Особенности сжигания твердых топлив. Большая энциклопедия нефти и газа

Органическое топливо (газообразное, жидкое и твердое) широко используют в разного рода тепловых установках: в топках паровых и водогрейных котлов, в том числе паротурбинных электростанций, в промышленных печах и в сельском хозяйстве, в камерах сгорания газовых турбин и воздушно-реактивных двигателей, в цилиндрах поршневых двигателей внутреннего сгорания, в камерах сгорания магнитогазодинамических электрогенераторов и т. д.


Топливо в любых теплотехнических установках сжигают для того, чтобы получить теплоту в результате протекания экзотермических химических реакций и получить раскаленные продукты полного сгорания (дымовые газы) или продукты газификации.


В топках паровых котлов, в промышленных печах (кроме шахтных печей), в двигателях внутреннего сгорания, в камерах сгорания газовых турбин горение ведут с наибольшей полнотой, получая продукты полного сгорания.


В газогенераторах осуществляют газификационные процессы, в которых в качестве окислителей используют кислород, воздух, водяной пар и углекислый газ. Реакции, протекающие в таких устройствах, едины по своей природе с реакциями горения, но в результате их получают горючие газообразные продукты газификации.


Бывает и двухстадийное сжигание топлива: 1 - сначала топливо газифицируется; 2 - затем (в том же устройстве) продукты газификации полностью дожигаются.


Условия сгорания топлива в разных теплотехнических устройствах и подготовка их к сжиганию различны, как различны и сами топлива. Например, в топках паровых и водогрейных котлов и в промышленных печах топливо сгорает при атмосферном давлении, в то время как в камерах сгорания газовых турбин и в цилиндрах двигателей внутреннего сгорания топливо горит при давлении, во много раз превышающем атмосферное. Несмотря на указанное выше различие, в процессах сгорания различных видов топлива много общего. Краткая информация о процессах горения и топливных устройствах изложена ниже.

2. Реакции горения и газификации

Процессы горения делят на гомогенные, протекающие в объеме, когда топливо и окислитель находятся в одинаковом фазовом состоянии (например, горение водорода в смеси с воздухом), и на гетерогенные, происходящие на поверхности твердого углерода (например, горение кокса в потоке воздуха). В указанных реакциях горения окислителем является сухой воздух, состоящий по объему примерно из 21% кислорода и 79% азота, и поэтому продукты сгорания содержат балласт - азот, который их разбавляет. При использовании в качестве окислителя чистого кислорода балласт будет отсутствовать.

3. Гомогенное горение. Кинетика химических реакций

Во всех теплотехнических установках стремятся к проведению процессов горения с наибольшей скоростью, потому что это позволяет создать малогабаритные машины и аппараты и получить в них наибольшую производительность. Процессы горения в существующих установках протекают с большой скоростью с выделением при сгорании топлива большого количества теплоты и с получением высоких температур. Для лучшего понимания влияния разных факторов на скорость горения ниже рассмотрены элементы кинетики химических реакций.


Скорость любой химической реакции зависит от концентрации реагирующих веществ, температуры и давления. Объясняется это тем, что молекулы газов, двигаясь в разных направлениях с большой скоростью, сталкиваются друг с другом. Чем чаще их столкновения, тем быстрее протекает реакция. Частота же столкновений молекул зависит от их количества в единице объема, т. е. от концентрации и, кроме того, от температуры. Под концентрацией понимают массу вещества в единице объема и измеряют ее в кг/м3, а чаще - числом киломолей в 1 м3.

4. Особенности горения газообразного топлива

Процесс горения газообразного топлива гомогенный, т. е. и топливо, и окислитель находятся в одном агрегатном состоянии и граница раздела фаз отсутствует. Для того, чтобы началось горение, газ должен соприкасаться с окислителем. При наличии окислителя для начала горения необходимо создать определенные условия. Окисление горючих составляющих возможно и при относительно низких температурах. В этих условиях скорости химических реакций имеют незначительную величину. С повышением температуры скорость реакций возрастает.


При достижении некоторой температуры газо-воздушная смесь воспламеняется, скорости реакций резко возрастают и количество теплоты становится достаточным для самопроизвольного поддержания горения. Минимальная температура, при которой происходит воспламенение смеси, называется температурой воспламенения. Значение этой температуры для различных газов неодинаково и зависит от теплофизических свойств горючих газов, содержания горючего в смеси условий зажигания, условий отвода теплоты в каждом конкретной в устройстве и т. д. Например, температура воспламенения водорода находится в пределах 820-870 К, а окиси углерода и метана - соответственно 870-930 К и 10201070 К.


Горючий газ в смеси с окислителем сгорает в факеле. Факел - некоторый определенный объем движущихся газов, в котором протекают процессы горения. В соответствии с общими положениями теории горения различают два принципиально различных метода сжигания газа в факеле - кинетически и диффузионный. Для кинетического сжигания характерно предварительное (до начала горения) смешивание газа с окислителем. Газ и окислитель подаются сначала в смешивающее устройство горелки. Горение смеси осуществляется вне пределов смесителя. В этом случае скорость процесса будет лимитироваться скоростью химических реакций горения и
τгор, τхим.


Диффузионное горение происходит в процессе смешивания горючего газа с воздухом. Газ поступает в рабочий объем отдельно от воздуха. Скорость процесса в данном случае будет ограничена скоростью смешивания газа с воздухом и τгор

Разновидностью диффузионного горения является смешанное (диффузионно-кинетическое) горение. Газ предварительно смешивается с некоторым (недостаточным для полного горения) количеством воздуха. Этот воздух называется первичным. Образовавшаяся смесь подается в рабочий объем. Туда же отдельно от нее поступает остальная часть воздуха (вторичный воздух).


В топках котельных агрегатов чаще используются кинетический и смешанный принципы сжигания топлива. Диффузионный способ чаще всего используется в технологических промышленных печах.


Структура и длина факела при прочих равных условиях зависит от режима потока. Различают ламинарный и турбулентный газовые факелы. Ламинарный факел образуется при небольших скоростях истечения смеси (Re 3000 факел турбулентен уже около среза горелочного устройства. 


Горение газа происходит в узкой зоне, называемой фронтом горения. Газ, предварительно перемешанный с окислителем, сгорает во фронте горения, который называется кинетическим. Этот фронт представляет собой поверхность раздела между свежей газо-воздушной смесью и продуктами сгорания. Площадь поверхности кинетического фронта горения определяется скоростью химических реакций.


В случае диффузионного сжигания газа образуется диффузионный фронт горения, который является поверхностью раздела между продуктами сгорания и смесью газа с продуктами сгорания, диффундирующими навстречу потоку газа. Площадь поверхности этого фронта определяется скоростью смешивания газа с окислителем.


Диффузионно-кинетическое сжигание газа характеризуется наличием двух фронтов. При кинетическом сжигании расходуется окислитель, подаваемый в смеси с газом, при диффузионном догорает та часть газа, которая не сгорела при кинетическом сжигании из-за недостатка окислителя.


На рис. 1 показана структура горящих факелов при различных способах сжигания горючего газа и схема фронта горения.



Рис. 1. : кинетического (а), смешанного (б) и диффузионного (в), а также схема фронта горения


Набегающая свежая газо-воздушная смесь нагревается за счет передачи теплоты путем теплопроводности и излучения от фронта горения. Подогретая до температуры воспламенения смесь сгорает во фронте горения, а продукты сгорания покидают эту зону и частично диффундируют в набегающую смесь. Положение фронта горения над срезом горелки зависит от физической природы горючего газа, концентрации его в смеси, скорости потока и других факторов. Фронт горения может перемещаться в направлении, нормальном к своей поверхности, до установления равенства между количествами сгоревшей и поступившей смеси, отнесенными к единице поверхности фронта. При этом выполняется и тепловое равновесие: поток теплоты от фронта горения уравновешивается встречным потоком переносимого холодного исходного газа.


Важнейшей характеристикой горения газообразного топлива является скорость нормального распространения пламени скорость, с которой перемещается фронт горения по нормали к своей поверхности в направлении набегающей газо-воздушной смеси. При равенстве на и проекции вектора скорости потока на нормаль к поверхности фронта этот фронт будет неподвижным по отношению к срезу горелки. Основные факторы, от которых зависит скорость нормального распространения пламени, - это реакционная способность газа, его концентрация в смеси и температура предварительного подогрева смеси.


Реакционная способность газа определяется величиной энергии активации. Очевидно, что газы, обладающие небольшой энергией активации, реагируют с окислителем с большей скоростью, и для этих газов характерны высокие скорости распространения пламени (водород, ацетилен). Количество теплоты, выделяемой при горении, и температура во фронте горения зависят от концентрации газа и смеси. Начальный подогрев смеси увеличивает температуру во фронте. Если скорость истечения смеси будет значительно превосходить скорость распространения пламени, то может произойти отрыв факела. Если скорости истечения значительно меньше скоростей распространения пламени, то наблюдается втягивание (проскок) пламени в горелку.

5. Нижний и верхний пределы взрываемости горючих газов

Другая важная особенность горения газо-воздушных смесей - это наличие концентрационных пределов. Горючие газы могут воспламеняться или взрываться, если они смешаны в определенных (для каждого газа) соотношениях с воздухом и нагреты не ниже температуры их воспламенения. Воспламенение и дальнейшее самопроизвольное горение газо-воздушной смеси при определенных соотношениях газа и воздуха возможно при наличии источника огня (даже искры).


Различают нижний и верхний концентрационные пределы взрываемости (воспламеняемости) - минимальное и максимальное процентное содержание газа в смеси, при которых может произойти воспламенение ее и взрыв.


Нижний предел соответствует минимальному, а верхний - максимальному количеству газа в смеси, при котором происходят их воспламенение (при зажигании) и самопроизвольное (без притока теплоты извне) распространение пламени (самовоспламенение). Эти же пределы соответствуют и условиям взрываемости газо-воздушных смесей.


Нижний предел взрываемости отвечает той минимальной концентрации паров горючего в смеси с воздухом, при которой происходит вспышка при поднесении пламени. Верхний предел взрываемости отвечает той максимальной концентрации паров горючего в смеси с воздухом, выше которой вспышки уже не происходит из-за недостатка кислорода воздуха. Чем шире диапазон пределов воспламеняемости (называемых также пределами взрываемости) и ниже нижний предел, тем более взрывоопасен газ. У большинства углеводородов пределы взрываемости невелики. Для метана СН4 нижний и верхний пределы взрываемости 5% и 15% объемных соответственно.


Самые широкие пределы взрываемости (воспламеняемости) имеет ряд газов: водород (4,0 - 75%), ацетилен (2,0 - 81%) и окись углерода (12,5 - 75%). Объемное содержание горючего газа в газо-воздушной смеси, ниже которого пламя не может самопроизвольно распространяться в этой смеси при внесении в нее источника высокой температуры, называется нижним концентрационным пределом воспламенения (распространения пламени) или нижним пределом взрываемости данного газа. Таким образом, смесь газа с воздухом взрывоопасна только в том случае, если содержание в ней горючего газа находится в диапазоне между нижним и верхним пределами взрываемости.




Существование пределов воспламеняемости (взрываемости) вызывается тепловыми потерями при горении. При разбавлении горючей смеси воздухом, кислородом или газом тепловые потери возрастают, скорость распространения пламени уменьшается и горение прекращается после удаления источника зажигания.


С увеличением температуры смеси пределы воспламеняемости расширяются, а при температуре, превышающей температуру самовоспламенения, смеси газа с воздухом или кислородом горят при любом объемном соотношении.


Пределы воспламеняемости (взрываемости) зависят не только от видов горючих газов, но и от условий проведения экспериментов (вместимости сосуда, тепловой мощности источника зажигания, температуры смеси, распространения пламени вверх, вниз, горизонтально и др.). Этим объясняются несколько отличающиеся друг от друга значения этих пределов в различных литературных источниках. При распространении пламени сверху вниз или горизонтально нижние пределы несколько возрастают, а верхние - снижаются.


Расчетное избыточное давление при взрыве таких смесей следующее: природного газа - 0,75 МПа, пропана и бутана - 0,86 МПа, водорода - 0,74 МПа, ацетилена - 1,03 МПа. В реальных условиях температура взрыва не достигает максимальных значений и возникающие давления ниже указанных, однако они вполне достаточны для разрушения не только обмуровки котлов, зданий, но и металлических емкостей, если в них произойдет взрыв.


Основной причиной образования взрывных газо-воздушных смесей является утечка газа из систем газоснабжения и отдельных ее элементов (неплотность закрытия арматуры, износ сальниковых уплотнений, разрывы швов газопроводов, негерметичность резьбовых соединений и т. д.), а также несовершенная вентиляция помещений, топки и газоходов котлов и печей, подвальных помещений и различных колодцев подземных коммуникаций. Задачей эксплуатационного персонала газовых систем и установок является своевременное выявление и устранение мест утечек газа и строгое выполнение производственных инструкций по использованию газообразного топлива, а также безусловное качественное выполнение планово-предупредительного осмотра и ремонта систем газоснабжения и газового оборудования.

6. Особенности горения жидкого топлива

Основным жидким топливом, используемым в настоящее время, является мазут. В установках небольшой мощности используется также печное топливо, представляющее собой смесь технического керосина со смолами. Наибольшее практическое применение имеет метод сжигания жидкого топлива в распыленном состоянии. Распыление топлива позволяет значительно ускорить его сгорание и получить высокие тепловые напряжения объемов топочных камер вследствие увеличения площади поверхности контакта топлива с окислителем.


Температура кипения жидких топлив всегда ниже температуры их самовоспламенения, т. е. той минимальной температуры среды, начиная с которой топливо воспламеняется и затем горит без постороннего теплового источника. Эта температура выше, чем температура воспламенения, при которой топливо горит только в присутствии постороннего источника зажигания (искры, раскаленной спирали и т. п.). Из-за этого при наличии окислителя горение жидких топлив возможно лишь в парообразном состоянии. Это обстоятельство является главным для понимания механизма процесса горения жидкого топлива.


Процесс сжигания жидкого топлива включает следующие этапы: 1 - пульверизации (распыливания) при помощи форсунок; 2 - испарения и термического разложения топлива; 3 - смешения полученных продуктов с воздухом; 4 - воспламенения смеси; 5 - собственно горения.


Цель пульверизации заключается в увеличении поверхности соприкосновения жидкости с воздухом и газами. Поверхность при этом возрастает в несколько тысяч раз. За счет сильного излучения горящего факела капельки очень быстро испаряются и подвергаются термическому разложению (крекингу).


Капля жидкого топлива, попавшая в нагретый объем, температура которого выше температуры самовоспламенения, начинает частично испаряться. Пары топлива смешиваются с воздухом, и образуется паровоздушная смесь. Воспламенение происходит в тот момент, когда концентрация паров в смеси достигнет величины, превышающей ее значение на нижнем концентрационном пределе воспламенения. Горение затем поддерживается самопроизвольно за счет теплоты, получаемой каплей от сжигания горючей смеси. Начиная с момента воспламенения скорость процесса испарения, возрастает, так как температура горения горючей паро-воздушной смеси значительно превышает начальную температуру объема, куда вводится распыленное топливо.


Таким образом, горение жидкого топлива характеризуется двумя взаимосвязанными процессами: испарением топлива вследствие выделения теплоты от горящей паро-воздушной смеси и собственно горением этой смеси около поверхности капли. Гомогенное горение паровоздушной смеси - это химический процесс, а процесс испарения является по своей природе физическим. Результирующая скорость и время горения жидкого топлива будут определяться интенсивностью протекания физического или химического процесса.


При сжигании жидкого топлива факел состоит из трех фаз: 1 - жидкой; 2 - твердой (дисперсный углерод от разложения жидких углеводородов); 3 - газообразной.


Скорость горения, как и при сжигании горючих газов, зависит от условий смесеобразования, степени предварительной аэрации, степени турбулентности факела, температуры камеры сгорания и условий развития факела. Высокомолекулярные углеводородные газы, разлагаясь при высоких температурах на простые соединения, выделяют сажистый углерод, размеры частичек которого очень малы (~ 0,3 мкм). Эти частицы, раскаляясь, обеспечивают свечение пламени. Можно снизить светимость пламени тяжелых углеводородов. Для этого следует осуществить частичное предварительное смешение, т. е. подать в форсунку некоторое количество воздуха. Кислород изменяет характер разложения органических молекул: углерод выделяется не в твердом виде, а в виде окиси углерода, горящей синеватым прозрачным пламенем.


Если скорость сгорания образующихся паров значительно превышает скорость испарения топлива, то за скорость горения принимают скорость испарения и тогда τгор = τфиз + τхим.


В противном случае, когда скорость химического взаимодействия паров с окислителем значительно ниже скорости испарения топлива, интенсивность процесса сжигания будет целиком зависеть от скорости протекания химических реакций горения паро-воздушной смеси и испарение капли - наиболее длительная стадия горения жидкого топлива. Поэтому для успешного и экономичного сжигания жидкого топлива необходимо увеличивать дисперсность распыления.

7. Горение твердого топлива (гетерогенное горение)

Для горения топлива нужно большое количество воздуха, превышающее в несколько раз по весу количество топлива. При продувании слоя топлива воздухом сила аэродинамического давления потока Р может быть меньше веса кусочка топлива G или, наоборот, больше его. В топках с «кипящим слоем» «кипение» связано с разъединением частиц топлива, что увеличивает объем слоя в 1,5-2,5 раза. Движение частиц топлива (обычно они от 2 до 12 мм) похоже на движение кипящей жидкости, почему такой слой и получил название «кипящего».


В топках с «кипящим» слоем газо-воздушный поток не циркулирует в слоевой зоне, а прямоточно продувает слой. Поток воздуха, пронизывающий слой, испытывает неоднородное торможение, что создает сложное поле скоростей, в котором частицы все время меняют свою парусность в зависимости от положения в потоке. Частицы при этом приобретают вращательно-пульсирующее движение, которое и создают впечатление кипящей жидкости.


Процесс сгорания твердого топлива может быть условно разделен на стадии, накладывающиеся одна на другую. Эти стадии протекают в разных температурных и тепловых условиях и требуют различного количества окислителя.


Свежее топливо, поступающее в топку, подвергается более или менее быстрому нагреванию, из него испаряется влага и выделяются летучие вещества - продукты сухой перегонки топлива. Одновременно протекает процесс коксообразования. Кокс сгорает и частично газифицируется на колосниковой решетке, а газообразные продукты сгорают в топочном пространстве. Негорючая минеральная часть топлива при сгорании топлива превращается в шлак и золу.

8. Конструкции различных топок

Топочным устройством или топкой называют часть котельного агрегата, которая предназначена для сжигания топлива и выделения химически связанного в нем тепла. Вместе с тем топка является теплообменным устройством, в котором поверхностям нагрева отдается излучением часть тепла, выделившегося при горении топлива. Кроме того, при сжигании твердого топлива в топке выпадает некоторая часть образующейся золы.


В соответствии с видом сжигаемого топлива различают топки для сжигания твердого, жидкого и газообразного топлива. Кроме того, есть топки, в которых одновременно можно сжигать различные виды топлива: твердое с жидким или газообразным, жидкое и газообразное.


Существуют три основных способа сжигания топлива: в слое, факеле и вихре (циклоне). В соответствии с этим топки разделяют на три больших класса: слоевые, факельные и вихревые. Факельные и вихревые топки часто объединяют в общий класс камерных топок.





Рис. 2. : а - плотный слой; б - «кипящий» слой; в и г - взвешенный слой (гетерогенные факелы)


В слое топливо сжигают под котельными агрегатами паропроизводительностью до 20-35 т/ч. В слое можно сжигать только твердое кусковое топливо, например: бурые и каменные угли, кусковой торф, горючие сланцы, древесину. Топливо, подлежащее сжиганию в слое, загружают на колосниковую решетку, на которой оно лежит плотным слоем. Горение топлива происходит в струе воздуха, пронизывающего этот слой обычно снизу вверх.


Топки для сжигания топлива в слое разделяют на три класса (рис. 3):


1 - топки с неподвижной колосниковой решеткой и неподвижно лежащим на ней слоем топлива (рис. 3, а и б);


2 - топки с движущейся колосниковой решеткой, перемещающей лежащий на ней слой топлива (рис. 3, в, г);


3 - топки с неподвижной колосниковой решеткой и перемещающимся по ней слоем топлива (рис. 3, д, е, ж).





Рис. 3. Схемы топок для сжигания топлива в слое : а - ручная горизонтальная колосниковая решетка; б - топка с забрасывателем на неподвижный слой; в - топка с цепной механической решеткой; г - топка с механической цепной решеткой обратного хода и забрасывателем; д - топка с шурующей планкой; е - топка с колосниковой решеткой; ж - топка системы Померанцева


Самой простой топкой с неподвижной колосниковой решеткой и неподвижным слоем топлива является топка с ручной горизонтальной колосниковой решеткой (рис. 3, а). На этой решетке можно сжигать твердое топливо всех видов, но необходимость ручного обслуживания ограничивает область применения ее в котлах очень малой паропроизводительности (до 1-2 т/ч).


Для слоевого сжигания топлива под котлами большей паропроизводительности механизируют обслуживание топки и прежде всего - подачу в нее свежего топлива.


В топках с неподвижной решеткой и неподвижным слоем топлива механизация загрузки осуществляется применением забрасывателей 1, которые непрерывно механически загружают свежее топливо и разбрасывают его по поверхности колосниковой решетки 2 (рис. 3, б). В таких топках можно сжигать каменные и бурые угли, а иногда и антрацит под котлами паропроизводительностью до 6,5-10,0 т/ч.


К классу топок с движущейся колосниковой решеткой, перемещающей лежащий на ней слой топлива, относят топки с механической цепной решеткой (рис. 3, в), которые выполняют в различных модификациях. В этой топке топливо из загрузочной воронки 1 поступает самотеком на переднюю часть медленно движущегося бесконечного цепного колосникового полотна 2, которым оно подается в топку. Горящее топливо непрерывно перемещается по топке вместе с полотном решетки. При этом оно полностью сгорает, после чего образовавшийся в конце решетки шлак ссыпается в шлаковый бункер 3.


Топки с цепной решеткой чувствительны к качеству топлива. Лучше всего они подходят для сжигания сортированных неспекающихся умеренно влажных и умеренно зольных углей с относительно высокой температурой плавления золы и выходом летучих веществ УГ = 10-25% на горючую массу. В таких топках можно также сжигать сортированный антрацит. Для работы на спекающихся углях, а также на углях с легкоплавкой золой топки с цепной решеткой непригодны. Эти топки можно устанавливать под котлами паропроизводительностью от 10 до 150 т/ч, но в России их устанавливают под паровыми котлами паропроизводительностью 10-35 т/ч главным образом для сжигания сортированного антрацита.


Для сжигания топлива большой влажности, в частности кускового торфа, цепную решетку комбинируют с шахтным предтопком, который нужен для предварительной сушки топлива. Самой распространенной шахтно-цепной топкой является топка проф. Т. Ф. Макарьева.


Другим типом топки рассматриваемого класса являются топки с цепной решеткой обратного хода и забрасывателем. В этих топках колосниковое полотно решетки движется в обратном направлении, т. е. от задней стенки топки к передней. На фронтальной стене топки размещены забрасыватели, непрерывно подающие топливо на полотно. Выгоревший шлак ссыпается с решетки в шлаковый бункер, размещенный под передней частью топки. Топки рассматриваемого типа значительно меньше чувствительны к качеству топлива, чем топки с решеткой прямого хода, поэтому их применяют для сжигания как сортированных, так и не сортированных каменных и бурых углей под котлами паропроизводительностью 10-35 т/ч.


Топки с неподвижной колосниковой решеткой и перемещающимся по ней слоем топлива основаны на различных принципах организации процессов движения и горения топлива. В топках с шурующей планкой топливо перемещается вдоль неподвижной горизонтальной колосниковой решетки специальной планкой особой формы, движущейся возвратно-поступательно по колосниковому полотну. Применяют их для сжигания бурых углей под котлами паропроизводительностью до 6,5 т/ч. Разновидностью топки с шурующей планкой является факельно-слоевая топка системы проф. С. В. Татищева, получившая применение для сжигания фрезерного торфа под котлами паропроизводительностью до 75 т/ч. Она отличается от обычной топки с шурующей планкой наличием шахтного предтопка, в котором происходит предварительная подсушка фрезерного торфа дымовыми газами, засасываемыми в шахту специальным эжектором. В этой топке можно также сжигать бурые и каменные угли.


В топках с наклонной колосниковой решеткой и скоростных топках системы В. В. Померанцева топливо, поступив в топку сверху, при сгорании сползает под действием силы тяжести в нижнюю часть топки, позволяя поступать в топку новым порциям топлива. Эти топки применяют для сжигания древесных отходов под котлами паропроизводительностью от 2,5 до 20 т/ч, а шахтные топки и для сжигания кускового торфа - под котлами паропроизводительностью до 6,5 т/ч.


В связи с особенностями топливного баланса России, в котором используют в основном каменные и отчасти бурые угли, больше всего распространены топки с забрасывателями и механические цепные решетки. Топки же, предназначенные для сжигания торфа, сланцев и древесины, распространены значительно меньше, так как топливо этих видов в топливном балансе России играет второстепенную роль.


В факельном процессе можно сжигать топливо твердое, жидкое и газообразное. При этом:


Газообразное топливо не требует какой-либо предварительной подготовки;


Твердое топливо должно быть предварительно размолото в тонкий порошок в особых пылеприготовительных установках, основным элементом которых являются углеразмольные мельницы; 


Жидкое топливо должно быть распылено на очень мелкие капли в специальных форсунках.


Жидкое и газообразное топливо сжигают под котлами любой паропроизводительности, а пылевидное топливо - под котельными агрегатами паропроизводительностью начиная от 35-50 т/ч и выше.


Сжигание в факельном процессе топлива каждого из трех видов отличается конкретными особенностями, но общие принципы факельного способа сжигания остаются одинаковыми для всякого топлива.


Факельная топка (рис. 4) представляет собой прямоугольную камеру 1, выполненную из огнеупорного кирпича, в которую через горелки 2 вводят в тесном контакте топливо и воздух, необходимый для его горения, то есть топливо-воздушную смесь. Эта смесь воспламеняется и сгорает в образовавшемся факеле. Газообразные продукты сгорания покидают топку в ее верхней части. При сжигании пылевидного топлива с этими продуктами сгорания в газоходы котла уносится и значительная часть золы топлива, а остальное количество золы выпадает в нижнюю часть (шлаковую воронку) топки в виде шлака.



Рис. 4. : a - однокамерная топка для пылевидного топлива с твердым шлакоудалением; б - однокамерная топка для пылевидного топлива с жидким шлакоудалением; в - топка для жидкого и газообразного топлива; г - топка с полуоткрытой топочной камерой для сжигания пылевидного топлива


Стены топочной камеры изнутри покрывают системой охлаждаемых водой труб - топочными водяными экранами. Эти экраны имеют назначение предохранить кладку топочной камеры от износа и разрушения под действием высокой температуры факела и расплавленных шлаков, но главное - они представляют собой эффективную поверхность нагрева, воспринимающую большое количество тепла, излучаемого факелом. Поэтому эти топочные экраны становятся очень эффективным средством охлаждения дымовых газов в топочной камере.


Факельные топки для пылевидного топлива разделяют на два класса по способу удаления шлака: а) топки с удалением шлака в твердом состоянии; б) топки с жидким шлакоудалением.


Камера 1 топки с удалением шлака в твердом состоянии (рис. 4, а) ограничена снизу шлаковой воронкой 3, стенки которой защищены экранными трубами. Эта воронка получила название «холодной». Капли шлака, выпадающие из факела, попадая в эту воронку, вследствие относительно низкой температуры среды в ней затвердевают, гранулируясь в отдельные зерна. Из холодной воронки гранулы шлака через горловину 4 попадают в шлакоприемное устройство 5, из которого они специальным механизмом удаляются в систему шлакозолоудаления.


Камера 1 топки с жидким шлакоудалением (рис. 4, б) ограничена снизу горизонтальным или слегка наклонным подом 3, вблизи которого в результате тепловой изоляции нижней части топочных экранов поддерживают температуру, превышающую температуру плавления золы. В результате этого шлак, выпавший из факела на этот под, остается в расплавленном состоянии и вытекает из топки через летку 4 в шлакоприемную ванну 5, наполненную водой, где, затвердевая, растрескивается на мелкие стекловидные частицы.


Топки с жидким шлакоудалением разделяют на одно- (рис. 4, б) и двухкамерные для крупных котлов (рис. 4, г). В последних топочная камера разделена на две камеры:


1 - камеру горения, в которой происходит горение топлива;


2 - камеру охлаждения, в которой продукты сгорания охлаждают.


Экраны камеры горения покрывают тепловой изоляцией, чтобы


максимально повысить температуру горения с целью более надежного получения жидкого шлака, а экраны камеры охлаждения - открытыми, чтобы они могли больше снизить температуру продуктов сгорания.


Факельные топки для жидкого и газообразного топлива (рис. 4, в) выполняют с горизонтальным или слегка наклонным подом.


В очень крупных котельных агрегатах наряду с топочными камерами призматической формы выполняют так называемые полуоткрытые камеры, которые характеризуются наличием особого пережима, разделяющего топку на две зоны: горения и охлаждения. Полуоткрытые камеры выполняют для сжигания пылевидного (рис. 4, г), жидкого и газообразного топлива.


Факельные топки можно также классифицировать по типу горелок, которые бывают прямоточными и завихривающими, и по расположению горелок в топочной камере. Горелки размещают на передней (рис. 4) и боковых стенах ее и по углам топочной камеры (рис. 4). В крупных котельных агрегатах возможно применять также встречное размещение горелок на передней и задней стенах топки (рис. 4, г).


В вихревых (циклонных) топках можно сжигать твердое топливо и с высоким содержанием летучих, измельченное до пылевидного состояния или до размеров зерна 4-6 мм, а также (пока редко) мазут.


Принцип работы циклонной топки заключается в том, что в почти горизонтальном (рис. 5, а) или в вертикальном цилиндрическом предтопке 1 небольшого диаметра создается газо-воздушный вихрь, в котором частицы горящего топлива многократно обращаются до тех пор, пока они не сгорают почти полностью во взвешенном состоянии.





Рис. 5. : а - топка с горизонтальными циклонными предтопками; б - топка с вертикальными циклонными предтопками


Продукты сгорания из предтопков при сжигании твердого топлива поступают в камеру дожигания 2, а из нее - в камеру охлаждения 3 и далее в газоходы котельного агрегата. Шлак из предтопков удаляется в жидком виде через летки 5, причем для увеличения количества уловленного шлака между камерой дожигания и камерой охлаждения или между циклонными предтопками и камерой дожигания устанавливают шлакоулавливающий пучок труб 4. При сжигании мазута, а иногда и измельченного твердого топлива камеры дожигания не делают и продукты сгорания выводят непосредственно из предтопков в камеру охлаждения. Циклонные топки применяют в котельных агрегатах относительно высокой паропроизводительности.


Кроме перечисленных выше трех основных способов сжигания топлива, существуют еще некоторые промежуточные способы.

Горючие газы и пары смол (так на­зываемые летучие), выделяющиеся при термическом разложении натурального твердого топлива в процессе его нагрева­ния, смешиваясь с окислителем (возду­хом), при высокой температуре сгорают достаточно интенсивно, как обычное га­зообразное топливо. Поэтому сжигание топлив с большим выходом летучих (дро­ва, торф, сланец) не вызывает затрудне­ний, если, конечно, содержание балласта в них (влажность плюс зольность) не настолько велико, чтобы стать препят­ствием для получения нужной для горе­ния температуры.

Время сгорания топлив со средним (бурые и каменные угли) и небольшим (тощие угли и антрациты) выходом лету­чих практически определяется скоростью реакции на поверхности коксового остат­ка, образующегося после выделения ле­тучих. Сгорание этого остатка обеспечи­вает и выделение основного количества теплоты.

Реакция, протекающая на поверхно­сти раздела двух фаз (в данном случае на поверхности коксового кусочка) на­зывается гетерогенной. Она состо­ит по крайней мере из двух последова­тельных процессов: диффузии кислорода к поверхности и его химической реакции с топливом (почти чистым углеродом, оставшимся после выхода летучих) на поверхности. Увеличиваясь по закону Аррениуса, скорость химической реакции при высокой температуре становится столь большой, что весь кислород, подводимый к поверхности, немедленно вступает в реакцию. В результате ско­рость горения оказывается зависящей только от интенсивности доставки кисло­рода к поверхности горящей частицы пу­тем массообмена и диффузии. На нее практически перестают влиять как тем­пература процесса, так и реакционные свойства коксового остатка. Такой ре­жим гетерогенной реакции называется диффузионным. Интенсифициро­вать горение в этом режиме можно толь­ко путем интенсификации подвода реа­гента к поверхности топливной частицы. В разных топках это достигается различ­ными методами.

Слоевые топки. Твердое топливо, за­груженное слоем определенной толщины на распределительную решетку, поджи­гается и продувается (чаще всего снизу вверх) воздухом (рис. 28, а). Фильтру­ясь между кусочками топлива, он теряет кислород и обогащается оксидами (СО 2 , СО) углерода вследствие горения угля, восстановления углем водяного пара и диоксида углерода.

Рис. 28. Схемы организации топочных процессов:

а - в плотном слое; б - в пылевидном состоянии; _в - в циклонной топке;

г - в кипящем слое; В - воздух; Т, В - топливо, воздух; ЖШ - жидкий шлак

Зона, в пределах которой практиче­ски полностью исчезает кислород, назы­вается кислородной; ее высота со­ставляет два-три диаметра кусков топли­ва. В выходящих из нее газах со­держатся не только СО 2 , Н 2 О и N 2 , но и горючие газы СО и Н 2 , образовавшиеся как из-за восстановления СО 2 и Н 2 О уг­лем, так и из выделяющихся из угля летучих. Если высота слоя больше, чем кислородной зоны, то за кислородной следует восстановительная зо­на, в которой идут только реакции СО 2 + С = 2СО и Н 2 О + С = СО + Н 2 . В ре­зультате концентрация выходящих из слоя горючих газов увеличивается по мере увеличения его высоты.


В слоевых топках высоту слоя стара­ются держать равной высоте кислород­ной зоны или большей ее. Для дожига­ния продуктов неполного сгорания (Н 2 , СО), выходящих из слоя, а также для дожигания выносимой из него пыли в то­почный объем над слоем подают допол­нительный воздух.

Количество сгоревшего топлива про­порционально количеству поданного воз­духа, однако увеличение скорости воз­духа сверх определенного предела нару­шает устойчивость плотного слоя, так как воздух, прорывающийся через слой в отдельных местах, образует кратеры. Поскольку в слой всегда загружается полидисперсное топливо, увеличивается вынос мелочи. Чем крупнее частицы, тем с большей скоростью можно продувать воздух через слой без нарушения его устойчивости. Если принять для грубых оценок теплоту «сгорания» 1 м 3 воздуха в нормальных условиях при α в =1 рав­ной 3,8 МДж и понимать под w н при­веденный к нормальным условиям расход воздуха на единицу площади решетки (м/с), то теплонапряжение зеркала го­рения (МВт/м 2) составит

q R = 3,8W н / α в (105)

Топочные устройст­ва для слоевого сжигания классифици­руют в зависимости от способа подачи, перемещения и шуровки слоя топлива на колосниковой решетке. В немеханизированных топках, в кото­рых все три операции осуществляют вручную, можно сжигать не более 300 - 400 кг/ч угля. Наибольшее распростра­нение в промышленности получили пол­ностью механизированные слоевые топ­ки с пневмомеханическими забрасывателями и цепной решеткой об­ратного хода (рис. 29). Их особен­ность - горение топлива на непрерывно движущейся со скоростью 1 -15 м/ч колосниковой решетке, сконструированной в виде полотна транспортерной ленты имеющей, привод от электродвигателя. Полотно решетки состоит из отдельных колосниковых элементов, закрепленных на бесконечных шарнирных цепях, при водимых в движение «звездочками». Необходимый для горения воздух подводится под решетку через зазоры между элементами колосников.

Рис. 29. Схема топки с пневмомеханическим забрасывателем и цепной решеткой обратного хода:

1 - полотно колосниковой решетки; 2 - приводные «звездочки»; 3 - слой топлива и шлака; 4 – 5 - ротор забрасывателя; 6 - ленточный питатель; 7 - топливный бункер; 8 - топочный объем; 9 - экранные трубы; 10 - 11 - обмуровка топки; 12 - заднее уплотнение; 13 - окна для подвода воздуха под слой

Факельные топки . В прошлом веке для сжигания в слоевых топках (а дру­гих тогда не было) использовали только уголь, не содержащий мелочи (обычно фракцию 6 - 25 мм). Фракция мельче 6 мм - штыб (от немецкого staub - пыль) являлась отходом. В начале этого века для ее сжигания был разработан пылевидный способ, при котором угли измельчали до 0,1 мм, а трудносжигае­мые антрациты - еще мельче. Такие пы­линки увлекаются потоком газа, относи­тельная скорость между ними очень ма­ла. Но и время их сгорания чрезвычайно мало - секунды и доли секунд. Поэтому при вертикальной скорости газа менее 10 м/с и достаточной высоте топки (де­сятки метров в современных котлах) пыль успевает полностью сгореть на лету в процессе движения вместе с газом от горелки до выхода из топки.

Этот принцип и положен в основу факельных (камерных) топок, в которые тонко размолотая горючая пыль вдувается через горелки вместе с необходимым для горения воздухом (см. рис. 28, б) аналогично тому, как сжигаются газообразные или жидкие топлива. Таким образом, камерные топки пригодны для сжигания любых топлив, что является большим их преимуществом перед слоевыми. Второе преимущест­во - возможность создания топки на любую практически сколь угодно боль­шую мощность. Поэтому камерные топки занимают сейчас в энергетике доминиру­ющее положение. В то же время пыль не удается устойчиво сжигать в маленьких топках, особенно при переменных режи­мах работы, поэтому пылеугольные топки с тепловой мощностью менее 20 МВт не делают.

Топливо измельчается в мельничных устройствах и вдувается в топочную ка­меру через пылеугольные горелки. Транспортирующий воздух, вдувае­мый вместе с пылью, называется пер­вичным.

При камерном сжигании твердых топлив в виде пыли летучие вещества, выделяясь в процессе ее прогрева, сгора­ют в факеле как газообразное топливо, что способствует разогреву твердых частиц до температуры воспламенения и облегчает стабилизацию факела. Коли­чество первичного воздуха должно быть достаточным для сжигания летучих. Оно составляет от 15 - 25 % всего количества воздуха для углей с малым выходом ле­тучих (например, антрацитов) до 20 - 55 % для топлив с большим их выходом (бурых углей). Остальной необходимый для горения воздух (его называют вто­ричным) подают в топку отдельно и перемешивают с пылью уже в процессе горения.

Для того чтобы пыль загорелась, ее нужно сначала нагреть до достаточно высокой температуры. Вместе с нею, естественно, приходится нагревать и транспортирующий ее (т. е. первич­ный) воздух. Это удается сделать только путем подмешивания к потоку пылевзвеси раскаленных продуктов сгорания.

Хорошую организацию сжигания твердых топлив (особенно трудносжига­емых, с малым выходом летучих) обеспечивает использование так называемых улиточных горелок (рис. 30).

Рис. 30. Прямоточно-улиточная горелка для твердого пылевидного топлива: В - воздух; Т, В - топливо, воздух

Угольная пыль с первичным воздухом подается в них через центральную трубу и благо­даря наличию рассекателя выходит в топку в виде тонкой кольцевой струи. Вторичный воздух подается через «улит­ку», сильно закручивается в ней и, вы­ходя в топку, создает мощный турбулент­ный закрученный факел, который обеспе­чивает подсос больших количеств раска­ленных газов из ядра факела к устью го­релки. Это ускоряет прогрев смеси топ­лива с первичным воздухом и ее вос­пламенение, т. е. создает хорошую стаби­лизацию факела. Вторичный воздух хо­рошо перемешивается с уже воспламе­нившейся пылью благодаря сильной его турбулизации. Наиболее крупные пылин­ки догорают в процессе их полета в по­токе газов в пределах топочного объема.

При факельном сжигании угольной пыли в каждый момент времени в топке находится ничтожный запас топлива - не более нескольких десятков килограм­мов. Это делает факельный процесс весь­ма чувствительным к изменениям расхо­дов топлива и воздуха и позволяет при необходимости практически мгновенно изменять производительность топки, как при сжигании мазута или газа. Одновре­менно это повышает требования к на­дежности снабжения топки пылью, ибо малейший (в несколько секунд!) перерыв приведет к погасанию факела, что связа­но с опасностью взрыва при возобновле­нии подачи пыли. Поэтому в пылеугольных топках устанавливают, как правило, несколько горелок.

При пылевидном сжигании топлив в ядре факела, расположенном недалеко от устья горелки, развиваются высокие температуры (до 1400-1500 °С), при ко­торых зола становится жидкой или тестообразной. Налипание этой золы на стенки топки может привести к их за­растанию шлаком. Поэтому сжигание пылевидного топлива чаще всего приме­няют в котлах, где стены топки закрыты водоохлаждаемыми трубами (экрана­ми), около которых газ охлаждается и взвешенные в нем частицы золы успе­вают затвердеть до соприкосновения со стенкой. Пылевидное сжигание может применяться также в топках с жидким шлакоудалением, в которых стены по­крыты тонкой пленкой жидкого шлака и расплавленные частицы золы стекают в этой пленке.

Теплонапряжение объема в пылеугольных топках обычно составляет 150-175 кВт/м 3 , увеличиваясь в небольших топках до 250 кВт/м 3 . При хорошем пе­ремешивании воздуха с топливом прини­мается α в =1,2÷1,25; q мех = 0,5÷6 % (большие цифры - при сжигании ан­трацитов в небольших топках); q хим = 0 ÷1%.

В камерных топках удается после дополнительного размола сжигать отхо­ды углей, образующиеся при их обогаще­нии на коксохимических заводах (пром-продукт), коксовые отсевы и еще более мелкий коксовый шлам.

Циклонные топки. Специфический способ сжигания осуществлен в циклон­ных топках. В них ис­пользуют достаточно мелкие частицы уг­ля (обычно мельче 5 мм), а необходимый для горения воздух подают с огромными скоростями (до 100м/с) по касательной к образующей циклона. В топке создает­ся мощный вихрь, вовлекающий частицы в циркуляционное движение, в котором они интенсивно обдуваются потоком. В результате интенсивного горения в топке развиваются температуры, близ­кие к адиабатным (до 2000 °С). Зола угля плавится, жидкий шлак стекает по стенкам. По ряду причин от применения таких топок в энергетике отказались, и сейчас они используются в качестве технологических - для сжигания серы с целью получения SO 2 в производстве H 2 SO 4 , обжига руд и т. д. Иногда в циклонных топках осуществляют огневое обезвреживание сточных вод, т. е. выжи­гание содержащихся в них вредностей за счет подачи дополнительного (обычно газообразного или жидкого) топлива.

Топки с кипящим слоем. Устойчивое горение пылеугольного факела возможно только при высокой температуре в его ядре - не ниже 1300-1500 °С. При этих температурах начинает заметно окис­ляться азот воздуха по реакции N 2 + O 2 = 2NO. Определенное количество NO образуется и из азота, содержащего­ся в топливе. Оксид азота, выброшенный вместе с дымовыми газами в атмосферу, доокисляется в ней до высокотоксичного диоксида NO 2 . В СССР предельно до­пустимая концентрация NO 2 (ПДК), бе­зопасная для здоровья людей, в воздухе населенных пунктов составляет 0,085 мг/м 3 . Чтобы обеспечить ее, на крупных тепловых электростанциях при­ходится строить высоченные дымовые трубы, разбрасывающие дымовые газы на возможно большую площадь. Однако при сосредоточении большого количества станций недалеко друг от друга и это не спасает.

В ряде стран регламентируется не ПДК, а количество вредных выбросов на единицу теплоты, выделенной при сгора­нии топлива. Например, в США для крупных предприятий допускается вы­брос 28 мг оксидов азота на 1 МДж теп­лоты сгорания. В СССР нормы выбросов составляют для разных топлив от 125 до 480 мг/м 3 .

При сжигании топлив, содержащих серу, образуется токсичный SO 2 , дейст­вие которого на человека к тому же сум­мируется с действием NO 2 .

Эти выбросы служат причиной образования фотохи­мического смога и кислотных дождей, вредно влияющих не только на людей и животных, но и на растительность. В Западной Европе, например, от таких дождей погибает значительная часть хвойных лесов.

Если в золе топлива оксидов кальция и магния недостаточно для связывания всего SO 2 (обычно нужен двух- или трех­кратный его избыток по сравнению со стехиометрией реакции), к топли­ву подмешивают известняк СаСО 3 . Из­вестняк при температурах 850-950 °С интенсивно разлагается на СаО и СО 2 , а гипс CaSO 4 не разлагается, т. е. реак­ция справа налево не идет. Таким образом, токсичный SO 2 связывается до безвредного практически нерастворимого в воде гипса, который удаляется вместе с золой.

С другой стороны, в процессе дея­тельности человека образуется большое количество горючих отходов, которые не считаются топливом в общепринятом смысле: «хвосты» углеобогащения, отва­лы при добыче угля, многочисленные от­ходы целлюлозно-бумажной промышлен­ности и других отраслей народного хо­зяйства. Парадоксально, например, что «порода», которую около угольных шахт складывают в огромные терриконы, за­частую самовозгорается и длительное время загрязняет дымом и пылью окру­жающее пространство, но ни в слоевых, ни в камерных топках ее не удается сжечь из-за большого содержания золы. В слоевых топках зола, спекаясь при горении, препятствует проникновению кислорода к частицам горючего, в камер­ных не удается получить нужную для устойчивого горения в них высокую тем­пературу.

Возникшая перед человечеством на­стоятельная необходимость разработки безотходных технологий поставила во­прос о создании топочных устройств для сжигания таких материалов. Ими стали топки с кипящим слоем.

Псевдоожиженным (или кипящим) называется слой мелко­зернистого материала, продуваемый снизу вверх газом со скоростью, превы­шающей предел устойчивости плотного слоя, но недостаточной для выноса частиц из слоя. Интенсивная циркуляция частиц в ограниченном объеме камеры создает впечатление бурно кипящей жидкости, что и объясняет происхождения названия.

Физически продуваемый снизу плот­ный слой частиц теряет устойчивость по­тому, что сопротивление фильтрующе­муся сквозь него газу становится рав­ным весу столба материала на единицу площади поддерживающей решетки. По­скольку аэродинамическое сопротивле­ние есть сила, с которой газ действует на частицы (и соответственно по треть­ему закону Ньютона - частицы на газ), то при равенстве сопротивления и веса слоя частицы (если рассматривать иде­альный случай) опираются не на решет­ку, а на газ.

Средний размер частиц в топках с ки­пящим слоем обычно составляет 2-3 мм. Им соответствует рабочая скорость псев­доожижения (ее берут в 2-3 раза боль­ше, чем w к ) 1,5 ÷ 4 м/с. Это определяет в соответствии площадь газо­распределительной решетки при задан­ной тепловой мощности топки. Теплонап­ряжение объема q v принимают примерно таким же, как и для слоевых топок.

Простейшая топка с кипящим слоем (рис. 31) во многом напоминает слое­вую и имеет с ней много общих конструктивных элементов. Прин­ципиальное различие между ними за­ключается в том, что интенсивное пере­мешивание частиц обеспечивает постоянство температуры по всему объему кипящего слоя.


Рис. 31. Схема топки с кипящим слоем: 1 - выгрузка золы; 2 - подвод воздуха под слой; 3 - кипящий слой золы и топлива; 4 - подвод воздуха к забрасывателю; 5 - ротор забрасывателя; 6 - ленточный питатель; 7 - топливный бункер; 8 - топоч­ный объем; 9 - экранные трубы; 10 - острое дутье и возврат уноса; 11- обмуровка топки; 12 - тепло-воспринимающие трубы в кипящем слое; В - вода; П – пар.

Поддержание температуры кипящего слоя в необходимых пределах (850 - 950 °С) обеспечивается двумя различны­ми способами. В небольших промышлен­ных топках, сжигающих отходы или де­шевое топливо, в слой подают значитель­но больше воздуха, чем это необходимо для полного сжигания, устанавливая α в ≥ 2.

При том же количестве выделен­ной теплоты температура газов умень­шается по мере увеличения α в, ибо та же теплота тратится на нагрев большого количества газов.

В крупных энергетических агрегатах такой метод снижения температуры горе­ния неэкономичен, ибо «лишний» воздух, уходя из агрегата, уносит и теплоту, за­траченную на его нагрев (возрастают потери с уходящими газами - см. да­лее). Поэтому в топках с кипящим слоем крупных котлоагрегатов размещают тру­бы 9 и 12 с циркулирующим в них рабо­чим телом (водой или паром), восприни­мающим необходимое количество тепло­ты. Интенсивное «омывание» этих труб частицами обеспечивает высокий коэф­фициент теплоотдачи от слоя к трубам, что в некоторых случаях позволяет уменьшить металло­емкость котла по сравнению с традици­онным. Топливо устойчиво горит при его содержании в кипящем слое, составляю­щем 1 % и менее; остальные 99 % с лиш­ним - зола. Даже при столь неблагоп­риятных условиях интенсивное переме­шивание не позволяет зольным частицам блокировать горючие от доступа к ним кислорода (в отличие от плотного слоя). Концентрация горючих при этом оказы­вается одинаковой по всему объему ки­пящего слоя. Для удаления золы, вводи­мой с топливом, часть материала слоя непрерывно выводится из него в виде мелкозернистого шлака - чаще всего просто «сливается» через отверстия в по­дине, поскольку кипящий слой способен течь как жидкость.

Топки с циркуляционным кипящим слоем. В последнее время появились топ­ки второго поколения с так называемым циркуляционным кипящим слоем. За эти­ми топками устанавливают циклон, в ко­тором улавливаются все недогоревшие частицы и возвращаются обратно в топ­ку. Таким образом, частицы оказывают­ся «запертыми» в системе топка - цик­лон- топка до тех пор, пока не сгорят полностью. Эти топки имеют высокую экономичность, не уступающую камерно­му способу сжигания, при сохранении всех экологических преимуществ.

Топки с кипящим слоем широко ис­пользуются не только в энергетике, но и в других отраслях промышленности, например, для сжигания колчеданов с целью получения SО 2 , обжига различ­ных руд и их концентратов (цинковых, медных, никелевых, золотосодержащих) и т. д. (С точки зрения теории горения обжиг, например, цинковой руды по ре­акции 2ZnS+3O 2 = 2ZnO + 2SO 2 есть сгорание этого специфического «топли­ва», протекающее, как и все реакции горения, с выделением больших коли­честв теплоты.) Большое распростране­ние, особенно за рубежом, топки с кипя­щим слоем нашли для огневого обезвре­живания (т. е. сжигания) различных вредных отходов производства (твердых, жидких и газообразных) - шламов осветления сточных вод, мусора и т.д.

Тема 12. Печи химической промышленности. Принципиальная схема топливной печи. Классификация печей химической промышленности. Основные типы печей, особенности их конструкции. Тепловой баланс печей

Печи химической промышленности. Принципиальная схема топливной печи

Промышленная печь представляет собой энерготехнологический агрегат, предназначенный для термической обработки материалов с целью придания им необходимых свойств. Источником теплоты в топливных (пламенных) печах служат различные виды углеродного топлива (газ, мазут и др.). Современные печные установки часто представляют собой крупные механизированные и автоматизированные агрегаты высокой производительности.

Наибольшее значение для выбора технологического режима процесса имеет оптимальная температура технологического процесса, которая определяется термодинамическим и кинетическим расчетами процессов. Оптимальным температурным режимом процесса называют температурные условия, при которых обеспечивается максимальная производительность по целевому продукту в данной печи.

Обычно рабочая температура в печи несколько ниже оптимальной, она зависит от условий сжигания топлива, условий теплообмена, изоляционных свойств и стойкости футеровки печи, теплофизических свойств перерабатываемого материала и др. факторов. Например, для обжиговых печей рабочая температура находится в интервале между температурой активного протекания окислительных процессов и температурой спекания продуктов обжига. Под тепловым режимом печи понимают совокупность процессов инерции теплоты, теплоты массообмена и механики сред, обеспечивающих распределения теплоты в зоне технологического процесса. Тепловой режим зоны технологического процесса определяет тепловой режим всей печи.

На режим работы печей оказывает большое влияние состав газовой атмосферы в печи, необходимый для правильного протекания технологического процесса. Для окислительных процессов газовая среда в печи должна содержать кислород, количество которого колеблется от3 до 15% и больше. Для восстановительной среды характерно низкое содержание кислорода (до 1-2%) и присутствие восстанавливающих газов (СО, Н 2 и др.) 10-20% и больше. Состав газовой фазы определяет условия сжигания топлива в печи и зависит от количества воздуха, поступающего на горение.

Движение газов в печи оказывает существенное влияние на технологический процесс, на горение и теплопередачу, а в печах, «кипящего слоя» или вихревых печах движение газов является основным фактором устойчивой работы. Принудительное движение газов осуществляется дымососами и вентиляторами.

На скорость технологического процесса влияет движение материала, подвергающегося термообработке.

Схема печной установки включает следующие элементы: топочное устройство для сжигания топлива и организации теплообмена; рабочее пространство печи для выполнения целевого технологического режима; теплообменные устройства для регенерации теплоты дымовых газов (подогрев газа, воздуха); утилизационные установки (запечные котлы-утилизаторы) для использования теплоты уходящих газов; тяговое и дутьевое устройство (дымососы, вентиляторы) для удаления сгорания топлива и газообразных продуктов термической обработки материалов и подачи воздуха к горелкам, форсункам под колосники; очистительные устройства (фильтры и т.п.).


В связи с возрастающей популярностью твердотопливных котлов , огромное количество потенциальных покупателей данного оборудования интересует вопрос какому виду твердого топлива отдать предпочтение как основному, и в зависимости от принятого решения заказывать тот или иной вид отопительного оборудования.

Основным показателем любого топлива, не только твердого, является его теплоотдача, которую обеспечивает горение твердого топлива. При этом теплоотдача твердого топлива напрямую связана с его видом, свойствами и составом.

Немного химии

В состав твердого топлива входят следующие вещества: углерод, водород, кислород и минеральные соединения. При его сжигании топлива, углерод и водород соединяются с кислородом воздуха (сильнейшем природным окислителем) – происходит реакция горения с выделением большого количества тепловой энергии. Далее, газообразные продукты горения удаляются через систему дымоотведения, а твердые продукты горения (зола и шлак) выпадают в виде отходом сквозь колосниковую решетку.

Соответственно, основная задача, стоящая перед конструктором отопительного оборудования работающего на твердом топливе – обеспечить наиболее длительное горение печь твёрдое топливо или котел на твердом топливе. На данный момент времени в этой области достигнут определенный прогресс – в продаже появились твердотопливные котлы длительного горения работающие по принципу верхнего горения и процесса пиролиза .

Теплотворная способность основных видов твердого топлива

  • Дрова. В среднем (в зависимости от породы древесины) и влажности от 2800 до 3300 ккал/кг.
  • Торф – в зависимости от влажности от 3000 до 4000 ккал/кг.
  • Уголь – в зависимости от вида (антрацит, бурый или пламенный) от 4700 до 7200 ккал/кг.
  • Прессованные брикеты и пеллеты – 4500 ккал/кг.

Другими словами процесс горения твердого топлива различных видов сопровождается различным количеством выделяемой тепловой энергии, поэтому к выбору основного вида топлива следует походить очень ответственно – руководствоваться в этом вопросе сведениями, указанными в эксплуатационной документации (паспорте или Инструкции по Эксплуатации) на то или иное твердотопливное оборудование.

Краткая характеристика основных видов твердого топлива

Дрова

Наиболее доступный, поэтому наиболее распространенный в России вид топлива. Как уже было сказано, количество выделяемого тепла в процессе горение зависит от породы древесины и ее влажности. Стоит отметить, что при использовании дров в качестве топлива для пиролизного котла существует ограничение по влажности, которая в этом случае не должна превышать 15-20%.

Торф

Торф – это спрессованные остатки перегнивших растений, залегающие длительное время в толще почвы. По способу добычи различают верховой и низовой торф. А по агрегатному состоянию торф может быть: резной, кусковой и прессованный в виде брикетов. По количеству выделяемой тепловой энергии торф аналогичен дровам.

Уголь

Уголь является самым «калорийным» видом твердого топлива, который требует специальной технологии розжига. В общем случае, чтобы растопить печь или котел на каменном угле требуется вначале разжечь топку дровами и только потом, на хорошо разгоревшиеся дрова загружать каменный уголь (бурый, пламенный или антрацит).

Брикеты и пеллеты

Это новый вид твердого топлива, различающийся размерами отдельных элементов. Брикеты - более крупные, а пеллеты более мелкие. Исходным материалом для изготовления брикетов и пеллет может служить любое «горючее» вещество: древесная стружка, древесная пыль, солома, шелуха орехов, торф, шелуха подсолнечнике, кора, картон и прочие «массовые» горючие вещества, находящиеся в свободном доступе.

Преимущества брикетов и пеллет

  • Экологически чистое восполняемое топливо, имеющее высокую теплотворную способность.
  • Долгое горение, обусловленное высокой плотностью материала.
  • Удобство и компактность хранения.
  • Минимальное количество золы после сгорания – от 1до 3% от объема.
  • Низкая относительная стоимость.
  • Возможность автоматизации процесса работы котла.
  • Подходят для всех видов твердотопливных котлов и отопительных бытовых печей.

Человечество на протяжении веков совершенствовало конструкции отопительных печей, в которых изначально задумывалось сжигать доступное повсеместно твердое топливо. В этом плане мало что изменилось, и сегодня в ХХI веке при наличии газа и жидкого топлива мы нередко обращаемся к традиционным отопительным технологиям. Как-то легко становится на сердце, если в современном доме помимо центрального отопления имеется еще и хорошая печь про запас. Ну, а традиционные бани и вовсе не могут обойтись без тепла дровяной печи.

Для эффективного и безопасного управления дровяной печью истопнику необходимо знать о тонкостях сжигания твердого топлива. Многие сегодня уже не помнят, как правильно топить печь, однако эксперименты в данном деле крайне нежелательны. В данном материале мы постараемся максимально осветить тему горения твердого топлива.

Под твердым топливом подразумеваются дрова, каменный уголь, антрацит, кокс, торф и прочее. В традиционных печах все это сжигается слоевым способом на колосниках или без таковых. В топку периодически загружается топливо, а образующийся шлак извлекается. Слоевой способ сжигания носит циклический характер. Замкнутый цикл имеет несколько стадий:

  • разогрев и подсушка слоя;
  • выделение горючих летучих веществ и их сгорание;
  • горение твердого топлива;
  • догорание остатков и остывание шлака (золы);
  • очистка топки от шлака.
  • Каждая из этих стадий имеет собственный тепловой режим, при этом показатели при горении топлива постоянно изменяются. Чтобы обеспечить оптимальный тепловой режим печи, необходимо периодически подкладывать новую порцию топлива (слой). Момент загрузки нового слоя определяется в индивидуальном порядке и зависит от многих факторов. Рассмотрим стадии послойного сжигания твердого топлива подробнее.

    Разогрев и подсушка слоя сопровождается поглощением тепла, т.е. носит эндотермический характер. Поставщиком тепла является пламя стартовой закладки из тонких сухих дров или уже разгоревшееся топливо, а также горячие стенки топливника.

    Стадия воспламенения и тления происходит с нарастающим тепловыделением. Излишнее поступление воздуха в топку в этот период нежелательно, поскольку он будет охлаждать дымовые газы, а, следовательно, дольше будет нагреваться дымоход. Воздушные заслонки на стадии воспламенения и тления должны быть лишь приоткрыты, при этом желательно, чтобы холодный воздух подавался только в зону воспламенения.

    Стадия горения нуждается в больших объемах кислорода воздуха, т.к. данный процесс является ни чем иным, как окислением углеводородов. Пламенный нагрев идет по нарастающей, и, по сути, ограничивается только количеством поступающего кислорода. Если сечение дымохода недостаточное, то пламя может выбиваться из отверстий подачи воздуха. В такой ситуации выход один - немедленно полностью открыть задвижку дымохода и прикрыть подачу воздуха. Когда подача воздуха уменьшается, языки пламени становятся длиннее и даже могут проникнуть в дымоход, что будет являться признаком недожига. Очевидно, что подаваемый воздух в режиме пламенного горения необходимо разделять на два управляемых потока. Первичный поток будет подаваться прямо в дрова, в зависимости от объема, увеличивая или уменьшая скорость выделения летучих веществ; а вторичный - на факел пламени, для регулировки полноты сгорания летучих веществ, т.е. длину языков пламени. Увеличение интенсивности вторичного потока приводит к сокращению длины последних вплоть до исчезновения, но при этом скорость горения дров не замедляется. Однако огневая мощь пламени дров на самом деле не такая большая, как кажется. Она способна разогреть стенки топливника металлической печи не выше 300-400°С.

    Горение углей обеспечивает нагревание металлического топливника докрасна - это наиболее экзотермическая стадия. Эффект тепловыделения увеличивается при увеличении подачи первичного воздуха (пропускание через слой). Вторичный воздух на данном этапе не нужен. Угли выгорят быстрее, если подать в топку сырых чурок: произойдет реакция газификации угля водяным паром. Если дрова сырые, то стадия горения и тления происходят практически одновременно.

    Виды топливных камер и процесс сжигания дров

    В простейшей печной топке каминного типа с глухим подом процесс горения проходит с избытком воздуха, поскольку площадь открытого портала обычно в 8-15 раз больше площади сечения дымовой трубы. В связи тем, что большие объемы засасываемого воздуха не дают трубе камина нагреваться выше 60-80°С, тяга в них значительно меньше, чем в печах с дверцей (250-400°С).

    Если каминную топку оснастить дверцей и поддувалом с заслонкой, то ее КПД существенно изменится в сторону увеличения. Однако у такой конструкции имеется серьезный недостаток - чрезмерное задымление камеры, при открытии которой дым вырывается наружу. Уменьшить дымление можно, переместив трубу максимально вперед, но тогда она перекроет верх печи, используемый для нагрева воды или камней. Компромиссным решением в данном случае может стать наклонная полка при заднем расположении трубы. Полка создаст максимальную тягу у самой дверцы, при открытии которой восходящий поток будет засасывать дым, не давая ему вырваться наружу. Такая конструкция хороша для длительного горения, т.к. воздух идет по поду, попадая под дрова, а в районе дымооборота хорошо перемешивается с летучими веществами, обеспечивая полноту их сгорания.

    Для акцента на пламенном горении используют вводы вторичного воздуха в поток летучих веществ. Реализации данного режима сжигания дров помогают также конструкции с колосниковой решеткой. Они хороши, прежде всего, тем, что обеспечивают подачу кислорода в любую область слоя. Однако большое количество поступающего воздуха снижает температуру стенок дымового канала, а, следовательно, тягу и конвективную теплоотдачу. Данное явление можно минимизировать, прикрыв периферию колосниковой решетки подом, оставив область продувки только в центре.

    Для сжигания дров подойдут любые колосниковые решетки. При необходимости можно их изготовить самостоятельно из арматуры или прута. А вот для сжигания каменного угля понадобятся чугунные колосники, форма сечения которых близка к треугольной. Такая форма не позволяет шлаку забивать собой щели между колосниками. Располагать колосники следует вдоль топки, чтобы можно было шуровать уголь кочергой. Чугунные колосниковые решетки бывают как для угля, так и для дров. У последних колосники тоньше, а щели между ними уже.

    Колосниковые печи способны развивать большую мощность, однако удержать их от разгона непросто. При коэффициенте подачи воздуха равном единице стенки печи разогреваются до красна, и дрова начинают газифицироваться по нарастающей. Пламени становится настолько много, что оно попадает в трубу и в этом случае требуется увеличить подачу воздуха, что в свою очередь вызывает еще большую газификацию и разогрев. Печь успокоится сама по себе только после выхода летучих веществ из дровяной закладки. Горение углей после этого уже хорошо поддается регулировке.

    Важно понять, что основной причиной разгона печи разгона являются разогретые до высокой температуры металлические стенки, которые уже не отбирают тепло дров, при этом последние начинают греть сами себя. Не допустить разгона печи можно, если при протопке держать заслонку трубы открытой только наполовину, а когда из топки станут раздаваться характерные газовые хлопки, - приоткрыть дверцу топливника и одновременно полностью открыть трубу. От резкого появления избытка воздуха стенки печи станут остывать, а когда они перестанут светиться, можно будет закрыть дверцу топливника и воздухозабор. Дымоход снова прикрывается наполовину. От этого печь плавно перейдет в режим тления.

    Немаловажный момент, влияющий на разгон печи, - порция закладываемых дров. Чтобы уменьшить вероятность условий разгона, дрова нужно закладывать небольшими порциями от 1 до 3 кг за один раз. При этом, чем крупнее диаметр полена, тем большей может быть масса закладки. С помощью регулировки подачи воздуха нужно стараться не допустить перегрев стенок. Разгон печи опасен, прежде всего, тем, что может привести к короблению или прогоранию металлических частей печи.

    В первую очередь от разгона страдает нижняя часть стенок топливника. Если металлическая печь раз от раза разгоняется, то стенки можно изнутри защитить огнеупорным кирпичом на высоту 20-30 см. Ошибкой будет обкладка стенок снаружи, т.к. это приведет к еще более сильному разогреву металла. Проблему разгона полностью снимает водяная рубашка - котел. Однако если говорить банных печах, то такое решение подходит не для саун, а для хаммама.

    Сквозные прогары топливника или скрытые трещины реально опасны при спонтанном разгоне металлической печи. Если при нормальном режиме горения они будут работать как воздухозаборные отверстия, то в режиме разгона станут «соплами», через которые станут вырываться наружу горящие летучие вещества.

    Процесс горения твёрдого топлива можно представить в виде ряда последовательно протекающих стадий. Вначале происходит прогрев топлива и испарение влаги. Затем при температуре выше 100 °С начинаются пирогенное разложение сложных высокомолекулярных органических соединений и выделение летучих веществ, при этом температура начала выхода летучих зависит от вида топлива и степени его углефикации (химического возраста). Если температура окружающей среды превышает температуру воспламенения летучих веществ, они загораются, тем самым обеспечивая дополнительный прогрев коксовой частицы до её воспламенения. Чем выше выход летучих, тем ниже температура их воспламенения, при этом тепловыделение увеличивается.

    Коксовая частица прогревается за счёт тепла окружающих дымовых газов и тепловыделения в результате сгорания летучих и загорается при температуре 800÷1000 °С. При сжигании твёрдого топлива в пылевидном состоянии обе стадии (горение летучих и кокса) могут накладываться друг на друга, поскольку прогрев мельчайшей угольной частицы происходит очень быстро. В реальных условиях мы имеем дело с полидисперсным составом угольной пыли, поэтому в каждый момент времени одни частицы только начинают прогреваться, другие находятся на стадии выхода летучих, а третьи – на стадии горения коксового остатка.

    Процесс горения коксовой частицы играет решающую роль при оценке как суммарного времени горения топлива, так и суммарного тепловыделения. Даже для топлива с высоким выходом летучих (например, подмосковного бурого угля) коксовый остаток составляет 55 % по массе, а его тепловыделение – 66 % общего. А для топлива с очень низким выходом летучих (например, АШ) коксовый остаток может составлять более 96 % веса сухой исходной частицы, а тепловыделение при его сгорании, соответственно, около 95 % полного.

    Исследования горения коксового остатка выявили сложность этого процесса.

    При горении углерода возможны две первичные реакции прямого гетерогенного окисления:

    С + О 2 = СО 2 + 34 МДж/кг; (14)

    2С + О 2 = 2СО + 10,2 МДж/кг. (15)

    В результате образования СО 2 и СО могут протекать две вторичные реакции:

    окисление оксида углерода 2СО + О 2 = 2СО 2 + 12,7 МДж/кг; (16)

    восстановление диоксида углерода СО 2 + С = 2СО – 7,25 МДж/кг. (17)

    Кроме того, в присутствии водяных паров на раскалённой поверхности частицы, т.е. в высокотемпературной области, происходит газификация с выделением водорода:

    С + Н 2 О = СО + Н 2 . (18)

    Гетерогенные реакции (14, 15, 17 и 18) свидетельствуют о непосредственном горении углерода, сопровождающемся убылью углеродной частицы в весе. Гомогенная реакция (16) протекает около поверхности частицы за счёт кислорода, диффундирующего из окружающего объёма, и компенсирует снижение температурного уровня процесса, возникающее как следствие эндотермической реакции (17).

    Соотношение между СО и СО 2 у поверхности частицы зависит от температуры газов в этой области. Так, например, согласно экспериментальным исследованиям, при температуре 1200 °С протекает реакция

    4С + 3О 2 = 2СО + 2СО 2 (Е = 84 ÷ 125 кДж/г-моль),

    а при температуре выше 1500 °С

    3С + 2О 2 = 2СО + СО 2 (Е = 290 ÷ 375 кДж/г-моль).

    Очевидно, что в первом случае СО и СО 2 выделяются примерно в равных количествах, тогда как при повышении температуры объём выделившегося СО в 2 раза превышает СО 2 .

    Как уже было отмечено, скорость горения в основном зависит от двух факторов:

    1) скорости химической реакции , которая определяется законом Аррениуса и стремительно растёт с увеличением температуры;

    2) скорости подвода окислителя (кислорода) к зоне горения за счёт диффузии (молекулярной или турбулентной).

    В начальный период процесса горения, когда температура ещё недостаточно высока, скорость химической реакции также невысока, а в окружающем частицу топлива объёме и у её поверхности окислителя более чем достаточно, т.е. наблюдается местный избыток воздуха. Никакое совершенствование аэродинамики топки или горелки, приводящее к интенсификации подвода кислорода к горящей частице, не повлияет на процесс горения, который тормозится только низкой скоростью химической реакции, т.е. кинетикой. Это – область кинетического горения .

    По мере протекания процесса горения выделяется теплота, увеличивается температура, а, следовательно, и скорость химической реакции, что приводит к стремительному росту потребления кислорода. Концентрация его у поверхности частицы неуклонно падает, и в дальнейшем скорость горения будет определяться лишь скоростью диффузии кислорода в зону горения, которая почти не зависит от температуры. Это – область диффузионного горения .

    В переходной области горения скорости химической реакции и диффузии являются величинами одного порядка.

    По закону молекулярной диффузии (закон Фика), скорость диффузионного переноса кислорода из объёма к поверхности частицы

    где – коэффициент диффузионного массообмена;

    и – соответственно, парциальные давления кислорода в объёме и у поверхности.

    Потребление кислорода у поверхности частицы определяется скоростью химической реакции:

    , (20)

    где k – константа скорости реакции.

    В переходной зоне в установившемся состоянии

    ,

    откуда
    (21)

    Подставив (21) в (20), получим выражение для скорости горения в переходной области по расходу окислителя (кислорода):

    (22)

    где
    – эффективная константа скорости реакции горения.

    В зоне сравнительно низких температур (кинетическая область)
    , следовательно, k эф = k , и выражение (22) принимает вид:

    ,

    т.е. концентрации кислорода (парциальные давления) в объёме и у поверхности частицы мало отличаются друг от друга, а скорость горения практически полностью определяется химической реакцией.

    С повышением температуры константа скорости химической реакции растёт согласно экспоненциальному закону Аррениуса (см. рис.22), в то время как молекулярный (диффузионный) массообмен слабо зависит от температуры, а именно

    .

    При некотором значении температуры Т * скорость потребления кислорода начинает превышать интенсивность его подвода из окружающего объёма, коэффициенты α Д и k становятся соизмеримыми величинами одного порядка, концентрация кислорода у поверхности начинает заметно снижаться, а кривая скорости горения отклоняется от теоретической кривой кинетического горения (закона Аррениуса), но ещё заметно возрастает. На кривой появляется перегиб – процесс переходит в промежуточную (переходную) область горения. Сравнительно интенсивный подвод окислителя объясняется тем, что за счёт снижения концентрации кислорода у поверхности частицы увеличивается разность парциальных давлений кислорода в объёме и у поверхности.

    В процессе интенсификации горения концентрация кислорода у поверхности практически становится равной нулю, подвод кислорода к поверхности слабо зависит от температуры и становится практически постоянным, т.е. α Д << k , и, соответственно, процесс переходит в диффузионную область

    .

    В диффузионной области увеличение скорости горения достигается интенсификацией процесса перемешивания топлива с воздухом (усовершенствование горелочных устройств) или увеличением скорости обдувания частицы потоком воздуха (усовершенствование аэродинамики топки), в результате чего уменьшается толщина пограничного слоя у поверхности, и интенсифицируется подвод кислорода к частице.

    Как уже отмечалось, твёрдое топливо сжигается либо в виде крупных (без специальной подготовки) кусков (слоевое сжигание), либо в виде дроблёнки (кипящий слой и низкотемпературный вихрь), либо в виде мельчайшей пыли (факельный способ).

    Очевидно, что наибольшая относительная скорость обдувания частиц топлива будет при слоевом сжигании. При вихревом и факельном способах сжигания частицы топлива находятся в потоке дымовых газов, и относительная скорость их обдувания значительно ниже, чем в условиях стационарного слоя. Исходя из этого, казалось бы, переход из кинетической области в диффузионную раньше всего должен происходить для мелких частиц, т.е. для пыли. К тому же ряд исследований показал, что взвешенная в потоке газовоздушной смеси угольная пылинка так слабо обдувается, что выделяющиеся продукты сгорания образуют вокруг неё облако, сильно тормозящее подвод к ней кислорода. А интенсификация гетерогенного горения пыли при факельном способе предположительно объяснялась исключительно значительным увеличением суммарной реагирующей поверхности. Однако очевидное далеко не всегда является истинным .

    Подвод кислорода к поверхности определяется законами диффузии. Исследования по теплообмену малой сферической частицы, обтекаемой ламинарным потоком, выявили обобщённую критериальную зависимость:

    Nu = 2 + 0,33Re 0,5 .

    Для малых коксовых частиц (при Re < 1, что соответствует скорости витания мелких частиц), Nu → 2, т.е.

    .

    Между процессами тепло- и массопереноса существует аналогия, поскольку и те, и другие определяются движением молекул. Поэтому законы теплообмена (законы Фурье и Ньютона-Рихмана) и массообмена (закон Фика) имеют схожее математическое выражение. Формальная аналогия этих законов позволяет применительно к диффузионным процессам записать:

    ,

    откуда
    , (23)

    где D – коэффициент молекулярной диффузии (подобен коэффициенту теплопроводности λ в тепловых процессах).

    Как следует из формулы (23), коэффициент диффузионного массообмена α Д обратно пропорционален радиусу частицы. Следовательно, с уменьшением размера частиц топлива процесс диффузии кислорода к поверхности частицы интенсифицируется. Таким образом, при сгорании угольной пыли переход к диффузионному горению сдвигается в сторону более высоких температур (несмотря на отмеченное ранее снижение скорости обдувания частиц).

    Согласно многочисленным экспериментальным исследованиям, проведённым советскими учёными в середине ХХ в. (Г.Ф.Кнорре, Л.Н. Хитрин, А.С.Предводителев, В.В.Померанцев и др.), в зоне обычных топочных температур (около 1500÷1600 °С) горение коксовой частицы смещается из промежуточной зоны в диффузионную, где большое значение имеет интенсификация подвода кислорода. При этом с увеличением диффузии кислорода к поверхности торможение скорости горения начнётся при более высокой температуре.

    Время сгорания сферической углеродной частицы в диффузионной области имеет квадратичную зависимость от начального размера частицы:

    ,

    где r o – начальный размер частиц; ρ ч – плотность углеродной частицы; D o , P o , T o – соответственно, начальные значения коэффициента диффузии, давления и температуры;
    – начальная концентрация кислорода в топочном объёме на значительном расстоянии от частицы;β – стехиометрический коэффициент, устанавливающий соответствие весового расхода кислорода на единицу веса сжигаемого углерода при стехиометрических соотношениях; Т m – логарифмическая температура:

    где Т п и Т г – соответственно, температуры поверхности частицы и окружающих дымовых газов.