Органы слухового анализатора. Реферат: Слуховой анализатор. Корковый отдел слухового анализатора

Передняя часть перепончатого лабиринта - улитковый проток, ductus cochlearis , заключенный в костной улитке, является самой существенной частью органа слуха. Ductus cochlearis начинается слепым концом в recessus cochlearis преддверия несколько кзади от ductus reuniens, соединяющего улитковый проток с sacculus. Затем ductus cochlearis проходит по всему спиральному каналу костной улитки и оканчивается слепо в ее верхушке.

На поперечном сечении улитковый проток имеет треугольное очертание. Одна из трех его стенок срастается с наружной стенкой костного канала улитки, другая, membrana spiralis, является продолжением костной спиральной пластинки, протягиваясь между свободным краем последней и наружной стенкой. Третья, очень тонкая стенка улиточного хода, paries vestibularis ductus cochlearis, протянута косо от спиральной пластинки к наружной стенке.

Membrana spiralis на заложенной в ней базилярной пластинке, lamina basilaris, несет аппарат, воспринимающий звуки, - спиральный орган. При посредстве ductus cochlearis scala vestibuli и scala tympani отделяются друг от друга, за исключением места в куполе улитки, где между ними имеется сообщение, называемое отверстием улитки, helicotrema. Scala vestibuli сообщается с перилимфатическим пространством преддверия, a scala tympani оканчивается слепо у окна улитки.

Спиральный орган, organon spirale , располагается вдоль всего улиткового протока на базилярной пластинке, занимая часть ее, ближайшую к lamina spiralis ossea. Базилярная пластинка, lamina basilaris, состоит из большого количества (24000) фиброзных волокон различной длины, натянутых, как струны (слуховые струны). Согласно известной теории Гельмгольца (1875), они являются резонаторами, обусловливающими своими колебаниями восприятие тонов различной высоты, но, по данным электронной микроскопии, эти волокна образуют эластическую сеть, которая в целом резонирует строго градуированными колебаниями.

Сам спиральный орган слагается из нескольких рядов эпителиальных клеток, среди которых можно различить чувствительные слуховые клетки с волосками. Он выполняет роль «обратного» микрофона, трансформирующего механические колебания в электрические.

Артерии внутреннего уха происходит из a. labyrinthi, ветви a. basilaris. Идя вместе с n. vestibulocochlearis во внутреннем слуховом проходе, a. labyrinthi разветвляется в ушном лабиринте. Вены выносят кровь из лабиринта главным образом двумя путями: v. aqueductus vestibuli, лежащая в одноименном канале вместе с ductus endolymphaticus, собирает кровь из utriculus и полукружных каналов и вливается в sinus petrosus superior, v. canaliculi cochleae, проходящая вместе с ductus perilymphaticus в канале водопровода улитки, несет кровь преимущественно от улитки, а также из преддверия от sacculus и utriculus и впадает в v. jugularis interna.

Пути проведения звука. С функциональной точки зрения орган слуха (периферическая часть слухового анализатора) делится на две части:

  1. звукопроводящий аппарат - наружное и среднее ухо, а также некоторые элементы (перилимфа и эндолимфа) внутреннего уха;
  2. звуковоспринимающий аппарат - внутреннее ухо.

Воздушные волны, собираемые ушной раковиной, направляются в наружный слуховой проход, ударяются о барабанную перепонку и вызывают ее вибрацию.

Вибрация барабанной перепонки, степень натяжения которой регулируется сокращением m. tensor tympani (иннервация из n. trigeminus), приводит в движение сращенную с ней рукоятку молоточка. Молоточек соответственно движет наковальню, а наковальня - стремя, которое вставлено в fenestra vestibuli, ведущее во внутреннее ухо. Величина смещения стремени в окне преддверия регулируется сокращением m. stapedius (иннервация от n. stapedius из n. facialis).

Таким образом цепь косточек, соединенная подвижно, передает колебательные движения барабанной перепонки направленно к окну преддверия. Движение стремени в окне преддверия кнутри вызывает перемещения лабиринтной жидкости, которая выпячивает мембрану окна улитки кнаружи. Эти перемещения необходимы для функционирования высокочувствительных элементов спирального органа.

Первой перемещается перилимфа преддверия; ее колебания по scala vestibuli восходят до вершины улитки, через helicotrema передаются перилимфе в scala tympani, по ней спускаются к membrana tympani secundaria, закрывающей окно улитки, являющейся слабым местом в костной стенке внутреннего уха, и как бы возвращаются к барабанной полости. С перилимфы звуковая вибрация передается эндолимфе, а через нее спиральному органу.

Таким образом, колебания воздуха в наружном и среднем ухе благодаря системе слуховых косточек барабанной полости переходят в колебания жидкости перепончатого лабиринта, вызывающие раздражения специальных слуховых волосковых клеток спирального органа, составляющих рецептор слухового анализатора. В рецепторе, являющемся как бы «обратным» микрофоном, механические колебания жидкости (эндолимфы) превращаются в электрические, характеризующие нервный процесс, распространяющийся по кондуктору до мозговой коры.

Кондуктор слухового анализатора составляют слуховые проводящие пути, состоящие из ряда звеньев. Клеточное тело первого нейрона лежит в ganglion spirale. Периферический отросток биполярных клеток его в спиральном органе начинается рецепторами, а центральный идет в составе pars cochlearis n. vestibulocochlearis до его ядер, nucleus cochlearis dorsalis et ventralis, заложенных в области ромбовидной ямки.

Различные части слухового нерва проводят различные по частоте колебаний звуки. В названных ядрах помещаются тела вторых нейронов, аксоны которых образуют центральный слуховой путь; последний в области заднего ядра трапециевидного тела перекрещивается с соименным путем противоположной стороны, образуя латеральную петлю, lemniscus lateralis. Волокна центрального слухового пути, идущие из вентрального ядра, образуют трапециевидное тело и, пройдя мост, входят в состав lemniscus lateralis противоположной стороны. Волокна центрального пути,гисходящие из дорсального ядра, идут по дну IV желудочка в виде striae medullares ventriculi quarti, проникают в formatio reticularis моста и вместе с волокнами трапециевидного тела вступают в состав латеральной петли противоположной стороны. Lemniscus lateralis заканчивается частью в нижних холмиках крыши среднего мозга, частью в corpus geniculatum mediale, где помещаются третьи нейроны. Нижние холмики крыши среднего мозга служат рефлекторным центром для слуховых импульсов. От них идет к спинному мозгу tractus tectospinalis, через посредство которого совершаются двигательные реакции на слуховые раздражения, поступающие в средний мозг. Рефлекторные ответы на слуховые импульсы могут быть получены и из других промежуточных слуховых ядер - ядер трапециевидного тела и латеральной петли, связанных короткими путями с двигательными ядрами среднего мозга, моста и продолговатого мозга. Оканчиваясь в образованиях, имеющих отношение к слуху (нижние холмики и corpus geniculatum mediale), слуховые волокна и их коллатерали присоединяются, помимо этого, к медиальному продольному пучку, при помощи которого они приходят в связь с ядрами глазодвигательных мышц и с двигательными ядрами других черепных нервов и спинного мозга. Этими связями объясняются рефлекторные ответы на слуховые раздражения. Нижние холмики крыши среднего мозга не имеют центростремительных связей с корой. В corpus geniculatum mediale лежат клеточные тела последних нейронов, аксоны которых в составе внутренней капсулы достигают коры височной доли большого мозга.

Корковый конец слухового анализатора находится в gyrus temporalis superior (поле 41). Здесь воздушные волны наружного уха, вызывающие движение слуховых косточек в среднем ухе и колебания жидкости во внутреннем ухе и превращающиеся далее в рецепторе в нервные импульсы, переданные по кондуктору в мозговую кору, воспринимаются в виде звуковых ощущений. Следовательно, благодаря слуховому анализатору колебания воздуха, т. е. объективное явление существующего независимо от нашего сознания окружающего нас реального мира, отражается в нашем сознании в виде субъективно воспринимаемых образов, т. е. звуковых ощущений. Это яркий пример справедливости ленинской теории отражения, согласно которой объективно реальный мир отражается в нашем сознании в форме субъективных образов. Эта материалистическая теория разоблачает субъективный идеализм, который, наоборот, на первое место ставит наши ощущения.

Благодаря слуховому анализатору различные звуковые раздражители, воспринимаемые в нашем мозге в виде звуковых ощущений и комплексов ощущений - восприятий, становятся сигналами (первыми сигналами) жизненно важных явлений окружающей среды. Это составляет первую сигнальную систему действительности (И. П. Павлов), т. е. конкретно-наглядное мышление, свойственное и животным. У человека имеется способность к абстрактному, отвлеченному мышлению при помощи слова, которое сигнализирует о звуковых ощущениях, являющихся первыми сигналами, и потому является сигналом сигналов (вторым сигналом). Отсюда устная речь составляет вторую сигнальную систему действительности, свойственную только человеку.

Слуховой анализатор является важнейшей частью системы чувств человека. Строение слухового анализатора позволяет людям общаться друг с другом посредством передачи звука, воспринимать, интерпретировать и реагировать на звуковую информацию: когда приближается машина, благодаря звукам, воспринятым посредством слуха, человек вовремя уходит с дороги, что позволяет избежать опасной ситуации.

Звуковые волны являют собой вибрации в твердой, жидкой или газообразной среде, которые можно услышать с помощью органа слуха. Звук определяется в слышимом диапазоне спектра, точно так же как свет – в видимой части спектра электромагнитных волн.

Вибрации звуковых волн являют собой распространение движения на молекулярном уровне, которое характеризуется движением молекул около состояния равновесия . В процессе этого движения, которое создается механическим путем, молекулы подвергаются акустическому давлению, которое приводит к тому, что они сталкиваются друг с другом и передают эти вибрации дальше. Когда передача энергии прекращается, смещенные со своего места молекулы возвращаются в исходное положение.

Сходство зрительного и слухового анализатора в том, что они оба способны воспринимать конкретные качества, выбирая их из общего звукового потока. Например, место расположения источника звука, его громкость, тембр и т.д. Но физиология слухового анализатора функционирует так, что слуховая система человека не смешивает разные частоты, как это делает зрение, когда различные длины световых волн смешиваются друг с другом, – и глазной анализатор представляет это в виде непрерывного цвета.

Вместо этого звуковой анализатор разделяет сложные звуки на составляющие тоны и частоты так, что человек различает голоса конкретных людей в общем гуле или отдельные инструменты в звуках оркестра. Особенности отклонений в слухе позволяют выявить различные аудиометрические методы исследования слухового анализатора.

Наружное и среднее ухо

То, как устроен слуховой анализатор влияет на работу его структур, отделов уха, подкорковых релейных и корковых центров. Анатомия слухового анализатора включает в себя строение уха, стволовых и корковых отделов головного мозга. Отделы слухового анализатора – это:

  • периферическая часть слухового анализатора;
  • корковый конец слухового анализатора.

Согласно схеме, строение уха состоит из 3 частей. Внешнее и среднее передают звуки ко внутреннему уху, где они преобразуются для обработки нервной системой в электрические импульсы. Таким образом, функции слухового анализатора делятся на звукопроводящие и звуковоспринимающие.

Внешнее, среднее и внутреннее ухо – это периферический отдел слухового анализатора. Внешняя часть уха состоит из ушной раковины и слухового прохода. Этот проход закрывает с внутренней стороны барабанная перепонка. Слуховой анализатор строение и функции которого включают периферический отдел слухового анализатора, выполняет роль акустической антенны.

Звуковые волны собираются в части внешнего уха, которая называется ушная раковина и по ушному проходу достигает барабанной перепонки, заставляя ее вибрировать. Таким образом, внешнее ухо является резонатором, что усиливает звуковые колебания.

Барабанная перепонка – это конец внешнего уха. Дальше начинается среднее, которое сообщается с носоглоткой посредством евстахиевых труб. Возрастные особенности слухового анализатора в том, что у новорожденных полость среднего уха заполнена амниотической жидкостью, которую к третьему месяцу сменяет воздух, что попадает сюда через евстахиевы трубы. В полости среднего уха барабанная перепонка соединяется при помощи цепи из трех слуховых косточек с другой перепонкой, называемой овальным окном. Она закрывает полость внутреннего уха.

Первая косточка, молоточек, вибрируя под действием барабанной перепонки, передает эти колебания наковальне, которая заставляет колебаться стремечко, что давит на овальное окно в улитке. Основание стремечка оказывает механическое давление, усиленное в десятки раз, на овальное окно, в результате чего перилимфа в улитке начинает колебаться. Помимо овального окошка, существует круглое, которое также отделяет полость среднего уха и внутреннего уха.

Соотношение барабанной перепонки к поверхности овального окошка составляет 20:1, что позволяет усилить звуковые колебания в двадцать раз. Это надо для того, чтобы для колебания жидкости во внутреннем ухе нужно гораздо больше энергии, чем для колебания воздуха в среднем.

Внутреннее ухо

Во внутреннем ухе представлены два различных органа – слуховой и вестибулярный анализаторы. Благодаря этому схематически строение внутреннего уха предусматривает наличие:

  • преддверия;
  • полукруглых каналов (отвечают за координацию);
  • улитки (отвечает за слух).

Оба анализатора имеют сходные морфологические и физиологические свойства. Среди них – волосковые клетки и механизм передачи информации к головному мозгу.

Различение звуковых частот начинается в улитке внутреннего уха. Она устроена так, что разные ее части реагируют на различную высоту звуковых колебаний. Высокие ноты колеблют одни части базилярной мембраны улитки, низкие – другие.

В базилярной мембране располагаются волосковые клетки, на верхушке которых расположены целые пучки стереоцилий, которые отклоняются расположенной сверху мембраной. Волосковые клетки превращают механические вибрации в электрические сигналы, которые по слуховому нерву идут к стволу головного мозга. Таким образом, проводниковый отдел слухового анализатора представлен волокнами слухового нерва. Поскольку каждая волосковая клетка имеет свое место в базилярной мембране, каждая клетка передает в мозг звук другой тональности.

Структура улитки

Улитка является «слышащей» частью внутреннего уха, что размещается в височной части черепа. Она получила свое название благодаря спиральной форме, напоминающую ракушку улитки.

Состоит улитка из трех каналов. Два из них, scala tympani и scala vestibule, заполнены жидкостью, называемой перилимфа. Взаимодействие между ними происходит с помощью маленького отверстия, что именуется helicotrema. Кроме того, между scala tympani и scala vestibuli расположены с внутренней стороны нейроны спирального ганглия и волокна слухового нерва.

Третий канал, scala media, расположен между scala tympani и scala vestibule. Он наполнен эндолимфой. Между scala media и scala tympani на базилярной мембране находится структура, что называется Кортиев орган.

Каналы улитки состоят из двух разновидностей жидкости, перилимфы и эндолимфы. Перилимфа имеет тот же ионный состав, что и внеклеточная жидкость в любой другой части тела. Она наполняет scala tympani и scala vestibule. Эндолимфа, заполняющая scala media, имеет уникальный состав, предназначенный только для этой части тела состав. Прежде всего, она очень богата калием, который вырабатывается в stria vascularis и очень бедна натрием. Также в ней практически отсутствует кальций.

Эндолимфа имеет позитивный электрический потенциал (+80 mV) по отношению к перилимфе, богатой натрием. Кортиев орган в верхней части, где расположены стереоцилии, смачивается эндолимфой, у основания клеток – перилимфой.

Таким методом улитка способна провести очень сложный анализ звуков, как по их частоте, так и по громкости. Когда давление звуков передается к жидкости внутреннего уха стремечком, давление волн деформирует базилярную мембрану в той области канала улитки, которая отвечает за эти вибрации. Таким образом, более высокие ноты вынуждают колебаться основание улитки, а низкие ноты – ее вершину.

Доказано, что человеческая улитка способна воспринимать звуки различной тональности. Их частота может изменяться в диапазоне от 20 Гц до 20000 Гц (приблизительно 10-я октава), с шагом в 1/230 октавы (от 3 Гц до 1 тыс. Гц). На частоте 1 тыс. Гц, улитка способна зашифровать давление звуковых волн в диапазоне между 0 дБ и 120 дБ.

Слуховой кортекс

Кроме уха и слухового нерва слуховой анализатор включает в себя головной мозг. Звуковая информация анализируется в мозгу в разных центрах, по мере того, как сигнал направляется в верхнюю височную извилину головного мозга. Это слуховой кортекс, который выполняет обрабатывающую звук функцию слухового анализатора человека. Здесь находится огромное количество нейронов, каждый их которых исполняют свою задачу. Например, есть нейроны, что:

  • реагируют на чистые тона (звуки флейты);
  • распознают сложные тона (звуки скрипки);
  • отвечают за длинные звуки;
  • реагируют на короткие звуки;
  • отвечают на изменения громкости звуков.

Есть и такие нейроны, что могут отвечать за сложные звуки, например, определять музыкальный инструмент или слово речи. Связи между слуховым и речедвигательным анализаторами позволяют изучать человеку иностранные языки.

Звуковая информация обрабатывается в различных областях звукового кортекса в обоих полушариях головного мозга. У большинства людей левая сторона мозга отвечает за восприятие и воспроизведение речи. Поэтому повреждение левого слухового кортекса при инсульте может привести к тому, что человек хоть и будет слышать, но не сможет понимать речь.

Первичный путь

Звуковая информация собирается в мозгу двумя проводящими путями слухового анализатора:

  • Первичный слуховой путь, который передает сообщения исключительно от улитки.
  • Непервичный слуховой путь, который также называют ретикулярный сенсорный путь. Он передает сообщения от всех органов чувств.

Первичный путь является коротким и очень быстрым, поскольку скорость передачи импульсов обеспечивают волокна с толстым слоем миелина. Этот путь заканчивается в слуховом кортексе головного мозга, что расположен в боковой борозде височной части головного мозга.

Первичные проводящие пути слухового анализатора проводят нервные импульсы от звукочувствительных клеток улитки. При этом в каждом конечном пункте звена передачи происходит расшифровка и интеграция нервных импульсов ядерными клетками улитки.

Первое переключательное ядро первичного слухового пути находится в улиточных ядрах, что располагается в стволе головного мозга. Нервные импульсы идут по спиральным ганглиарным аксонам типа 1. На этом уровне переключения происходит расшифровка нервных звуковых сигналов, которые характеризуют продолжительность, интенсивность и частоту звука.

Второе и третье переключательные ядра первичного слухового пути играют значительную роль в определении местоположения источника звука. Второе переключательное ядро в стволе головного мозга носит название комплекс верхних олив. На этом уровне большинство синапсов слухового нерва перешли центральную линию. Третье переключательное ядро располагается на уровне среднего мозга.

И, наконец, четвертое переключательное ядро находится в таламусе. Здесь происходит значительная интеграция звуковой информации, и происходит подготовка к моторной реакции (например, произнесение звуков в ответ).

Последний нейрон первичного пути связывает таламус и слуховой кортекс головного мозга. Здесь сообщение, большая часть которого была расшифрована по дороге сюда, распознается, запоминается и интегрируется для дальнейшего произвольного использования.

Непервичные пути

Из ядер улитки небольшие нервные волокна проходят в ретикулярную формацию головного мозга, где звуковые сообщения объединяются с нервными сообщениями, которые поступают сюда от других органов чувств. Следующий пункт переключения – это неспецифические ядра таламуса, после которых этот слуховой путь завершается в полисенсорном ассоциативном кортексе.

Главная функция этих слуховых путей – выработка нервных сообщений, которые подлежат приоритетной обработке. Для этого они соединяются с центрами мозга, отвечающими за чувство бодрствования и мотивации, а также с вегетативной нервной и эндокринной системами. Например, если человек делает сразу два дела, читает книгу и слушает музыку, эта система направит внимание на более важную работу.

Первый передаточный пункт непервичного слухового пути, так же как и первичного, расположен в улиточных ядрах ствола мозга. Отсюда небольшие волокна присоединяются к ретикулярному пути ствола мозга. Здесь, а также в среднем мозгу расположены несколько синапсов, где слуховая информация обрабатывается и интегрируется с информацией от других органов чувств.

При этом информация фильтруется по первичному приоритету. Другими словами, роль ретикулярной формации мозга в том, чтобы подключить к обрабатываемой звуковой информации нервные сообщения из других центров (бодрствования, мотивации), чтобы произошел отбор нервных сообщений, которые будут обрабатываться в мозгу в первую очередь. После ретикулярной формации, непервичные пути ведут к неспецифическим центрам в таламусе, а дальше в полисенсорный кортекс.

Необходимо понимать, что сознательное восприятие требует интеграции обоих типов слуховых нервных путей, первичного и непервичного. Например, во время сна, первичный слуховой путь функционирует нормально, но сознательное восприятие невозможно, поскольку связь между ретикулярным путем и центрами бодрствования и мотивации не активизирован.

И, наоборот, в результате травмы, повредившей кортекс, сознательное восприятие звуков может быть затруднено, тогда как продолжающееся интегрирование непервичных слуховых путей может привести к реакциям на звук вегетативной нервной системы. Кроме того, если ствол головного мозга и средний мозг остались целы, реакция испуга и удивления может оставаться, даже при отсутствии понимания значения звуков.

Звуковые волны представляют собой вибрации, с определенной частотой передающиеся во всех трех средах: жидкой, твердой и газообразной. Для восприятия и анализа их человеком существует орган слуха - ухо, которое состоит из наружной, средней и внутренней частей, способное получать информацию и передавать ее к головному мозгу для обработки. Этот принцип работы в организме человека сходен с характерным для глаз. Строение и функции зрительного и слухового анализаторов похожи между собой, разница в том, что слух не смешивает звуковые частоты, воспринимает их отдельно, скорее, даже разделяя разные голоса и звуки. В свою очередь, глаза соединяют световые волны, получая при этом разные цвета и оттенки.

Слуховой анализатор, строение и функции

Фотографии основных отделов человеческого уха вы можете увидеть в этой статье. Ухо - основной орган слуха у человека, оно принимает звук и передает его дальше в мозг. Строение и функции слухового анализатора гораздо шире возможностей одного только уха, это слаженная работа передачи импульсов от барабанной перепонки к стволовым и корковым отделам головного мозга, отвечающими за обработку полученных данных.

Орган, отвечающий за механическое восприятие звуков, состоит из трех основных отделов. Строение и функции отделов слухового анализатора различны между собой, но выполняют одну общую работу - восприятие звуков и передача их в мозг для дальнейшего анализа.

Наружное ухо, его особенности и анатомия

Первое, что встречает звуковые волны на пути к восприятию их смысловой нагрузки, это Анатомия его довольно проста: это ушная раковина и наружный слуховой проход, который является связующим звеном между ним и средним ухом. Сама ушная раковина состоит из хрящевой пластины толщиной 1 мм, покрытой надхрящницей и кожей, она лишена мышечной ткани и не может двигаться.

Нижняя часть раковины - мочка уха, это жировая клетчатка, покрытая кожей и пронизанная множеством нервных окончаний. Плавно и воронкообразно раковина переходит в слуховой проход, ограниченный козелком спереди и противокозелком сзади. У взрослого человека проход имеет 2,5 см в длину и 0,7-0,9 см в диаметре, он состоит из внутреннего и перепончато-хрящевого отделов. Ограничивается барабанной перепонкой, за которой начинается среднее ухо.

Перепонка представляет собой фиброзную пластину в форме овала, на поверхности которой можно выделить такие элементы, как молоточек, задняя и передняя складки, пупочек и короткий отросток. Строение и функции слухового анализатора, представленные такой частью, как наружное ухо и барабанная перепонка, отвечают за улавливание звуков, их первичную обработку и передачу далее к средней части.

Среднее ухо, его особенности и анатомия

Строение и функции отделов слухового анализатора кардинально отличаются друг от друга, и если с анатомией наружной части все знакомы не понаслышке, то изучению информации о среднем и внутреннем ухе стоит уделить больше внимания. Среднее ухо представляет собой четыре воздухоносные полости, соединенные между собой, и наковальню.

Главная часть, выполняющая основные функции уха - это совмещенная с носоглоткой слуховой трубой, через это отверстие происходит вентиляция всей системы. Сама полость состоит из трех камер, шести стенок и которая, в свою очередь, представлена молоточком, наковальней и стременем. Строение и функции слухового анализатора в области среднего уха преображают полученные от наружной части звуковые волны в механические колебания, после чего передают их жидкости, которая заполняет полость внутренней части уха.

Внутреннее ухо, его особенности и анатомия

Внутреннее ухо представляет самую сложную систему из всех трех отделов слухового аппарата. Оно выглядит как лабиринт, который находится в толще височной кости, и являет собой костную капсулу и включенное в нее перепончатое образование, которое полностью повторяет строение костного лабиринта. Условно все ухо делится на три основные части:

  • средний лабиринт - преддверие;
  • передний лабиринт - улитка;
  • задний лабиринт - три полукружных канала.

Лабиринт полностью повторяет строение костной части, а полость между двумя этими системами заполнена перилимфой, напоминающей по своему составу плазму и спинномозговую жидкость. В свою очередь, полости в самом заполнены эндолимфой, по составу сходной с внутриклеточной жидкостью.

Слуховой анализатор, функция рецепторов внутреннего уха

Функционально работа внутреннего уха делится на две основные функции: передача звуковых частот к мозгу и координация движений человека. Основную роль в передаче звука к отделам головного мозга выполняет улитка, разные части которой воспринимают колебания с различной частотой. Все эти вибрации принимает на себя базилярная мембрана, покрытая волосковыми клетками с пучками стереолиций на верхушке. Именно эти клетки превращают колебания в электрические импульсы, которые идут в головной мозг по слуховому нерву. Каждый волосок мембраны имеет разный размер и принимает звук только строго определенной частоты.

Принцип работы вестибулярного аппарата

Строение и функции слухового анализатора не ограничиваются одним лишь восприятием и переработкой звуков, он играет важную роль во всей двигательной активности человека. За работу вестибулярного аппарата, от которого зависит координация движений, отвечают жидкости, которыми заполнена часть внутреннего уха. Основную роль здесь играет эндолимфа, она работает по принципу гироскопа. Малейший наклон головы приводит ее в движение, она, в свою очередь, заставляет двигаться отолиты, которые раздражают волоски реснитчатого эпителия. С помощью сложных нейронных связей вся эта информация передается в отделы мозга, дальше уже начинается его работа по координации и стабилизации движений и равновесия.

Принцип слаженной работы всех камер уха и головного мозга, преображение звуковых колебаний в информацию

Строение и функции слухового анализатора, кратко изучить которые можно выше, направлены не просто на улавливание звуков определенной частоты, а на их преобразование в информацию, понятную сознанием человека. Вся работа по превращению состоит из следующих основных этапов:

  1. Улавливание звуков и их движение по слуховому проходу, стимулирующие барабанную перепонку к колебанию.
  2. Вибрация трех слуховых косточек внутреннего уха, вызванная колебаниями барабанной перепонки.
  3. Движение жидкости во внутреннем ухе и колебания волосовидных клеток.
  4. Преобразование колебаний в электрические импульсы для дальнейшей их передачи по слуховым нервам.
  5. Продвижение импульсов по слуховому нерву в отделы мозга и преобразование их в информацию.

Слуховой кортекс и анализ информации

Какой отлаженной и идеальной не была бы работа всех отделов уха, все было бы бессмысленно без функций и работы головного мозга, преобразующего все звуковые волны в информацию и руководство к действию. Первое, что встречает звук на своем пути, это слуховой кортекс, находящийся в верхней височной извилине головного мозга. Здесь находятся нейроны, которые отвечают за восприятие и разделение всех диапазонов звука. Если в силу каких-либо повреждений головного мозга, например инсульта, повреждаются эти отделы, то человек может стать слабослышащим или вовсе потерять слух и возможность к восприятию речи.

Возрастные изменения и особенности в работе слухового анализатора

С увеличением возраста человека изменяется работа всех систем, строение, функции и возрастные особенности слухового анализатора не являются исключением. У людей в возрасте часто наблюдается снижение слуха, которое принято считать физиологическим, т. е. нормальным. Это не считается заболеванием, а лишь возрастным изменением под названием персбиакузис, которое не надо лечить, а можно лишь скорректировать с помощью специальных слуховых аппаратов.

Выделяют целый ряд причин, по которым возможно снижение слуха у людей, достигших определенного возрастного порога:

  1. Изменения в наружном ухе - истончение и дряблость ушной раковины, сужение и искривление слухового прохода, потеря его способности к передаче звуковых волн.
  2. Утолщение и помутнение барабанной перепонки.
  3. Снижение подвижности системы косточек внутреннего уха, закостенелость их суставов.
  4. Изменения в отделах головного мозга, отвечающих за переработку и восприятие звуков.

Помимо обычных функциональных изменений у здорового человека, проблемы могут усугубляться осложнениями и последствиями перенесенных отитов, они могут оставлять шрамы на барабанной перепонке, которые провоцируют проблемы в будущем.

После того как ученые-медики изучили такой важный орган, как слуховой анализатор (строение и функции), глухота, вызванная возрастом, перестала быть глобальной проблемой. Слуховые аппараты, направленные на улучшение и оптимизацию работы каждого из отделов системы, помогают пожилым людям жить полноценной жизнью.

Гигиена и уход за органами слуха человека

Чтобы сохранить уши здоровыми, за ними, как и за всем телом, нужен своевременный и аккуратный уход. Но, как это ни парадоксально, в половине случаев проблемы возникают именно из-за чрезмерного ухода, а не из-за его недостатка. Основная причина - неумелое орудование ушными палочками или другими средствами для механической очистки скопившейся серы, задевание барабанной перегородки, ее царапины и возможность случайной перфорации. Во избежание подобных травм следует очищать лишь наружную часть прохода, не используя при этом острые предметы.

Для сохранения слуха в будущем лучше придерживаться правил безопасности:

  • Ограниченное прослушивания музыки с использованием наушников.
  • Использование специальных наушников и берушей при работе на шумных предприятиях.
  • Защита от попадания воды в уши во время плавания в бассейне и водоемах.
  • Профилактика отитов и простудных заболеваний ушей в холодное время года.

Понимание принципов работы слухового анализатора, соблюдение правил гигиены и безопасности дома или на работе помогут сохранить слух и не столкнуться с проблемой его потери в будущем.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Слуховой анализатор

1.1 Рецепция звуковых раздражений

1.2 Функция звукопроводящего аппарата уха

1.3 Внутреннее ухо

2. Резонансная теория слуха

3. Проводящие пути слухового анализатора

4. Корковый отдел слухового анализатора

5. Анализ и синтез звуковых раздражений

6. Факторы, определяющие чувствительность слухового анализатора

Заключение

Список литературы

Введение

Органами чувств, или анализаторами, называются приборы, посредством которых нервная система получает раздражения от внешней среды, а также от органов самого тела и воспринимает эти раздражения в виде ощущений. слуховой анализатор ухо

Показания органов чувств являются источниками представлений об окружающем нас мире.

Процесс чувственного познания совершается у человека и животного по шести каналам: осязание, слух, зрение, вкус, обоняние, земное тяготение. Шесть органов чувств дают многообразную информацию об окружающем объективном мире, которая отражается в сознании в виде субъективных образов -- ощущений, восприятий и представлений памяти.

Живая протоплазма обладает раздражимостью и способностью отвечать на раздражение. В процессе филогенеза эта способность особенно развивается у специализированных клеток покровного эпителия под влиянием внешних раздражений и клеток кишечного эпителия под влиянием раздражения пищей. Специализированные клетки эпителия уже у кишечнополостных оказываются связанными с нервной системой. В некоторых участках тела, например на щупальцах, в области рта, специализированные клетки, обладающие повышенной возбудимостью, образуют скопления, из которых возникают простейшие органы чувств. В дальнейшем в зависимости от положения этих клеток происходит их специализация по отношению к раздражителям. Так, клетки ротовой области специализируются к восприятию химических раздражений (обоняние, вкус), клетки на выступающих частях тела -- к восприятию механических раздражений (осязание) и т. д.

Развитие органов чувств обусловлено значением их для приспособления к условиям существования. Например, собака тонко воспринимает запах ничтожных концентраций органических кислот, выделяемых телом животных (запах следов), и плохо разбирается в запахе растений, которые не имеют для нее биологического значения.

Возрастание тонкости анализа внешнего мира обусловлено не только усложнением строения и функции органов чувств, но прежде всего усложнением нервной системы. Особенное значение для анализа внешнего мира приобретает развитие головного мозга (особенно его коры), отчего Ф. Энгельс называет органы чувств «орудиями мозга». Возникающие в силу тех или иных раздражений нервные возбуждения воспринимаются нами в форме различных ощущений.

Для возникновения ощущений необходимы: приборы, воспринимающие раздражение, нервы, по которым передается это раздражение, и мозг, где оно превращается в факт сознания. Весь этот аппарат, необходимый для возникновения ощущения, И. П. Павлов назвал анализатором. «Анализатор -- это такой прибор, который имеет своей задачей разлагать сложность внешнего мира на отдельные элементы».

1. Слуховой анализатор

В процессе эволюции у животных образовался сложный по структуре и функции слуховой анализатор. Слух - это способность животных воспринимать и анализировать звуковые волны.

К периферическому отделу слухового анализатора относятся: 1. Звукоулавливающий аппарат - наружное ухо, 2. Звукопередающий - среднее ухо, 3. Звуковоспринимающий аппарат - внутреннее ухо (улитка с кортиевым органом).

1.1 Рецепция звуковых раздражений

Орган слуха. У большинства беспозвоночных нет специальных тонорецепторов, чувствительных только к звуковым колебаниям. Однако у насекомых описаны специфические слуховые органы; они могут быть расположены в различных местах тела и состоят из тонкой натянутой перепонки, отделяющей наружный воздух от слуховой полости. С внутренней стороны перепонки находятся слуховые рецепторные клетки. При помощи этих органов некоторые насекомые могут воспринимать звуки очень большой частоты до 40 и даже до 90 тысяч колебаний в секунду.

У низших позвоночных периферический слуховой орган вместе с вестибулярным аппаратом дифференцируется из переднего конца органа боковой линии, рецепторы которого воспринимают колебания водной среды. Ослепленная щука при условии сохранения органа боковой линии схватывает проплывающую мимо рыбу и передвигается, не натыкаясь на встречные предметы, которые отражают колебания воды, производимые движениями щуки. Колебания боль частоты воспринимаются только развившимся из переднего конца органа боковой линии мешочком и его слепым выростом, получившим название лагены (lagena). У амфибий (и особенно у рептилий) ближе к основанию лагены появляется особый слуховой участок-- натянутая перепонка, состоящая из параллельно расположенных соединительнотканных волоконец. У млекопитающих за счет разрастания этого участка слепой вырост резко удлиняется. Изгибаясь, он принимает форму раковины улитки с различным у разных животных числом витков. Отсюда и название этого органа-- улитка. Ухо как периферический орган слухового анализатора состоит не только из рецепторного аппарата, скрытого в толще височной кости и образующего вместе с вестибулярным аппаратом, так называемое внутреннее ухо. Существенное значение имеют те части уха, которые связаны с улавливанием звуков и их проведением к рецепторному аппарату.

Звукопроводящий аппарат всех наземных животных -- это среднее ухо, или барабанная полость, которая образовалась за счет передней жаберной щели. Уже у рептилий в этой полости находится слуховая косточка, облегчающая передачу звуковых колебаний. У млекопитающих имеются три сочлененные между собой косточки, способствующие увеличению силы звуковых колебаний. Звукоулавливающий аппарат, или наружное ухо, состоит из наружного слухового прохода и ушной раковины, которая впервые появляется у млекопитающих. У многих из них она подвижна, что позволяет направлять ее в сторону появления звуков и тем самым лучше их улавливать.

1.2 Функция звукопроводящего аппарата уха

Барабанная полость (рис. 1) сообщается с наружным воздухом через особый канал -- слуховую, или евстахиеву трубу, наружное отверстие которой находится в стенке носоглотки. Обычно оно закрыто, но в момент глотания раскрывается. При резком изменении атмосфер давления, например при спуске в глубокую шахту, при подъёме или приземлении самолета, может возникнуть значительная разница между давлением наружного воздуха и давлением воздуха в барабанной полости, что вызывает неприятные ощущения, а иногда и повреждение барабанной перепонки. Раскрытие отверстия слуховой трубы способствует выравниванию давления, а потому при изменении давления наружного воздуха рекомендуют производить частые глотательные движения.

Рис. 1. Полусхематическое изображение среднего уха:

1-- наружный слуховой проход; 2-- барабанная полость; 3 -- слуховая труба; 4 -- барабанная перепонка; 5 -- молоточек; 6 -- наковальня; 7 -- стремя; 8 -- окно преддверия (овальное); Я -- окно улитки (круглое); 10-- костная ткань.

Внутри барабанной полости находятся три слуховые косточки -- молоточек, наковальня и стремя, соединенные между собой суставами. Среднее ухо отделено от наружного барабанной перепонкой, а от внутреннего -- костной перегородкой с двумя отверстиями. Одно из них называется овальным окном или окном преддверия. К его краям при помощи эластично кольцевой связки прикреплено основание стремени. Другое отверстие -- круглое окно, или окно улитки-- затянуто тонкой соединительнотканной мембраной. Воздушные звуковые волны, попадая в слуховой проход, вызывают колебания барабанной перепонки, которое через систему слуховых косточек, а также через воздух, находящийся в среднем ухе, передаются перилимфе внутреннего уха. Сочлененные между собой слуховые косточки можно рассматривать как рычаг первого рода, длинное плечо которого соединено с барабанной перепонкой, а короткое укрепление в овальном окне. При передаче движения с длинного на короткое плечо происходит уменьшение размаха (амплитуды) за счет увеличения развиваемой силы. Значительное увеличение силы звуковых колебаний происходит еще и потому, что поверхность основания стремени во много раз меньше поверхности барабанной перепонки. В целом сила звуковых колебаний увеличивается, по крайней мере, в 30--40 раз. При мощных звуках вследствие сокращения мышц барабанной полости увеличивается напряжение барабанной перепонки и уменьшается подвижность основания стремени, что ведет к понижению силы передаваемых колебаний.

Полное удаление барабанной перепонки лишь снижает слух, но не ведет к его потере. Это объясняется тем, что существенную роль в передаче звуковых колебаний играет мембрана круглого окна, которая воспринимает колебания воздуха, находящегося в полости среднего уха.

1.3 Внутреннее ухо

Внутреннее ухо представляет собой сложную систему каналов, находящихся в пирамиде височной кости и получивших название костного лабиринта. Расположенные в нем улитка и вестибулярный аппарат образуют перепончатый лабиринт (рис. 2). Пространство между стенками костного и перепончатого лабиринтов заполнено жидкостью -- перилимфой. К слуховому анализатору относится только передняя часть перепончатого лабиринта, которая расположена внутри костного канала улитки и вместе с ним образует два с половиной оборота вокруг костного стержня (рис. 3). От костного стержня внутрь канала отходит отросток в виде винтообразной спиральной пластинки, широкой у основания улитки и постепенно суживающейся к ее вершине. Эта пластинка не доходит до противоположной, наружной стенки канала. Между пластинкой и наружной стенкой расположена улитковая часть перепончатого лабиринта, вследствие чего весь канал оказывается раз на два этажа, или прохода.

Один из них сообщается с преддверием костного лабиринта и называется лестницей преддверия, другой начинается от окна улитки, граничащего с барабанной полостью, и называется лестницей барабана. Оба прохода сообщаются только в верхнем, узком конце улитки.

На поперечном разрезе улитковая часть перепончатого лабиринта имеет форму вытянутого треугольника. Его нижняя сторона, граничащая с лестницей барабана, образована основной пластинкой, которая состоит из погруженных в гомогенную массу тончайших эластических соединительнотканных волокон, натянутых между свободным краем спиральной костной пластинки и наружной стенкой канала улитки. Верхняя сторона треугольника граничит с лестницей преддверия, отходя под острым углом от верхней поверхности спиральной костной пластинки и направляясь, как и основная пластинка, к наружной стенке канала улитки. Третья, самая короткая сторона треугольника состоит из соединительной ткани, плотно сращенной с наружной стенкой костного канала.

Рис. 2. Общая схема костного и находящегося в нем перепончатого лабиринта:

1 -- кость; 2 -- полость среднего уха; 3 --стремя;4 -- окно преддверия; 5-- окно улитки; 6 -- улит; 7 и 8 -- отолитовый аппарат (7 -- саккулус или круглый мешочек; 8 -- утрикулус, или овальный мешочек); 9, 10 и 11 -- полукружные каналы 12 -- пространство между костным и перепончатым лабиринтами, заполненное перилимфой.

Рис. 3. Схематическое изображение улитки внутреннего уха:

А -- костный канал улитки;

В -- схема поперечного разреза части улитки; -- костный стержень;2 -- спиральная костная пластинка; 3 -- волокна улиткового нерва;4 -- скопление тел первого нейрона слухового проводящего пути; 5 -- лестница преддверия; 6--лестница барабана; 7-- улитковая часть перепончатого лабиринта;8 -- кортиев орган; 9 -- основная пластинка.

Функция кортиева органа.

Рецепторный аппарат слухового анализатора, или спиральный кортиев орган, расположен внутри улитковой части перепончатого лабиринта на верхней поверхности основной пластинки (рис. 4). Вдоль внутренней части основной пластинки, на некотором расстоянии друг от друга, расположены два ряда столбовых клеток, которые, соприкасаясь своими верх концами, отграничивают свободное треугольное пространство, или тоннель. По обе стороны от него находятся чувствительные к звуковым колебаниям смеховые, или волосковые, клетки, каждая из которых на своей верхней свободной поверхности имеет 15--20 небольших тончайших волосков. Концы волосков погружены в покровную пластинку, она укреплена на костной спиральной пластинке и свободным концом покрывает кортиев орган. Волосковые клетки расположены кнутри от тоннеля в один ряд, а кнаружи--в три ряда. От основной пластинки они отделены опорными клетками.

К основаниям волосковых клеток подходят конечные разветвления волокон биполярных нервных клеток, тела которых расположено в центральном канале костного стержня улитки, где они об так называемый спиральный узел, гомологичный межпозвоночный узлу спинномозговых нервов. Каждая из трех с пол тысяч внутренних волосковых клеток связана с одной, а иногда и с двумя отдельными нервными клетками. Наружные волокна клетки, количество которых достигает 15--20 тысяч, могут быть соединены и с несколькими нервными клетками, но при этом каждое нервное волокно дает ответвления только к волосковым клеткам одного и того же ряда.

Перилимфа, окружающая перепончатый аппарат улитки, испытывает давление, которое и меняется соответственно частоте, силе и форме звуковых колебаний. Изменения давления вызывают колебания основной пластинки вместе с расположенными на ней клетками, волоски которых испытывают при этом изменения давления со стороны покровной пластинки. Это, по-видимому, и ведет к воз возбуждения в волосковых клетках, которое передает на конечные разветвления нервных волокон.

Рис. 4. Схема строения кортиева органа:

1 -- основная пластинка; 2 -- костная спиральная пластинка; 3 -- спиральный канал; 4 -- нервные волокна; 5 -- столбовые клетки, образующие тоннель(6); 7 -- слуховые, или волосковые, клетки; 8 -- опорные клетки; 9-- покровная пластинка.

2. Резонансная теория слуха

Среди различных теорий, объясняющих механизм периферического анализа звуков, наиболее обоснованной следует считать резонансную теорию, предложенную Гельмгольцем в 1863 году. Если около открытого рояля воспроизвести музыкальным инструментом или голосом звук определенной высоты, то начнет резонировать, т. е. звучать в ответ, струна, настроенная на тот же самый тон. Изучая структурные особенности основной пластинки улитки, Гельмгольц пришел к выводу, что звуковые волны, приходящие из окружающей среды, вызывают колебания поперечных волокон пластинки по принципу резонанса.

Всего насчитывают в основной пластинке около 24 000 поперечных эластических волокон. Они различны по длине и степени натянутости: самые короткие и сильнее натянутые расположены у основания улитки; чем ближе к ее вершине, тем они длиннее и слабее натянуты. Согласно резонансной теории, различные участки основ пластинки реагируют колебанием своих волокон на звуки разной высоты. Такое представление подтвердилось опытами Л.А. Анд. После выработки у собак условных рефлексов на чистые тоны различной высоты улитку одного уха он полностью удалял, а улитку другого подвергал частичному повреждению. В зависимости от того, какой участок кортиева органа второго уха был поврежден, наблюдалось исчезновение ранее выработанных положительных и отрицательных условных рефлексов на звуки определенной частоты колебаний.

При разрушении кортиева органа ближе к основанию улитки исчезали условные рефлексы на высокие тоны. Чем ближе к верхушке локализовалось повреждение, тем ниже были тоны, утратившие значение условных раздражителей.

3. Проводящие пути слухового анализатора

Первый нейрон проводящих путей слухового анализатора -- упомянутые выше клетки, аксоны которых образуют улитковый нерв. Волокна этого нерва входят в продолговатый мозг и оканчиваются в ядрах, где расположены клетки второго нейрона проводящих путей. Аксоны клеток второго нейрона доходят до внутреннего коленчатого тела, главным образом противоположной стороны. Здесь начинается третий нейрон, по которому импульсы достигают слуховой области коры больших полушарий (рис. 5). Помимо основного, проводящего пути, связывающего периферический отдел слухового анализатора с его центральным, корковым отделом, существуют и другие пути, через которые могут осуществляться рефлекторные реакции на раздражение органа слуха у животного и после удаления больших полушарий.

Особое значение имеют ориентировочные реакции на звук. Они осуществляются при участии четверохолмия, к задним и отчасти передним буграм, которые идут коллатерали волокон, направляющихся к внутреннему коленчатому телу.

Рис. 5. Схема проводящих путей слухового анализатора:

1 -- рецепторы кортиева органа; 2 -- тела биполярных нейронов; 3 -- улитковый нерв; 4 -- ядра продолговатого мозга, где расположены тела второго нейрона проводящих путей; 5 -- внутреннее коленчатое тело, где начинается третий нейрон основных проводящих путей; 6 -- верхняя поверхность височной доли коры больших полушарий (нижняя стенка поперечной щели), где оканчивается третий нейрон; 7 -- нервные волокна, связывающие оба внутренних коленчатых тела; 8 -- задние бугры четверохолмия; 9 -- начало эфферентных путей, идущих от четверохолмия.

4. Корковый отдел слухового анализатора

У человека ядро коркового отдела слухового анализатора расположено в височной, области коры больших, полушарий. В той части поверхности височной области, которая представляет собой нижнюю стенку поперечной, или сильвиевой щели, расположено поле 41. К нему, а возможно и к соседнему полю 42, направляется основная масса волокон от внутреннего коленчатого тела. Наблюдения показали, что при разрушении указанных полей наступает полная глухота. Однако в тех случаях, когда поражение ограничивается одним полу, может наступить небольшое и нередко лишь временное понижение слуха. Это объясняется тем, что проводящие пути слухового анализатора неполностью перекрещиваются. К тому же оба внутренних коленчатых тела связаны между собой промежуточными нейронами, через которые импульсы могут переходить с правой стороны на левую и обратно. В результате корковые клетки каждого полушария получают импульсы с обоих кортиевых органов.

От коркового отдела слухового анализатора идут эфферентные пути к нижележащим отделам мозга, и прежде всего к внутреннему коленчатому телу и к задним буграм четверохолмия. Через них осуществляются корковые двигательные рефлексы на звуковые раздражители. Путем раздражения слуховой области коры можно вызвать у животного ориентировочную реакцию настораживания (движения ушной раковины, поворот головы и т. п.).

5 . Анализ и синтез звуковых раздражений

Анализ звуковых раздражений начинается в периферическом отделе слухового анализатора, что обеспечивается особенностями строения улитки, и прежде всего основной пластинки, каждый участок которой колеблется в ответ на звуки только определенной высоты.

Высший анализ и синтез звуковых раздражений, основанный на образовании положительных и отрицательных условных связей, происходит в корковом отделе анализатора. Каждый звук, воспринимаемый кортиевым органом, приводит в состояние возбуждения определенные клеточные группы поля 41 и соседних с ним полей. Отсюда возбуждение распространяется в другие пункты коры больших полушарий, особенно в поля 22 и 37. Между различными клеточными группами, которые повторно приходили в состояние возбуждения под влиянием определённого звукового раздражения или комплекса последовательных звуковых раздражений, устанавливая все более прочные условные связи. Они устанавливаются также между очагами возбуждения в слуховом анализаторе и теми очагами, которые одновременно возникают под влиянием раздражителей, действующих на другие анализаторы. Так образуются все новые и новые условные связи, обогащающие анализ и синтез звуковых раздражений.

В основе анализа и синтеза звуковых речевых раздражений лежит установление условных связей между очагами возбуждения, которые возникают под влиянием непосредственных раздражителей, действующих на различные анализаторы, и теми очагами, которые вызываются звуковыми речевыми сигналами, обозначающими эти раздражители. Так называемый слуховой центр речи, т. е. тот участок слухового анализатора, функция которого связана с речевым анализом и синтезом звуковых раздражений, иными словами, с пониманием слышимой речи, расположен в основном в левом поле и занимает задний конец поля и прилегающий участок поля.

6. Факторы, определяющие чувствительность слухового анализатора

Ухо человека особенно чувствительно к частоте звуковых и - колебаний от 1030 до 4000 в секунду. Чувствительность к более высоким и более низким звукам значительно падает, особенно с приближением к нижнему и верхнему пределам воспринимаемых частот. Так, для звуков, частота колебаний которых приближается к 20 или к 20 000 в секунду, порог повышается в 10 000 раз, если определять силу звука по производимому им давлению. С возрастом чувствительность слухового анализатора, как правило, значительно понижается, но главным образом к звукам большой частоты, к низким же (до 1000 колебаний в секунду) остается почти неизменным вплоть до старческого возраста.

В условиях полной тишины чувствительность слуха повышается. Если же начинает звучать тон определенной высоты и неизменной интенсивности, то вследствие адаптации к нему ощущение громкости снижается сначала быстро, а потом все более медленно. Однако, хотя и в меньшей степени, понижается чувствительность к звукам, более или менее близким по частоте колебаний к звучащему тону. Однако обычно адаптация не распространяется на весь диапазон воспринимаемых звуков. По прекращении звука, вследствие адаптации к тишине уже через 10--15 секунд восстанавливается прежний уровень чувствительности.

Частично адаптация зависит от периферического отдела анализатора, а именно от изменения, как усиливающей функции звукового аппарата, так и возбудимости волосковых клеток кортиева органа. Центральный отдел анализатора также принимает участие в явлениях адаптации, о чем свидетельствует хотя бы тот факт, что при действии звука только на одно ухо сдвиги чувствительности наблюдаются в обоих ушах. На чувствительность слухового анализатора, и в частности на процесс адаптации, оказывают влияние изменения корковой возбудимости, которые возникают в результате как иррадиации, так и взаимной индукции возбуждения и торможения при раздражении рецепторов других анализаторов.

Изменяется чувствительность и при одновременном действии двух тонов разной высоты. В последнем случае слабый звук заглушается более сильным главным образом потому, что очаг возбуждения, возникает в коре под влиянием сильного звука, понижает вследствие отрицательной индукции возбудимость других участков коркового отдела того же анализатора.

Длительное воздействие сильных звуков может вызвать запретное торможение корковых клеток. В результате чувствительность слухового анализатора резко понижается. Такое состояние сохраняется некоторое время после того, как прекратилось раздражение.

Заключение

Слуховой анализатор, совокупность механических, рецепторных и нервных структур, деятельность которых обеспечивает восприятие человеком и животными звуковых колебаний.

У высших животных, в том числе у большинства млекопитающих, слуховой анализатор состоит из наружного, среднего и внутреннего уха, слухового нерва и центральных отделов (кохлеарные ядра и ядра верхней оливы, задние бугры четверохолмия, внутреннее коленчатое тело, слуховая область коры головного мозга). Верхняя олива -- первое образование головного мозга, где конвергирует информация от обоих ушей. Волокна от правого и левого кохлеарных ядер идут на обе стороны. В слуховой анализатор имеются также нисходящие (эфферентные) проводящие пути, идущие от вышележащих отделов к нижележащим (вплоть до рецепторных клеток). В частотном анализе звуков существенное значение имеет улитковая перегородка-- своеобразный механический спектральный анализатор, функционирующий как ряд взаимно рассогласованных фильтров. Её амплитудно-частотные характеристики (АЧХ), т. е. зависимость амплитуды колебаний отдельных точек улитковой перегородки от частоты звука, впервые экспериментально измерены венгерским физиком Д. Бекеши и позднее уточнены с помощью Мёссбауэра эффекта.

К наружному уху относится ушная раковина и наружный слуховой проход. Ушная раковина рупообразной формы, подвижна, что дает возможность улавливать и сосредотачивать звук в слуховом проходе.

Наружный слуховой проход представляет собой слегка изогнутый, узкий канал. Железы слухового прохода выделяют секрет -"ушную серу”, предохраняющую барабанную перепонку от высыхания.

Барабанная перепонка отделяет наружное ухо от среднего. Она неправильной формы и неодинаково равномерно натянута, поэтому не имеет собственного периода колебаний, а колеблется в соответствии с длиной поступающей звуковой волны.

Среднее ухо включает слуховые косточку - молоточек, наковальню, чечевицеобразную косточку и стремечко. Эти косточки передают колебания барабанной перепонки на перепонку овального окна, расположенного на границе между средним и внутренним ухом.

Барабанная полость через слуховую (евстахиеву) трубу в носоглотке сообщается с наружным воздухом во время глотания. В результате чего выравнивается давление по обе стороны барабанной перепонки. При резком изменении внешнего давления в любую сторону изменяется натяжение перепонки и развивается состояние временной глухоты, которое устраняется глотательными движениями.

Внутреннее ухо состоит из костного и перепончатого лабиринтов. Перепончатый лабиринт располагается в костном. Имеющееся между ними пространство заполнено перилимфой, а перепончатый лабиринт заполнен эндолимфой. В лабиринте расположены два органа. Один из них, состоящий из преддверия и улитки выполняет слуховую функцию, а второй, состоящий из двух мешочков и трех полукружных каналов - функцию равновесия (вестибулярный аппарат).

слуховой анализатор ухо звуковой

Список литературы

1. http://slovari.yandex.ru/dict/bse/article/00072/11500.htm

2. http://analizator.ucoz.ru/index/0-7

3. http://works.tarefer.ru/10/100119/index.html

4. http://liceum.secna.ru/bl/projects/barnaul2007/borovkov/s_sens_sluh.html

5. http://meduniver.com/Medical/Anatom/513.html

6. http://www.analizator.ru/anatomy.php

7. http://ru.wikipedia.org/wiki/sens_sluh

8. Акаевский А.И. \ Анатомия домашних животных. Изд. 3-е, испр. И доп. М., «Колос», 1975. 592с. С ил. (Учебники и учеб. пособия для высш. с.-х. учеб. заведений).

9. Анатомия домашних животных\ И.В. Хрусталёва, Н.В. Михайлов, Я.И. Шнейберг и др.; Под. ред. И.В. Хрусталёвой. - 3-е изд., испр. - М.: КолосС, 2002. - 704с.:ил. - (Учебники и учеб. пособия для студентов высш. учеб. заведений).

10. Климов А.Ф., Акаевский А.Е. Анатомия домашних животных: Учебное пособие. 7-е изд., стер.- СПб.: Издательство «Лань», 2003.- 1040с.- (Учебники для вузов. Специальная литература).

Размещено на Allbest.ru

...

Подобные документы

    Понятие об анализаторах и их роль в познании окружающего мира. Строение и функции органа слуха человека. Структура звукопроводящего аппарата уха. Центральная слуховая система, переработка информации в центрах. Методы исследования слухового анализатора.

    курсовая работа , добавлен 23.02.2012

    Расположение и функции внешнего, среднего и внутреннего уха. Строение костного лабиринта. Основные уровни организации слухового анализатора. Последствия поражения кортиевого органа, слухового нерва, мозжечка, медиального коленчатого тела, пучка Грациоле.

    презентация , добавлен 11.11.2010

    Зона коры больших полушарий. Значение зрения. Строение глаза. Зрительный и слуховой анализатор. Рецепторы человека: зрительный, слуховой, тактильный, болевой, температурный, обонятельный, вкусовой, давления, кинетический, вестибулярный. Строение кожи.

    презентация , добавлен 16.05.2013

    Исследование остроты слуха у детей и взрослых. Функция слухового анализатора. Критерии частоты и силы (громкости) тонов. Периферический отдел слуховой сенсорной системы человека. Звукопроведение, звуковосприятие, слуховая чувствительность и адаптация.

    реферат , добавлен 27.08.2013

    Импедансометрия как метод исследования, который позволяет определить тонус и подвижность барабанной перепонки, цепи слуховых косточек, давление в среднем ухе. Цель и методики проведения тимпанометрии. Тест оценки вентиляционной функции слуховой трубы.

    презентация , добавлен 12.01.2017

    Схема отделов уха; расположение вестибулярного и слухового аппаратов. Распространение звуковой волны. Секреция эндо- и перилимфы внутреннего уха. "Струны" мембраны кортиевого органа. Предвокализационный рефлекс; сильный звук и реакция мышц среднего уха.

    презентация , добавлен 29.08.2013

    Физиология коры больших полушарий и слухового анализатора. Влияние электромагнитного излучения на кору больших полушарий. Взаимосвязь количества ошибок в ответ на неречевой звук с количеством минут, за которые студент использует мобильный телефон.

    курсовая работа , добавлен 20.07.2014

    Изучение строения сетчатки, чувствительность глаза к восприятию света. Бинокулярное и цветовое зрение. Слуховой анализатор, строение среднего и внутреннего уха. Вкусовой, обонятельный, тактильный и температурный анализаторы, их характеристика и значение.

    реферат , добавлен 23.06.2010

    Понятие и функции органов чувств как анатомических образований, воспринимающих энергию внешнего воздействия, трансформирующих ее в нервный импульс и передающих этот импульс в мозг. Строение и значение глаза. Проводящий путь зрительного анализатора.

    презентация , добавлен 27.08.2013

    Наружное ухо: части, иннервация и кровоснабжение. Наружный слуховой проход: костная и хрящевая части, изгибы, щели. Улитка, улитковый проток, спиральный орган: строение и функция. Проводящие пути и центры слухового анализатора. Лучевая анатомия уха.

Введение

1. Слуховой анализатор

1.1. Рецепция звуковых раздражений

1.2.Функция звукопроводящего аппарата уха

1.3.Внутреннее ухо

2. Резонансная теория слуха

3. Проводящие пути слухового анализатора

4. Корковый отдел слухового анализатора

5. Анализ и синтез звуковых раздражений

6. Факторы, определяющие чувствительность слухового анализатора

Заключение

Список литературы


Введение

Органами чувств, или анализаторами, называются приборы, посредством которых нервная система получает раздражения от внешней среды, а также от органов самого тела и воспринимает эти раздражения в виде ощущений. слуховой анализатор ухо

Показания органов чувств являются источниками представлений об окружающем нас мире.

Процесс чувственного познания совершается у человека и животного по шести каналам: осязание, слух, зрение, вкус, обоняние, земное тяготение. Шесть органов чувств дают многообразную информацию об окружающем объективном мире, которая отражается в сознании в виде субъективных образов - ощущений, восприятий и представлений памяти.

Живая протоплазма обладает раздражимостью и способностью отвечать на раздражение. В процессе филогенеза эта способность особенно развивается у специализированных клеток покровного эпителия под влиянием внешних раздражений и клеток кишечного эпителия под влиянием раздражения пищей. Специализированные клетки эпителия уже у кишечнополостных оказываются связанными с нервной системой. В некоторых участках тела, например на щупальцах, в области рта, специализированные клетки, обладающие повышенной возбудимостью, образуют скопления, из которых возникают простейшие органы чувств. В дальнейшем в зависимости от положения этих клеток происходит их специализация по отношению к раздражителям. Так, клетки ротовой области специализируются к восприятию химических раздражений (обоняние, вкус), клетки на выступающих частях тела - к восприятию механических раздражений (осязание) и т. д.

Развитие органов чувств обусловлено значением их для приспособления к условиям существования. Например, собака тонко воспринимает запах ничтожных концентраций органических кислот, выделяемых телом животных (запах следов), и плохо разбирается в запахе растений, которые не имеют для нее биологического значения.

Возрастание тонкости анализа внешнего мира обусловлено не только усложнением строения и функции органов чувств, но прежде всего усложнением нервной системы. Особенное значение для анализа внешнего мира приобретает развитие головного мозга (особенно его коры), отчего Ф. Энгельс называет органы чувств «орудиями мозга». Возникающие в силу тех или иных раздражений нервные возбуждения воспринимаются нами в форме различных ощущений.

Для возникновения ощущений необходимы: приборы, воспринимающие раздражение, нервы, по которым передается это раздражение, и мозг, где оно превращается в факт сознания. Весь этот аппарат, необходимый для возникновения ощущения, И. П. Павлов назвал анализатором. «Анализатор - это такой прибор, который имеет своей задачей разлагать сложность внешнего мира на отдельные элементы».


1. СЛУХОВОЙ АНАЛИЗАТОР

В процессе эволюции у животных образовался сложный по структуре и функции слуховой анализатор. Слух - это способность животных воспринимать и анализировать звуковые волны.

К периферическому отделу слухового анализатора относятся: 1. Звукоулавливающий аппарат - наружное ухо, 2. Звукопередающий - среднее ухо, 3. Звуковоспринимающий аппарат - внутреннее ухо (улитка с кортиевым органом).

1.1 Рецепция звуковых раздражений

Орган слуха. У большинства беспозвоночных нет специальных тонорецепторов, чувствительных только к звуковым колебаниям. Однако у насекомых описаны специфические слуховые органы; они могут быть расположены в различных местах тела и состоят из тонкой натянутой перепонки, отделяющей наружный воздух от слуховой полости. С внутренней стороны перепонки находятся слуховые рецепторные клетки. При помощи этих органов некоторые насекомые могут воспринимать звуки очень большой частоты до 40 и даже до 90 тысяч колебаний в секунду.

У низших позвоночных периферический слуховой орган вместе с вестибулярным аппаратом дифференцируется из переднего конца органа боковой линии, рецепторы которого воспринимают колебания водной среды. Ослепленная щука при условии сохранения органа боковой линии схватывает проплывающую мимо рыбу и передвигается, не натыкаясь на встречные предметы, которые отражают колебания воды, производимые движениями щуки. Колебания боль частоты воспринимаются только развившимся из переднего конца органа боковой линии мешочком и его слепым выростом, получившим название лагены (lagena). У амфибий (и особенно у рептилий) ближе к основанию лагены появляется особый слуховой участок- натянутая перепонка, состоящая из параллельно расположенных соединительнотканных волоконец. У млекопитающих за счет разрастания этого участка слепой вырост резко удлиняется. Изгибаясь, он принимает форму раковины улитки с различным у разных животных числом витков. Отсюда и название этого органа- улитка. Ухо как периферический орган слухового анализатора состоит не только из рецепторного аппарата, скрытого в толще височной кости и образующего вместе с вестибулярным аппаратом, так называемое внутреннее ухо. Существенное значение имеют те части уха, которые связаны с улавливанием звуков и их проведением к рецепторному аппарату.

Звукопроводящий аппарат всех наземных животных - это среднее ухо, или барабанная полость, которая образовалась за счет передней жаберной щели. Уже у рептилий в этой полости находится слуховая косточка, облегчающая передачу звуковых колебаний. У млекопитающих имеются три сочлененные между собой косточки, способствующие увеличению силы звуковых колебаний. Звукоулавливающий аппарат, или наружное ухо, состоит из наружного слухового прохода и ушной раковины, которая впервые появляется у млекопитающих. У многих из них она подвижна, что позволяет направлять ее в сторону появления звуков и тем самым лучше их улавливать.

1.2 Функция звукопроводящего аппарата уха

Барабанная полость (рис. 1) сообщается с наружным воздухом через особый канал - слуховую, или евстахиеву трубу, наружное отверстие которой находится в стенке носоглотки. Обычно оно закрыто, но в момент глотания раскрывается. При резком изменении атмосфер давления, например при спуске в глубокую шахту, при подъёме или приземлении самолета, может возникнуть значительная разница между давлением наружного воздуха и давлением воздуха в барабанной полости, что вызывает неприятные ощущения, а иногда и повреждение барабанной перепонки. Раскрытие отверстия слуховой трубы

способствует выравниванию давления, а потому при изменении давления наружного воздуха рекомендуют производить частые глотательные движения.

Рис. 1. Полусхематическое изображение среднего уха:

1- наружный слуховой проход; 2- барабанная полость; 3 - слуховая труба; 4 - барабанная перепонка; 5 - молоточек; 6 - наковальня; 7 - стремя; 8 - окно преддверия (овальное); Я - окно улитки (круглое); 10- костная ткань.

Внутри барабанной полости находятся три слуховые косточки - молоточек, наковальня и стремя, соединенные между собой суставами. Среднее ухо отделено от наружного барабанной перепонкой, а от внутреннего - костной перегородкой с двумя отверстиями. Одно из них называется овальным окном или окном преддверия. К его краям при помощи эластично кольцевой связки прикреплено основание стремени. Другое отверстие - круглое окно, или окно улитки- затянуто тонкой

соединительнотканной мембраной. Воздушные звуковые волны, попадая в слуховой проход, вызывают колебания барабанной перепонки, которое через систему слуховых косточек, а также через воздух, находящийся в среднем ухе, передаются перилимфе внутреннего уха. Сочлененные между собой слуховые косточки можно рассматривать как рычаг первого рода, длинное плечо которого соединено с барабанной перепонкой, а короткое укрепление в овальном окне. При передаче движения с длинного на короткое плечо происходит уменьшение размаха (амплитуды) за счет увеличения развиваемой силы. Значительное увеличение силы звуковых колебаний происходит еще и потому, что поверхность основания стремени во много раз меньше поверхности барабанной перепонки. В целом сила звуковых колебаний увеличивается, по крайней мере, в 30-40 раз. При мощных звуках вследствие сокращения мышц барабанной полости увеличивается напряжение барабанной перепонки и уменьшается подвижность основания стремени, что ведет к понижению силы передаваемых колебаний.

Полное удаление барабанной перепонки лишь снижает слух, но не ведет к его потере. Это объясняется тем, что существенную роль в передаче звуковых колебаний играет мембрана круглого окна, которая воспринимает колебания воздуха, находящегося в полости среднего уха.

1.3 Внутреннее ухо

Внутреннее ухо представляет собой сложную систему каналов, находящихся в пирамиде височной кости и получивших название костного лабиринта. Расположенные в нем улитка и вестибулярный аппарат образуют перепончатый лабиринт (рис. 2). Пространство между стенками костного и перепончатого

лабиринтов заполнено жидкостью - перилимфой. К слуховому анализатору относится только передняя часть перепончатого лабиринта, которая расположена внутри костного канала улитки и вместе с ним образует два с половиной оборота вокруг костного стержня (рис. 3). От костного стержня внутрь канала отходит отросток в виде винтообразной спиральной пластинки, широкой у основания улитки и постепенно суживающейся к ее вершине. Эта пластинка не доходит до противоположной, наружной стенки канала. Между пластинкой и наружной стенкой расположена улитковая часть перепончатого лабиринта, вследствие чего весь канал оказывается раз на два этажа, или прохода.

Один из них сообщается с преддверием костного лабиринта и называется лестницей преддверия, другой начинается от окна улитки, граничащего с барабанной полостью, и называется лестницей барабана. Оба прохода сообщаются только в верхнем, узком конце улитки.

На поперечном разрезе улитковая часть перепончатого лабиринта имеет форму вытянутого треугольника. Его нижняя сторона, граничащая с лестницей барабана, образована основной пластинкой, которая состоит из погруженных в гомогенную массу тончайших эластических соединительнотканных волокон, натянутых между свободным краем спиральной костной пластинки и наружной стенкой канала улитки. Верхняя сторона треугольника граничит с лестницей преддверия, отходя под острым углом от верхней поверхности спиральной костной пластинки и направляясь, как и основная пластинка, к наружной стенке канала улитки. Третья, самая короткая сторона треугольника состоит из соединительной ткани, плотно сращенной с наружной стенкой костного канала.

Рис. 2. Общая схема костного и находящегося в нем перепончатого лабиринта:

1 - кость; 2 - полость среднего уха; 3 -стремя;4 - окно преддверия; 5- окно улитки; 6 - улит; 7 и 8 - отолитовый аппарат (7 - саккулус или круглый мешочек; 8 - утрикулус, или овальный мешочек); 9, 10 и 11 - полукружные каналы 12 - пространство между костным и перепончатым лабиринтами, заполненное перилимфой.


Рис. 3. Схематическое изображение улитки внутреннего уха:

А - костный канал улитки;

В - схема поперечного разреза части улитки; - костный стержень;2 - спиральная костная пластинка; 3 - волокна улиткового нерва;4 - скопление тел первого нейрона слухового проводящего пути; 5 - лестница преддверия; 6-лестница барабана; 7- улитковая часть перепончатого лабиринта;8 - кортиев орган; 9 - основная пластинка.

Функция кортиева органа.

Рецепторный аппарат слухового анализатора, или спиральный кортиев орган, расположен внутри улитковой части перепончатого лабиринта на верхней поверхности основной пластинки (рис. 4). Вдоль внутренней части основной пластинки, на некотором расстоянии друг от друга, расположены два ряда столбовых клеток, которые, соприкасаясь своими верх концами, отграничивают свободное треугольное пространство, или тоннель. По обе стороны от него находятся чувствительные к звуковым колебаниям смеховые, или волосковые, клетки, каждая из которых на своей верхней свободной поверхности имеет 15-20 небольших тончайших волосков. Концы волосков погружены в покровную пластинку, она укреплена на костной спиральной пластинке и свободным концом покрывает кортиев орган. Волосковые клетки расположены кнутри от тоннеля в один ряд, а кнаружи-в три ряда. От основной пластинки они отделены опорными клетками.

К основаниям волосковых клеток подходят конечные разветвления волокон биполярных нервных клеток, тела которых расположено в центральном канале костного стержня улитки, где они об так называемый спиральный узел, гомологичный межпозвоночный узлу спинномозговых нервов. Каждая из трех с пол тысяч внутренних волосковых клеток связана с одной, а иногда и с двумя отдельными нервными клетками. Наружные волокна клетки, количество которых достигает 15-20 тысяч, могут быть соединены и с несколькими нервными клетками, но при этом каждое нервное волокно дает ответвления только к волосковым клеткам одного и того же ряда.

Перилимфа, окружающая перепончатый аппарат улитки, испытывает давление, которое и меняется соответственно частоте, силе и форме звуковых колебаний. Изменения давления вызывают колебания основной пластинки вместе с расположенными на ней клетками, волоски которых испытывают при этом изменения давления со стороны покровной пластинки. Это, по-видимому, и ведет к воз возбуждения в волосковых клетках, которое передает на конечные разветвления нервных волокон.

Рис. 4. Схема строения кортиева органа:

1 - основная пластинка; 2 - костная спиральная пластинка; 3 - спиральный канал; 4 - нервные волокна; 5 - столбовые клетки, образующие тоннель(6); 7 - слуховые, или волосковые, клетки; 8 - опорные клетки; 9- покровная пластинка.


2. РЕЗОНАНСНАЯ ТЕОРИЯ СЛУХА

Среди различных теорий, объясняющих механизм периферического анализа звуков, наиболее обоснованной следует считать резонансную теорию, предложенную Гельмгольцем в 1863 году. Если около открытого рояля воспроизвести музыкальным инструментом или голосом звук определенной высоты, то начнет резонировать, т. е. звучать в ответ, струна, настроенная на тот же самый тон. Изучая структурные особенности основной пластинки улитки, Гельмгольц пришел к выводу, что звуковые волны, приходящие из окружающей среды, вызывают колебания поперечных волокон пластинки по принципу резонанса.

Всего насчитывают в основной пластинке около 24 000 поперечных эластических волокон. Они различны по длине и степени натянутости: самые короткие и сильнее натянутые расположены у основания улитки; чем ближе к ее вершине, тем они длиннее и слабее натянуты. Согласно резонансной теории, различные участки основ пластинки реагируют колебанием своих волокон на звуки разной высоты. Такое представление подтвердилось опытами Л.А. Анд. После выработки у собак условных рефлексов на чистые тоны различной высоты улитку одного уха он полностью удалял, а улитку другого подвергал частичному повреждению. В зависимости от того, какой участок кортиева органа второго уха был поврежден, наблюдалось исчезновение ранее выработанных положительных и отрицательных условных рефлексов на звуки определенной частоты колебаний.

При разрушении кортиева органа ближе к основанию улитки исчезали условные рефлексы на высокие тоны. Чем ближе к верхушке локализовалось повреждение, тем ниже были тоны, утратившие значение условных раздражителей.


3. ПРОВОДЯЩИЕ ПУТИ СЛУХОВОГО АНАЛИЗАТОРА

Первый нейрон проводящих путей слухового анализатора - упомянутые выше клетки, аксоны которых образуют улитковый нерв. Волокна этого нерва входят в продолговатый мозг и оканчиваются в ядрах, где расположены клетки второго нейрона проводящих путей. Аксоны клеток второго нейрона доходят до внутреннего коленчатого тела, главным образом противоположной стороны. Здесь начинается третий нейрон, по которому импульсы достигают слуховой области коры больших полушарий (рис. 5). Помимо основного, проводящего пути, связывающего периферический отдел слухового анализатора с его центральным, корковым отделом, существуют и другие пути, через которые могут осуществляться рефлекторные реакции на раздражение органа слуха у животного и после удаления больших полушарий.

Особое значение имеют ориентировочные реакции на звук. Они осуществляются при участии четверохолмия, к задним и отчасти передним буграм, которые идут коллатерали волокон, направляющихся к внутреннему коленчатому телу.

Рис. 5. Схема проводящих путей слухового анализатора:

1 - рецепторы кортиева органа; 2 - тела биполярных нейронов; 3 - улитковый нерв; 4 - ядра продолговатого мозга, где расположены тела второго нейрона проводящих путей; 5 - внутреннее коленчатое тело, где начинается третий нейрон основных проводящих путей; 6 - верхняя поверхность височной доли коры больших полушарий (нижняя стенка поперечной щели), где оканчивается третий нейрон; 7 - нервные волокна, связывающие оба внутренних коленчатых тела; 8 - задние бугры четверохолмия; 9 - начало эфферентных путей, идущих от четверохолмия.


4. КОРКОВЫЙ ОТДЕЛ СЛУХОВОГО АНАЛИЗАТОРА

У человека ядро коркового отдела слухового анализатора расположено в височной, области коры больших, полушарий. В той части поверхности височной области, которая представляет собой нижнюю стенку поперечной, или сильвиевой щели, расположено поле 41. К нему, а возможно и к соседнему полю 42, направляется основная масса волокон от внутреннего коленчатого тела. Наблюдения показали, что при разрушении указанных полей наступает полная глухота. Однако в тех случаях, когда поражение ограничивается одним полу, может наступить небольшое и нередко лишь временное понижение слуха. Это объясняется тем, что проводящие пути слухового анализатора неполностью перекрещиваются. К тому же оба внутренних коленчатых тела связаны между собой промежуточными нейронами, через которые импульсы могут переходить с правой стороны на левую и обратно. В результате корковые клетки каждого полушария получают импульсы с обоих кортиевых органов.

От коркового отдела слухового анализатора идут эфферентные пути к нижележащим отделам мозга, и прежде всего к внутреннему коленчатому телу и к задним буграм четверохолмия. Через них осуществляются корковые двигательные рефлексы на звуковые раздражители. Путем раздражения слуховой области коры можно вызвать у животного ориентировочную реакцию настораживания (движения ушной раковины, поворот головы и т. п.).


5. АНАЛИЗ И СИНТЕЗ ЗВУКОВЫХ РАЗДРАЖЕНИЙ

Анализ звуковых раздражений начинается в периферическом отделе слухового анализатора, что обеспечивается особенностями строения улитки, и прежде всего основной пластинки, каждый участок которой колеблется в ответ на звуки только определенной высоты.

Высший анализ и синтез звуковых раздражений, основанный на образовании положительных и отрицательных условных связей, происходит в корковом отделе анализатора. Каждый звук, воспринимаемый кортиевым органом, приводит в состояние возбуждения определенные клеточные группы поля 41 и соседних с ним полей. Отсюда возбуждение распространяется в другие пункты коры больших полушарий, особенно в поля 22 и 37. Между различными клеточными группами, которые повторно приходили в состояние возбуждения под влиянием определённого звукового раздражения или комплекса последовательных звуковых раздражений, устанавливая все более прочные условные связи. Они устанавливаются также между очагами возбуждения в слуховом анализаторе и теми очагами, которые одновременно возникают под влиянием раздражителей, действующих на другие анализаторы. Так образуются все новые и новые условные связи, обогащающие анализ и синтез звуковых раздражений.

В основе анализа и синтеза звуковых речевых раздражений лежит установление условных связей между очагами возбуждения, которые возникают под влиянием непосредственных раздражителей, действующих на различные анализаторы, и теми очагами, которые вызываются звуковыми речевыми сигналами, обозначающими эти раздражители. Так называемый слуховой центр речи, т. е. тот участок слухового анализатора, функция которого связана с речевым анализом и синтезом звуковых раздражений, иными словами, с пониманием слышимой речи, расположен в основном в левом поле и занимает задний конец поля и прилегающий участок поля.


6. ФАКТОРЫ, ОПРЕДЕЛЯЮЩИЕ ЧУВСТВИТЕЛЬНОСТЬ СЛУХОВОГО АНАЛИЗАТОРА

Ухо человека особенно чувствительно к частоте звуковых и - колебаний от 1030 до 4000 в секунду. Чувствительность к более высоким и более низким звукам значительно падает, особенно с приближением к нижнему и верхнему пределам воспринимаемых частот. Так, для звуков, частота колебаний которых приближается к 20 или к 20 000 в секунду, порог повышается в 10 000 раз, если определять силу звука по производимому им давлению. С возрастом чувствительность слухового анализатора, как правило, значительно понижается, но главным образом к звукам большой частоты, к низким же (до 1000 колебаний в секунду) остается почти неизменным вплоть до старческого возраста.

В условиях полной тишины чувствительность слуха повышается. Если же начинает звучать тон определенной высоты и неизменной интенсивности, то вследствие адаптации к нему ощущение громкости снижается сначала быстро, а потом все более медленно. Однако, хотя и в меньшей степени, понижается чувствительность к звукам, более или менее близким по частоте колебаний к звучащему тону. Однако обычно адаптация не распространяется на весь диапазон воспринимаемых звуков. По прекращении звука, вследствие адаптации к тишине уже через 10-15 секунд восстанавливается прежний уровень чувствительности.

Частично адаптация зависит от периферического отдела анализатора, а именно от изменения, как усиливающей функции звукового аппарата, так и возбудимости волосковых клеток кортиева органа. Центральный отдел анализатора также принимает участие в явлениях адаптации, о чем свидетельствует хотя бы тот факт, что при действии звука только на одно ухо сдвиги чувствительности наблюдаются в обоих ушах. На чувствительность слухового анализатора, и в частности на процесс адаптации, оказывают влияние изменения корковой возбудимости, которые возникают в результате как иррадиации, так и взаимной индукции возбуждения и торможения при раздражении рецепторов других анализаторов.

Изменяется чувствительность и при одновременном действии двух тонов разной высоты. В последнем случае слабый звук заглушается более сильным главным образом потому, что очаг возбуждения, возникает в коре под влиянием сильного звука, понижает вследствие отрицательной индукции возбудимость других участков коркового отдела того же анализатора.

Длительное воздействие сильных звуков может вызвать запретное торможение корковых клеток. В результате чувствительность слухового анализатора резко понижается. Такое состояние сохраняется некоторое время после того, как прекратилось раздражение.


ЗАКЛЮЧЕНИЕ

Слуховой анализатор, совокупность механических, рецепторных и нервных структур, деятельность которых обеспечивает восприятие человеком и животными звуковых колебаний.

У высших животных, в том числе у большинства млекопитающих, слуховой анализатор состоит из наружного, среднего и внутреннего уха, слухового нерва и центральных отделов (кохлеарные ядра и ядра верхней оливы, задние бугры четверохолмия, внутреннее коленчатое тело, слуховая область коры головного мозга). Верхняя олива - первое образование головного мозга, где конвергирует информация от обоих ушей. Волокна от правого и левого кохлеарных ядер идут на обе стороны. В слуховой анализатор имеются также нисходящие (эфферентные) проводящие пути, идущие от вышележащих отделов к нижележащим (вплоть до рецепторных клеток). В частотном анализе звуков существенное значение имеет улитковая перегородка- своеобразный механический спектральный анализатор, функционирующий как ряд взаимно рассогласованных фильтров. Её амплитудно-частотные характеристики (АЧХ), т. е. зависимость амплитуды колебаний отдельных точек улитковой перегородки от частоты звука, впервые экспериментально измерены венгерским физиком Д. Бекеши и позднее уточнены с помощью Мёссбауэра эффекта.

К наружному уху относится ушная раковина и наружный слуховой проход. Ушная раковина рупообразной формы, подвижна, что дает возможность улавливать и сосредотачивать звук в слуховом проходе.

Наружный слуховой проход представляет собой слегка изогнутый, узкий канал. Железы слухового прохода выделяют секрет -"ушную серу”, предохраняющую барабанную перепонку от высыхания.

Барабанная перепонка отделяет наружное ухо от среднего. Она неправильной формы и неодинаково равномерно натянута, поэтому не имеет собственного периода колебаний, а колеблется в соответствии с длиной поступающей звуковой волны.

Среднее ухо включает слуховые косточку - молоточек, наковальню, чечевицеобразную косточку и стремечко. Эти косточки передают колебания барабанной перепонки на перепонку овального окна, расположенного на границе между средним и внутренним ухом.

Барабанная полость через слуховую (евстахиеву) трубу в носоглотке сообщается с наружным воздухом во время глотания. В результате чего выравнивается давление по обе стороны барабанной перепонки. При резком изменении внешнего давления в любую сторону изменяется натяжение перепонки и развивается состояние временной глухоты, которое устраняется глотательными движениями.

Внутреннее ухо состоит из костного и перепончатого лабиринтов. Перепончатый лабиринт располагается в костном. Имеющееся между ними пространство заполнено перилимфой, а перепончатый лабиринт заполнен эндолимфой. В лабиринте расположены два органа. Один из них, состоящий из преддверия и улитки выполняет слуховую функцию, а второй, состоящий из двух мешочков и трех полукружных каналов - функцию равновесия (вестибулярный аппарат).


СПИСОК ЛИТЕРАТУРЫ

1. http://slovari.yandex.ru/dict/bse/article/00072/11500.htm

2. http://analizator.ucoz.ru/index/0-7

3. http://works.tarefer.ru/10/100119/index.html

4. http://liceum.secna.ru/bl/projects/barnaul2007/borovkov/s_sens_sluh.html

5. http://meduniver.com/Medical/Anatom/513.html

6. http://www.analizator.ru/anatomy.php

7. http://ru.wikipedia.org/wiki/sens_sluh

8. Акаевский А.И. \ Анатомия домашних животных. Изд. 3-е, испр. И доп. М., «Колос», 1975. 592с. С ил. (Учебники и учеб. пособия для высш. с.-х. учеб. заведений).

9. Анатомия домашних животных\ И.В. Хрусталёва, Н.В. Михайлов, Я.И. Шнейберг и др.; Под. ред. И.В. Хрусталёвой. – 3-е изд., испр. – М.: КолосС, 2002. – 704с.:ил. – (Учебники и учеб. пособия для студентов высш. учеб. заведений).

10. Климов А.Ф., Акаевский А.Е. Анатомия домашних животных: Учебное пособие. 7-е изд., стер.- СПб.: Издательство «Лань», 2003.- 1040с.- (Учебники для вузов. Специальная литература).