чем через 1 ч. При этом чем выше функциональная активность нервных структур, тем они более чувствительны к гипоксии. Так, отделы головного мозга, находящиеся в возбужденном состоянии, страдают в большей степени, чем неактивные.

Таким образом, строго говоря, при жизни организма действительно обшей гипоксии быть не может. В абсолютном большинстве случаев при любой ее тяжести различные органы и ткани находятся в разном состоянии, и некоторые из них гипоксии не испытывают. Однако учитывая исключительную важность мозга для жизнедеятельности организма, его весьма высокую потребность в кислороде (до 20% всего потребления О 2) и особенно выраженную ранимость при гипоксии, общее кислородное голодание организма часто отождествляют именно с гипоксией головного мозга.

По скорости развития, продолжительности и степени тяжести гипоксии точных объективных критериев для ее разграничения пока не существует. Однако в повседневной клинической практике обычно различают следующие ее виды: молниеносная гипоксия , развивающаяся до тяжелой или даже смертельной степени за секунды или немногие десятки секунд; острая гипоксия - в течение нескольких минут или десятков минут; подострая гипоксия - в течение нескольких часов или десятков часов; хроническая гипоксия развивается и продолжается неделями, месяцами и годами.

По тяжести градацию гипоксических состояний проводят по отдельным клиническим или лабораторным признакам, характеризующим нарушения той или иной физиологической системы или сдвиги параметров внутренней среды.

Защитно-приспособительные реакции при гипоксии

Экстренная адаптация.

Приспособительные реакции, направленные на предупреждение или устранение гипоксии и сохранение гомеостаза, возникают немедленно после начала воздействия этиологического фактора или вскоре после него. Эти реакции осуществляются на всех уровнях организма - от молекулярного до поведенческого и тесно связаны друг с другом.

Под влиянием гипоксического фактора у человека формируются специфические поведенческие акты различной сложности, направленные на выход из гипоксического состояния (например, выход из замкнутого пространства с малым содержанием кислорода, использование кислородных приборов, лекарств, ограничение физической активности, обращение за помощью и т. п.). В более простой форме подобные реакции наблюдаются и у животных.

Первостепенное значение в непосредственной экстренной адаптации организма к гипоксии имеет активация систем транспорта кислорода.

Система внешнего дыхания реагирует увеличением альвеолярной вентиляции за счет углубления и учащения дыхательных экскурсий и мобилизации резервных альвеол с одновременным адекватным увеличением легочного кровотока. В результате минутный объем вентиляции и перфузии может увеличиваться в 10-15 раз по сравнению со спокойным нормальным состоянием.

Реакции гемодинамической системы выражаются тахикардией, увеличением ударного и минутного объемов сердца, увеличением массы циркулирующей крови за счет опорожнения кровяных депо, а также перераспределением кровотока, направленным на преимущественное кровоснабжение мозга, сердца и усиленно работающих дыхательных мышц. Существенное значение имеют и регионарные сосудистые реакции, возникающие в результате непосредственного сосудорасширяющего действия продуктов распада АТФ (АДФ, АМФ, аденозина), которые закономерно накапливаются в испытывающих гипоксию тканях.

Приспособительные реакции системы крови прежде всего определяются свойствами гемоглобина, находящими выражение в S-образной кривой взаимоперехода его окси- и дезоксиформ в зависимости от Р O2 в плазме крови и тканевой среде, pH, Р CO2 и некоторых других физико-химических факторов. Это обеспечивает достаточное насыщение крови кислородом в легких даже при значительном его дефиците и более полное отщепление кислорода в испытывающих гипоксию тканях. Резервы кислорода в крови достаточно велики (в норме в венозной крови содержится до 60% оксигемоглобина), и кровь, проходя по капиллярам тканей, может отдать дополнительно значительные количества кислорода при умеренном уменьшении его фракции, растворенной в тканевой жидкости. Существенное значение может иметь также повышение кислородной емкости крови за счет усиленного вымывания эритроцитов из костного мозга.

Приспособительные механизмы на уровне систем утилизации кислорода проявляются в ограничении функциональной активности органов и тканей, непосредственно не участвующих в обеспечении биологического окисления, и тем самым повышается их устойчивость к гипоксии, а также увеличивается сопряженность окисления и фосфорилирования, усиливается анаэробный синтез АТФ за счет активации гликолиза.

Важное значение для метаболического обеспечения приспособительных реакций имеет возникающая при гипоксии общая неспецифическая реакция напряжения - «стресс». Активизация симпатико-адреналовой системы и коры надпочечников способствует мобилизации энергетических субстратов - глюкозы, жирных кислот, стабилизации мембран лизосом и других биомембран, активации некоторых ферментов дыхательной цепи и другим метаболическим эффектам приспособительного характера. Следует, однако, иметь в виду двойственность некоторых компонентов стресс-реакции. В частности, значительный избыток катехоламинов может увеличить потребность тканей в кислороде, усилить перекисное окисление липидов, вызвать дополнительное повреждение биомембран и т.д. В связи с этим приспособительная стресс-реакция при гипоксии может фактически иметь прямо противоположный результат (как это вообще нередко имеет место в патологии).

Долговременная адаптация.

Повторяющаяся гипоксия умеренной интенсивности способствует формированию состояния долговременной адаптации организма к гипоксии, в основе которой лежит повышение возможностей и оптимизация функций систем транспорта и утилизации кислорода.

Состояние долговременной адаптации к гипоксии характеризуется рядом метаболических, морфологических и функциональных особенностей.

Обмен веществ.

В адаптированном организме снижены основной обмен и потребность организма в кислороде за счет более экономного и эффективного его использования в тканях. Это может быть обусловлено увеличением числа митохондрий и их крист, повышением активности некоторых ферментов биологического окисления, возрастанием мощности и мобилизуем ости анаэробного синтеза АТФ. Повышенная активность — зависимой и Са 2+ -зависимой АТФазы способствует более полной утилизации АТФ. В органах, участвующих в адаптивных реакциях, происходит избирательная активизация синтеза нуклеиновых кислот и белков.

Дыхательная система.

Увеличивается емкость грудной клетки и мощность дыхательной мускулатуры, в легких возрастает число альвеол и общая дыхательная поверхность, увеличивается также число капилляров, возрастает диффузионная способность альвеолокапиллярных мембран. Более совершенной становится корреляция между легочной вентиляцией и перфузией.

Сердечно-сосудистая система.

Обычно развивается умеренная гипертрофия миокарда, сопровождающаяся увеличением числа функционирующих капилляров на единицу массы миокарда, В кардиомиоцитах увеличивается количество митохондрий и содержание белков, обеспечивающих транспорт субстратов; возрастает содержание миоглобина.

Система крови.

В адаптированном организме происходит стойкое усиление эритропоэза: содержание эритроцитов в периферической крови может возрастать до 6 -7 млн в 1 мкл, а содержание гемоглобина до 170-180 г/л и более. Соответственно увеличивается и кислородная емкость крови. Стимуляция эритропоэза и синтеза гемоглобина обусловлена усиленной выработкой в почках эритропоэтина под влиянием гипоксического сигнала, а на более поздних стадиях, возможно. и возрастанием чувствительности костномозгового кроветворения к действию эритропоэтина.

Нервная и эндокринная системы.

У адаптированных к гипоксии животных и человека наблюдается повышенная устойчивость нейронов высших отделов мозга и их связей к дефициту кислорода и энергии, а также гипертрофия ганглионарных нейронов вегетативной нервной системы и увеличение плотности их окончаний в сердце и некоторых других органах, более мощная и устойчивая к гипоксии система синтеза медиаторов. В научной литературе имеются данные об увеличении числа рецепторов на клеточных мембранах и соответственно повышении чувствительности к медиаторам. В результате указанных приспособительных механизмов обеспечивается лучшая и более экономная регуляция органов и ее устойчивость даже при тяжелой гипоксии.

Аналогичная по характеру перестройка происходит в эндокринной регуляции, в частности в гипофизарно-надпочечниковой системе.

Нарушения в организме при гипоксии

Характер, последовательность и выраженность метаболических, функциональных и структурных нарушений при гипоксии зависят от ее типа, этиологического фактора, скорости развития, степени, продолжительности, свойств организма. Вместе с тем гипоксии свойственна определенная совокупность наиболее существенных признаков, закономерно возникающих при самых различных ее вариантах. Далее будут рассмотрены наиболее общие типичные для гипоксии нарушения.

Нарушения метаболизма.

Наиболее ранние изменения возникают в сфере энергетического и тесно связанного с ним углеводного обмена. Они выражаются в уменьшении содержания в клетках АТФ при одновременном увеличении концентрации продуктов его распада - АДФ, АМФ, Ф н.

В некоторых тканях (особенно в головном мозге) еще более ранним признаком гипоксии является уменьшение содержания креатинфосфата. Так, после полного прекращения кровоснабжения мозговая ткань уже через несколько секунд теряет около 70 % креатинфосфата, а через 40-45 с он практически полностью исчезает; несколько медленнее, но также в очень короткие сроки снижается содержание АТФ. Возникающая вследствие указанных сдвигов активизация гликолиза приводит к падению содержания гликогена и увеличению концентрации пирувата и лактата. Последнему процессу способствует также замедленное включение пирувата и лактата в дальнейшие превращения в дыхательной цепи и затруднение ресинтеза гликогена, идущего с потреблением АТФ. Избыток молочной и пировиноградной кислот приводит к метаболическому ацидозу.

Замедляется биосинтез нуклеиновых кислот и белков наряду с усилением их распада, возникает отрицательный азотистый баланс, в тканях возрастает содержание аммиака.

При гипоксии угнетается ресинтез жиров и усиливается их распад, в результате развивается гиперкетонемия, способствующая усугублению ацидоза; с мочой выделяются ацетон, ацетоуксусная и β-оксимасляная кислоты.

Нарушается обмен электролитов и в первую очередь процессы активного перемещения и распределения ионов на биологических мембранах; возрастает, в частности, количество внеклеточного калия. Нарушаются процессы синтеза и ферментативного разрушения нейромедиаторов, их взаимодействие с рецепторами и ряд других энергозависимых метаболических процессов.

Возникают также вторичные нарушения обмена веществ, связанные с ацидозом, электролитными, гормональными и другими сдвигами, свойственными гипоксии. При дальнейшем ее углублении угнетается и гликолиз, усиливаются процессы деструкции и распада макромолекул, биологических мембран, клеточных органелл и клеток. Большое значение в повреждении мембран и повышении их пассивной проницаемости имеет свободнорадикальное окисление липидных компонентов, по-видимому, возникающее при гипоксии любого происхождения. Количество свободных радикалов при этом может возрастать примерно на 50%.

В основе усиления свободнорадикальных процессов при гипоксии лежит ряд механизмов: увеличение содержания субстрата перекисного окист ления липидов - неэтерифицированных жирных кислот, накопление в результате стрессорной реакции катехоламинов, обладающих прооксидантным действием, нарушение утилизации кислорода в процессе ферментативного окисления и др. Важное значение имеет одновременное снижение активности некоторых естественных антиоксидантов, в частности супероксиддисмутазы и глютатионпероксидазы.

Большинство метаболических и структурных нарушений до определенного предела носит обратимый характер. Однако при переходе за точку обратимости после прекращения действия гипоксического фактора происходит не обратное развитие, а прогрессирование тесно связанных друг с другом метаболических и мембранно-клеточных нарушений, вплоть до некроза клеток и их аутолиза.

Нарушения нервной системы.

Раньше всего страдает высшая нервная деятельность. Субъективно уже на ранних стадиях гипоксии возникают ощущения дискомфорта, вялость, тяжесть в голове, шум в ушах, головная боль. В некоторых случаях субъективные ощущения начинаются эйфорией, напоминающей алкогольное опьянение и сопровождающейся снижением способности адекватно оценивать окружающую обстановку и потерей самокритики. Возникают затруднения в осуществлении сложных логических операций, в принятии правильных решений. В дальнейшем прогрессивно нарушается способность выполнять все более простые задания вплоть до самых элементарных. По мере дальнейшего углубления гипоксии обычно нарастают тягостные ощущения, притупляется болевая чувствительность, возникают нарушения вегетативных функций.

Ранним признаком гипоксии является расстройство двигательных актов, требующих точной координации, в частности изменения почерка. В связи с этим так называемая писчая проба нередко используется при исследовании гипоксических состояний, например, в авиационной медицине. В заключительной стадии гипоксии сознание утрачено, возникает полная адинамия, которой нередко предшествуют судороги, развиваются грубые расстройства бульбарных функций и наступает смерть от прекращения сердечной деятельности и дыхания.

Современная реаниматология позволяет восстановить жизнедеятельность организма после 5 - 6 мин и более клинической смерти; однако высшие функции мозга могут при этом необратимо нарушаться, что определяет в таких случаях социальную неполноценность личности и накладывает определенные деонтологические ограничения на целесообразность реанимационных мероприятий.

Нарушения дыхания.

В типичных случаях острой нарастающей гипоксии наблюдаются несколько последовательных стадий изменения внешнего дыхания:

  1. стадия активации , выражающаяся в увеличении глубины и частоты дыхательных движений;
  2. диспноэтическая стадия , проявляющаяся нарушениями ритма и неравномерностью амплитуд дыхательных экскурсий; нередко в этой стадии наблюдаются так называемые патологические типы дыхания;
  3. терминальная пауза в виде временной остановки дыхания;
  4. терминальное (агональное) дыхание;
  5. полное прекращение дыхания.

Нарушения сердечно-сосудистой системы вначале обычно выражаются в тахикардии, нарастающей параллельно с ослаблением сократительной деятельности сердца и уменьшением ударного объема вплоть до так называемого нитевидного пульса. В других случаях тахикардия сменяется резкой брадикардией («вагус-пульс»), сопровождающейся побледнением лица, похолоданием конечностей, холодным потом и обморочным состоянием. Часто наблюдаются изменения ЭКГ и развиваются расстройства сердечного ритма вплоть до фибрилляции предсердий и желудочков. Артериальное давление вначале имеет тенденцию к повышению, а затем прогрессивно снижается в результате падения сердечного выброса и тонуса сосудистых стенок, вплоть до развития коллапса.

Большое значение имеют также расстройства микроциркуляции, связанные с гипоксической альтерацией мельчайших сосудов, изменениями периваскулярных пространств и ухудшением реологических свойств крови.

Функция почек претерпевает при гипоксии сложные и неоднозначные изменения - от полиурии до полного прекращения образования мочи. Изменяется и качественный состав мочи. Эти изменения связаны с нарушением общей и локальной гемодинамики, гормональными влияниями на почки, сдвигами кислотно-основного и электролитного баланса и другими метаболическими расстройствами. При значительной гипоксической альтерации почек развивается недостаточность их функции вплоть до уремии.

Нарушения в системе пищеварения характеризуются потерей аппетита, ослаблением секреторной функции всех пищеварительных желез и моторной функции пищеварительного тракта.

Приведенные выше расстройства физиологических функций характерны в основном для остро- и подостро-развивающихся форм гипоксии. При так называемой молниеносной гипоксии, наступающей, например, при вдыхании различных газов (азот, метан, гелий), при полном отсутствии кислорода, вдыхании высоких концентраций синильной кислоты, фибрилляции или остановке сердца, большая часть описанных изменений отсутствует, очень быстро происходит потеря сознания и прекращение жизненно важных функций организма.

Гипоксия может оказывать влияние на состояние иммунной системы. Умеренная по выраженности и длительности гипоксия практически не изменяет процесса иммуногенеза или несколько активизирует его.

Так, устойчивость к инфекции при невысоких степенях разрежения воздуха может даже возрастать.

Острая и тяжелая гипоксия подавляет иммунную реактивность организма. При этом снижается содержание иммуноглобулинов, тормозится выработка антител и способность лимфоцитов трансформироваться в бластные формы, ослабляется функциональная активность Т-лимфоцитов, фагоцитарная активность нейтрофилов и макрофагов. Снижается также ряд показателей неспецифической резистентности: лизоцима, комплемента, β-лизинов. В итоге резистентность ко многим инфекционным агентам ослабевает.

Снижение иммунитета к чужеродным антигенам в условиях гипоксии может сопровождаться активизацией образования аутоантител в отношении различных органов и тканей, подвергшихся гипоксической альтерации. Возможно также нарушение барьеров, обеспечивающих в норме естественную иммунную толерантность с последующим поражением соответствующих органов и тканей (семенников, щитовидной железы и др.).

Некоторые принципы профилактики и терапии гипоксических состояний

Профилактика и лечение гипоксии зависят от вызвавшей ее причины и должны быть направлены на ее устранение или ослабление. В качестве общих мер применяют вспомогательное или искусственное дыхание, кислород под нормальным или повышенным давлением, электроимпульсную терапию нарушений сердечной деятельности, переливание крови, фармакологические средства. В последнее время получают распространение так называемые антиоксиданты - средства, направленные на подавление свободно-радикального окисления мембранных липидов, играющего существенную роль в гипоксическом повреждении тканей, и антигипоксанты, оказывающие непосредственное благоприятное действие на процессы биологического окисления.

Устойчивость к гипоксии может быть повышена специальными тренировками для работы в условиях высокогорья, в замкнутых помещениях и других специальных условиях.

В настоящее время получены данные о перспективности использования для профилактики и терапии различных заболеваний, содержащих гипоксический компонент, тренировку дозированной гипоксией по определенным схемам и выработку долговременной адаптации к ней.

Контрольные вопросы

  1. Что такое гипоксия?
  2. Как классифицируют гипоксии по причине и механизму развития, скорости развития, распространенности?
  3. Назовите причины развития экзогенных гипоксии.
  4. Каковы причины развития гемической гипоксии?
  5. Перечислите причины дыхательной гипоксии.
  6. Какие причины вызывают циркуляторную гипоксию?
  7. Назовите причины цитотоксической гипоксии.
  8. Какие срочные механизмы компенсации гипоксии вам известны?
  9. Какие долговременные механизмы компенсации гипоксии вы знаете?

ТЕРМИНОЛОГИЯ

Гипоксия - типовой патологический процесс, развивающийся в результате недостаточности биологического окисления. Приводит к нарушению энергетического обеспечения функций и пластических процессов в организме.

Гипоксия нередко сочетается с гипоксемией.

В эксперименте создают условия аноксии для отдельных органов, тканей, клеток или субклеточных структур, а также аноксемии в пределах небольших участков кровеносного русла (например, изолированного органа).

♦ Аноксия - прекращение процессов биологического окисления, как правило, при отсутствии кислорода в тканях.

♦ Аноксемия - отсутствие кислорода в крови.

В целостном живом организме формирование этих состояний невозможно.

КЛАССИФИКАЦИЯ

Гипоксии классифицируют с учётом этиологии, выраженности расстройств, скорости развития и длительности.

По этиологии выделяют две группы гипоксических состояний:

♦ экзогенные гипоксии (нормо- и гипобарическая);

♦ эндогенные гипоксии (тканевая, дыхательная, субстратная, сердечно-сосудистая, перегрузочная, кровяная).

По критерию выраженности расстройств жизнедеятельности различают лёгкую, среднюю (умеренную), тяжёлую и критическую (летальную) гипоксии.

По скорости возникновения и длительности выделяют несколько разновидностей гипоксии:

♦ Молниеносную (острейшую) гипоксию. Развивается в течение нескольких секунд (например, при разгерметизации летательных

аппаратов на высоте более 9 000 м или в результате быстрой массивной потери крови).

♦ Острую гипоксию. Развивается в течение первого часа после воздействия причины гипоксии (например, в результате острой кровопотери или острой дыхательной недостаточности).

♦ Подострую гипоксию. Формируется в течение одних суток (например, при попадании в организм нитратов, окислов азота, бензола).

♦ Хроническую гипоксию. Развивается и длится более чем несколько суток (недели, месяцы, годы), например, при хронической анемии, сердечной или дыхательной недостаточности.

ЭТИОЛОГИЯ И ПАТОГЕНЕЗ ГИПОКСИИ Экзогенный тип гипоксии

Этиология

Причина экзогенных гипоксий - недостаточное поступление кислорода с вдыхаемым воздухом.

Нормобарическая экзогенная гипоксия. Вызвана ограничением поступления в организм кислорода с воздухом в условиях нормального барометрического давления при:

♦ Нахождении людей в небольшом и недостаточно вентилируемом пространстве (например, в шахте, колодце, лифте).

♦ При нарушениях регенерации воздуха или подачи кислородной смеси для дыхания в летательных и глубинных аппаратах, автономных костюмах (космонавтов, лётчиков, водолазов, спасателей, пожарников).

♦ При несоблюдении методики ИВЛ.

Гипобарическая экзогенная гипоксия. Вызвана снижением барометрического давления при подъёме на высоту (более 3000-3500 м, где pO 2 воздуха ниже 100 мм рт.ст.) или в барокамере. В этих условиях возможно развитие либо горной, либо высотной, либо декомпрессионной болезни.

Горная болезнь возникает при подъёме в горы, где организм подвергается постепенному уменьшению барометрического давления и pO 2 во вдыхаемом воздухе, а также охлаждению и повышенной инсоляции.

Высотная болезнь развивается у людей, поднятых на большую высоту в открытых летательных аппаратах, а также при снижении давления в барокамере. В этих случаях на организм действует относительно быстрое снижение барометрического давления и pO 2 во вдыхаемом воздухе.

Декомпрессионная болезнь наблюдается при резком снижении барометрического давления (например, в результате разгерметизации летательных аппаратов на высоте более 9 000 м).

Патогенез экзогенных гипоксий

К основным звеньям патогенеза экзогенной гипоксии (независимо от её причины) относятся: артериальная гипоксемия, гипокапния, газовый алкалоз и артериальная гипотензия.

♦ Артериальная гипоксемия - инициальное и главное звено экзогенной гипоксии. Гипоксемия ведёт к уменьшению поступления кислорода к тканям, что снижает интенсивность биологического окисления.

♦ Снижение напряжения в крови углекислого газа (гипокапния) возникает в результате компенсаторной гипервентиляции лёгких (в связи с гипоксемией).

♦ Газовый алкалоз является результатом гипокапнии.

♦ Снижение системного АД (артериальная гипотензия), сочетающееся с гипоперфузией тканей в значительной мере являются следствием гипокапнии. Выраженное снижение р а С0 2 является сигналом к сужению просвета артериол мозга и сердца.

Эндогенные типы гипоксии

Эндогенные типы гипоксии являются результатом многих патологических процессов и болезней, а также могут развиться при значительном увеличении потребности организма в энергии.

Дыхательный тип гипоксии

Причина - дыхательная недостаточность (недостаточность газообмена в лёгких, подробно описана в главе 23) может быть обусловлена:

♦ альвеолярной гиповентиляцией;

♦ сниженной перфузией кровью лёгких;

♦ нарушением диффузии кислорода через аэрогематический барьер;

♦ диссоциацией вентиляционно-перфузионного соотношения.

Патогенез. Инициальным патогенетическим звеном является артериальная гипоксемия, обычно сочетающаяся с гиперкапнией и ацидозом.

Снижаются p a 0 2 , pH, S a 0 2 , p v 0 2 , S v 0 2 , повышается p a C0 2 .

Циркуляторный (гемодинамический) тип гипоксии

Причина - недостаточность кровоснабжения тканей и органов. Выделяют несколько факторов, приводящих к недостаточности кровоснабжения:

♦ Гиповолемия.

♦ Уменьшение МОК при сердечной недостаточности (см. главу 22), а также при снижении тонуса стенок сосудов (как артериальных, так и венозных).

♦ Расстройства микроциркуляции (см. главу 22).

♦ Нарушение диффузии кислорода через стенку сосудов (например, при воспалении сосудистой стенки - васкулите).

Патогенез. Инициальным патогенетическим звеном является нарушение транспорта насыщенной кислородом артериальной крови к тканям.

Виды циркуляторной гипоксии. Выделяют локальную и системную формы циркуляторной гипоксии.

♦ Локальная гипоксия обусловлена местными расстройствами кровообращения и диффузии кислорода из крови в ткани.

♦ Системная гипоксия развивается вследствие гиповолемии, сердечной недостаточности и снижении ОПСС.

Изменения газового состава и pH крови: снижаются pH, p v 0 2 , S v 0 2 , повышается показатель артерио-венозной разницы по кислороду.

Гемический (кровяной) тип гипоксии

Причина - снижение эффективной кислородной ёмкости крови и, следовательно, её транспортирующей кислород функции вследствие:

♦ Выраженной анемии, сопровождающейся снижением содержания Hb менее 60 г/л (см. главу 22).

♦ Нарушения транспортных свойств Hb (гемоглобинопатии). Оно обусловлено изменением его способности к оксигенации в капиллярах альвеол и дезоксигенации в капиллярах тканей. Эти изменения могут быть наследственными или приобретёнными.

❖ Наследственные гемоглобинопатии обусловлены мутациями генов, кодирующих аминокислотный состав глобинов.

❖ Приобретённые гемоглобинопатии чаще всего являются следствием воздействия на нормальный Hb окиси углерода, бензола или нитратов.

Патогенез. Инициальным патогенетическим звеном является неспособность Hb эритроцитов связывать кислород в капиллярах лёгких, транспортировать и отдавать оптимальное количество его в тканях.

Изменения газового состава и pH крови: снижаются V0 2 , pH, p v 0 2 , повышается показатель артерио-венозной разницы по кислороду и снижается V a 0 2 при норме p a 0 2 .

Тканевой тип гипоксии

Причины - факторы, снижающие эффективность утилизации кислорода клетками или сопряжения окисления и фосфорилирования:

♦ Ионы циана (CN), специфически ингибирующие ферменты, и ионы металлов (Ag 2 +, Hg 2 +, Cu 2 +), ведущие к ингибированию ферментов биологического окисления.

♦ Изменения физико-химических параметров в тканях (температуры, электролитного состава, pH, фазового состояния мембранных компонентов) в более или менее выраженной мере снижают эффективность биологического окисления.

♦ Голодание (особенно белковое), гипо- и дисвитаминозы, нарушения обмена некоторых минеральных веществ приводят к уменьшению синтеза ферментов биологического окисления.

♦ Разобщение процессов окисления и фосфорилирования, вызываемое многими эндогенными агентами (например, избытком Ca 2+ , H+, ВЖК, йодсодержащих гормонов щитовидной железы), а также экзогенными веществами (2,4-динитрофенолом, грамицидином и некоторыми другими).

Патогенез. Инициальным звеном патогенеза является неспособность систем биологического окисления утилизировать кислород с образованием макроэргических соединений.

Изменения газового состава и pH крови: снижаются показатели pH и артерио-венозной разницы по кислороду, повышаются показатели SvO2, pvO2, V v O2.

Субстратный тип гипоксии

Причина - дефицит в клетках субстратов биологического окисления в условиях нормальной доставки кислорода к тканям. В клинической практике наиболее часто вызывается недостатком глюкозы в клетках при сахарном диабете.

Патогенез. Инициальным звеном патогенеза является торможение биологического окисления вследствие отсутствия необходимых субстратов.

Изменения газового состава и pH крови: снижаются показатели pH и артерио-венозной разницы по кислороду, повышаются S v O 2 , p v O 2 ,

Перегрузочный тип гипоксии

Причина - значительная гиперфункция тканей, органов или их систем. Наиболее часто наблюдается при интенсивном функционировании скелетных мышц и миокарда.

Патогенез. Чрезмерная нагрузка на мышцу (скелетную или сердца) обусловливает относительную (по сравнению с требуемым при данном уровне функции) недостаточность кровоснабжения мышцы и дефицит кислорода в миоцитах.

Изменения газового состава и pH крови: снижаются показатели pH, S v O 2 , p v O 2 , повышаются показатели артерио-венозной разницы по кислороду и p v CO 2 .

Смешанный тип гипоксии

Смешанный тип гипоксии - результат сочетания нескольких разновидностей гипоксии.

Причина - факторы, нарушающие два и более механизмов доставки и использования кислорода и субстратов метаболизма в процессе биологического окисления.

♦ Наркотические вещества в высоких дозах способны угнетать функцию сердца, нейронов дыхательного центра и активность ферментов тканевого дыхания. В результате развиваются гемодинамический, дыхательный и тканевой типы гипоксии.

♦ Острая массивная кровопотеря приводит как к снижению кислородной ёмкости крови (в связи с уменьшением содержания Hb), так и к расстройству кровообращения: развивается гемический и гемодинамический типы гипоксии.

♦ При тяжёлой гипоксии любого происхождения нарушаются механизмы транспорта кислорода и субстратов метаболизма, а также интенсивность процессов биологического окисления.

Патогенез гипоксии смешанного типа включает звенья механизмов развития разных типов гипоксии. Смешанная гипоксия часто характеризуется взаимопотенцированием отдельных её типов с развитием тяжёлых экстремальных и даже терминальных состояний.

Изменения газового состава и pH крови при смешанной гипоксии определяются доминирующими расстройствами механизмов транспорта и утилизации кислорода, субстратов обмена веществ, а также процессов биологического окисления в разных тканях. Характер изменений при этом может быть разным и весьма динамичным.

АДАПТАЦИЯ ОРГАНИЗМА К ГИПОКСИИ

В условиях гипоксии в организме формируется динамичная функциональная система по достижению и поддержанию оптимального уровня биологического окисления в клетках.

Выделяют экстренные и долговременные механизмы адаптации к гипоксии.

Экстренная адаптация

Причина активации механизмов срочной адаптации: недостаточное содержание АТФ в тканях.

Механизмы. Процесс экстренной адаптации организма к гипоксии обеспечивают активацию механизмов транспорта O 2 и субстратов обмена веществ к клеткам. Эти механизмы предсуществуют в каждом организме и активируются сразу при возникновении гипоксии.

Система внешнего дыхания

♦ Эффект: увеличение объёма альвеолярной вентиляции.

♦ Механизмы эффекта: увеличение частоты и глубины дыхания, числа функционирующих альвеол.

♦ Механизм эффекта: увеличение ударного объёма и частоты сокращений.

Сосудистая система

♦ Эффект: перераспределение кровотока - его централизация.

♦ Механизм эффекта: региональное изменение диаметра сосудов (увеличение в мозге и сердце).

Система крови

♦ Механизмы эффекта: выброс эритроцитов из депо, увеличение степени насыщения Hb кислородом в лёгких и диссоциации оксигемоглобина в тканях.

♦ Эффект: повышение эффективности биологического окисления.

♦ Механизмы эффекта: активация ферментов тканевого дыхания и гликолиза, повышение сопряжённости окисления и фосфорилирования.

Долговременная адаптация

Причина включения механизмов долговременной адаптации к гипоксии: повторная или продолжающаяся недостаточность биологического окисления.

Механизмы. Долговременная адаптация к гипоксии реализуется на всех уровнях жизнедеятельности: от организма в целом до клеточного метаболизма. Эти механизмы формируются постепенно, обеспечивая оптимальную жизнедеятельность в новых, часто экстремальных условиях существования.

Основным звеном долговременной адаптации к гипоксии является повышение эффективности процессов биологического окисления в клетках.

Система биологического окисления

♦ Эффект: активация биологического окисления, что имеет ведущее значение в долговременной адаптации к гипоксии.

♦ Механизмы: увеличение количества митохондрий, их крист и ферментов в них, повышение сопряжённости окисления и фосфорилирования.

Система внешнего дыхания

♦ Эффект: увеличение степени оксигенации крови в лёгких.

♦ Механизмы: гипертрофия лёгких с увеличением числа альвеол и капилляров в них.

♦ Эффект: повышение сердечного выброса.

♦ Механизмы: гипертрофия миокарда, увеличение в нём числа капилляров и митохондрий в кардиомиоцитах, возрастание скорости взаимодействия актина и миозина, повышение эффективности систем регуляции сердца.

Сосудистая система

♦ Эффект: возрастание уровня перфузии тканей кровью.

♦ Механизмы: увеличение количества функционирующих капилляров, развитие артериальной гиперемии в испытывающих гипоксию органах и тканях.

Система крови

♦ Эффект: увеличение кислородной ёмкости крови.

♦ Механизмы: активация эритропоэза, увеличение элиминации эритроцитов из костного мозга, повышение степени насыщения Hb кислородом в лёгких и диссоциации оксигемоглобина в тканях.

Органы и ткани

♦ Эффект: повышение экономичности функционирования.

♦ Механизмы: переход на оптимальный уровень функционирования, повышение эффективности метаболизма.

Системы регуляции

♦ Эффект: возрастание эффективности и надёжности механизмов регуляции.

♦ Механизмы: повышение резистентности нейронов к гипоксии, снижение степени активации симпатико-адреналовой и гипоталамо-гипофизарно-надпочечниковой систем.

ПРОЯВЛЕНИЯ ГИПОКСИИ

Изменения жизнедеятельности организма зависят от типа гипоксии, её степени, скорости развития, а также от состояния реактивности организма.

Острейшая (молниеносная) тяжёлая гипоксия приводит к быстрой потере сознания, подавлению функций организма и его гибели.

Хроническая (постоянная или прерывистая) гипоксия сопровождается, как правило, адаптацией организма к гипоксии.

РАССТРОЙСТВА ОБМЕНА ВЕЩЕСТВ

Расстройства обмена веществ являются одним из ранних проявлений гипоксии.

♦ Концентрация неорганического фосфата в тканях увеличивается в результате повышенного гидролиза АТФ, АДФ, АМФ и КФ, подавления реакций окислительного фосфорилирования.

♦ Гликолиз на начальном этапе гипоксии активируется, что сопровождается накоплением кислых метаболитов и развитием ацидоза.

♦ Синтетические процессы в клетках угнетаются вследствие дефицита энергии.

♦ Протеолиз нарастает вследствие активации, в условиях ацидоза, протеаз, а также - неферментного гидролиза белков. Азотистый баланс становится отрицательным.

♦ Липолиз активируется в результате повышения активности липаз и ацидоза, что сопровождается накоплением избытка КТ и ВЖК. Последние оказывают разобщающее влияние на процессы окисления и фосфорилирования, чем усугубляют гипоксию.

♦ Водно-электролитный баланс нарушен в связи с подавлением активности АТФаз, повреждением мембран и ионных каналов, а также изменением содержания в организме ряда гормонов (минералокортикоидов, кальцитонина и др.).

НАРУШЕНИЯ ФУНКЦИЙ ОРГАНОВ И ТКАНЕЙ

При гипоксии нарушения функций органов и тканей выражены в разной мере, что определяется различной их резистентностью к гипоксии. Наименьшей устойчивостью к гипоксии обладает ткань нервной системы, особенно нейроны коры больших полушарий. При прогрессировании гипоксии и её декомпенсации угнетается функционирование всех органов и их систем.

Нарушения ВНД в условиях гипоксии выявляются уже через несколько секунд. Это проявляется:

♦ снижением способности адекватно оценивать происходящие события и окружающую обстановку;

♦ ощущениями дискомфорта, тяжести в голове, головной боли;

♦ дискоординацией движений;

♦ замедлением логического мышления и принятия решений (в том числе простых);

♦ расстройством сознания и его потерей в тяжёлых случаях;

♦ нарушением бульбарных функций, что приводит к расстройствам функций сердца и дыхания и может послужить причиной летального исхода.

Сердечно-сосудистая система

♦ Снижение сократительной функции миокарда и уменьшение, в связи с этим, ударного и сердечного выбросов.

♦ Расстройство кровотока в сосудах сердца с развитием коронарной недостаточности.

♦ Нарушения ритма сердца, включая мерцание и фибрилляцию предсердий и желудочков.

♦ Развитие гипертензивных реакций (за исключением отдельных разновидностей гипоксии циркуляторного типа), сменяющиеся артериальной гипотензией, в том числе - острой (коллапсом).

♦ Расстройства микроциркуляции, проявляющиеся чрезмерным замедлением тока крови в капиллярах, турбулентным его характером и артериолярно-венулярным шунтированием.

Система внешнего дыхания

♦ Увеличение объёма альвеолярной вентиляции на начальном этапе гипоксии с последующим (при нарастании степени гипоксии и повреждении бульбарных центров) прогрессирующим снижением по мере развития дыхательной недостаточности.

♦ Уменьшение общей и регионарной перфузии ткани лёгких вследствие нарушений кровообращения.

♦ Снижение диффузии газов через аэрогематический барьер (в связи с развитием отёка и набуханием клеток межальвеолярной перегородки).

Система пищеварения

♦ Расстройства аппетита (как правило, его снижение).

♦ Нарушение моторики желудка и кишечника (обычно - снижение перистальтики, тонуса и замедление эвакуации содержимого).

♦ Развитие эрозий и язв (особенно при длительной тяжёлой гипоксии).

ПРИНЦИПЫ УСТРАНЕНИЯ ГИПОКСИИ

Коррекция гипоксических состояний базируется на этиотропном, патогенетическом и симптоматическом принципах. Этиотропное лечение направлено на устранение причины гипоксии. При гипоксии экзогенного типа необходимо нормализовать содержание кислорода во вдыхаемом воздухе.

♦ Гипобарическую гипоксию устраняют путём восстановления нормального барометрического и, как следствие, парциального давления кислорода в воздухе.

♦ Нормобарическую гипоксию предотвращают посредством интенсивного проветривания помещения или подачи в него воздуха с нормальным содержанием кислорода.

Эндогенные типы гипоксии устраняют путём лечения заболевания

или патологического процесса, приведшего к гипоксии. Патогенетический принцип обеспечивает устранение ключевых звеньев и разрыв цепи патогенеза гипоксического состояния. Патогенетическое лечение включает следующие мероприятия:

♦ Ликвидацию или снижение степени ацидоза в организме.

♦ Уменьшение выраженности дисбаланса ионов в клетках, межклеточной жидкости, крови.

Во внутренней среде человека и высших животных в естественных условиях содержится кислород, углекислый газ, азот и ничтожно малое количество инертных газов. Физиологически значимыми являются О 2 и СО 2 , находящиеся в организме в растворенном и биохимически связанном состоянии. Именно эти два газа и определяют газовый гомеостаз организма. Содержание О 2 и СО 2 является важнейшими регулируемыми параметрами газового состава внутренней среды.

Постоянство газового состава само по себе не имело бы для организма никакого смысла, если бы оно не обеспечивало изменяющиеся потребности клеток в доставке О 2 и удалении СО 2 . Организму требуется не постоянный газовый состав крови, ликвора, интерстициальной жидкости, а обеспечение нормального тканевого дыхания во всех клетках и органах. Это положение справедливо для любого гомеостатического механизма и гомеостаза организма в целом.

О 2 поступает в организм из воздуха, СО 2 образуется в клетках в организме в результате биологического окисления (основная масса - в цикле Кребса) и выделяется через легкие в атмосферу. Это встречное перемещение газов проходит через различные среды организма. Содержание их в клетках определяется, прежде всего, интенсивностью окислительных процессов. Уровень активности различных органов и тканей в процессе приспособительной деятельности непрерывно меняется. Соответственно происходят локальные изменения концентрации О 2 и СО 2 в клетках. При особенно напряженной деятельности, когда фактическая доставка О 2 к клеткам отстает от кислородного запроса, может возникать кислородная задолженность.

16.1.1. Механизмы регуляции газового состава

16.1.1.1. Локальный механизм

Основан на гомеостатических свойствах гемоглобина. Они осуществляются, во-первых, благодаря наличию аллостерических взаимодействий О 2 с белковыми субъединицами молекулы гемоглобина, во-вторых, благодаря наличию в мышцах миоглобина (Рис. 33).

S-образная кривая насыщения гемоглобина кислородом обеспечивает быстрое нарастание диссоциации (распада) комплекса НbO 2 при падении давления О 2 от сердца к тканям. Повышение температуры и ацидоз ускоряет распад комплекса НbО 2 , т.е. О 2 уходит в ткани. Снижение температуры (гипотермия) делает этот комплекс более стабильным и О 2 труднее уходит в ткани (одна из возможных причин гипоксии при гипотермии).

Сердечная мышца и скелетная мускулатура обладают еще одним "местным" гомеостатическим механизмом. В момент сокращения мышц кровь выталкивается из сосудов, вследствни чего О 2 не успевает диффундировать из сосудов в миофибриллы. Этот неблагоприятный фактор в значительной мере компенсируется содержащимся в миофибриллах миоглобином, запасающим О 2 непосредственно в тканях. Сродство миоглобина к О 2 больше чем у гемоглобина. Так, например, миоглобин насыщается О 2 на 95% даже из капиллярной крови, в то время как для гемоглобина при этих величинах рО 2 уже развивается выраженная диссоциация. Наряду с этим, при дальнейшем снижении рО 2 миоглобин очень быстро отдаст почти весь запасенный О 2 . Таким образом, миоглобин выполняет функцию демпфера резких перепадов кислородного снабжения работающих мышц.

Однако локальные механизмы газового гомеостаза лишены способности к сколько-нибудь длительной самостоятельной деятельности и могут осуществлять свои функции лишь на основе общих механизмов гомеостаза. Именно кровь служит той универсальной средой, из которой клетки черпают О 2 и куда отдают конечный продукт окислительного метаболизма - СО 2 .

Соответственно, организм располагает разнообразными и мощными системами гомеостатической регуляции, обеспечивающими сохранение физиологических пределов колебаний газовых показателей крови в норме и возвращение этих показателей в физиологические границы после их временного отклонения под влиянием патологических воздействий.

16.1.1.2. Общий механизм регуляции газового состава крови

Структурные основы.

  1. В конечном итоге узловым механизмом является внешнее дыхание, регулируемое дыхательным центром.
  2. Другой ключевой структурный момент - роль мембран в газовом гомеостазе. На уровне альвеолярных мембран происходят начальные и завершающие процессы газообмена организма с внешней средой, позволяющие функционировать всем остальным звеньям газового гомеостаза.

В состоянии покоя в организм поступает около 200 мл О 2 в минуту н выделяется примерно такое же количество СО 2 . В условиях напряженной деятельности (например, при компенсации кровопотери) количество поступающего О 2 и выделяющегося СО 2 может увеличиваться в 10-15 раз, т.е. система внешнего дыхания рсполагает огромным потенциальным резервом, являющимся решающим компонентом ее гомеостатической функции.

16.1.1.3. Регуляция минутного объема дыхания

Важнейшим регулируемым процессом, от которого зависит постоянство состава альвеолярного воздуха, является минутный объем дыхания (МОД), определяемый экскурсией грудной клетки и диафрагмы.

МОД=частота дыхательных движений х (дыхательный объем - объем мертвого пространства трахеи и крупных бронхов). Приблизительно в норме МОД=16 х (500 мл - 140 мл) = 6 л.

Характер и интенсивность дыхательных движений зависит от деятельности основного управляющего звена системы регуляции внешнего дыхания - дыхательного центра. В нормальных условиях СО 2 и О 2 являются безусловно доминирующими критериями в системе регуляции дыхания. Различного рода "негазовые" влияния (температура, боль, эмоции) могут осуществляться при условии сохранения регулирующего влияния СО 2 и О 2 (Рис. 34).

16.1.1.4. Регуляция по СO 2

Важнейшим регулятором внешнего дыхания, носителем специфического возбуждающего эффекта на дыхательный центр является СО 2 . Таким образом, регуляция по СО 2 связана с его непосредственным влиянием на дыхательный центр.

Кроме непосредственного влияния на центр продолговатого мозга (1), бесспорно возбуждение дыхательного центра под влиянием импульсов с периферических рецепторов сино-каротидной (2а) и кардио-аортальмой зон (2б), возбуждаемых СО 2 .

16.1.1.5. Регуляция по О 2

Происходит преимущественно рефлекторное возбуждение дыхательного центра со стороны хеморецепторов сино-каротидной зоны при снижении рО 2 крови. Исключительно высокая чувствительность рецепторов этих структур к О 2 объясняется высокой скоростью окислительных процессов. Ткань клубочка потребляет 1 мл О 2 /мин на грамм сухой ткани, что в несколько раз больше подобной величины для ткани головного мозга.

16.2. Патология дыхания

Любые нарушения рО 2 и рСО 2 крови приводят к изменениям активности дыхательного центра, регуляции механизма обеспечение газового гомеостаза.

16.2.1. Нарушения газового гомеостаза

Изменения содержания рO 2 , рСО 2 вызваны: 16.2.1.1. За счет нарушения аппарата внешнего дыхания (обеспечение насыщения кропи кислородом и удаления СO 2). Примерами могут быть: накопление экссудата в легких, болезни дыхательных мышц, "аденоидная маска" у детей, дифтеритический и ложный крупы. 16.2.1.2. За счет нарушения аппарата внутреннего дыхания (транспорт и использовании O 2 , СO 2). Причины и патогенез этих патологических состояний достаточно хорошо изложены в учебнике по патофизиологии А.Д.Адо и соавторов, И.H.Зайко и соавторов, поэтому более подробно остановимся на следствиях нарушения как аппарата внешнего, так и внутреннего дыхания - кислородном голодании, т.е. гипоксии. 16.2.1.3. Итак, кислородное голодание тканей (гипоксия) - состояние, возникающее при нарушении доставки или потребления O 2 . Крайнее выражение гипоксии - аноксия (отсутствие О 2 в крови и тканях).

16.2.1.4. Классификация гипоксий

Чтобы сознательно решить для себя эту проблему, следует помнить, что основным условием неравновесия как признака жизни, является энергообеспечение. Вдыхаемый нами кислород нужен для окислительных процессов, главный из которых - образование АТФ в дыхательной цепи. Роль кислорода в ней - снимать электроны с последнего из цепи цитохромов, т.е. быть акцептором. В сопряженном с этим процессом акте фосфорилирования и возникает АТФ в митохондриях аэробов.

В настоящее время выделяется 5 патогенетических типов гипоксий. Их легко запомнить, проследив путь движения кислорода из атмосферы до дыхательной цепи (Рис. 35).

  • 1-й блок поступления кислорода - результат уменьшения его во вдыхаемом воздухе. Этот вид гипоксии активно изучал на себе выдающийся отечественный патофизиолог Н.Н.Сиротинин, поднимаясь в барокамере на высоту около 8500 м. У него возникали синюшность, потоотделение, подергивание конечностей, потеря сознания. Им установлено, что потеря сознания является наиболее надежным критерием для установления высотной болезни.
  • 2-й блок - возникает при заболеваниях внешнего аппарата дыхания (заболевания легких и дыхательного центра), поэтому носит название дыхательной гипоксии.
  • 3-й блок - возникает при заболеваниях сердечно-сосудистой системы, что ухудшает транспорт кислорода и носит название сердечно-сосудистой (циркуляторной) гипоксии.
  • 4-й блок - возникает при любых повреждениях транспортной системы кислорода крови - эритроцитов - и носит название кровяной (гемической) гипоксии. Все четыре вида блоков ведут к гипоксемии (снижению рО 2 в крови).
  • 5-й блок - возникает при повреждениях дыхательной цепи, например, мышьяком, цианидами без явления гипоксемии.
  • 6-й блок - смешанная гипоксия (например, при гиповолемическом шоке).

16.2.1.5. Острая и хроническая гипоксии

Все виды гипоксии, в свою очередь, делятся на острые и хронические. Острые возникают чрезвычайно быстро (например, при 3-м блоке - обильная кровопотеря, при 4-м - отравление СО, при 5-м - отравление цианидами).

Полное отсутствие кислорода - аноксия - возникает при состоянии удушья, так называемой асфиксии. В педиатрии известна асфиксия новорожденных. Причиной является угнетение дыхательного центра или аспирация околоплодных вод. В стоматологии асфиксия возможна при травмах н заболеваниях челюстно-лицевой области и может носить характер аспирационной (затек в дыхательное дерево крови, слизи, рвотных масс), обтурационная (закупорка бронха, трахеи инородными телами, осколками костей, зубов), дислокационной (смещение поврежденных тканей).

Следствием асфиксии является гибель наиболее чувствительных тканей. Из всех функциональных систем к действию гипоксии наиболее чувствительна кора больших полушарий головного мозга. Причины высокой чувствительности: кора образована в основном телами нейронов, богатых тельцами Ниссля - рибосомами, на которых с исключительной интенсивностью идет биосинтез белка (вспомните процессы долговременной памяти, аксональный транспорт). Так как этот процесс является исключительно энергоемким, он нуждается в значительных количествах АТФ, и не удивительно, что потребление кислорода и чувствительность к его нехватке у коры больших полушарий чрезвычайно высока.

Второй особенностью коры является в основном аэробный путь образования АТФ. Гликолиз - бескислородный путь образования АТФ - в коре выражен крайне слабо и не в состоянии компенсировать недостаток АТФ в условиях гипоксии.

16.2.1.6. Полное и неполное выключение коры головного мозга при острой гипоксии

При гипоксии возможна неполная локальная гибель корковых нейронов, либо полное выключение коры больших полушарий. Полное возникает в клинических условиях при остановке сердца более чем на 5 минут. Например, во время хирургических манипуляций, проведении реанимационных мероприятий при состоянии клинической смерти. При этом личность необратимо утрачивает способность увязывать поведение с законами общества, т.е. теряется социальная детерминированность (потеря способности адаптации к окружающим условиям, непроизвольное мочеиспускание и дефекация, потеря речи и т.д.). Через некоторое время такие больные погибают. Таким образом, полное выключение коры больших полушарий сопровождается необратимой потерей условных рефлексов у животных и общественных, коммуникативных функций у человека.

При частичном выключении коры больших полушарий, например, в результате локальной гипоксии при тромбозе сосудов или кровоизлиянии в мозг, теряется функция коркового анализатора в месте аноксии, но, в отличие от полного выключения, в данном случае возможно восстановление утерянной функции за счет периферической части анализатора.

16.2.1.7. Хроническая гипоксии

Хроническая гипоксия возникает при длительном нахождении под влиянием пониженного атмосферного давления и, соответственно, недостатка потребления кислорода, при нарушении дыхательной и сердечно-сосудистой деятельности. Симптоматика хронической гипоксии обусловлена низкой скоростью протекания биохимических и физиологических процессов вследствие нарушения образования макроэрга АТФ. Дефицит АТФ лежит в основе развития симптомов хронической гипоксии. В стоматологии примером может быть развитие пародонтоза при микроангиопатии.


16.2.1.8. Клеточные механизмы патологического действия гипоксии

На основании рассмотренного материала мы можем сделать 1-й вывод: гипоксия любой этиологии сопровождается дефицитом АТФ. Патогенетическим звеном является отсутствие кислорода, который снимает электроны с дыхательной цепи.

Вначале при гипоксии происходит восстановление электронами всех цитохромов дыхательной цепи и перестает генерироваться АТФ. При этом происходит компенсаторное переключение углеводного обмена на анаэробное окисление. Недостаток АТФ снимает его ингибирующее влияние на фосфофруктокиназу - фермент начала гликолиза, усиливается липолиз и глюконеогенсз от пирувата, образующегося из аминокислот. Но это менее эффективный путь образования АТФ. Кроме того, в результате неполного окисления глюкозы по этому пути образуется молочная кислота - лактат. Накопление лактата приводит к внутриклеточному ацидозу.

Отсюда 2-й принципиальный вывод: гипоксия любой этиологии сопровождается ацидозом. Весь дальнейший ход событий, ведущий к гибели клетки, связан с 3-м фактором - повреждением биомембран. Рассмотрим это наиболее подробно на примере мембран митохондрий.

Тканевая гипоксия и повреждение биомембран (БМ)

Тканевая гипоксия - до некоторой степени нормальное состояние для интенсивно функционирующей ткани. Однако, если гипоксия продолжается десятки минут, то она вызывает повреждения клетки, обратимые только на ранних этапах. Природа точки "необратимости" - проблема общей патологии - лежит на уровне биомембран клетки.


Основные этапы повреждения клетки

  1. Дефицит АТФ и накопление Са 2+ . Начальный период гипоксии прежде всего приводит к повреждению "энергетических машин" клетки - митохондрий (MX). Снижение доступа кислорода приводит к снижению образования АТФ в дыхательной цепи. Важным следствием дефицита АТФ является неспособность таких MX накапливать Са 2+ (откачивать из цитоплазмы)
  2. Накопление Са 2+ и активация фосфолипаз. Для нашей проблемы важно то, что Ca 2+ активирует фосфолипазы, вызывающие гидролиз фосфолипидного слоя. Мембраны постоянно испытывают действие разностей потенциалов: от 70 мв на плазматической мембране до 200мв на MX. Такую разность потенциалов может выдержать только очень прочный изолятор. Фосфолипидный слой биомембран (БМ) и есть природный изолятор.
  3. Активация фосфолипаз - дефекты в БМ - электрический пробой. Даже небольшие дефекты в таком изоляторе будут вызывать явление электрического пробоя (быстрое увеличение электрического тока через мембраны, приводящие к их механическому разрушению). Фосфолипазы, разрушая фосфолипиды, и вызывают такие дефекты. Важно, что БМ могут быть пробиты электрическим током под воздействием потенциала, генерируемого самой БМ или электротоком, приложенным извне.
  4. Электрический пробой - нарушение барьерной функции биомембраны. БМ становятся проницаемыми для ионов. Для MX это - К + , которого много в цитоплазме. Для плазматической мембраны - это натрий в экстрацеллюлярном пространстве.

    Итог: ионы калия и натрия движутся внутрь MX или клетки, приводя к повышению осмотического давления. За ними "хлынут" потоки воды, что приведет к отеку MX и отеку клетки. Такие раздувшиеся MX не могут генерировать АТФ и клетки погибают.

Вывод. Гипоксия любой этиологии сопровождается триадой: дефицитом АТФ, ацидозом и повреждением биомембран. Отсюда терапия гипоксических состояний должна включить ингибиторы фосфолипаз, например, витамин Е.

16.2.1.9. Гомеостатические механизмы при гипоксии

Базируются на основе рассмотренных выше гомеостатических механизмов поддерживания газового состава крови. Вернемся к Рис. 35.

  1. Реакция аппарата внешнего дыхания проявляется в виде одышки. Одышка - это изменение ритма и глубины дыхания при гипоксии. В зависимости от длительности вдоха и выдоха различают экспираторную и инспираторную одышку.

    Экспираторная - характеризуется удлинением фазы выдоха вследствие недостаточности эластической силы тканей легких. В норме активация выдоха происходит за счет этих сил. При возрастании сопротивления воздушному потоку за счет спазма бронхиол эластической силы легких недостаточно и подключаются межреберные мышцы, диафрагма.

    Инспираторная - характеризуется удлинением фазы вдоха. Примером может быть стенотическое дыхание вследствие сужения просвета трахеи и верхних дыхательных путей при отеке гортани, дифтерии, попадании инородных тел.

    Но позволительно задать вопрос: всякая ли одышка является компенсаторной? Вспомним, что одним из показателей эффективности дыхания является МОД. В формулу его определения входит понятие "объем мертвого пространства" (см. 16.1.1.3.). Если одышка будет частой и поверхностной (тахипноэ), то это приведет к снижению дыхательного объема при сохранении объема мертвого пространства и результатом поверхностного дыхания будет маятникообразное движение воздуха мертвого пространства. В таком случае, тахипноэ - это совсем не компенсация. Таковой можно считать только частое и глубокое дыхание.

  2. Вторым гомеостатическим механизмом является усиление транспорта кислорода, возможное за счет увеличения скорости кровотока, т.е. белее частых и сильных сокращений сердца. Ориентировочно нормальный минутный объем сердца (МОС) равен ударному объему, умноженному на частоту сердечных сокращений, т.е. МОС = 100 х 60 = 6 л. При тахикардии МОС = 100 х 100 = 10 л. Но в случае продолжающейся гипоксии, приводящей к дефициту энергии, долго ли сможет работать этот компенсаторный механизм? Нет, несмотря на довольно мощную систему гликолиза в миокарде.
  3. Третьим гомеостатическим механизмом является усиление эритропоэза, что ведет к увеличению содержания Нb в крови и повышению транспорта кислорода. При острой гипоксии (кровопотеря) увеличение количества эритроцитов осуществляется за счет выброса их из депо. При хронической гипоксии (нахождение в горах, длительные заболевания сердечно-сосудистой системы) повышается концентрация эритропоэтина, усиливается кроветворная функция костного мозга. Поэтому альпинисты проходят период акклиматизации перед штурмом горных вершин. Н.Н.Сиротинин после стимуляции гемопоэза (сок лимона + 200г сахарного сиропа + аскорбинка) "поднялся" в барокамере до высоты 9750 м.

    Другой интересный пример разнообразия фенотипических приспособлений организма к неблагоприятным условиям внешней среды привел отечественный ученый Чижевский. Он заинтересовался, почему у горных баранов такие мощные (до 7 кг) рога, носить которые достаточно тяжело высоко в горах. Ранее предполагалось, что бараны амортизируют рогами удар о землю при прыжке через пропасть. Чижевским было обнаружено, что в рогах баранов размещены дополнительные резервуары для костного мозга.

  4. Если все предыдущие гомеостатические механизмы были направлены на доставку кислорода, то последний, 4-й механизм - на уровне тканей, направлен прямо на устранение дефицита АТФ. Включение компенсаторных механизмов (ферментов липолиза, гликолиза, переаминирования, глюконеогенеза) в этом случае обусловлено воздействием более высокого уровня регуляции гемопоэза - эндокринной системой. Гипоксия - неспецифичсский стрессор, на который организм отвечает стимуляцией САС и стресс-реакцией системы гипоталамус - гипофиз - кора надпочечников, включающей дополнительные пути энергообеспечения: липолиз, глюконеогенез.

П ЛАН Формы дыхательной недостаточности 2. Вентиляционная дыхательная недостаточность 2.1. обструктивная недостаточность 2.2. рестриктивная недостаточность 2.3. расстройства центральной регуляции дыхания 3. Альвеоло - респираторная недостаточность 3.1. Роль соотношения вентиляция / перфузия 3.2. Роль нарушений диффузии






Определение дыхательной недостаточности Дыхательная недостаточность - это такое патологическое состояние, когда: 1. Напряжение кислорода (рО 2) в артериальной крови снижена - артериальная гипоксемия 2. Напряжение углекислого газа (рСО 2) превышает 50 мм рт. ст. - гиперкапния






АСФИКСИЯ мин Это угрожающий для жизни состояние, при котором острая дыхательная недостаточность достигает такой степени, что в кровь не поступает О 2, а из крови не выводится СО 2. Причины: Удушение Попадание инородных тел Аллергический отек гортани Утопление Аспирация рвотных масс Отек легких Двусторонний пневмоторакс Сильное угнетение дыхательного центра Нарушения нейро-мускулярной передачи Массивная травма грудной клетки


Периоды асфиксии Первый период 1. Возбуждение дыхательного центра 2. Частое и глубокое дыхание 3. Учащение сердечных сокращений 4. Повышение артериального давления 5. В начале первого периода - инспираторная одышка 6. В конце первого периода - экспираторная одышка Механизмы гипертензии при асфиксии: а) рефлекторное воздействие СО 2 на сосудодвигательный центр б) выброс норадреналина и адреналина надпочечниками в) сокращение вен г) увеличение объема циркулирующей жидкости д) увеличение сердечного выброса


Второй период 1. Дыхание редкое 2. Экспираторная одышка 3. Выраженная гипоксемия 4. Гипоксия головного мозга 5. Брадикардия 6. Артериальная гипотензия Третий период 1. Подавление частоты и глубины дыхания 2. Претерминальная пауза 3. Гаспинг - дыхание (терминальное) 4. Полная остановка дыхания


Процессы, которые обеспечивают внешнее дыхание 1. Вентиляция легких 2. Диффузия О 2 и СО 2 через альвеолярную стенку 3. Перфузия крови через капилляры легких Формы дыхательной недостаточности (по патогенезу) 1. Вентиляционная 2. Альвеоло - респираторная 1. Вентиляция легких 2. Диффузия О 2 и СО 2 через альвеолярную стенку 3. Перфузия крови через капилляры легких Формы дыхательной недостаточности (по патогенезу) 1. Вентиляционная 2. Альвеоло - респираторная


Вентиляционная дыхательная недостаточность Суть: в альвеолы за единицу времени поступает меньше воздуха, чем в норме Суть: в альвеолы за единицу времени поступает меньше воздуха, чем в норме (альвеолярная гиповентиляция) Причины альвеолярной гиповентиляции 1. Связанные с аппаратом дыхания (альвеолярная гиповентиляция) Причины альвеолярной гиповентиляции 1. Связанные с аппаратом дыхания (легочны причины) 2. Не связанные с аппаратом дыхания (внелегочные причины) (легочны причины) 2. Не связанные с аппаратом дыхания (внелегочные причины)


Внелегочные причины вентиляционной недостаточности Внелегочные причины вентиляционной недостаточности 1. Нарушение функции и дыхательного центра 2. Нарушение функции мотонейронов спинного мозга 3. Нарушение функции нервно - мышечного аппарата дыхания 4. Ограничение подвижности грудной клетки 5. Нарушение целости грудной клетки 1. Нарушение функции и дыхательного центра 2. Нарушение функции мотонейронов спинного мозга 3. Нарушение функции нервно - мышечного аппарата дыхания 4. Ограничение подвижности грудной клетки 5. Нарушение целости грудной клетки


Легочные причины вентиляционной недостаточности 1. Нарушение проходимости дыхательных путей 2. Нарушение эластических свойств легочной ткани 3. Уменьшение количества функционирующих альвеол 1. Нарушение проходимости дыхательных путей 2. Нарушение эластических свойств легочной ткани 3. Уменьшение количества функционирующих альвеол


Причины обструкции верхних дыхательных путей Внутренняя травма верхних дыхательных путей Ожоги и вдыхания ядовитых газов Внешняя механическая травма Кровотечение в дыхательные пути Аспирация инородного тела Некротическая ангина Людвига Заглоточный абсцесс Ангионевротический отек Внутренняя травма верхних дыхательных путей Ожоги и вдыхания ядовитых газов Внешняя механическая травма Кровотечение в дыхательные пути Аспирация инородного тела Некротическая ангина Людвига Заглоточный абсцесс Ангионевротический отек




Механизм обструкции при бронхиальной астме Скопление вязкого стекловидного слизи в бронхах Скопление вязкого стекловидного слизи в бронхах Отек слизистой бронхов Отек слизистой бронхов Спазм циркулярной и продольной гладкой мускулатуры бронхов Спазм циркулярной и продольной гладкой мускулатуры бронхов


























Рестриктивная недостаточность Воспаление легких Воспаление легких Отек легких Отек легких Фиброз легких Фиброз легких Нарушения сурфактантной системы Нарушения сурфактантной системы Ателектаз Ателектаз Пневмоторакс Пневмоторакс Деформация грудной клетки Деформация грудной клетки Паралич дыхательной мускулатуры Паралич дыхательной мускулатуры


















Альвеоло - респираторная недостаточность 1.Вследствие несоответствия соотношение вентиляция / перфузия легких 1.Вследствие несоответствия соотношение вентиляция / перфузия легких 2.Вследствие затруднения диффузии газов через альвеолярную стенку 2.Вследствие затруднения диффузии газов через альвеолярную стенку


ПРИЧИНЫ СНИЖЕНИЯ перфузии легких Инфаркт миокарда Кардиосклероз Миокардит Экссудативный перикардит Стеноз легочной артерии Стеноз правого предсердно- желудочкового отверстия Сосудистая недостаточность - шок Тромбоэмболия легочной артерии Инфаркт миокарда Кардиосклероз Миокардит Экссудативный перикардит Стеноз легочной артерии Стеноз правого предсердно- желудочкового отверстия Сосудистая недостаточность - шок Тромбоэмболия легочной артерии


ПРИЧИНЫ ДИФФУЗИОННЫХ НАРУШЕНИЙ 1.Уменьшение альвеолярной поверхности - резекция легкого, каверна, абсцесс, ателектаз, эмфизема 2.Утолщение альвеолярной мембраны - фиброз, саркоидоз, пневмокониоз, эмфизема, склеродермия, пневмония, отек легких 3.Инфекционные болезни - интерстициальная пневмония, грипп, корь, туберкулез, грибковые заболевания 1.Уменьшение альвеолярной поверхности - резекция легкого, каверна, абсцесс, ателектаз, эмфизема 2.Утолщение альвеолярной мембраны - фиброз, саркоидоз, пневмокониоз, эмфизема, склеродермия, пневмония, отек легких 3.Инфекционные болезни - интерстициальная пневмония, грипп, корь, туберкулез, грибковые заболевания


4.Химические агенты, которые вызывают пневмонию - хлор, фосген, закись азота, мучная пыль 5.Хронические заболевания - уремия системная красная волчанка узелковый периартериит саркоидоз склеродермия 6. Профессиональные поражения легких кониозы: азбестоз талькоз сидероз силикоз бериллиоз 4.Химические агенты, которые вызывают пневмонию - хлор, фосген, закись азота, мучная пыль 5.Хронические заболевания - уремия системная красная волчанка узелковый периартериит саркоидоз склеродермия 6. Профессиональные поражения легких кониозы: азбестоз талькоз сидероз силикоз бериллиоз






Гипоксическая гипоксия Причины: 1. Снижение парциального давления кислорода во вдыхаемом воздухе 2. Нарушение внешнего дыхания 3. Смешивание артериальной и венозной крови 1. Снижение парциального давления кислорода во вдыхаемом воздухе 2. Нарушение внешнего дыхания 3. Смешивание артериальной и венозной крови


Гемическая гипоксия Суть гипоксии - уменьшение кислородной емкости крови Формы: а) анемичная б) токсическая причины: 1. Анемическая форма: Кровопотеря Гемолиз эритроцитов Угнетение эритропоэза 2. Токсическая форма: образование карбоксигемоглобина образование метгемоглобина Суть гипоксии - уменьшение кислородной емкости крови Формы: а) анемичная б) токсическая причины: 1. Анемическая форма: Кровопотеря Гемолиз эритроцитов Угнетение эритропоэза 2. Токсическая форма: образование карбоксигемоглобина образование метгемоглобина




Экзогенные метгемоглобинообразователи 1. Соединения азота - окиси, нитриты 2. Аминосоединения - гидроксиламин, анилин, фенилгидразин, ПАБК 3. Окислители - хлораты, перманганаты, хиноны, пиридин, нафталин 4. Окислительно - восстановительные краски - метиленовая синька, крезилблау 5. Лекарственные препараты - новокаин, пилокарпин, фенацетин, барбитураты, аспирин, резорцин




Гистотоксическая гипоксия Суть: неспособность тканей утилизировать кислород Главный показатель: малая артерио - венозная разница Главный показатель: малая артерио - венозная разница Причина: снижение активности дыхательных ферментов Причина: снижение активности дыхательных ферментов


Ферменты дыхательной цепи 1. Пиридинзависимые дегидрогеназы около 150), для которых коферментами служат НАД или НАДФ 2. Флавинзависимые дегидрогеназы около 30), простетическими группами которых служат флавинадениннуклеотид (ФАД) или флавинмононуклеотид (ФМН) 3. Цитохромы, в простетической группе которых порфириновое кольцо с железом 4. Цитохромоксидазы 1. Пиридинзависимые дегидрогеназы около 150), для которых коферментами служат НАД или НАДФ 2. Флавинзависимые дегидрогеназы около 30), простетическими группами которых служат флавинадениннуклеотид (ФАД) или флавинмононуклеотид (ФМН) 3. Цитохромы, в простетической группе которых порфириновое кольцо с железом 4. Цитохромоксидазы




Нарушение жирового обмена при гипоксии 1. Интенсивный распад жиров в депо 2. Замедленное синтез жиров 3. Накопление жирных кислот в тканях 4. Накопление кетоновых тел 5. Углубление ацидоза 1. Интенсивный распад жиров в депо 2. Замедленное синтез жиров 3. Накопление жирных кислот в тканях 4. Накопление кетоновых тел 5. Углубление ацидоза




Чувствительность к гипоксии Нейроны коры головного мозга мин Нейроны продолговатого мозга мин Нейроны спинного мозга - 60 мин Нейроны коры головного мозга мин Нейроны продолговатого мозга мин Нейроны спинного мозга - 60 мин




Компенсаторные реакции при гипоксии 1. Дыхательные механизмы а) гипоксическая одышка 2. Гемодинамические механизмы а) тахикардия б) увеличение ударного объема крови в) увеличение сердечного выброса г) ускорение кровотока д) централизация кровообращения


3. Кровяные механизмы а) эритроцитоз б) увеличение гемоглобина в) увеличение сродства Hb к кислороду г) облегчения диссоциации оксигемоглобина 4. Тканевые механизмы а) снижение обмена веществ б) активация анаэробного гликолиза в) активация дыхательных ферментов