Все реакции с водородом. Кислород и его свойства. Соединения кислорода с водородом

ОПРЕДЕЛЕНИЕ

Водород – первый элемент Периодической системы химических элементов Д.И. Менделеева. Символ – Н.

Атомная масса – 1 а.е.м. Молекула водорода двухатомна – Н 2 .

Электронная конфигурация атома водорода – 1s 1 . Водород относится к семейству s-элементов. В своих соединениях проявляет степени окисления -1, 0, +1. Природный водород состоит из двух стабильных изотопов – протия 1 Н (99,98%) и дейтерия 2 Н (D) (0,015%) – и радиоактивного изотопа трития 3 Н (Т) (следовые количества, период полураспада – 12,5 лет).

Химические свойства водорода

При обычных условиях молекулярный водород проявляет сравнительно низкую реакционную способность, что объясняется высокой прочностью связей в молекуле. При нагревании вступает во взаимодействие практически со всеми простыми веществами, образованными элементами главных подгрупп (кроме благородных газов, B, Si, P, Al). В химических реакциях может выступать как в роли восстановителя (чаще), так и окислителя (реже).

Водород проявляет свойства восстановителя (Н 2 0 -2е → 2Н +) в следующих реакциях:

1. Реакции взаимодействия с простыми веществами – неметаллами. Водород реагирует с галогенами , причем, реакция взаимодействия со фтором при обычных условиях, в темноте, со взрывом, с хлором – при освещении (или УФ-облучении) по цепному механизму, с бромом и йодом только при нагревании; кислородом (смесь кислорода и водорода в объемном отношении 2:1 называют «гремучим газом»), серой , азотом и углеродом :

H 2 + Hal 2 = 2HHal;

2H 2 + O 2 = 2H 2 O + Q (t);

H 2 + S = H 2 S (t = 150 – 300C);

3H 2 + N 2 ↔ 2NH 3 (t = 500C, p, kat = Fe, Pt);

2H 2 + C ↔ CH 4 (t, p, kat).

2. Реакции взаимодействия со сложными веществами. Водород реагирует с оксидами малоактивных металлов , причем он способен восстанавливать только металлы, стоящие в ряду активности правее цинка:

CuO + H 2 = Cu + H 2 O (t);

Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O (t);

WO 3 + 3H 2 = W + 3H 2 O (t).

Водород реагирует с оксидами неметаллов :

H 2 + CO 2 ↔ CO + H 2 O (t);

2H 2 + CO ↔ CH 3 OH (t = 300C, p = 250 – 300 атм., kat = ZnO, Cr 2 O 3).

Водород вступает в реакции гидрирования с органическими соединениями класса циклоалканов, алкенов, аренов, альдегидов и кетонов и др. Все эти реакции проводят при нагревании, под давлением, в качестве катализаторов используют платину или никель:

CH 2 = CH 2 + H 2 ↔ CH 3 -CH 3 ;

C 6 H 6 + 3H 2 ↔ C 6 H 12 ;

C 3 H 6 + H 2 ↔ C 3 H 8 ;

CH 3 CHO + H 2 ↔ CH 3 -CH 2 -OH;

CH 3 -CO-CH 3 + H 2 ↔ CH 3 -CH(OH)-CH 3 .

Водород в качестве окислителя (Н 2 +2е → 2Н —) выступает в реакциях взаимодействия со щелочными и щелочноземельными металлами. При этом образуются гидриды – кристаллические ионные соединения, в которых водород проявляет степень окисления -1.

2Na +H 2 ↔ 2NaH (t, p).

Ca + H 2 ↔ CaH 2 (t, p).

Физические свойства водорода

Водород – легкий бесцветный газ, без запаха, плотность при н.у. – 0,09 г/л, в 14,5 раз легче воздуха, t кип = -252,8С, t пл = — 259,2С. Водород плохо растворим в воде и органически растворителях, хорошо растворим в некоторых металлах: никеле, палладии, платине.

По данным современной космохимии водород является самым распространенным элементом Вселенной. Основная форма существования водорода в космическом пространстве – отдельные атомы. По распространенности на Земле водород занимает 9 место среди всех элементов. Основное количество водорода на Земле находится в связанном состоянии – в составе воды, нефти, природного газа, каменного угля и т.д. В виде простого вещества водород встречается редко – в составе вулканических газов.

Получение водорода

Различают лабораторные и промышленные способы получения водорода. К лабораторным способам относят взаимодействие металлов с кислотами (1), а также взаимодействие алюминия с водными растворами щелочей (2). Среди промышленных способов получения водорода большую роль играют электролиз водных растворов щелочей и солей (3) и конверсия метана (4):

Zn + 2HCl = ZnCl 2 + H 2 (1);

2Al + 2NaOH + 6H 2 O = 2Na +3 H 2 (2);

2NaCl + 2H 2 O = H 2 + Cl 2 + 2NaOH (3);

CH 4 + H 2 O ↔ CO + H 2 (4).

Примеры решения задач

ПРИМЕР 1

Задание При взаимодействии 23,8 г металлического олова с избытком соляной кислоты выделился водород, в количестве, достаточном, чтобы получить 12,8 г металлической меди Определите степень окисления олова в полученном соединении.
Решение Исходя из электронного строения атома олова (…5s 2 5p 2) можно сделать вывод, что для олова характерны две степени окисления — +2, +4. На основании этого составим уравнения возможных реакций:

Sn + 2HCl = H 2 + SnCl 2 (1);

Sn + 4HCl = 2H 2 + SnCl 4 (2);

CuO + H 2 = Cu + H 2 O (3).

Найдем количество вещества меди:

v(Cu) = m(Cu)/M(Cu) = 12,8/64 = 0,2 моль.

Согласно уравнению 3, количество вещества водорода:

v(H 2) = v(Cu) = 0,2 моль.

Зная массу олова, найдем его количество вещества:

v(Sn) = m(Sn)/M(Sn) = 23,8/119 = 0,2 моль.

Сравним количества вещества олова и водорода по уравнения 1 и 2 и по условию задачи:

v 1 (Sn): v 1 (H 2) = 1:1 (уравнение 1);

v 2 (Sn): v 2 (H 2) = 1:2 (уравнение 2);

v(Sn): v(H 2) = 0,2:0,2 = 1:1 (условие задачи).

Следовательно, олово взаимодействует с соляной кислотой по уравнению 1 и степень окисления олова равна +2.

Ответ Степень окисления олова равна +2.

ПРИМЕР 2

Задание Газ, выделившийся при действии 2,0 г цинка на 18,7 мл 14,6%-ной соляной кислоты (плотность раствора 1,07 г/мл), пропустили при нагревании над 4,0 г оксида меди (II). Чему равна масса полученной твердой смеси?
Решение При действии цинка на соляную кислоту выделяется водород:

Zn + 2НСl = ZnСl 2 + Н 2 (1),

который при нагревании восстанавливает оксид меди (II) до меди (2):

СuО + Н 2 = Cu + Н 2 О.

Найдем количества веществ в первой реакции:

m(р-ра НСl) = 18,7 . 1,07 = 20,0 г;

m(НСl) = 20,0 . 0,146 = 2,92 г;

v(НСl) = 2,92/36,5 = 0,08 моль;

v(Zn) = 2,0/65 = 0,031 моль.

Цинк находится в недостатке, поэтому количество выделившегося водорода равно:

v(Н 2) = v(Zn) = 0,031 моль.

Во второй реакции в недостатке находится водород, поскольку:

v(СuО) = 4,0/80 = 0,05 моль.

В результате реакции 0,031 моль СuО превратится в 0,031 моль Сu, и потеря массы составит:

m(СuО) — m(Сu) = 0,031×80 — 0,031×64 = 0,50 г.

Масса твердой смеси СuО с Сu после пропускания водорода составит:

4,0-0,5 = 3,5 г.

Ответ Масса твердой смеси СuО с Сu равна 3,5 г.

Водород в таблице Менделеева располагается под номером один, в I и VII группах сразу. Символ водорода - H (лат. Hy­dro­ge­ni­um). Это очень легкий газ без цвета и запаха. Существует три изотопа водорода: 1H - протий, 2H - дейтерий и 3H - тритий (радиоактивен). Воздух или кислород в реакции с простым водородом H₂ легко воспламеняется, а также взрывоопасен. Водород не выделяет токсичных продуктов. Он растворим в этаноле и ряде металлов (особенно это касается побочной подгруппы).

Распространённость водорода на Земле

Как и кислород, водород имеет огромное значение. Но, в отличие от кислорода, водород почти весь находится в связанном виде с другими веществами. В свободном состоянии он находится лишь в атмосфере, но количество его там крайне ничтожно. Водород входит в состав почти всех органических соединений и живых организмов. Чаще всего он встречается в виде оксида - воды.

Физико-химические свойства

Водород не активен, а при нагревании или в присутствии катализаторов вступает в реакции практически со всеми простыми и сложными химическими элементами.

Реакция водорода с простыми химическими элементами

При повышенной температуре водород вступает в реакцию с кислородом, серой, хлором и азотом. вы узнаете, какие эксперименты с газами можно провести дома.

Опыт взаимодействия водорода с кислородом в лабораторных условиях


Возьмем чистый водород, который поступает по газоотводной трубке, и подожжем его. Он будет гореть еле заметным пламенем. Если же поместить водородную трубку в какой-либо сосуд, то он продолжит гореть, а на стенках образуются капельки воды. Это кислород вступил в реакцию с водородом:

2Н₂ + О₂ = 2Н₂О + Q

При горении водорода образуется много тепловой энергии. Температура соединения кислорода и водорода достигает 2000 °С. Кислород окислил водород, поэтому такая реакция называется реакцией окисления.

В обычных условиях (без подогрева) реакция протекает медленно. А при температуре выше 550 °С происходит взрыв (образуется так называемый гремучий газ). Раньше водород часто использовали в воздушных шарах, но из-за образования гремучего газа было много катастроф. У шара нарушалась целостность, и происходил взрыв: водород вступал в реакцию с кислородом. Поэтому сейчас используют гелий, который периодически подогревают пламенем.


Хлор взаимодействует с водородом и образует хлороводород (только в присутствии света и тепла). Химическая реакция водорода и хлора выглядит так:

Н₂ + Cl₂ = 2НСl

Интересный факт: реакция фтора с водородом вызывает взрыв даже при темноте и температуре ниже 0 °С.

Взаимодействие азота с водородом может происходить только при нагревании и в присутствии катализатора. При этой реакции образуется аммиак. Уравнение реакции:

ЗН₂ + N₂ = 2NН₃

Реакция серы и водорода происходит с образованием газа - сероводорода. В результате чувствуется запах тухлых яиц:

Н₂ + S = H₂S

В металлах водород не только растворяется, но и может вступать в реакцию с ними. В результате образуются соединения, которые называются гидридами. Некоторые гидриды используют как топливо в ракетах. Также с их помощью получают ядерную энергию.

Реакция со сложными химическими элементами

Например, водород с оксидом меди. Возьмем трубку с водородом и пропустим через порошок оксида меди. Вся реакция проходит при нагревании. Черный порошок меди станет коричнево-красным (цвет простой меди). Ещё появятся капельки жидкости на ненагретых участках колбы - это образовалась .

Химическая реакция:

CuO + H₂ = Cu + H₂O

Как видим, водород вступил в реакцию с оксидом и восстановил медь.

Восстановительные реакции

Если вещество в ходе реакции отнимает оксид, оно является восстановителем. На примере реакции оксида меди с видим, что водород был восстановителем. Также он реагирует и с некоторыми другими оксидами , такими как HgO, MoO₃ и PbO. В любой реакции, если один из элементов является окислителем, другой будет восстановителем.

Все соединения водорода

Водородные соединения с неметаллами - очень летучие и ядовитые газы (например, сероводород, силан, метан).

Галогеноводороды - больше всего применяют хлороводород. При растворении он образует соляную кислоту. Также в эту группу входят: фтороводород, йодоводород и бромоводород. Все эти соединения в результате образуют соответствующие кислоты.

Пероксид водорода (химическая формула Н₂О₂) проявляет сильнейшие окислительные свойства.

Гидроксиды водорода или вода Н₂О.

Гидриды - это соединения с металлами.

Гидроксиды - это кислоты, основания и другие соединения, в состав которых входит водород.

Органические соединения : белки, жиры, липиды, гормоны и другие.

Рассмотрим, что собой представляет водород. Химические свойства и получение этого неметалла изучают в курсе неорганической химии в школе. Именно этот элемент возглавляет периодическую систему Менделеева, а потому заслуживает детального описания.

Краткие сведения об открытии элемента

Прежде чем рассматривать физические и химические свойства водорода, выясним, как был найден этот важный элемент.

Химики, которые работали в шестнадцатом и семнадцатом веках, неоднократно упоминали в своих трудах о горючем газе, который выделяется при воздействии на кислоты активными металлами. Во второй половине восемнадцатого века Г. Кавендишу удалось собрать и проанализировать этот газ, дав ему название «горючий газ».

Физические и химические свойства водорода на тот момент времени не были изучены. Только в конце восемнадцатого века А. Лавуазье удалось путем анализа установить, что получить этот газ можно путем анализа воды. Чуть позже он стал называть новый элемент hydrogene, что в переводе означает «рождающий воду». Своим современным русским названием водород обязан М. Ф. Соловьеву.

Нахождение в природе

Химические свойства водорода можно анализировать только на основании его распространенности в природе. Данный элемент присутствует в гидро- и литосфере, а также входит в состав полезных ископаемых: природного и попутного газа, торфа, нефти, угля, горючих сланцев. Сложно себе представить взрослого человека, который бы не знал о том, что водород является составной частью воды.

Кроме того, данный неметалл находится в организмах животных в виде нуклеиновых кислот, белков, углеводов, жиров. На нашей планете данный элемент встречается в свободном виде достаточно редко, пожалуй, только в природном и вулканическом газе.

В виде плазмы водород составляет примерно половину массы звезд и Солнца, кроме того, входит в состав межзвездного газа. Например, в свободном виде, а также в форме метана, аммиака этот неметалл присутствует в составе комет и даже некоторых планет.

Физические свойства

Прежде чем рассматривать химические свойства водорода, отметим, что при нормальных условиях он является газообразным веществом легче воздуха, имеющим несколько изотопных форм. Он почти нерастворим в воде, имеет высокую теплопроводность. Протий, имеющий массовое число 1, считается самой легкой его формой. Тритий, который обладает радиоактивными свойствами, образуется в природе из атмосферного азота при воздействии на него нейронов УФ-лучей.

Особенности строения молекулы

Чтобы рассмотреть химические свойства водорода, реакции, характерные для него, остановимся и на особенностях его строения. В этой двухатомной молекуле ковалентная неполярная химическая связь. Образование атомарного водорода возможно при взаимодействии активных металлов на растворы кислот. Но в таком виде этот неметалл способен существовать только незначительный временной промежуток, практически сразу же он рекомбинируется в молекулярный вид.

Химические свойства

Рассмотрим химические свойства водорода. В большей части соединений, которые образует данный химический элемент, он проявляет степень окисления +1, что делает его похожим с активными (щелочными) металлами. Основные химические свойства водорода, характеризующие его в качестве металла:

  • взаимодействие с кислородом с образованием воды;
  • реакция с галогенами, сопровождающаяся образованием галогеноводорода;
  • получение сероводорода при соединении с серой.

Ниже представлено уравнение реакций, характеризующих химические свойства водорода. Обращаем внимание на то, что в качестве неметалла (со степенью окисления -1) он выступает только в реакции с активными металлами, образуя с ними соответствующие гидриды.

Водород при обычной температуре неактивно вступает во взаимодействие с другими веществами, поэтому большая часть реакций осуществляется только после предварительного нагревания.

Остановимся подробнее на некоторых химических взаимодействиях элемента, который возглавляет периодическую систему химических элементов Менделеева.

Реакция образования воды сопровождается выделением 285,937 кДж энергии. При повышенной температуре (больше 550 градусов по Цельсия) данный процесс сопровождается сильным взрывом.

Среди тех химических свойств газообразного водорода, которые нашли существенное применение в промышленности, интерес представляет его взаимодействие с оксидами металлов. Именно путем каталитического гидрирования в современной промышленности осуществляют переработку оксидов металлов, например выделяют из железной окалины (смешанного оксида железа) чистый металл. Данный способ позволяет вести эффективную переработку металлолома.

Синтез аммиака, который предполагает взаимодействие водорода с азотом воздуха, также востребован в современной химической промышленности. Среди условий протекания этого химического взаимодействия отметим давление и температуру.

Заключение

Именно водород является малоактивным химическим веществом при обычных условиях. При повышении температуры его активность существенно возрастает. Данное вещество востребовано в органическом синтезе. Например, путем гидрирования можно восстановить кетоны до вторичных спиртов, а альдегиды превратить в первичные спирты. Кроме того, путем гидрирования можно превратить ненасыщенные углеводороды класса этилена и ацетилена в предельные соединения ряда метана. Водород по праву считают простым веществом, востребованным в современном химическом производстве.

Водород – это газ, именно он находится на первом месте в Периодической системе. Название этого широко распространенного в природе элемента в переводе с латыни означает «порождающий воду». Так какие физические и химические свойства водорода нам известны?

Водород: общая информация

При обычных условиях водород не имеет ни вкуса, ни запаха, ни цвета.

Рис. 1. Формула водорода.

Поскольку атом имеет один энергетический электронный уровень, на котором могут находиться максимум два электрона, то для устойчивого состояния атом может как принять один электрон (степень окисления -1), так и отдать отдать один электрон (степень окисления +1), проявляя постоянную валентность I. Именно поэтому символ элемента водорода помещают не только в IA группу (главную подгруппу I группы) вместе со щелочными металлами, но и в VIIA группу (главную подгруппу VII группы) вместе с галогенами. Атомам галогенов тоже не хватает одного электрона до заполнения внешнего уровня, и они, как и водород, являются неметаллами. Водород проявляет положительную степень окисления в соединениях, где он связан с более электроотрицательными элементами-неметаллами, а отрицательную степень окисления – в соединениях с металлами.

Рис. 2. Расположение водорода в периодической системе.

У водорода есть три изотопа, каждый из которых имеет собственное название: протий, дейтерий, тритий. Количество последнего на Земле ничтожно.

Химические свойства водорода

В простом веществе H 2 связь между атомами прочная (энергия связи 436 кДж/моль), поэтому активность молекулярного водорода невелика. При обычных условиях он взаимодействует только с очень активными металлами, а единственным неметаллом, с которым водород вступает в реакцию, является фтор:

F 2 +H 2 =2HF (фтороводород)

С другими простыми (металлами и неметаллами) и сложными (оксидами, органическими неопределенными соединениями) веществами водород реагирует либо при облучении и повышении температуры, либо в присутствии катализатора.

Водород горит в кислороде с выделением значительного количества теплоты:

2H 2 +O 2 =2H 2 O

Смесь водорода с кислородом (2 объема водорода и 1 объем кислорода) при поджигании сильно взрывается и поэтому носит название гремучего газа. При работе с водородом следует соблюдать правила техники безопасности.

Рис. 3. Гремучий газ.

В присутствии катализаторов газ может реагировать с азотом:

3H 2 +N 2 =2NH 3

– по этой реакции при повышенных температурах и давлении в промышленности получают аммиак.

В условиях высокой температуры водород способен реагировать с серой, селеном, теллуром. а при взаимодействии с щелочными и щелочноземельными металлами происходит образование гидридов:

– в данном случае водород играет роль окислителя.

Водород имеет особенность при повышении температуры восстанавливать оксиды многих металлов, в результате чего образуется вода. Например:

CuO+H 2 =H 2 O+Cu

– в данном процессе водород является восстановителем4.3 . Всего получено оценок: 70.

Характеристика s-элементов

К блоку s-элементов относятся 13 элементов, общим для которых является застраивание в их атомах s-подуровня внешнего энергетического уровня.

Хотя водород и гелий относятся к s-элементам из-за специфики их свойств их следует рассматривать отдельно. Водород, натрий, калий, магний, кальций - жизненно необходимые элементы.

Соединения s-элементов проявляют общие закономерности в свойствах, что объясняется сходством электронного строения их атомов. Все внешние электроны являются валентными и принимают участие в образовании химических связей. Поэтому максимальная степень окисления этих элементов в соединениях равна числу электронов во внешнем слое и соответственно равна номеру группы, в которой и находится данный элемент. Степень окисления металлов s-элементов всегда положительна. Другая особенность заключается в том, что после отделения электронов внешнего слоя остается ион, имеющий оболочку благородного газа. При увеличении порядкового номера элемента, атомного радиуса, уменьшается энергии ионизации (от 5,39 эВ y Li до 3,83 эВ y Fr), а восстановительная активность элементов возрастает.

Подавляющее большинство соединений s-элементов бесцветно (в отличие от соединений d-элементов), так как исключен обуславливающий окраску переход d-электронов с низких энергетических уровней на более высокие энергетические уровни.

Соединения элементов групп IA - IIA - типичные соли, в водном растворе они практически полностью диссоциируют на ионы, не подверженны гидролизу по катиону (кроме солей Be 2+ и Mg 2+).

водород гидрид ионный ковалентный

Для ионов s-элементов комплексообразование не характерно. Кристаллические комплексы s - элементов с лигандами H 2 O-кристаллогидраты, известны с глубокой древности, например: Na 2 В 4 O 7 10H 2 O-бура, KАl (SO 4) 2 12H 2 O-квасцы. Молекулы воды в кристаллогидратах группируются вокруг катиона, но иногда полностью окружают и анион. Вследствие малого заряда иона и большого радиуса иона щелочные металлы наименее склонны к образованию комплексов, в том числе и аквакомплексов. В качестве комплексообразователей в комплексных соединениях невысокой устойчивости выступают ионы лития, бериллия, магния.

Водород. Химические свойства водорода

Водород - наиболее легкий s-элемент. Его электронная конфигурация в основном состоянии 1S 1 . Атом водорода состоит из одного протона и одного электрона. Особенность водорода состоит в том, что его валентный электрон находится непосредственно в сфере действия атомного ядра. У водорода нет промежуточного электронного слоя, поэтому водород нельзя считать электронным аналогом щелочных металлов.

Как и щелочные металлы водород является восстановителем, проявляет степень окисления +1, Спектры водорода сходны со спектрами щелочных металлов. Со щелочными металлами сближает водород его способность давать в растворах гидратированный положительно заряженный ион Н + .

Подобно галогеном атому водорода не достает одного электрона. Этим и обусловлено существование гидрид-иона Н - .

Кроме того, как и атомы галогенов атомы водорода характеризуются высоким значением энергии ионизации (1312 кдж/моль). Таким образом, водород занимает особое положение в Периодической системе элементов.

Водород - самый распространенный элемент во вселенной: он составляет до половины массы солнца и большинства звезд.

На солнце и других планетах водород находится в атомарном состоянии, в межзвездной среде в виде частично ионизированных двухатомных молекул.

Водород имеет три изотопа; протий 1 Н, дейтерий 2 Д и тритий 3 Т, причем тритий - радиоактивный изотоп.

Молекулы водорода отличаются большой прочностью и малой поляризуемостью, незначительными размерами и малой массой и обладают большой подвижностью. Поэтому у водорода очень низкие температуры плавления (-259,2 о С) и кипения (-252,8 о С). Из-за высокой энергии диссоциации (436 кдж/моль) распад молекул на атомы происходит при температурах выше 2000 о С. Водород бесцветный газ без запаха и вкуса. Он имеет малую плотность - 8,99·10 -5 г/см При очень высоких давлениях водород переходит в металлическое состояние. Считается, что на дальних планетах солнечной системы - Юпитере и Сатурне водород находится в металлическом состоянии. Существует предположение, что в состав земного ядра также входит металлический водород, где он находится при сверхвысоком давлении, создаваемым земной мантией.

Химические свойства. При комнатной температуре молекулярный водород реагирует лишь со фтором, при облучении светом - с хлором и бромом, при нагревании с О 2 ,S, Se, N 2 , C, I 2 .

Реакции водорода с кислородом и галогенами протекают по радикальному механизму.

Взаимодействие с хлором - пример неразветвленной реакции при облучении светом (фотохимическая активация), при нагревании (термическая активация).

Сl+ H 2 = HCl + H (развитие цепи)

H+ Сl 2 = HCl + Сl

Взрыв гремучего газа - водородокислородной смеси - пример разветвленного цепного процесса, когда инициированние цепи включает не одну, а несколько стадий:

Н 2 + О 2 = 2ОН

Н+ О 2 = ОН+О

О+ Н 2 = ОН+ Н

ОН+ Н 2 = Н 2 О + Н

Взрывного процесса удается избежать, если работать с чистым водородом.

Поскольку для водорода характерна - положительная (+1) и отрицательная (-1) степень окисления, водород может проявлять и восстановительные, и окислительные свойства.

Восстановительные свойства водорода проявляются при взаимодействии с неметаллами:

Н 2 (г) + Cl 2 (г) = 2НCl (г),

2Н 2 (г) + О 2 (г) = 2Н 2 О (г),

Эти реакции протекают с выделением большого количества теплоты, что свидетельствуют о высокой энергии (прочности) связей Н-Сl, Н-О. Поэтому водород проявляет восстановительные свойства по отношению ко многим оксидам, галогенидам, например:

На этом основано применение водорода в качестве восстановителя для получения простых веществ из оксидов галогенидов.

Еще более сильным восстановителем является атомарный водород. Он образуется из молекулярного в электронном разряде в условиях низкого давления.

Высокой восстановительной активностью обладает водород в момент выделения при взаимодействии металла с кислотой. Такой водород восстанавливает CrCl 3 в CrCl 2:

2CrCl 3 + 2HСl + 2Zn = 2CrCl 2 + 2ZnCl 2 +H 2 ^

Важное значение имеет взаимодействие водорода с оксидом азота (II):

2NO + 2H 2 = N 2 + H 2 O

Используемое в очистительных системах при производстве азотной кислоты.

В качестве окислителя водород взаимодействует с активными металлами:

В данном случае водород ведет себя как галоген, образуя аналогичные галогенидам гидриды .

Гидриды s-элементов I группы имеют ионную структуру типа NaCl. В химическом отношении ионные гидриды ведут себя как основные соединения.

К ковалентным относятся гидриды менее электроотрицательных, чем сам водород неметаллических элементов, например, гидриды состава SiH 4 , ВН 3 , СН 4 . По химической природе гидриды неметаллов являются кислотными соединениями.

Характерной особенностью гидролиза гидридов является выделение водорода, реакция протекает по окислительно-восстановительному механизму.

Основной гидрид

Кислотный гидрид

За счет выделения водорода гидролиз протекает полностью и необратимо (?Н<0, ?S>0). При этом основные гидриды образуют щелочь, а кислотные кислоту.

Стандартный потенциал системы В. Следовательно, ион Н - сильный восстановитель.

В лаборатории водород получают взаимодействием цинка с 20% -й серной кислотой в аппарате Киппа.

Технический цинк часто содержит небольшие примеси мышьяка и сурьмы, которые восстанавливаются водородом в момент выделения до ядовитых газов: арсина SbH 3 и стабина SbH Таким водородом можно отравиться. С химически чистым цинком реакция протекает медленно из-за перенапряжения и хорошего тока водорода получить не удается. Скорость этой реакции увеличивается путем добавления кристалликов медного купороса, реакция ускоряется за счет образования гальванической пары Cu-Zn.

Более чистый водород образуется при действии щелочи на кремний или алюминий при нагревании:

В промышленности чистый водород получают электролизом воды, содержащей электролиты (Na 2 SO 4 , Ba (OH) 2).

Большое количество водорода образуется в качестве побочного продукта при электролизе водного раствора хлорида натрия с диафрагмой, разделяющей катодное и анодное пространство,

Наибольшее количество водорода получают газификацией твердого топлива (антрацита) перегретым водяным паром:

Либо конверсией природного газа (метана) перегретым водяным паром:

Образующаяся смесь (синтез-газ) используется в производстве многих органических соединений. Выход водорода можно увеличить, пропуская синтез-газ над катализатором, при этом СО превращается вСО 2 .

Применение. Большое количество водорода расходуется на синтез аммиака. На получение хлороводорода и соляной кислоты, для гидрогенизации растительных жиров, для восстановления металлов (Mо, W, Fe) из оксидов. Водород-кислородное пламя используют для сварки, резки и плавления металлов.

Жидкий водород используют в качестве ракетного топлива. Водородное топливо является экологически безопасным и более энергоемким, чем бензин, поэтому в будущем оно может заменить нефтепродукты. Уже сейчас в мире на водороде работает несколько сот автомобилей. Проблемы водородной энергетики связаны с хранением и транспортировкой водорода. Водород храня в подземных танкерах в жидком состоянии под давлением 100 атм. Перевозка больших количеств жидкого водорода представляет серьезную опасность.