Большая энциклопедия нефти и газа. Горение жидкого и твердого топлива

Горючие газы и пары смол (так на­зываемые летучие), выделяющиеся при термическом разложении натурального твердого топлива в процессе его нагрева­ния, смешиваясь с окислителем (возду­хом), при высокой температуре сгорают достаточно интенсивно, как обычное га­зообразное топливо. Поэтому сжигание топлив с большим выходом летучих (дро­ва, торф, сланец) не вызывает затрудне­ний, если, конечно, содержание балласта в них (влажность плюс зольность) не настолько велико, чтобы стать препят­ствием для получения нужной для горе­ния температуры.

Время сгорания топлив со средним (бурые и каменные угли) и небольшим (тощие угли и антрациты) выходом лету­чих практически определяется скоростью реакции на поверхности коксового остат­ка, образующегося после выделения ле­тучих. Сгорание этого остатка обеспечи­вает и выделение основного количества теплоты.

Реакция, протекающая на поверхно­сти раздела двух фаз данном случае на поверхности коксового кусочка) на­зывается гетерогенной. Она состо­ит по крайней мере из двух последова­тельных процессов: диффузии кислорода к поверхности и его химической реакции с топливом (почти чистым углеродом, оставшимся после выхода летучих) на поверхности. Увеличиваясь по закону Аррениуса, скорость химической реакции при высокой температуре становится столь большой, что весь кислород, подводимый к поверхности, немедленно вступает в реакцию. В результате ско­рость горения оказывается зависящей только от интенсивности доставки кисло­рода к поверхности горящей частицы пу­тем массообмена и диффузии. На нее практически перестают влиять как тем­пература процесса, так и реакционные свойства коксового остатка. Такой ре­жим гетерогенной реакции называется диффузионным. Интенсифициро­вать горение в этом режиме можно толь­ко путем интенсификации подвода реа­гента к поверхности топливной частицы. В разных топках это достигается различ­ными методами.

Слоевые топки. Твердое топливо, за­груженное слоем определенной толщины на распределительную решетку, поджи­гается и продувается (чаще всего снизу вверх) воздухом (рис. 28, а). Фильтру­ясь между кусочками топлива, он теряет кислород и обогащается оксидами (СО 2 , СО) углерода вследствие горения угля, восстановления углем водяного пара и диоксида углерода.

Рис. 28. Схемы организации топочных процессов:

а - в плотном слое; б - в пылевидном состоянии; _в - в циклонной топке;

г - в кипящем слое; В - воздух; Т, В - топливо, воздух; ЖШ - жидкий шлак

Зона, в пределах которой практиче­ски полностью исчезает кислород, назы­вается кислородной; ее высота со­ставляет два-три диаметра кусков топли­ва. В выходящих из нее газах со­держатся не только СО 2 , Н 2 О и N 2 , но и горючие газы СО и Н 2 , образовавшиеся как из-за восстановления СО 2 и Н 2 О уг­лем, так и из выделяющихся из угля летучих. Если высота слоя больше, чем кислородной зоны, то за кислородной следует восстановительная зо­на, в которой идут только реакции СО 2 + С = 2СО и Н 2 О + С = СО + Н 2 . В ре­зультате концентрация выходящих из слоя горючих газов увеличивается по мере увеличения его высоты.


В слоевых топках высоту слоя стара­ются держать равной высоте кислород­ной зоны или большей ее. Для дожига­ния продуктов неполного сгорания (Н 2 , СО), выходящих из слоя, а также для дожигания выносимой из него пыли в то­почный объем над слоем подают допол­нительный воздух.

Количество сгоревшего топлива про­порционально количеству поданного воз­духа, однако увеличение скорости воз­духа сверх определенного предела нару­шает устойчивость плотного слоя, так как воздух, прорывающийся через слой в отдельных местах, образует кратеры. Поскольку в слой всегда загружается полидисперсное топливо, увеличивается вынос мелочи. Чем крупнее частицы, тем с большей скоростью можно продувать воздух через слой без нарушения его устойчивости. Если принять для грубых оценок теплоту «сгорания» 1 м 3 воздуха в нормальных условиях при α в =1 рав­ной 3,8 МДж и понимать под w н при­веденный к нормальным условиям расход воздуха на единицу площади решетки (м/с), то теплонапряжение зеркала го­рения (МВт/м 2) составит

q R = 3,8W н / α в (105)

Топочные устройст­ва для слоевого сжигания классифици­руют в зависимости от способа подачи, перемещения и шуровки слоя топлива на колосниковой решетке. В немеханизированных топках, в кото­рых все три операции осуществляют вручную, можно сжигать не более 300 - 400 кг/ч угля. Наибольшее распростра­нение в промышленности получили пол­ностью механизированные слоевые топ­ки с пневмомеханическими забрасывателями и цепной решеткой об­ратного хода (рис. 29). Их особен­ность - горение топлива на непрерывно движущейся со скоростью 1 -15 м/ч колосниковой решетке, сконструированной в виде полотна транспортерной ленты имеющей, привод от электродвигателя. Полотно решетки состоит из отдельных колосниковых элементов, закрепленных на бесконечных шарнирных цепях, при водимых в движение «звездочками». Необходимый для горения воздух подводится под решетку через зазоры между элементами колосников.

Рис. 29. Схема топки с пневмомеханическим забрасывателем и цепной решеткой обратного хода:

1 - полотно колосниковой решетки; 2 - приводные «звездочки»; 3 - слой топлива и шлака; 4 – 5 - ротор забрасывателя; 6 - ленточный питатель; 7 - топливный бункер; 8 - топочный объем; 9 - экранные трубы; 10 - 11 - обмуровка топки; 12 - заднее уплотнение; 13 - окна для подвода воздуха под слой

Факельные топки . В прошлом веке для сжигания в слоевых топках (а дру­гих тогда не было) использовали только уголь, не содержащий мелочи (обычно фракцию 6 - 25 мм). Фракция мельче 6 мм - штыб (от немецкого staub - пыль) являлась отходом. В начале этого века для ее сжигания был разработан пылевидный способ, при котором угли измельчали до 0,1 мм, а трудносжигае­мые антрациты - еще мельче. Такие пы­линки увлекаются потоком газа, относи­тельная скорость между ними очень ма­ла. Но и время их сгорания чрезвычайно мало - секунды и доли секунд. Поэтому при вертикальной скорости газа менее 10 м/с и достаточной высоте топки (де­сятки метров в современных котлах) пыль успевает полностью сгореть на лету в процессе движения вместе с газом от горелки до выхода из топки.

Этот принцип и положен в основу факельных (камерных) топок, в которые тонко размолотая горючая пыль вдувается через горелки вместе с необходимым для горения воздухом (см. рис. 28, б) аналогично тому, как сжигаются газообразные или жидкие топлива. Таким образом, камерные топки пригодны для сжигания любых топлив, что является большим их преимуществом перед слоевыми. Второе преимущест­во - возможность создания топки на любую практически сколь угодно боль­шую мощность. Поэтому камерные топки занимают сейчас в энергетике доминиру­ющее положение. В то же время пыль не удается устойчиво сжигать в маленьких топках, особенно при переменных режи­мах работы, поэтому пылеугольные топки с тепловой мощностью менее 20 МВт не делают.

Топливо измельчается в мельничных устройствах и вдувается в топочную ка­меру через пылеугольные горелки. Транспортирующий воздух, вдувае­мый вместе с пылью, называется пер­вичным.

При камерном сжигании твердых топлив в виде пыли летучие вещества, выделяясь в процессе ее прогрева, сгора­ют в факеле как газообразное топливо, что способствует разогреву твердых частиц до температуры воспламенения и облегчает стабилизацию факела. Коли­чество первичного воздуха должно быть достаточным для сжигания летучих. Оно составляет от 15 - 25 % всего количества воздуха для углей с малым выходом ле­тучих (например, антрацитов) до 20 - 55 % для топлив с большим их выходом (бурых углей). Остальной необходимый для горения воздух (его называют вто­ричным) подают в топку отдельно и перемешивают с пылью уже в процессе горения.

Для того чтобы пыль загорелась, ее нужно сначала нагреть до достаточно высокой температуры. Вместе с нею, естественно, приходится нагревать и транспортирующий ее (т. е. первич­ный) воздух. Это удается сделать только путем подмешивания к потоку пылевзвеси раскаленных продуктов сгорания.

Хорошую организацию сжигания твердых топлив (особенно трудносжига­емых, с малым выходом летучих) обеспечивает использование так называемых улиточных горелок (рис. 30).

Рис. 30. Прямоточно-улиточная горелка для твердого пылевидного топлива: В - воздух; Т, В - топливо, воздух

Угольная пыль с первичным воздухом подается в них через центральную трубу и благо­даря наличию рассекателя выходит в топку в виде тонкой кольцевой струи. Вторичный воздух подается через «улит­ку», сильно закручивается в ней и, вы­ходя в топку, создает мощный турбулент­ный закрученный факел, который обеспе­чивает подсос больших количеств раска­ленных газов из ядра факела к устью го­релки. Это ускоряет прогрев смеси топ­лива с первичным воздухом и ее вос­пламенение, т. е. создает хорошую стаби­лизацию факела. Вторичный воздух хо­рошо перемешивается с уже воспламе­нившейся пылью благодаря сильной его турбулизации. Наиболее крупные пылин­ки догорают в процессе их полета в по­токе газов в пределах топочного объема.

При факельном сжигании угольной пыли в каждый момент времени в топке находится ничтожный запас топлива - не более нескольких десятков килограм­мов. Это делает факельный процесс весь­ма чувствительным к изменениям расхо­дов топлива и воздуха и позволяет при необходимости практически мгновенно изменять производительность топки, как при сжигании мазута или газа. Одновре­менно это повышает требования к на­дежности снабжения топки пылью, ибо малейший (в несколько секунд!) перерыв приведет к погасанию факела, что связа­но с опасностью взрыва при возобновле­нии подачи пыли. Поэтому в пылеугольных топках устанавливают, как правило, несколько горелок.

При пылевидном сжигании топлив в ядре факела, расположенном недалеко от устья горелки, развиваются высокие температуры (до 1400-1500 °С), при ко­торых зола становится жидкой или тестообразной. Налипание этой золы на стенки топки может привести к их за­растанию шлаком. Поэтому сжигание пылевидного топлива чаще всего приме­няют в котлах, где стены топки закрыты водоохлаждаемыми трубами (экрана­ми), около которых газ охлаждается и взвешенные в нем частицы золы успе­вают затвердеть до соприкосновения со стенкой. Пылевидное сжигание может применяться также в топках с жидким шлакоудалением, в которых стены по­крыты тонкой пленкой жидкого шлака и расплавленные частицы золы стекают в этой пленке.

Теплонапряжение объема в пылеугольных топках обычно составляет 150-175 кВт/м 3 , увеличиваясь в небольших топках до 250 кВт/м 3 . При хорошем пе­ремешивании воздуха с топливом прини­мается α в =1,2÷1,25; q мех = 0,5÷6 % (большие цифры - при сжигании ан­трацитов в небольших топках); q хим = 0 ÷1%.

В камерных топках удается после дополнительного размола сжигать отхо­ды углей, образующиеся при их обогаще­нии на коксохимических заводах (пром-продукт), коксовые отсевы и еще более мелкий коксовый шлам.

Циклонные топки. Специфический способ сжигания осуществлен в циклон­ных топках. В них ис­пользуют достаточно мелкие частицы уг­ля (обычно мельче 5 мм), а необходимый для горения воздух подают с огромными скоростями (до 100м/с) по касательной к образующей циклона. В топке создает­ся мощный вихрь, вовлекающий частицы в циркуляционное движение, в котором они интенсивно обдуваются потоком. В результате интенсивного горения в топке развиваются температуры, близ­кие к адиабатным (до 2000 °С). Зола угля плавится, жидкий шлак стекает по стенкам. По ряду причин от применения таких топок в энергетике отказались, и сейчас они используются в качестве технологических - для сжигания серы с целью получения SO 2 в производстве H 2 SO 4 , обжига руд и т. д. Иногда в циклонных топках осуществляют огневое обезвреживание сточных вод, т. е. выжи­гание содержащихся в них вредностей за счет подачи дополнительного (обычно газообразного или жидкого) топлива.

Топки с кипящим слоем. Устойчивое горение пылеугольного факела возможно только при высокой температуре в его ядре - не ниже 1300-1500 °С. При этих температурах начинает заметно окис­ляться азот воздуха по реакции N 2 + O 2 = 2NO. Определенное количество NO образуется и из азота, содержащего­ся в топливе. Оксид азота, выброшенный вместе с дымовыми газами в атмосферу, доокисляется в ней до высокотоксичного диоксида NO 2 . В СССР предельно до­пустимая концентрация NO 2 (ПДК), бе­зопасная для здоровья людей, в воздухе населенных пунктов составляет 0,085 мг/м 3 . Чтобы обеспечить ее, на крупных тепловых электростанциях при­ходится строить высоченные дымовые трубы, разбрасывающие дымовые газы на возможно большую площадь. Однако при сосредоточении большого количества станций недалеко друг от друга и это не спасает.

В ряде стран регламентируется не ПДК, а количество вредных выбросов на единицу теплоты, выделенной при сгора­нии топлива. Например, в США для крупных предприятий допускается вы­брос 28 мг оксидов азота на 1 МДж теп­лоты сгорания. В СССР нормы выбросов составляют для разных топлив от 125 до 480 мг/м 3 .

При сжигании топлив, содержащих серу, образуется токсичный SO 2 , дейст­вие которого на человека к тому же сум­мируется с действием NO 2 .

Эти выбросы служат причиной образования фотохи­мического смога и кислотных дождей, вредно влияющих не только на людей и животных, но и на растительность. В Западной Европе, например, от таких дождей погибает значительная часть хвойных лесов.

Если в золе топлива оксидов кальция и магния недостаточно для связывания всего SO 2 (обычно нужен двух- или трех­кратный его избыток по сравнению со стехиометрией реакции), к топли­ву подмешивают известняк СаСО 3 . Из­вестняк при температурах 850-950 °С интенсивно разлагается на СаО и СО 2 , а гипс CaSO 4 не разлагается, т. е. реак­ция справа налево не идет. Таким образом, токсичный SO 2 связывается до безвредного практически нерастворимого в воде гипса, который удаляется вместе с золой.

С другой стороны, в процессе дея­тельности человека образуется большое количество горючих отходов, которые не считаются топливом в общепринятом смысле: «хвосты» углеобогащения, отва­лы при добыче угля, многочисленные от­ходы целлюлозно-бумажной промышлен­ности и других отраслей народного хо­зяйства. Парадоксально, например, что «порода», которую около угольных шахт складывают в огромные терриконы, за­частую самовозгорается и длительное время загрязняет дымом и пылью окру­жающее пространство, но ни в слоевых, ни в камерных топках ее не удается сжечь из-за большого содержания золы. В слоевых топках зола, спекаясь при горении, препятствует проникновению кислорода к частицам горючего, в камер­ных не удается получить нужную для устойчивого горения в них высокую тем­пературу.

Возникшая перед человечеством на­стоятельная необходимость разработки безотходных технологий поставила во­прос о создании топочных устройств для сжигания таких материалов. Ими стали топки с кипящим слоем.

Псевдоожиженным (или кипящим) называется слой мелко­зернистого материала, продуваемый снизу вверх газом со скоростью, превы­шающей предел устойчивости плотного слоя, но недостаточной для выноса частиц из слоя. Интенсивная циркуляция частиц в ограниченном объеме камеры создает впечатление бурно кипящей жидкости, что и объясняет происхождения названия.

Физически продуваемый снизу плот­ный слой частиц теряет устойчивость по­тому, что сопротивление фильтрующе­муся сквозь него газу становится рав­ным весу столба материала на единицу площади поддерживающей решетки. По­скольку аэродинамическое сопротивле­ние есть сила, с которой газ действует на частицы (и соответственно по треть­ему закону Ньютона - частицы на газ), то при равенстве сопротивления и веса слоя частицы (если рассматривать иде­альный случай) опираются не на решет­ку, а на газ.

Средний размер частиц в топках с ки­пящим слоем обычно составляет 2-3 мм. Им соответствует рабочая скорость псев­доожижения (ее берут в 2-3 раза боль­ше, чем w к ) 1,5 ÷ 4 м/с. Это определяет в соответствии площадь газо­распределительной решетки при задан­ной тепловой мощности топки. Теплонап­ряжение объема q v принимают примерно таким же, как и для слоевых топок.

Простейшая топка с кипящим слоем (рис. 31) во многом напоминает слое­вую и имеет с ней много общих конструктивных элементов. Прин­ципиальное различие между ними за­ключается в том, что интенсивное пере­мешивание частиц обеспечивает постоянство температуры по всему объему кипящего слоя.


Рис. 31. Схема топки с кипящим слоем: 1 - выгрузка золы; 2 - подвод воздуха под слой; 3 - кипящий слой золы и топлива; 4 - подвод воздуха к забрасывателю; 5 - ротор забрасывателя; 6 - ленточный питатель; 7 - топливный бункер; 8 - топоч­ный объем; 9 - экранные трубы; 10 - острое дутье и возврат уноса; 11- обмуровка топки; 12 - тепло-воспринимающие трубы в кипящем слое; В - вода; П – пар.

Поддержание температуры кипящего слоя в необходимых пределах (850 - 950 °С) обеспечивается двумя различны­ми способами. В небольших промышлен­ных топках, сжигающих отходы или де­шевое топливо, в слой подают значитель­но больше воздуха, чем это необходимо для полного сжигания, устанавливая α в ≥ 2.

При том же количестве выделен­ной теплоты температура газов умень­шается по мере увеличения α в, ибо та же теплота тратится на нагрев большого количества газов.

В крупных энергетических агрегатах такой метод снижения температуры горе­ния неэкономичен, ибо «лишний» воздух, уходя из агрегата, уносит и теплоту, за­траченную на его нагрев (возрастают потери с уходящими газами - см. да­лее). Поэтому в топках с кипящим слоем крупных котлоагрегатов размещают тру­бы 9 и 12 с циркулирующим в них рабо­чим телом (водой или паром), восприни­мающим необходимое количество тепло­ты. Интенсивное «омывание» этих труб частицами обеспечивает высокий коэф­фициент теплоотдачи от слоя к трубам, что в некоторых случаях позволяет уменьшить металло­емкость котла по сравнению с традици­онным. Топливо устойчиво горит при его содержании в кипящем слое, составляю­щем 1 % и менее; остальные 99 % с лиш­ним - зола. Даже при столь неблагоп­риятных условиях интенсивное переме­шивание не позволяет зольным частицам блокировать горючие от доступа к ним кислорода (в отличие от плотного слоя). Концентрация горючих при этом оказы­вается одинаковой по всему объему ки­пящего слоя. Для удаления золы, вводи­мой с топливом, часть материала слоя непрерывно выводится из него в виде мелкозернистого шлака - чаще всего просто «сливается» через отверстия в по­дине, поскольку кипящий слой способен течь как жидкость.

Топки с циркуляционным кипящим слоем. В последнее время появились топ­ки второго поколения с так называемым циркуляционным кипящим слоем. За эти­ми топками устанавливают циклон, в ко­тором улавливаются все недогоревшие частицы и возвращаются обратно в топ­ку. Таким образом, частицы оказывают­ся «запертыми» в системе топка - цик­лон- топка до тех пор, пока не сгорят полностью. Эти топки имеют высокую экономичность, не уступающую камерно­му способу сжигания, при сохранении всех экологических преимуществ.

Топки с кипящим слоем широко ис­пользуются не только в энергетике, но и в других отраслях промышленности, например, для сжигания колчеданов с целью получения SО 2 , обжига различ­ных руд и их концентратов (цинковых, медных, никелевых, золотосодержащих) и т. д. (С точки зрения теории горения обжиг, например, цинковой руды по ре­акции 2ZnS+3O 2 = 2ZnO + 2SO 2 есть сгорание этого специфического «топли­ва», протекающее, как и все реакции горения, с выделением больших коли­честв теплоты.) Большое распростране­ние, особенно за рубежом, топки с кипя­щим слоем нашли для огневого обезвре­живания (т. е. сжигания) различных вредных отходов производства (твердых, жидких и газообразных) - шламов осветления сточных вод, мусора и т.д.

Тема 12. Печи химической промышленности. Принципиальная схема топливной печи. Классификация печей химической промышленности. Основные типы печей, особенности их конструкции. Тепловой баланс печей

Печи химической промышленности. Принципиальная схема топливной печи

Промышленная печь представляет собой энерготехнологический агрегат, предназначенный для термической обработки материалов с целью придания им необходимых свойств. Источником теплоты в топливных (пламенных) печах служат различные виды углеродного топлива (газ, мазут и др.). Современные печные установки часто представляют собой крупные механизированные и автоматизированные агрегаты высокой производительности.

Наибольшее значение для выбора технологического режима процесса имеет оптимальная температура технологического процесса, которая определяется термодинамическим и кинетическим расчетами процессов. Оптимальным температурным режимом процесса называют температурные условия, при которых обеспечивается максимальная производительность по целевому продукту в данной печи.

Обычно рабочая температура в печи несколько ниже оптимальной, она зависит от условий сжигания топлива, условий теплообмена, изоляционных свойств и стойкости футеровки печи, теплофизических свойств перерабатываемого материала и др. факторов. Например, для обжиговых печей рабочая температура находится в интервале между температурой активного протекания окислительных процессов и температурой спекания продуктов обжига. Под тепловым режимом печи понимают совокупность процессов инерции теплоты, теплоты массообмена и механики сред, обеспечивающих распределения теплоты в зоне технологического процесса. Тепловой режим зоны технологического процесса определяет тепловой режим всей печи.

На режим работы печей оказывает большое влияние состав газовой атмосферы в печи, необходимый для правильного протекания технологического процесса. Для окислительных процессов газовая среда в печи должна содержать кислород, количество которого колеблется от3 до 15% и больше. Для восстановительной среды характерно низкое содержание кислорода (до 1-2%) и присутствие восстанавливающих газов (СО, Н 2 и др.) 10-20% и больше. Состав газовой фазы определяет условия сжигания топлива в печи и зависит от количества воздуха, поступающего на горение.

Движение газов в печи оказывает существенное влияние на технологический процесс, на горение и теплопередачу, а в печах, «кипящего слоя» или вихревых печах движение газов является основным фактором устойчивой работы. Принудительное движение газов осуществляется дымососами и вентиляторами.

На скорость технологического процесса влияет движение материала, подвергающегося термообработке.

Схема печной установки включает следующие элементы: топочное устройство для сжигания топлива и организации теплообмена; рабочее пространство печи для выполнения целевого технологического режима; теплообменные устройства для регенерации теплоты дымовых газов (подогрев газа, воздуха); утилизационные установки (запечные котлы-утилизаторы) для использования теплоты уходящих газов; тяговое и дутьевое устройство (дымососы, вентиляторы) для удаления сгорания топлива и газообразных продуктов термической обработки материалов и подачи воздуха к горелкам, форсункам под колосники; очистительные устройства (фильтры и т.п.).

К атегория: Печи

Основные особенности процессов сгорания топлива

В отопительных печах может использоваться твердое, жидкое и газообразное топливо. Каждому из этих топлив свойственны свои особенности, которые влияют на эффективность использования печей.

Конструкции отопительных печей создавались в течение длительного времени и предназначались для сжигания в них твердого топлива. Только в более поздний период стали создаваться конструкции, рассчитанные на использование жидкого и газообразного топлива. Чтобы наиболее эффективно использовать эти ценные виды в существующих печах, необходимо знать, чем отличаются процессы горения этих топлив от горения твердого топлива.

Во всех печах твердое топливо (дрова, различные виды каменного угля, антрацит, кокс и др.) сжигается на колосниках слоевым способом, с периодической загрузкой топлива и очисткой колосников от шлака. Слоевой процесс сжигания имеет четкий циклический характер. Каждый цикл включает следующие стадии: загрузка топлива, подсушка и разогрев слоя, выделение летучих веществ и их горение, горение топлива в слое, догорание остатков и, наконец, удаление шлаков.

На каждой из этих стадий создается определенный тепловой режим и процесс горения в печи происходит с непрерывно меняющимися показателями.
Первичная стадия подсушки и разогрева слоя носит так называемый эндотермичный характер, т. е. она сопровождается не выделением, а поглощением теплоты, получаемой от раскаленных стен топливника и от недогоревших остатков. Далее по мере разогрева слоя начинается выделение газообразных горючих компонентов и их выгорание в газовом объеме. На этой стадии начинается тепловыделение в топке, которое постепенно увеличивается. Под влиянием разогрева начинается горение твердой коксовой основы слоя, дающей обычно наибольший тепловой эффект. По мере прогорания слоя тепловыделение постепенно уменьшается, и в конечной стадии имеет место малоинтенсивное дожигание горючих веществ. Известно, что роль и влияние отдельных стадий цикла слоевого горения зависит от следующих показателей качества твердого топлива: влажности, зольности, содержания летучих горючих веществ и углерода в горючей
массе.

Рассмотрим, как влияют эти составляющие на характер процесса горения в слое.

Увлажнение топлива отрицательно влияет на горение так как на испарение влаги должна быть затрачена часть удельной теплоты сгорания топлива. В результате снижаются температуры в топливнике, ухудшаются условия сжигания, а сам цикл горения затягивается.

Отрицательная роль зольности топлива проявляется в том, что зольная масса обволакивает горючие компоненты топлива и препятствует доступу к ним кислорода воздуха. В результате горючая масса топлива не догорает, образуется так называемый механический недожог.

Исследованиями ученых установлено, что большое влияние на характер развития процессов горения оказывает соотношение содержания в твердом топливе летучих газообразных веществ и твердого углерода. Летучие горючие вещества начинают выделяться из твердого топлива при сравнительно низких температурах, начиная со 150-200 °С и выше. Летучие вещества разнообразны по составу и отличаются различными температурами выхода, поэтому процесс их выделения растянут по времени и его окончательная стадия обычно сочетается с горением твердой топливной части слоя.

Летучие вещества имеют относительно низкую температуру воспламенения, так как содержат много водородеодержащих компонентов, горение их происходит в надслоевом газовом объеме топливника. Твердая часть топлива, остающаяся после выхода летучих веществ, состоит в основном из углерода, имеющего наиболее высокую температуру воспламенения (650-700°С). Горение углеродного остатка начинается в последнюю очередь. Оно протекает непосредственно в тонком слое колосниковой решетки, и ввиду интенсивного тепловыделения в нем развиваются высокие температуры.

Типичная картина изменения температуры в топке и газоходах в течение цикла горения твердого топлива показана на рис. 1. Как видно, в начале топки наблюдается быстрое нарастание температур в топливнике и дымоходах, В стадии же догорания происходит резкое снижение температуры внутри печи, особенно в топливнике. Каждая из стадий требует подачи в топку определенного количества воздуха для горения. Однако, ввиду того что в топку поступает постоянное количество воздуха, на стадии интенсивного горения коэффициент избытка воздуха составляет величину ат=1,5-2, а на стадии догорания, продолжительность которой достигает 25-30% времени топки, коэффициент избытка воздуха достигает ат=8-10. На рис. 2 показано, как изменяется коэффициент избытка воздуха на протяжении одного цикла горения на колосниковой решетке трех видов твердого топлива: дров, торфа и каменного угля в типичной отопительной печи периодического действия.

Рис. 1. Изменение температуры дымовых газов в различных сечениях отопительной печи при топке твердым топливом 1 - температура в топливнике (на расстоянии 0,23 м от колосниковой решетки); 1 - темперйтура в первом горизонтальном дымоходе; ’3 - температура в третьем горизонтальном дымоходе; 4 - температура в шестом горизонтальном дымоходе (перед заслонкой печи)

Из рис. 2 видно, что коэффициент избытка воздуха в печах, работающих с периодической загрузкой твердого топлива, непрерывно изменяется.

При этом на стадии интенсивного выхода летучих веществ количества поступающего в топку воздуха обычно недостаточно для полного их сгорания, а на стадиях предварительного разогрева и дожигания горючих веществ количество воздуха в несколько раз превышает теоретически необходимое.

В результате на стадии интенсивного выхода летучих веществ происходит химический недожог выделившихся горючих газов, а при дожигании остатков имеют место повышенные потери теплоты с уходящими газами ввиду увеличения объема продуктов сгорания. Потери теплоты с химическим недожогом составляют 3-5%, а с уходящими газами - 20-35%. Однако отрицательное действие химического недожога проявляется не только в дополнительных потерях теплоты и снижении КПД. Опыт эксплуатации большого количества отопительных печей показывает; что в результате химического недожога интенсивно выделяющихся летучих веществ на внутренних стенках топки и дымоходов откладывается аморфный углерод в виде сажи.

Рис. 2. Изменение коэффициента избытка воздуха в течение цикла горения твердого топлива

Поскольку сажа имеет низкую теплопроводность, ее отложения увеличивают термическое сопротивление стен печи и тем самым снижают полезную теплоотдачу печей. Отложения сажи в дымоходах сужают сечение для прохода газов, ухудшают тягу и, наконец, создают повышенную пожароопасность, так как сажа горюча.

Из сказанного ясно, что неудовлетворительные показатели слоевого процесса во многом объясняются неравномерностью выделения летучих веществ по времени.

При слоевом сжигании высокоуглеродистых топлив процесс горения сосредоточен в пределах довольно тонкого топливного слоя, в котором развиваются высокие температуры. Процесс горения чистого углерода в слое имеет свойство саморегулирования. Это значит, что количество прореагировавшего (сожженного) углерода будет соответствовать количеству поданного окислителя (воздуха). Поэтому при постоянном расходе воздуха постоянным будет и количество сожженного топлива. Изменение же тепловой нагрузки должно производиться за счет регулирования подачи воздуха VB. Например, при увеличении VB возрастает количество сожженного топлива, а снижение Ув вызовет уменьшение теплопроизводительности слоя, причем величина коэффициента избытка воздуха останется стабильной.

Однако сжигание антрацита и кокса связано со следующими трудностями. Для возможности создания высоких температур толщина слоя при сжигании антрацита и кокса поддерживается достаточно большой. При этом рабочей зоной слоя является относительно тонкая нижняя его часть, в которой осуществляются экзотермические реакции оксидирования углерода кислородом воздуха, т. е. происходит собственно горение. Весь вышележащий слой служит как бы тепловым изолятором горящей части слоя, предохраняющим зону горения от охлаждения за счет излучения теплоты на стенки топливника.

В результате окислительных реакций в зоне горения выделяется полезная теплота согласно реакции
с+о2->со.

Однако при высоких температурах слоя в верхней его зоне осуществляются обратные восстановительные эндотермические реакции, протекающие с поглощением теплоты, согласно уравнению
С02+С2СО.

В результате этих реакций образуется оксид углерода СО, который является горючим газом, обладающим довольно высокой удельной теплотой сгорания, поэтому присутствие его в дымовых газах свидетельствует о неполноте сгорания топлива и снижении экономичности печи. Таким образом, для обеспечения высоких температур в зоне горения топливный слой должен иметь достаточную толщину, но это приводит к вредным восстановительным реакциям в верхней части слоя, приводящим к химическому недожогу твердого топлива.

Из приведенного ясно, что в любой печи периодического действия, работающей на твердом топливе, имеет место нестационарный процесс горения, неизбежно снижающий КПД эксплуатируемых печей.

Большое значение для экономичной, работы печи имеет качество твердого топлива.

Согласно стандартам для коммунально-бытовых нужд выделяют в основном каменные угли (марок Д, Г, Ж, К, Т и др.), а также бурые угли и антрациты. По размеру кусков угли должны поставляться следующих классов: 6-13, 13-25, 25-50 и 50-100 мм. Зольность угля на сухую массу колеблется в пределах 14-35% для каменных углей и до 20% -для антрацита, влажность- 6-15% для каменных и 20-45% для бурых углей.

Топочные устройства бытовых печей не имеют средств механизации процесса горения (регулирования подачи дутьевого воздуха, шуровки слоя и др.), поэтому для эффективного сжигания в печах к качеству угля должны предъявляться достаточно высокие требования. Значительная часть угля поставляется, однако, несортированным, рядовым, с качественными характеристиками (по влажности, зольности, содержанию мелочи) существенно ниже предусмотренных стандартами.

Сжигание некондиционного топлива происходит несовершенно, с повышенными потерями от химического и механического недожога. Академией коммунального хозяйства им. К. Д. Памфилова был определен годовой материальный ущерб, причиняемый в результате поставки углей низкого качества. Расчеты показали, что материальный ущерб, обусловленный неполным использованием топлива, составляет примерно 60% стоимости добычи угля. Экономически и технически целесообразно обогащать топливо в местах его добычи до кондиционного состояния, так как дополнительные расходы на обогащение составят примерно половину указанной величины материального ущерба.

Важной качественной характеристикой угля, влияющей на эффективность его сжигания, является его фракционный состав.

При повышенном содержании в топливе мелочи она, уплотняясь, закрывает прозоры в горящем топливном слое, что приводит к кратерному горению, имеющему неравномерный характер по площади слоя. По этой же причине хуже по сравнению с другими видами топлива сжигаются бурые угли, имеющие свойство растрескиваться при нагреве с образованием значительного количества мелочи.

С другой стороны, использование чрезмерно крупных кусков угля (более 100 мм) также приводит к кратерному горению.

Влажность угля, вообще говоря, не ухудшает топочного процесса; однако она снижает удельную теплоту сгорания, температуру горения, а также осложняет хранение угля, так как при минусовых температурах происходит его смерзание. Для предотвращения смерзания влажность каменных углей не должна превышать 8%.

Вредным компонентом в твердом топливе является сера, так как продуктами ее сгорания являются диоксид серы S02 и сернистый ангидрид S03, обладающие сильными коррозионными свойствами, к тому же еще и весьма токсичные.

Следует заметить, что в печах периодического действия рядовые угли хотя и менее эффективно, но все же могут удовлетворительно сжигаться; для печей длительного горения указанные требования должны категорически выполняться в полной мере.

В печах непрерывного действия, в которых сжигается жидкое или газообразное топливо, процесс горения имеет не циклический, а непрерывный характер. Поступление топлива в печь происходит равномерно, благодаря чему соблюдается стационарный режим горения. Если при сжигании твердого топлива температура в топливнике печи колеблется в широких пределах, что неблагоприятно отражается на процессе горения, то при сжигании природного газа вскоре после включения горелки температура в топочном пространстве достигает 650-700 °С. Далее она постоянно увеличивается с течением времени и достигает в конце топки 850-1100 °С. Скорость повышения температуры при этом определяется тепловым напряжением топочного пространства и временем топки печи (рис. 25). Сжигание газа сравнительно легко поддерживать при постоянном коэффициенте избытка воздуха, что осуществляется с помощью воздушной заслонки. Благодаря этому при сжигании газа в печи создается стационарный режим горения, позволяющий свести к минимуму потери теплоты с уходящими газами и добиться работы печи с высоким КПД, достигающим 80-90%. КПД газовой печи стабилен по времени и существенно выше, чем печи на твердом топливе.

Влияние режима горения топлива и величины площади теп-ловоспринимающей поверхности дымооборотов на КПД печи. Теоретические расчеты показывают, что тепловая экономичность отопительной печи, т. е. величина теплового КПД, зависит от так называемых внешних и внутренних факторов. К внешним факторам относятся величина площади теплоотдающей наружной поверхности S печи в зоне топливника и дымообо-ротов, толщина стенок 6, коэффициент теплопроводности К материала стенок печи и теплоемкость С. Чем больше величины. S, X и меньше 6, тем лучше теплоотдача от стен печи к окружающему воздуху, более полно охлаждаются газы и выше КПД печи.

Рис. 3. Изменение температуры продуктов сгорания в топливнике газовой отопительной печи в зависимости от напряженности топочного пространства и времени топки

К внутренним факторам относится в первую очередь величина КПД топливника, зависящая в основном от полноты сгорания топлива. В отопительных печах периодического действия практически всегда имеются потери теплоты от химической неполноты горения и механического недожога. Эти потери зависят от совершенства организации процесса горения, определяемого удельным тепловым напряжением топочного объема Q/V. Значение QIV для топливника заданной конструкции зависит от расхода сжигаемого топлива.

Исследованиями и опытом эксплуатации установлено, что для каждого вида топлива и конструкции топливника существует оптимальная величина Q/V. При низких Q/V внутренние стенки топливника прогреваются слабо, температуры в зоне горения недостаточны для эффективного сжигания топлива. При повышении Q/V возрастают температуры в топочном объеме, и при достижении определенного значения Q/V достигаются оптимальные условия горения. При дальнейшем повышении расхода топлива уровень температур продолжает повышаться, но процесс горения не успевает завершиться в пределах топливника. Газообразные горючие компоненты увлекаются в газоходы, процесс их горения прекращается и появляется химический недожог топлива. Точно так же при чрезмерном расходе топлива часть его не успевает сгорать и остается на колосниковой решетке, что приводит к механическому недожогу. Таким образом, для того чтобы отопительная печь имела максимальный КПД, необходимо, чтобы ее топливник работал с оптимальным тепловым напряжением.

Потери теплоты в окружающую среду от стен топливника не снижают КПД печи, так как теплота расходуется на полезный обогрев помещения.

Вторым важным внутренним фактором является расход дымовых газов Vr. Даже если печь работает при оптимальной величине теплового напряжения топливника, объем газов, проходящих через дымоходы, может существенно меняться за счет изменения коэффициента избытка воздуха ат, представляющего собой отношение действительного расхода воздуха, поступившего в топку, к теоретически неоходимому его количеству. При данной величине QIV значение ат может изменяться в весьма широких пределах. В обычных отопительных печах периодического действия величина ат в период максимального горения может быть близкой к 1, т. е. соответствовать минимально возможному теоретическому пределу. Однако в период подготовки топлива и на стадии догорания остатков величина ат в печах периодического действия обычно резко возрастает, нередко достигая предельно высоких значений - порядка 8-10. С увеличением ат возрастает объем газов, сокращается время их пребывания в системе дымооборотов и, как следствие, увеличиваются потери теплоты с уходящими газами.

На рис. 4 показаны графики зависимости КПД отопительной печи от различных параметров. На рис. 4, а показаны величины КПД отопительной печи в зависимости от значений ат> из которых видно, что при увеличении ат от 1,5 до 4,5 КПД уменьшается с 80 до 48%. На рис. 4, б показана зависимость КПД отопительной печи от величины площади внутренней поверхности дымооборотов S, из которой видно, что при увеличении S от 1 до 4 м2 КПД возрастает с 65 до 90%.

Кроме перечисленных факторов величина КПД зависит от продолжительности топки печи т (рис. 4, в). По мере увеличения х внутренние стенки печи прогреваются до более высокой температуры и газы соответственно охлаждаются меньше. Поэтому с увеличением продолжительности топки экономичность любой отопительной печи снижается, приближаясь к определенной минимальной величине, характерной для печи данной конструкции.

Рис. 4. Зависимость КПД газовой отопительной печи от различных параметров а - от коэффициента избытка воздуха при площади внутренней поверхности дымооборотов, м2; б - от площади внутренней поверхности дымооборотов при различных коэффициентах избытка воздуха; в - от длительности топки при различных площадях внутренней поверхности дымооборотов, м2

Теплопередача отопительных печей и их аккумулирующая способность. В отопительных печах теплота, которая должна быть передана дымовыми газами отапливаемому помещению, должна пройти через толщу стен печи. С изменением толщины стен топливника и дымоходов соответственно меняются термическое сопротивление и массивность кладки (ее аккумулирующая способность). Например, при уменьшении толщины стен снижается их термическое сопротивление, возрастает тепловой поток и одновременно уменьшаются габариты печи. Однако уменьшение толщины стен печей периодического действия, работающих на твердом топливе, недопустимо по следующим причинам: при периодической кратковременной топке внутренние поверхности топливника и дымоходов нагреваются до высоких температур и температура наружной поверхности печи в периоды максимального горения будет выше допустимых пределов; после прекращения горения вследствие интенсивной теплоотдачи наружных стенок в окружающую среду печь будет быстро охлаждаться.

При больших величинах М температура помещения будет в широких пределах изменяться во времени и выходить из допустимых норм. С другой стороны, если выкладывать печь слишком толстостенной, то за короткий период топки ее большой массив не успеет прогреться и, кроме того, с утолщением стен увеличивается разница между площадью внутренней поверхности дымоходов, воспринимающей теплоту от газов, и площадью наружной поверхности печи, передающей теплоту окружающему воздуху, вследствие чего температура наружной поверхности печи будет слишком низкой для эффективного обогрева помещения. Поэтому существует такая оптимальная толщина стен (1/2- 1 кирпич), при которой массив печи периодического действия накапливает достаточное количество теплоты за время топки и вместе с тем достигается достаточно высокая температура наружных поверхностей печи для нормального обогрева помещения.

При использовании в отопительных печах жидкого или газообразного топлива вполне достижим непрерывный режим горения, поэтому при непрерывной топке нет необходимости в аккумуляции теплоты за счет увеличения массива кладки. Процесс теплопередачи от газов к отапливаемому помещению имеет стационарный характер по времени. В этих условиях толщина стенок и массивность печи может выбираться исходя не из обеспечения определенной аккумулирующей величины, а из соображений прочности кладки и обеспечения должной долговечности.

Влияние перевода печи с периодической топки на непрерывную хорошо видно из рис. 5, на котором показано изменение температуры внутренней поверхности стенки топливника в случае периодической и непрерывной топки. При периодической топке уже через 0,5-1 ч внутренняя поверхность стенки топливника нагревается до 800-900 °С.

Такой резкий нагрев уже после 1-2 лет эксплуатации печи часто вызывает растрескивание кирпичей и их разрушение. Такой режим, однако, является вынужденным, так как снижение тепловой нагрузки приводит к чрезмерному увеличению продолжительности топки.

При непрерывной топке раход топлива резко сокращается и температура нагрева стенок топливника снижается. Как видно из рис. 27, при непрерывной топке для большинства марок каменных углей температура стенки повышается с 200 лишь до 450-500 °С, в то время как при периодической топке она значительно выше - 800-900 °С. Поэтому топливники печей периодического действия обычно футеруются огнеупорным кирпичом, в то время как топливники печей непрерывного действия не нуждаются в футеровке, так как температура на их поверхности не достигает предела огнеупорности обычного красного кирпича (700-750 °С).

Следовательно, при непрерывной топке более эффективно используется кирпичная кладка, намного увеличивается срок службы печей и для большинства марок каменных углей (исключая антрациты и тощие угли) имеется возможность все части печи выкладывать из красного кирпича.

Тяга в печах. Для того чтобы заставить дымовые газы пройти из топливника через дымообороты печи до дымовой трубы, преодолев все встречающиеся на их пути местные сопротивления, необходимо затратить определенное усилие, которое должно превышать эти сопротивления, иначе печь будет дымить. Это усилие принято называть силой тяги печи.

Возникновение силы тяги поясняется на схеме (рис. 6). Дымовые газы, образующиеся в топливнике, как более легкие по сравнению с окружающим воздухом, поднимаются вверх и заполняют дымовую трубу. Столб наружного воздуха противостоит столбу газов в дымовой трубе, но, будучи холодным, он значительно тяжелее столба газов. Если провести через топочную дверку условную вертикальную плоскость, то с правой стороны на нее будет действовать (давить) столб горячих газов высотой от середины топочной дверки до верха дымовой трубы, а с левой - столб наружного холодного воздуха такой же высоты. Масса левого столба больше, чем правого, так как плотность холодного воздуха больше, чем горячего, поэтому левый столб будет вытеснять дымовые газы, заполняющие дымовую трубу, и в системе будет происходить движение газов по направлению от большего давления к меньшему, т. е. в сторону дымовой трубы.

Рис. 5. Изменение температуры на внутренней поверхности стенки топливника а - терморегулятор настроен на нижний предел; б - терморегулятор настроен на верхний предел

Рис. 6. Схема работы дымовой трубы 1-топочная дверка; 2- топливник; 3 - столб наружного воздуха; 4 - дымовая труба

Действие силы тяги состоит, таким образом, в том, что она, с одной стороны, заставляет подниматься вверх горячие газы, а с другой стороны, вынуждает наружный воздух проходить в топливник для горения.

Среднюю температуру газов в дымоходе можно принять равной средней арифметической между температурой газов на входе и выходе дымовой трубы.



- Основные особенности процессов сгорания топлива

В связи с возрастающей популярностью твердотопливных котлов , огромное количество потенциальных покупателей данного оборудования интересует вопрос какому виду твердого топлива отдать предпочтение как основному, и в зависимости от принятого решения заказывать тот или иной вид отопительного оборудования.

Основным показателем любого топлива, не только твердого, является его теплоотдача, которую обеспечивает горение твердого топлива. При этом теплоотдача твердого топлива напрямую связана с его видом, свойствами и составом.

Немного химии

В состав твердого топлива входят следующие вещества: углерод, водород, кислород и минеральные соединения. При его сжигании топлива, углерод и водород соединяются с кислородом воздуха (сильнейшем природным окислителем) – происходит реакция горения с выделением большого количества тепловой энергии. Далее, газообразные продукты горения удаляются через систему дымоотведения, а твердые продукты горения (зола и шлак) выпадают в виде отходом сквозь колосниковую решетку.

Соответственно, основная задача, стоящая перед конструктором отопительного оборудования работающего на твердом топливе – обеспечить наиболее длительное горение печь твёрдое топливо или котел на твердом топливе. На данный момент времени в этой области достигнут определенный прогресс – в продаже появились твердотопливные котлы длительного горения работающие по принципу верхнего горения и процесса пиролиза .

Теплотворная способность основных видов твердого топлива

  • Дрова. В среднем (в зависимости от породы древесины) и влажности от 2800 до 3300 ккал/кг.
  • Торф – в зависимости от влажности от 3000 до 4000 ккал/кг.
  • Уголь – в зависимости от вида (антрацит, бурый или пламенный) от 4700 до 7200 ккал/кг.
  • Прессованные брикеты и пеллеты – 4500 ккал/кг.

Другими словами процесс горения твердого топлива различных видов сопровождается различным количеством выделяемой тепловой энергии, поэтому к выбору основного вида топлива следует походить очень ответственно – руководствоваться в этом вопросе сведениями, указанными в эксплуатационной документации (паспорте или Инструкции по Эксплуатации) на то или иное твердотопливное оборудование.

Краткая характеристика основных видов твердого топлива

Дрова

Наиболее доступный, поэтому наиболее распространенный в России вид топлива. Как уже было сказано, количество выделяемого тепла в процессе горение зависит от породы древесины и ее влажности. Стоит отметить, что при использовании дров в качестве топлива для пиролизного котла существует ограничение по влажности, которая в этом случае не должна превышать 15-20%.

Торф

Торф – это спрессованные остатки перегнивших растений, залегающие длительное время в толще почвы. По способу добычи различают верховой и низовой торф. А по агрегатному состоянию торф может быть: резной, кусковой и прессованный в виде брикетов. По количеству выделяемой тепловой энергии торф аналогичен дровам.

Уголь

Уголь является самым «калорийным» видом твердого топлива, который требует специальной технологии розжига. В общем случае, чтобы растопить печь или котел на каменном угле требуется вначале разжечь топку дровами и только потом, на хорошо разгоревшиеся дрова загружать каменный уголь (бурый, пламенный или антрацит).

Брикеты и пеллеты

Это новый вид твердого топлива, различающийся размерами отдельных элементов. Брикеты - более крупные, а пеллеты более мелкие. Исходным материалом для изготовления брикетов и пеллет может служить любое «горючее» вещество: древесная стружка, древесная пыль, солома, шелуха орехов, торф, шелуха подсолнечнике, кора, картон и прочие «массовые» горючие вещества, находящиеся в свободном доступе.

Преимущества брикетов и пеллет

  • Экологически чистое восполняемое топливо, имеющее высокую теплотворную способность.
  • Долгое горение, обусловленное высокой плотностью материала.
  • Удобство и компактность хранения.
  • Минимальное количество золы после сгорания – от 1до 3% от объема.
  • Низкая относительная стоимость.
  • Возможность автоматизации процесса работы котла.
  • Подходят для всех видов твердотопливных котлов и отопительных бытовых печей.

Горение твёрдого топлива проходит в две стадии: тепловая подготовка; само горение.

На первой стадии топливо подогревается, просушивается. При 100 С начинается пирогенетическое разложение составляющих топлива с выделением газообразных летучих веществ. (Зона I). Длительность этого процесса зависит от влажности топлива, размера частиц, условий теплообмена между частицами топлива и топочной средой.

Горение топлива начинается с воспламенения летучих (зона II). t в этой зоне 400-600 C. При горении выделяется тепло, к-е обеспечивает ускоренный прогрев и воспламенение коксового остатка. {Два необходимых условия, чтоб топливо сгорело: температура и достаточное количество окислителя. В любых топках существует 2 ввода: по одному идёт топливо, а по второму – окислитель}

Этот процесс происходит за десятые доли секунд. Летучие горят от 0,2 до 0,5 секунды. Выделяется Q, когда t 800-1000 – зона III начинается. Горение кокса начинается при температуре 1000 С и происходит в III области. Этот процесс длительный. 1 – T газовой среды вокруг частицы. 2 – T самой частицы . I – зона термической подготовки, II – зона горения летучих в-в, III – горение коксовой частицы.

III – гетерогенный процесс. Ск-ть зависит от ск-ти подвода кислорода. Время горения коксовой частицы от ½ до 2/3 всего времени горения (от 1 до 2,5 с) – зависит от вида и размера топлива. У молодых топлив процесс углефикации не завершен большой выход летучих. Коксовый остаток < ½ начальной массы частицы. Горение идет быстро, возможность недожога низкая. У стар. топ. большой коксовый остаток, ближе к начальн размерам частиц. Время горения 1 мм ~ 1-2,5 с. Кокс остаток С = 60-97% массы топлива органического. 1 – пов-ть коксовой частицы, 2 – узкий ламинарный слой с толщиной δ,3 – зона турбулентного потока .

Кислород подводится из окружающей среды к частице углерода за счёт турбулентной диффузии, имеющей высокую интенсивность, но возле поверхности частицы находится тонкий газовый слой (2), где подвод окислителя подчиняется з-нам молекулярной диффузии (лам сл) – тормозит подвод кислорода к поверхности частицы. В этом слое происходит догорание горючих газовых компонентов, выделяющихся с поверхности углерода в ходе химических реакций.

Количество кислорода, подводимого в единицу времени к единичной поверхности частицы посредством турбулентной диффузии определяется:

GОК = А(СПОТ – ССЛ) (1) , А – к-т турбулентного массообмена. Такое же к-во кислорода диффундирует ч/з погр слой за счет молекулярной диффузии:

GОК = D δ (ССЛ – СПОВ) (2) D – к-т мол диф-и ч/з погр слой δ. ССЛ = G ОК * δ D + СПОВ, GОК = А(СПОТ – G ОК * δ D – СПОВ) , GОК = А*( С ПОТ – СПОВ) 1+ Аδ D = ( С ПОТ – СПОВ) 1 А + δ D = αД*(СПОТ – СПОВ) , 1 А + δ D = αД – обобщённая константа скорости диффузии.

Кол-во подведен ок-ля зависит от αД и разности концентраций потока и пов-ти. Подвод кислорода к реагирующей поверхности топлива определяется скоростью диффузии и концентрацией кислорода в потоке и на реагирующей поверхности.

В установившемся режиме горения количество кислорода, подводимого к поверхности реагирования диффузией равно количеству кислорода, которое прореагировало с этой поверхностью.

ωР = αД(СПОТ – СПОВ) . В тоже самое время скор-ть горения: ωГ = k*СПОТ, если они равны, то может определить: ωГ = 1 1 K + 1 α Д * С ПОТ = kГ*СПОТ. K Г = 1 1 K + 1 α Д = K * α Д α Д + K (*) – приведенная константа горения. 1 k Г= 1 K + 1 α Д – обобщенное сопротивление процессу горения. 1/k – кинетическое сопротивление, определяется интенсивностью протекания хим р-и горения; 1/αД – физич (диффузионное) сопротивление – зависит от интенсивности подвода окислителя.

В зависимости от сопротивления различают кинетическую и диффузионную область гетерогенного горения.

I – кинетическая область (ωГ = k*СПОТ) , II – промежуточная область, III – диффузионная область (ωГ = αД*СПОТ)

В соответствии с законом Аррениуса, скорость химической реакции зависит от температуры. αД (конст ск-ти диф-и) слабо реагирует на температуру. При температуре меньше, чем 800-1000 С, химическая реакция протекает медленно, не смотря на избыток О2 около твёрдой поверхности. В этом случае 1/k большое значение – горение тормозится кинетикой р-и (t мала) и область называется Кинетической областью горения . (1/k >> 1/αД) . k<<αД, kГ ~k (*) – Т. к. р-я вялая, кислород, подводимый диффузией не расходуется и его концентрация у поверхности реагирования примерно равна концентрации в потоке ωГ = k*СПОТ – это ск-ть горения в кинетической области.

Скорость горения в кинетической области не изменится при усиленном подводе кислорода, путём улучшения процессов аэродинамики (обл-ть I ), а зависит от кинетического фактора, а именно температуры . Подвод ок-ля >> потребления – концентрация на пов-ти почти не меняется. По мере повышения t скорость реакции растёт, а концентрация О2 и С падает. Дальнейшее t ведёт к увеличению скорости горения и её значение ограничивается недостатком подвода О2 к поверхности, недостаточной диффузией. Концентрация кислорода у поверхности →0 .

Область горения, в которой скорость процесса зависит от диффузионных факторов, называется Диффузионной областью III . Здесь k>>αД (Из * ): kГ~αД. Скор-ть диффузион горения огр-ся доставкой О2 к пов-ти и его концентрацией в потоке.

Диффузионная и кинетические области разделяется промежуточной зоной II, где скорость подвода кислорода и скорость химической реакции примерно равны между собой. Чем меньше размеры твёрдого топлива, тем больше площадь тепломассообмена.

В обл-ти II и IIIгорение можно усилить подводом ок-ля. При больших скор-тях ок-ля сопротивление и толщина ламинарного слоя ум-ся и подвод ок-ля усиливается. Чем выше скор-ть, тем интенсивнее перемешивается топливо с О2 и тем при более t происходит переход из кинетической в пром, затем в диф-ю обл-ть. При уменьшении размеров частиц увеличивается область кинетического горения, т. к. частицы малых размеров имеют более развитый тепломассообмен с окружающей средой.

D1>d2>d3 , v1>v2>v3

D – размер частиц пылевидного топлива, v – ск-ть перемешивания топлива с воздухом – ск-ть подачи ок-ля

Воспламенение любого топлива нач-ся при относительно низких t при дост кол-ве ок-ля (I). Чисто диф горение III – огранич ядром факела. Увеличение температуры ведёт к смещению в область диффузионного горения. Зона диффузионного горения находится от ядра факела и до зоны догорания, где концентрация реагирующих веществ мала и их взаимодействие определяется законами диффузии.

Таким образом, если горение протекает в диффузионной или промежуточной области, то при уменьшении размера частиц пылевидного топлива, процесс смещается в сторону кинетического горения. Область чисто диффузионного горения ограничена. Это наблюдается в ядре факела с максимальной температурой горения. За пределами ядра горение происходит в кинетической или промежуточной области, которая характеризуется сильной зависимостью скорости горения от температуры.

Кинетическая и промежуточные области горения протекают и в зоне воспламенения пыле-воздушного потока, а сжигание топлив всех видов с предварительным смесеобразованием протекает в диффузионной или промежуточной области.

Задание………………………………………………………………………..3

Введение……………………………………………………………………...4

Теоретическая часть

1. Особенности горения твердого топлива ……………………….....6

2. Сжигание топлива в камерных топках ….………………………….9

3. Место и роль твердого топлива в энергетике России ……………..12

4. Снижение выбросов золовых частиц из топок котлов конструктивными и технологическими методами……………………14

5. Золоулавливание и типы золоуловителей…………………….…….15

6. Циклонные (инерционные) золоуловители…..……………………..16

Расчетная часть

1. Исходные данные…………………………………………………….18

2. Расчет элементарного состава рабочего топлива…………………..19
3. Расчет масс и объемов продуктов сгорания топлива при сжигании в котельных …………………………………...…………………………..19

4. Определение высоты трубы Н…………………………….…………20

5. Расчет рассеивания и нормативов предельно допустимых выбросов вредных веществ в атмосферу……………………………………….…20

6. Определение требуемой степени очистки……………………….… 21

Обоснование выбора циклона……………………………………………..22

Применяемые устройства……………………………………………. ……23

Заключение………………………………………………………………….24

Список использованной литературы……………………………………...26

Задание

1. По заданным расчетным характеристикам твердых топлив определить элементарный состав рабочего топлива.

2. Используя результаты п.1 и исходные данные, рассчитать выбросы и объемы продуктов сгорания твердых частиц А, оксидов серы SO x , оксида углерода CO, оксидов азота NO x , расход газов, поступающих в дымовую трубу при рабочих условиях котельной установки.

3. По результатам п.2 и исходным данным определить диаметр устья дымовой трубы. Определить высоту трубы H.

4. Определить наиболее ожидаемую концентрацию С м (мг/м 3) вредных веществ: оксида углерода СО, сернистого газа SO 2 , оксидов азота NO x , пыли, (золы) в приземном слое атмосферы при неблагоприятных условиях рассеивания.



5. Сравнить фактическое содержание вредных веществ в атмосферном воздухе с учетом фоновой концентрации (С м +С ф) с санитарно-гигиеническими нормами (ПДК), если ПДК СО =5 мг/м 3 , ПДК NO 2 = 0,085, ПДК SO 2 =0,5 мг/м 3 , ПДК пыли =0,5 мг/м 3 .

7. Определить требуемую степень очистки и дать рекомендации по снижению выбросов, если фактический выброс М какого-либо вещества превышает расчетный норматив (ПДВ).

8. Разработать и обосновать применяемые способы и устройства для очистки сбросных вредных веществ.

Теоретическая часть

Введение

Промышленное производство и другие виды хозяйственной деятельности человека сопровождаются выделением загрязняющих веществ в окружающую природную среду.

Значительный ущерб окружающей среде наносят котельные установки, использующие сжигание твёрдых, жидких и газообразных топлив при нагреве воды для систем отопления.

Основным источником негативного воздействия энергетики являются продукты, образующиеся при сжигании органического топлива.

Рабочая масса органического топлива состоит из углерода, водорода, кислорода, азота, серы, влаги и золы. В результате полного сгорания топлив образуются углекислый газ, водяные пары, оксиды серы (сернистый газ, серный ангидрид и зола). К числу токсичных относятся оксиды серы, зола. В ядре факела топочных камекотлов большой мощности происходит частичное окисление азота воздуха топлива с образованием оксидов азота (оксид и диоксид азота).

При неполном сгорании топлива в топках могут образовываться также оксид углерода СО 2 , углеводороды СН 4 , С 2 Н 6 , а также канцерогенные вещества. Продукты неполного сгорания весьма вредны, однако при современной технике сжигания их образование можно исключить или свести к минимуму.

Наибольшую зольность имеют горючие сланцы и бурые угли, а также некоторые сорта каменных углей. Жидкое топливо имеет небольшую зольность; природный газ является беззольным топливом.

Выбрасываемые в атмосферу из дымовых труб электростанций токсичные вещества оказывают вредное воздействие на весь комплекс живой природы и биосферу.

Комплексное решение проблемы защиты окружающей среды от воздействия вредных выбросов при сжигании топлив в котельных агрегатах включает:

· Разработку и внедрение технологических процессов, снижающих выбросы вредных веществ за счет полноты сгорания топлив и др.;

· Внедрение эффективных методов и способов очистки сбросных газов.

Наиболее эффективный путь решения экологических проблем на современном этапе – создание технологий, приближенных к безотходным. При этом одновременно решается проблема рационального использования природных ресурсов, как материальных, так и энергетических.

Особенности горения твердого топлива

Горение твердого топлива включает два периода: тепловую подготовку и собственно горение. В процессе тепловой подготовки топливо прогревается, высушивается, и при температуре около 110 начинается пирогенетическое разложение составляющих его компонентов с выделением газообразных летучих веществ. Длительность этого периода зависит главным образом от влажности топлива, размера его частиц и условий теплообмена между окружающей топочной средой и частицами топлива. Протекание процессов в период тепловой подготовки связано с поглощением теплоты главным образом на подогрев, подсушку топлива и термическое разложение сложных молекулярных соединений.

Собственно горение начинается с воспламенения летучих веществ при температуре 400-600, а выделяющаяся в процессе горения теплота обеспечивает ускоренный прогрев и воспламенение коксового остатка.

Горение кокса начинается при температуре около 1000 и является наиболее длительным процессом.

Это определяется тем, что часть кислорода в зоне у поверхности частицы израсходована на сжигание горючих летучих веществ и оставшаяся концентрация его снизилась, кроме того, гетерогенные реакции всегда уступают по скорости гомогенным для однородных по химической активности веществ.

В итоге общая длительность горения твердой частицы в основном определяется горением коксового остатка (около 2/3 общего времени горения). У молодых топлив, имеющих большой выход летучих веществ, коксовый остаток составляет менее половины начальной массы частицы, поэтому их сжигание (при равных начальных размерах) происходит достаточно быстро и возможность недожога снижается. Старые виды твердых топлив обладают крупным коксовым остатком, близким к начальному размеру частицы, горение которого занимает все время пребывания частицы в топочной камере. Время сгорания частицы с начальным размером 1мм составляет от 1 до 2,5 с в зависимости от вида исходного топлива.

Коксовый остаток большинства твёрдых топлив в основном, а для ряда твердых топлив почти целиком состоит из углерода (от 60 до 97 % органической массы топлива). Учитывая, что углерод обеспечивает основное тепловыделение при сжигании топлива, рассмотрим динамику горения углеродной частицы с поверхности. Кислород подводится из окружающ0щей среды к частице углерода за счет турбулентной диффузии (турбулентного массопереноса), имеющей достаточно высокую интенсивность, однако непосредственно у поверхности частицы сохраняется тонкий газовый слой (пограничный слой), перенос окислителя через который осуществляется по законам молекулярной диффузии.

Этот слой в значительной мере тормозит подвод кислорода к поверхности. В нем происходит догорание горючих газовых компонентов, выделяющихся с поверхности углерода в ходе химической реакции.

Выделяют диффузионную, кинетическую и промежуточную область горения. В промежуточной и особенно в диффузионной области интенсификация горения возможна усилением подвода кислорода, активизацией обдувания потоком окислителя горящих частиц топлива. При больших скоростях потока уменьшаются толщина и сопротивление ламинарного слоя у поверхности и усиливается подвод кислорода. Чем выше эта скорость, тем интенсивнее перемешивание топлива с кислородом и тем при более высокой температуре происходит переход из кинетической в промежуточную зону, а из промежуточной - в диффузионную зону горения.

Аналогичный эффект в части интенсификации горения достигается уменьшением размера частиц пылевидного топлива. Частицы малых размеров имеют более развитый тепломассообмен с окружающей средой. Таким образом, при уменьшении размера частиц пылевидного топлива расширяется область кинетического горения. Повышение температуры приводит к смещению в область диффузионного горения.

Область чисто диффузионного горения пылевидного топлива ограничена преимущественно ядром факела, отличающимся наиболее высокой температурой горения, и зоной догорания, где концентрации реагирующих веществ уже малы и их взаимодействие определяется законами диффузии. Воспламенение любого топлива начинается при относительно низких температурах, в условиях достаточного количества кислорода, т.е. в кинетической области.

В кинетической области горения определяющую роль играет скорость химической реакции, зависящая от таких факторов, как реакционная способность топлива и уровень температуры. Влияние аэродинамических факторов в этой области горения незначительно.