Характеристика алюминия. Алюминий. Свойства алюминия. Применение алюминия

Свойства 13 Al.

Атомная масса

26,98

кларк, ат.%

(распространненость в природе)

5,5

Электронная конфигурация*

Агрегатное состояние

(н. у.).

твердое вещество

0,143

Цвет

серебристо-белый

0,057

695

Энергия ионизации

5,98

2447

Относительная электроотрицательность

1,5

Плотность

2,698

Возможные степени окисления

1, +2,+3

Стандартный электродный потенциал

1,69

*Приведена конфигурация внешних электронных уровней атома элемента. Конфигурация остальных электронных уровней совпадает с таковой для благородного газа, завершающего предыдущий период и указанного в скобках.

Алюминий — основной представитель металлов главной подгруппы III группы периодической системы. Свойства его аналогов — галлия, индия и таллия — во многом напоминают свойства алюминия, поскольку все эти элементы имеют одинаковую электронную конфигурацию внешнего уровня ns 2 np 1 и поэтому все они проявляют степень окисления 3+.

Физические свойства. Алюминий — серебристо-белый металл, обладающий высокой тепло- и электропроводностью. Поверхность металла покрыта тонкой, но очень прочной пленкой оксида алюминия Аl 2 Oз.

Химические свойства. Алюминий весьма активен, если нет защитной пленки Аl 2 Oз. Эта пленка препятствует взаимодействию алюминия с водой. Если удалить защитную пленку химическим способом (например, раствором щелочи), то металл начинает энергично взаимодействовать с водой с выделением водорода:

Алюминий в виде стружки или порошка ярко горит на воздухе, выделяя большое количество энергии:

Эта особенность алюминия широко используется для получения различных металлов изих оксидов путем восстановления алюминием. Метод получил название алюмотермии . Алюмотермией можно получить только те металлы, у которых теплоты образования оксидов меньше теплоты образования Аl 2 Oз, например:

При нагревании алюминий реагирует с галогенами серой, азотом и углеродом, образуя при этом соответственно галогениды:

Сульфид и карбид алюминия полностью гидролизуются образованием гидроксида алюминия и соответственно сероводорода и метана.

Алюминий легко растворяется в соляной кислоте любой концентрации:

Концентрированные серная и азотная кислоты на холоде не действуют на алюминий (пассивируют). При нагревании алюминий способен восстанавливать эти кислоты без выделения водорода:

В разбавленной серной кислоте алюминий растворяется с выделением водорода:

В разбавленной азотной кислоте реакция идет с выделением оксида азота (II):

Алюминий растворяется в растворах щелочей и карбонатов щелочных металлов с образованием тетрагидроксоалюминатов:

Оксид алюминия. Al 2 O 3 имеет 9 кристаллических модификаций. Самая распространенная a - модификация. Она наиболее химически инертна, на ее основе выращивают монокристаллы различных камней для использования с ювелирной промышленности и технике.

В лаборатории оксид алюминия получают, сжигая порошок алюминия в кислороде или прокаливая его гидроксид:

Оксид алюминия, будучи амфотерным, может реагировать не только с кислотами, но и с щелочами, а также при сплавлении с карбонатами щелочных металлов, давая при этом метаалюминаты:

и с кислыми солями:

Гидроксид алюминия — белое студенистое вещество, практически нерастворимое в воде, обладающее амфотерными свойствами. Гидроксид алюминия может быть получен обработкой солей алюминия щелочами или гидроксидом аммония. В первом случае необходимо избегать избытка щелочи, поскольку в противном случае гидроксид алюминия растворится с образованием комплексных тетрагидроксоалюминатов [Аl(ОН) 4 ]` :

На самом деле в последней реакции образуются тетрагидроксодиакваалюминат-ионы ` , однако для записи реакций обычно используют упрощенную форму [Аl(ОН) 4 ]` . При слабом подкислении тетрагидроксоалюминаты разрушаются:

Соли алюминия. Из гидроксида алюминия можно получить практически все соли алюминия. Почти все соли алюминия и сильных кислот хорошо растворимы в воде и при этом сильно гидролизованы.

Галогениды алюминия хорошо растворимы в воде, и по своей структуре являются димерами:

2AlCl 3 є Al 2 Cl 6

Сульфаты алюминия легко, как и все его соли, гидролизуются:

Известны также калий-алюминиевые квасцы: KAl(SO 4) 2Ч 12H 2 O.

Ацетат алюминия Al(CH 3 COO) 3 используют в медицине в качестве примочек.

Алюмосиликаты. В природе алюминий встречается в виде соединений с кислородом и кремнием - алюмосиликатов. Общая их формула: (Na, K) 2 Al 2 Si 2 O 8 -нефелин.

Также природными соединениями алюминия являются: Al 2 O 3 - корунд, глинозем; и соединения с общими формулами Al 2 O 3 Ч nH 2 O и Al(OH) 3Ч nH 2 O - бокситы.

Получение. Алюминий получают электролизом расплава Al 2 O 3 .

Характеристика алюминия

алюминий металл качество промышленность

Алюминий - самый распространенный металл в земной коре. Его содержание оценивают в 7.45% (больше, чем железа, которого только 4.2%). Алюминий как элемент открыт недавно-в 1825 г., когда были получены первые небольшие комочки этого металла. Начало его промышленного освоения относится к концу прошлого столетия. Толчком к этому послужила разработка в 1886 г. способа его получения путем электролиза глинозема, растворенного в криолите. Принцип способа лежит в основе современного промышленного извлечения алюминия из глинозема во всех странах мира.

По внешнему виду алюминий представляет собой блестящий серебристый белый металл. На воздухе он быстро окисляется, покрываясь тонкой белой матовой пленкой AlO. Эта пленка обладает высокими защитными свойствами, поэтому, будучи покрытым такой пленкой, алюминий является коррозионностойким.

Алюминий достаточно легко разрушается растворами едких щелочей, соляной и серной кислот. В концентрированной азотной кислоте и органических кислотах он обладает высокой стойкостью.

Наиболее характерными физическими свойствами алюминия является его малая относительная плотность, равная 2.7, а также сравнительно высокие тепло- и электропроводность. При 0C удельная электропроводность алюминия, т.е. электропроводность алюминиевой проволоки сечением 1 мм и длиной 1 м равна 37 1 ом.

Коррозионная стойкость и особенно электропроводность алюминия тем выше, чем он чище, чем меньше в нем примесей.

Температура плавления алюминия невысокая, она равна приблизительно 660C. Однако скрытая теплота плавления его очень большая - около 100 кал г, поэтому для расплавления алюминия требуется большой расход тепла, чем для расплавления такого же количества, например, тугоплавкой меди, у которой температура плавления 1083 C, скрытая теплота плавления 43 кал г.

Для механических свойств алюминия характерна большая пластичность и малая прочность. Прокатанный и отожженный алюминий имеет =10 кГ мм, а твердость НВ25, =80% и =35%.

Кристаллическая решетка алюминия представляет собой гранецентрированный куб, имеющий при 20 C параметр (размер стороны) 4.04. Аллотропических превращений алюминий не имеет.

В природе алюминий находится в виде алюминиевых руд: бокситов, нефелинов, алунитов и каолинов. Важнейшей рудой, на которой базируется большая часть мировой алюминиевой промышленности, являются бокситы.

Получение алюминия из руд состоит из двух последовательно проводимых этапов-сначала производят глинозем (AlO), а затем из него получают алюминий.

Известные в настоящее время методы получения глинозема можно разбить на три группы: щелочные, кислотные и электротермические. Наиболее широкое применение получили щелочные методы.

В одних разновидностях щелочных методов боксит, обезвоженный при 1000 C, измельчают в шаровых мельницах, смешивают в определенных пропорциях с мелом и содой и спекают для получения растворимого в воде твердого алюмината натрия по реакции

Al O + Na CO = Al O Na O + CO

Спекшуюся массу измельчают и выщелачивают водой, алюминат натрия при этом переходит в раствор.

В других разновидностях щелочного метода глинозем, содержащийся в боксите, связывают в алюминат натрия путем непосредственной обработки руды щелочами. При этом сразу получается раствор алюмината в воде.

В обоих случаях образование водного раствора алюмината натрия приводит к отделению его от нерастворимых компонентов руды, представляющих собой в основном окиси и гидроокиси кремния, железа и титана. Отделение раствора от нерастворимого осадка, называемого красным шламом, осуществляют в отстойниках.

В полученный раствор при 125 C и давлении 5 ам добавляют известь, что приводит к обескремниванию - CaSiO уходит в осадок, образуя белый шлам. Очищенный от кремния раствор после отделения его от белого шлама обрабатывают углекислым газом при 60-80 C, в результате чего в осадок выпадает кристаллический гидрат окиси алюминия:

AlONaO + 3H2O + CO = 2Al(OH) + Na CO.

Его промывают, просушивают и прокаливают. Прокаливание приводит к образованию глинозема:

2Al(OH) = AlO + 3H2O.

Описанный способ обеспечивает довольно полное извлечение глинозема из боксита - около 80%.

Получение металлического алюминия из глинозема заключается в его электролитическом разложении на составные части - на алюминий и кислород. Электролитом в этом процессе является раствор глинозема в криолите (AlF 3NaF). Криолит, обладая способностью растворять глинозем, одновременно снижает его температуру плавления. Глинозем плавится при температуре около 2000 C, а температура плавления раствора, состоящего, например, из 85% криолита и 15% глинозема, равна 935 C.

Схема электролиза глинозема достаточно проста, но технологически этот процесс сложный и требует больших затрат электроэнергии.

В поду ванны с хорошей теплоизоляцией 1 и угольной набивкой 2 заложены катодные шины 3, соединенные с отрицательным полюсом источника электрического тока. К анодной шине 4 присоединены электроды 5. Перед началом электролиза на дно ванны насыпают тонкий слой кокса, электроды опускают до соприкосновения с ним и включают ток. Когда угольная набивка накалится, постепенно вводят криолит. При толщине слоя расплавленного криолита, равной 200-300 мм, загружают глинозем из расчета 15% к количеству криолита. Процесс происходит при 950-1000 C.

Под действием электрического тока глинозем разлагается алюминий и кислород. Жидкий алюминий 6 скапливается на угольной подине (дно угольной ванны), являющейся катодом, а кислород соединяется с углеродом анодов, постепенно сжигая их. Криолит расходуется незначительно. Глинозем периодически добавляют, электроды для компенсации сгоревшей части постепенно опускают вниз, а накопившийся жидкий алюминий через определенные промежутки времени выпускают в ковш 8.

При электролизе на 1 т алюминия расходуется около 2 т глинозема, 0.6 т угольных электродов, служащих анодами, 0.1 т криолита и от 17000 до 18000 квт ч электроэнергии.

Полученный при электролизе глинозема алюминий-сырец содержит металлические примеси (железо, кремний, титан и натрий), растворенные газы, главным из которых является водород, и неметаллические включения, представляющие собой частицы глинозема, угля и криолита. В таком состоянии он непригоден для применения, так как имеет низкие свойства, поэтому его обязательно подвергают рафинированию. Неметаллические и газообразные примеси удаляют путем переплавки и продувки металла хлором. Металлические примеси можно удалить только сложными электролитическими способами.

После рафинирования получают торговые сорта алюминия.

Чистота алюминия является решающим показателем, влияющим на все его свойства, поэтому химический состав положен в основу классификации алюминия.

Неизбежными примесями, получающимися при производстве алюминия, являются железо и кремний. Обе они в алюминии вредны. Железо не растворяется в алюминии, а образует с ним хрупкие химические соединения FeAl и Fe2Al. С кремнием алюминий образует эвтектическую механическую смесь при 11.7% Si. Поскольку растворимость кремния при комнатной температуре очень мала (0.05%), то даже при его незначительном количестве он образует эвтектику Fe+Si и включения очень твердых (НВ 800) хрупких кристалликов кремния, которые снижают пластичность алюминия. При совместном присутствии кремния и железа образуется тройное химическое соединение и тройная эвтектика, тоже понижающие пластичность.

Контролируемыми примесями в алюминии являются железо, кремний, медь и титан.

Алюминий всех марок содержит более 99% Al. Количественное же превышение этой величины в сотых или десятых долях процента указывают в названии марки после начальной буквы А. Так, в марке А85 содержится 99.85% Al. Исключение из этого принципа маркировки составляют марки А АЕ, в которых содержание алюминия такое же, как в марках А0 и А5, но другое соотношение входящих в состав примесей железа и кремния.

Буква Е в марке АЕ означает, что алюминий данной марки предназначается для производства электропроводов. Дополнительным требованием к свойствам алюминия является низкое электросопротивление, которое для проволоки, изготовленной из него, должно быть не более 0.0280 ом мм м при 20 C.

Алюминий применяют для производства из него изделий и сплавов на его основе, свойства которых требуют большой степени его чистоты.

В зависимости от назначения алюминий можно производить в различном виде. Алюминий всех марок (высокой и технической чистоты), предназначенный для переплавки, отливают в виде чушек массой 5; 15 и 1000 кг. Их предельные величины следующие: высота от 60 до 600 мм, ширина от 93 до 800 мм и длина от 415 до 1000 мм.

Если же алюминий предназначается для проката листа и ленты, то непрерывным или полунепрерывным методом отливают плоские слитки семнадцати размеров. Толщина их колеблется в пределах от 140 до 400 мм, ширина-от 560 до 2025 мм, а масса 1 м длины слитка-от 210 до 2190 кг. Длину слитка согласовывают с заказчиком.

Основным видом контроля алюминия как в чушках, так и в плоских слитках, является проверка химического состава и его соответствие марочному. К чушкам и слиткам, предназначенным для обработки давлением, предъявляют дополнительные требования, такие, например, как отсутствие раковин, газовых пузырей, трещин, шлаковых и других посторонних включений.

Для раскисления стали в процессе ее выплавки, а также для производства ферросплавов и для алюмотермии можно применять более дешевый алюминий меньшей чистоты, чем это указано таблице «Чистота алюминия разных марок». Для этой цели промышленность выпускает шесть марок алюминия в чушках массой от 3 до 16.5 кг, содержащих от 98.0 до 87.0% Al. В них содержание железа достигает 2.5%, а кремния и меди до 5% каждого.

Применение алюминия обусловлено особенностью его свойств. Сочетание легкости с достаточно высокой электропроводностью позволяет применять алюминий как проводник электрического тока, заменяя им более дорогую медь. Разницу в электропроводности меди (631 ом) и алюминия (371 ом) компенсируют увеличением сечения алюминиевого провода. Малая масса алюминиевых проводов делает возможным осуществлять их подвеску при значительно большем, чем в случае медных проводов, расстоянии между опорами, не опасаясь обрыва проводов под влиянием собственного веса. Из него изготовляют также кабели, шины, конденсаторы, выпрямители. Высокая коррозионная стойкость алюминия делает его в ряде случаев незаменимым материалом в химическом машиностроении, например для изготовления аппаратуры, применяющейся при производстве, хранении и перевозке азотной кислоты и ее производных.

Широко его применяют также в пищевой промышленности-из него изготовляют разнообразную посуду для приготовления пищи. При этом используют не только его стойкость к действию органических кислот, но также и высокую теплопроводность.

Высокая пластичность позволяет раскатывать алюминий в фольгу, которая в настоящее время полностью заменила применявшуюся ранее более дорогую оловянную фольгу. Фольга служит упаковкой для самых разнообразных пищевых продуктов: чая, шоколада, табака, сыра и др.

Алюминий применяют так же, как антикоррозионное покрытие других металлов и сплавов. Его можно наносить плакированием, диффузионной металлизацией и другими способами, включая покраску алюминий содержащими красками и лаками. Особенно сильно распространено плакирование алюминием плоского проката из менее коррозионно устойчивых алюминиевых сплавов.

Химическую активность алюминия по отношению к кислороду используют для раскисления при производстве полуспокойной и спокойной стали и для получения трудно восстановимых металлов путем вытеснения алюминием из их кислородных соединений.

Алюминий применяют как легирующий элемент в самых различных сталях и сплавах. Он придает им специфические свойства. Так например, он повышает жаростойкость сплавов на основе железа, меди, титана и некоторых других металлов.

Можно назвать и иные области применения алюминия различной степени чистоты, но самое большое его количество расходуют на получение различных легких сплавов на его основе. Сведения о главных из них приведены ниже.

В целом применение алюминия в различных отраслях хозяйства на примере развитых капстран оценивают следующими цифрами: транспортное машиностроение 20-23% (в том числе автомобилестроение 15%), строительство 17-18%, электротехника 10-12%, производство упаковочных материалов 9-10%, производство потребительских товаров длительного пользования 9-10%, общее машиностроение 8-10%.

Алюминий завоевывает все новые области применения, несмотря на конкуренцию других материалов и особенно пластмасс.

Основными промышленными рудами, содержащими алюминий, являются боксит, нефелин, алунит и каолин.

Качество этих руд оценивают по содержанию в них глинозема Al O, который содержит 53% Al. Из других показателей качества алюминиевых руд наиболее важным является состав примесей, вредность и полезность которых определяются применением руды.

Боксит является лучшим и во всем мире основным сырьем для получения алюминия. Его используют также для производства искусственного корунда, высокоогнеупорных изделий и для других назначений. По химическому составу эта осадочная горная порода представляет собой смесь гидратов глинозема AlO nH2O с окислами железа, кремния, титана и других элементов. Наиболее распространенными гидратами глинозема, входящими в состав бокситов, являются минералы: диаспор, бемит и гидраргеллит. Содержание глинозема в боксите даже в одном месторождении колеблется в очень широких пределах-от 35 до 70%.

Входящие в состав боксита минералы образуют очень тонкую смесь, что затрудняет обогащение. В промышленности в основном применяют сырую руду. Процесс извлечения алюминия из руды сложный, очень энергоемкий и состоит из двух стадий: сначала извлекают глинозем, а затем из него получают алюминий.

Предметом мировой торговли является как сам боксит, так и извлеченный из него или других руд глинозем.

На территории СНГ залежи бокситов распределены неравномерно, и бокситы разных месторождений неравноценны по качеству. Месторождения наиболее высококачественных бокситов находятся на Урале. Большие запасы бокситов имеются также в Европейской части СНГ и в Западном Казахстане.

Из индустриально развитых стран ныне практически обеспечена лишь Франция, где впервые началась его разработка. Его достоверные и вероятные запасы в этой группе государств в 1975 г. оценивались в 4.8 млрд. т (в том числе в Австралии 4.6 млрд. т), тогда как в развивающихся странах в 12.5 млрд. т, в основном в Африке и Латинской Америке (самые богатые-Гвинея, Камерун, Бразилия, Ямайка).

За послевоенное время резко расширился круг стран, где ведется добыча боксита и производится первичный алюминий. В 1950 г. боксит добывали лишь в 11 странах, не считая СССР, в том числе в трех в количестве свыше 1 млн. т (Суринам, Гайяна, США) и в четырех более по 0.1 млн. т (Франция, Индонезия, Италия, Гана). К 1977 г. объем добычи возрос в 12 раз и резко изменилась ее география (более половины добычи капиталистического мира приходилось на развивающиеся страны).

В отличие от развивающихся стран, богатая топливом Австралия большую часть добываемых бокситов (в основном на полуострове Иорк-в крупнейшем бокситовом месторождении мира) перерабатывает в глинозем, играя решающую роль в его мировом экспорте. Не пример ей, страны бассейна Карибского моря и западноафриканские вывозят преимущественно боксит. В этом сказывается как причины политического характера (мировым алюминиевым монополиям предпочтительнее производство глинозема за пределами бокситодобывающих, зависимых от них стран), так и чисто экономические: бокситы, в отличие от руд тяжелых цветных металлов, транспортабельны (содержат 35-65% двуокиси алюминия), а глиноземное производство требует значительных удельных расходов, которым не располагает подавляющая часть бокситодобывающих стран.

Стремясь противостоять диктату мировых алюминиевых монополий бокситоэкспортирующие страны в 1973 г. создали организацию «Международная ассоциация бокситодобывающих стран» (МАБС). В нее вошли Австралия, Гвинея, Гайана, Ямайка, а также Югославия; позднее к ней присоединились Доминиканская республика, Гаити, Гана, Сьерра-Леоне, Суринам, а Греция и Индия стали странами-наблюдателями. На год создания на долю этих государств приходилось примерно 85% добычи бокситов в несоциалистических государствах.

Для алюминиевой промышленности характерен территориальный разрыв как между добычей боксита и производством глинозема, так и между последним и выплавкой первичного алюминия. Крупнейшие производства глинозема (до 1-1.3 млн. т год) локализованы как при алюминиевых заводах (например, при канадском заводе в Арвида в Квебеке, занимающем по производственной мощности-0.4 млн. т алюминия в год), так и в бокситоэкспортирующих портах (например, Паранам в Суринаме), а также на путях следования боксита от вторых к первым - например в США на побережье Мексиканского залива (Корпус-Кристи, Пойнт-Комфорт).

У нас в стране все добываемые бокситы разделены на десять марок. Основное различие между бокситами разных марок состоит в том, что они содержат разное количество основного извлекаемого компонента-глинозема и имеют разную величину кремниевого модуля, т.е. разное содержание глинозема к содержанию вредной в бокситах примеси кремнезема (AlO SiO). Кремниевый модуль является очень важным показателем качества бокситов, от него в сильной мере зависят их применение и технология переработки.

Содержание влаги в бокситах любых марок установлено в зависимости от их месторождения: наименьшая влажность (не более 7%) установлена для бокситов южно-уральских месторождений, а для северо-уральских, каменск-уральских и тихвинских-соответственно не более 12, 16 и 22%. Показатель влажности не является браковочным признаком и служит только для расчетов с потребителем.

Боксит поставляют в кусках размером не более 500 мм. Перевозят его навалом на платформах или в гондолах.

(А l ), галлий (Ga ), индий (In ) и таллий (Т l ).

Как видно из приведенных данных, все эти элементы были открыты в XIX столетии.

Открытие металлов главной подгруппы III группы

В

Al

Ga

In

Tl

1806 г.

1825 г.

1875 г.

1863 г.

1861 г.

Г.Люссак,

Г.Х.Эрстед

Л. де Буабодран

Ф.Рейх,

У.Крукс

Л. Тенар

(Дания)

(Франция)

И.Рихтер

(Англия)

(Франция)



(Германия)


Бор представляет собой неметалл. Алюминий - переход­ный металл, а галлий, индий и таллий - полноценные метал­лы. Таким образом, с ростом радиусов атомов элементов каждой группы периодической системы металлические свой­ства простых веществ усиливаются.

В данной лекции мы подробнее рассмотрим свойства алюминия.

1. Положение алюминия в таблице Д. И. Менделеева. Строение атома, проявляемые степени окисления.

Элемент алюминий расположен в III группе, главной «А» подгруппе, 3 периоде периодической системы, порядковый номер №13, относительная атомная масса Ar (Al ) = 27. Его соседом слева в таблице является магний – типичный металл, а справа – кремний – уже неметалл. Следовательно, алюминий должен проявлять свойства некоторого промежуточного характера и его соединения являются амфотерными.

Al +13) 2) 8) 3 , p – элемент,

Основное состояние

1s 2 2s 2 2p 6 3s 2 3p 1

Возбуждённое состояние

1s 2 2s 2 2p 6 3s 1 3p 2

Алюминий проявляет в соединениях степень окисления +3:

Al 0 – 3 e - → Al +3

2. Физические свойства

Алюминий в свободном виде - се­ребристо-белый металл, обладающий высокой тепло- и электро­проводностью. Температура плавления650 о С. Алюминий имеет невысокую плотность (2,7 г/см 3) - при­мерно втрое меньше, чем у железа или меди, и одновременно - это прочный металл.

3. Нахождение в природе

По распространённости в природе занимает 1-е среди металлов и 3-е место среди элементов , уступая только кислороду и кремнию. Процент содержания алюминия в земной коре по данным различных исследователей составляет от 7,45 до 8,14 % от массы земной коры.

В природе алюминий встречается только в соединениях (минералах).

Некоторые из них:

· Бокситы - Al 2 O 3 H 2 O (с примесями SiO 2 , Fe 2 O 3 , CaCO 3)

· Нефелины - KNa 3 4

· Алуниты - KAl(SO 4) 2 2Al(OH) 3

· Глинозёмы (смеси каолинов с песком SiO 2 , известняком CaCO 3 , магнезитом MgCO 3)

· Корунд - Al 2 O 3

· Полевой шпат (ортоклаз) - K 2 O×Al 2 O 3 ×6SiO 2

· Каолинит - Al 2 O 3 ×2SiO 2 × 2H 2 O

· Алунит - (Na,K) 2 SO 4 ×Al 2 (SO 4) 3 ×4Al(OH) 3

· Берилл - 3ВеО Al 2 О 3 6SiO 2

Боксит

Al 2 O 3

Корунд

Рубин

Сапфир

4. Химические свойства алюминия и его соединений

Алюминий легко взаимодействует с кислородом при обычных условиях и покрыт оксидной пленкой (она придает матовый вид).

ДЕМОНСТРАЦИЯ ОКСИДНОЙ ПЛЁНКИ

Её толщина 0,00001 мм, но благодаря ней алюминий не коррозирует. Для изученияхимических свойств алюминия оксидную пленку удаляют. (При помощи наждачной бумаги, или химически: сначала опуская в раствор щелочи для удаления оксидной пленки, а затем в раствор солей ртути для образования сплава алюминия со ртутью – амальгамы).

I . Взаимодействие с простыми веществами

Алюминий уже при комнатной температуре активно реагирует со всеми галогенами, образуя галогениды. При нагревании он взаимодействует с серой (200 °С), азотом (800 °С), фосфором (500 °С) и углеродом (2000 °С), с йодом в присутствии катализатора - воды:

2А l + 3 S = А l 2 S 3 (сульфид алюминия),

2А l + N 2 = 2А lN (нитрид алюминия),

А l + Р = А l Р (фосфид алюминия),

4А l + 3С = А l 4 С 3 (карбид алюминия).

2 Аl +3 I 2 =2 A l I 3 (йодид алюминия) ОПЫТ

Все эти соединения полностью гидролизуются с образованием гидроксида алюминия и, соответственно, сероводорода, аммиака, фосфина и метана:

Al 2 S 3 + 6H 2 O = 2Al(OH) 3 + 3H 2 S­

Al 4 C 3 + 12H 2 O = 4Al(OH) 3 + 3CH 4 ­

В виде стружек или порошка он ярко горит на воздухе, выде­ляя большое количество теплоты:

4А l + 3 O 2 = 2А l 2 О 3 + 1676 кДж.

ГОРЕНИЕ АЛЮМИНИЯ НА ВОЗДУХЕ

ОПЫТ

II . Взаимодействие со сложными веществами

Взаимодействие с водой :

2 Al + 6 H 2 O=2 Al (OH) 3 +3 H 2

без оксидной пленки

ОПЫТ

Взаимодействие с оксидами металлов:

Алюминий – хороший восстановитель, так как является одним из активных металлов. Стоит в ряду активности сразу после щелочно-земельных металлов. Поэтому восстанавливает металлы из их оксидов . Такая реакция – алюмотермия – используется для получения чистых редких металлов, например таких, как вольфрам, ваннадий и др.

3 Fe 3 O 4 +8 Al =4 Al 2 O 3 +9 Fe + Q

Термитная смесь Fe 3 O 4 иAl (порошок) –используется ещё и в термитной сварке.

С r 2 О 3 + 2А l = 2С r + А l 2 О 3

Взаимодействие с кислотами :

С раствором серной кислоты:2 Al+ 3 H 2 SO 4 =Al 2 (SO 4) 3 +3 H 2

С холодными концентрированными серной и азотной не реагирует (пассивирует). Поэтому азотную кислоту перевозят в алюминиевых цистернах. При нагревании алюминий способен восстанавливать эти кислоты без выделения водорода:

2А l + 6Н 2 S О 4(конц) = А l 2 (S О 4) 3 + 3 S О 2 + 6Н 2 О,

А l + 6Н NO 3(конц) = А l (NO 3 ) 3 + 3 NO 2 + 3Н 2 О.

Взаимодействие со щелочами .

2 Al + 2 NaOH + 6 H 2 O =2 Na [ Al (OH ) 4 ] +3 H 2

ОПЫТ

Na l (ОН) 4 ]тетрагидроксоалюминат натрия

По предложению химика Горбова, в русско-японскую войну эту реакцию использовали для получения водорода для аэростатов.

С растворами солей:

2 Al + 3 CuSO 4 = Al 2 (SO 4 ) 3 + 3 Cu

Если поверхность алюминия потереть солью ртути, то происходит реакция:

2 Al + 3 HgCl 2 = 2 AlCl 3 + 3 Hg

Выделившаяся ртуть растворяет алюминий, образуяамальгаму .

Обнаружение ионов алюминия в растворах : ОПЫТ


5. Применение алюминия и его соединений

Физические и химические свойства алюминия обусловили его широкое применение в технике. Крупным потребителем алюминияявляется авиационная промышленность : самолет на 2/3 состоит из алюминия и его сплавов. Самолет из стали оказался бы слишком тяжелым и смог бы нести гораздо меньше пассажиров. Поэтому алюминий называют крылатым металлом. Из алюминия изготовляют кабели и провода : при одинаковой электрической проводимости их масса в 2 раза меньше, чем соответствующих изделий из меди.

Учитывая коррозионную устойчивость алюминия, из него изготовляют детали аппаратов и тару для азотной кислоты . Порошок алюминия является основой при изготовлении серебристой краски для защиты железных изделий от коррозии, а также для отражениятепловых лучей такой краской покрывают нефтехранилища, костюмы пожарных.

Оксид алюминия используется для получения алюминия, а также как огнеупорный материал.

Гидроксид алюминия – основной компонент всем известных лекарств маалокса, альмагеля, которые понижают кислотность желудочного сок.

Соли алюминия сильногидролизуются. Данное свойство применяют в процессе очистки воды. В очищаемую воду вводят сульфат алюминия и небольшое количество гашеной извести для нейтрализации образующейся кислоты. В результате выделяется объемный осадок гидроксида алюминия, который, оседая, уносит с собой взвешенные частицы мути и бактерии.

Таким образом, сульфат алюминия является коагулянтом.

6. Получение алюминия

1) Современный рентабельный способ получения алюминия был изобретен американцем Холлом и французом Эру в 1886 году. Он заключается в электролизе раствора оксида алюминия в расплавленном криолите. Расплавленный криолит Na 3 AlF 6 растворяет Al 2 O 3, как вода растворяет сахар. Электролиз “раствора” оксида алюминия в расплавленном криолите происходит так, как если бы криолит был только растворителем, а оксид алюминия - электролитом.

2Al 2 O 3 эл.ток →4Al + 3O 2

В английской “Энциклопедии для мальчиков и девочек” статья об алюминии начинается следующими словами: “23 февраля 1886 года в истории цивилизации начался новый металлический век - век алюминия. В этот день Чарльз Холл, 22-летний химик, явился в лабораторию своего первого учителя с дюжиной маленьких шариков серебристо-белого алюминия в руке и с новостью, что он нашел способ изготовлять этот металл дешево и в больших количествах”. Так Холл сделался основоположником американской алюминиевой промышленности и англосаксонским национальным героем, как человек, сделавшим из науки великолепный бизнес.

2) 2Al 2 O 3 +3 C=4 Al+3 CO 2

ЭТО ИНТЕРЕСНО:

  • Металлический алюминий первым выделил в 1825 году датский физик Ханс Кристиан Эрстед. Пропустив газообразный хлор через слой раскаленного оксида алюминия, смешанного с углем, Эрстед выделил хлорид алюминия без малейших следов влаги. Чтобы восстановить металлический алюминий, Эрстеду понадобилось обработать хлорид алюминия амальгамой калия. Через 2 года немецкий химик Фридрих Вёллер. Усовершенствовал метод, заменив амальгаму калия чистым калием.
  • В 18-19 веках алюминий был главным ювелирным металлом. В 1889 году Д.И.Менделеев в Лондоне за заслуги в развитии химии был награжден ценным подарком – весами, сделанными из золота и алюминия.
  • К 1855 году французский ученыйСен- Клер Девиль разработал способ получения металлического алюминия в технических масштабах. Но способ был очень дорогостоящий. Девиль пользовался особым покровительством НаполеонаIII, императораФранции. В знаксвоей преданности и благодарности Девиль изготовил для сына Наполеона, новорожденного принца, изящно гравированную погремушку – первое «изделие ширпотреба» из алюминия. Наполеон намеревался даже снарядить своих гвардейцев алюминиевыми кирасами, но цена оказалась непомерно высокой. В то время 1 кг алюминия стоил 1000 марок, т.е. в 5 раз дороже серебра. Только после изобретения электролитического процесса алюминий по своей стоимости сравнялся с обычными металлами.
  • А знаете ли вы, что алюминий, поступая в организм человека, вызывает расстройство нервной системы.При его избытке нарушается обмен веществ. А защитными средствами является витамин С, соединения кальция, цинка.
  • При сгорании алюминия в кислороде и фторе выделяется много тепла. Поэтому его используют как присадку к ракетному топливу. Ракета "Сатурн" сжигает за время полёта 36 тонн алюминиевого порошка. Идея использования металлов в качестве компонента ракетного топлива впервые высказал Ф. А. Цандер.

ТРЕНАЖЁРЫ

Тренажёр №1 - Характеристика алюминия по положению в Периодической системе элементов Д. И. Менделеева

Тренажёр №2 - Уравнения реакций алюминия с простыми и сложными веществами

Тренажёр №3 - Химические свойства алюминия

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

№1. Для получения алюминия из хлорида алюминия в качестве восстановителя можно использовать металлический кальций. Составьте уравнение данной химической реакции, охарактеризуйте этот процесс при помощи электронного баланса.
Подумайте! Почему эту реакцию нельзя проводить в водном растворе?

№2. Закончите уравнения химических реакций :
Al + H 2 SO 4 (раствор ) ->
Al + CuCl 2 ->
Al + HNO 3 (
конц ) - t ->
Al + NaOH + H 2 O ->

№3. Осуществите превращения:
Al -> AlCl 3 -> Al -> Al 2 S 3 -> Al(OH) 3 - t ->Al 2 O 3 -> Al

№4. Решите задачу:
На сплав алюминия и меди подействовали избытком концентрированного раствора гидроксида натрия при нагревании. Выделилось 2,24 л газа (н.у.). Вычислите процентный состав сплава, если его общая масса была 10 г?

Этот легкий металл с серебристо-белым оттенком в современной жизни встречается почти повсеместно. Физические и химические свойства алюминия позволяют широко использовать его в промышленности. Самые известные месторождения - в Африке, Южной Америке, в Карибском регионе. В России места добычи бокситов имеются на Урале. Мировыми лидерами по производству алюминия являются Китай, РФ, Канада, США.

Добыча Al

В природе этот серебристый металл в силу своей высокой химической активности встречается лишь в виде соединений. Наиболее известные геологические породы, содержащие алюминий, - это бокситы, глиноземы, корунды, полевые шпаты. Промышленное значение имеют бокситы и глиноземы, именно месторождения этих руд позволяют добывать алюминий в чистом виде.

Свойства

Физические свойства алюминия позволяют легко вытягивать заготовки этого металла в проволоку и прокатывать в тонкие листы. Этот металл не является прочным, для повышения данного показателя при выплавке его легируют различными добавками: медью, кремнием, магнием, марганцем, цинком. Для промышленного назначения важно еще одно физическое свойство вещества алюминия - это его способность быстро окисляться на воздухе. Поверхность изделия из алюминия в естественных условиях обычно покрыта тонкой оксидной пленкой, которая эффективно защищает металл и препятствует его коррозии. При уничтожении этой пленки серебристый металл быстро окисляется, при этом его температура заметно повышается.

Внутреннее строение алюминия

Физические и химические свойства алюминия во многом зависят от его внутреннего строения. Кристаллическая решетка этого элемента является разновидностью гранецентрированного куба.

Данный тип решетки присущ многим металлам, таким, как медь, бром, серебро, золото, кобальт и другие. Высокая теплопроводность и способность проводить электричество сделали этот металл одним из самых востребованных в мире. Остальные физические свойства алюминия, таблица которых представлена ниже, раскрывают полностью его свойства и показывают сферы их применения.

Легирование алюминия

Физические свойства меди и алюминия таковы, что при добавлении к алюминиевому сплаву некоторого количества меди его кристаллическая решетка искривляется, и прочность самого сплава повышается. На этом свойстве Al основано легирование легких сплавов для повышения их прочности и стойкости к воздействию агрессивной среды.

Объяснение процесса упрочнения лежит в поведении атомов меди в кристаллической решетке алюминия. Частицы Cu стремятся выпасть из кристаллической решетки Al, группируются на ее особых участках.

Там, где атомы меди образуют скопления, образуется кристаллическая решетка смешанного типа CuAl 2 , в которой частицы серебристого металла одновременно входят в состав и общей кристаллической решетки алюминия, и в состав решетки смешанного типа CuAl 2. Силы внутренних связей в искаженной решетке гораздо больше, чем в обычной. А значит, и прочность новообразованного вещества гораздо выше.

Химические свойства

Известно взаимодействие алюминия с разбавленными серной и соляной кислотой. При нагревании этот металл в них легко растворяется. Холодная концентрированная или сильно разбавленная азотная кислота не растворяет этот элемент. Водные растворы щелочей активно воздействуют на вещество, в процессе реакции образуя алюминаты - соли, в составе которых имеются ионы алюминия. Например:

Al 2 O 3 +3H2O+2NaOH=2Na

Получившееся в результате реакции соединение носит название тетрагидроксоалюминат натрия.

Тонкая пленка на поверхности алюминиевых изделий защищает этот металл не только от воздуха, но и от воды. Если эту тонкую преграду убрать, элемент станет бурно взаимодействовать с водой, выделяя из нее водород.

2AL+6H 2 O= 2 AL (OH) 3 +3Н 2

Образовавшееся вещество называется гидроксидом алюминия.

AL (OH) 3 реагирует с щелочью, образуя кристаллы гидроксоалюмината:

Al(OH) 2 +NaOH=2Na

Если это химическое уравнение сложить с предыдущим, получим формулу растворения элемента в щелочном растворе.

Al(OH) 3 +2NaOH+6H 2 O=2Na +3H 2

Горение алюминия

Физические свойства алюминия позволяют ему вступать в реакцию с кислородом. Если порошок этого металла или алюминиевую фольгу нагреть, то она вспыхивает и горит белым ослепительным пламенем. В конце реакции образуется оксид алюминия Al 2 O 3.

Глинозем

Полученный оксид алюминия имеет геологическое название глинозем. В естественных условиях он встречается в виде корунда - твердых прозрачных кристаллов. Корунд отличается высокой твердостью, в шкале твердых веществ его показатель составляет 9. Сам корунд бесцветен, но различные примеси могут окрасить его в красный и синий цвет, так получаются драгоценные камни, которые в ювелирном деле называются рубинами и сапфирами.

Физические свойства оксида алюминия позволяют выращивать эти драгоценные камни в искусственных условиях. Технические драгоценные камни используются не только для ювелирных украшений, они применяются в точном приборостроении, для изготовления часов и прочего. Широко используются искусственные кристаллы рубина и в лазерных устройствах.

Мелкозернистая разновидность корунда с большим количеством примесей, нанесенная на специальную поверхность, известна всем как наждак. Физические свойства оксида алюминия объясняют высокие абразивные свойства корунда, а также его твердость и устойчивость к трению.

Гидроксид алюминия

Al 2 (OH) 3 является типичным амфотерным гидроксидом. В соединении с кислотой это вещество образует соль, содержащую положительно заряженные ионы алюминия, в щелочах образует алюминаты. Амфотерность вещества проявляется в том, что он может вести себя и как кислота, и как щелочь. Это соединение может существовать и в желеобразном, и в твердом виде.

В воде практически не растворяется, но вступает в реакцию с большинством активных кислот и щелочей. Физические свойства гидроксида алюминия используются в медицине, это популярное и безопасное средство снижения кислотности в организме, его применяют при гастритах, дуоденитах, язвах. В промышленности Al 2 (OH) 3 используется в качестве адсорбента, он прекрасно очищает воду и осаждает растворенные в ней вредные элементы.

Промышленное использование

Алюминий был открыт в 1825 году. Поначалу данный металл ценился выше золота и серебра. Это объяснялось сложностью его извлечения из руды. Физические свойства алюминия и его способность быстро образовывать защитную пленку на своей поверхности затрудняли исследование этого элемента. Лишь в конце 19 века был открыт удобный способ плавки чистого элемента, пригодный для использования в промышленных масштабах.

Легкость и способность сопротивляться коррозии - уникальные физические свойства алюминия. Сплавы этого серебристого металла применяются в ракетной технике, в авто-, судо-, авиа- и приборостроении, в производстве столовых приборов и посуды.

Как чистый металл Al используется при изготовлении деталей для химической аппаратуры, электропроводов и конденсаторов. Физические свойства алюминия таковы, что его электропроводность не так высока, как у меди, но этот недостаток компенсируется легкостью рассматриваемого металла, что позволяет делать провода из алюминия более толстыми. Так, при одинаковой электропроводности алюминиевый провод весит в два раза меньше медного.

Не менее важным является применение Al в процессе алитирования. Так называется реакция насыщения поверхности чугунного или стального изделия алюминием с целью защиты основного металла от коррозии при нагревании.

В настоящее время изведанные запасы алюминиевых руд вполне сопоставимы с потребностями людей в этом серебристом металле. Физические свойства алюминия могут преподнести еще немало сюрпризов его исследователям, а сферы применения этого металла гораздо шире, чем можно представить.

Алюминий в чистом виде впервые выделен Фридрихом Велером. Немецкий химик нагрел безводный хлорид элемента с металлическим калием. Произошло это во 2-ой половине 19-го века. До 20-го столетия кг алюминия стоил дороже .

Новый металл позволяли себе лишь богачи и государственные . Причина высокой стоимости – сложность отделения алюминия от других веществ. Метод добычи элемента в промышленных масштабах предложил Чарльз Холл.

В 1886-ом году он растворил оксид в расплаве криолита. Немец заключил смесь в гранитный сосуд и подключил к нему электрический ток. На дно емкости осели бляшки чистого металла.

Химические и физические свойства алюминия

Какой алюминий? Серебристо-белый, блестящий. Поэтому, Фридрих Велер сравнивал полученные им гранулы металла с . Но, была оговорка, — алюминий значительно легче.

Пластичность же приближена к драгоценным и . Алюминий – вещество , без проблем вытягивающееся в тонкую проволоку и листы. Достаточно вспомнить фольгу. Она делается на основе 13-го элемента.

Алюминий легок за счет небольшой плотности. Она втрое меньше, чем у и железа. При этом в прочности 13-ый элемент почти не уступает.

Такое сочетание сделало серебристый металл незаменимым в промышленности, к примеру, производстве деталей для автомобилей. Речь идет и о кустарном производстве, ведь сварка алюминия возможна даже в домашних условиях.

Формула алюминия позволяет активно отражать световые, но и тепловые лучи. Высока и электропроводность элемента. Главное, излишне не нагревать его. При 660-ти градусах расплавится. Поднимись температура чуть выше – сгорит.

Металл исчезнет, останется лишь оксид алюминия . Он образуется и в стандартных условиях, но лишь в виде поверхностной пленки. Она защищает металл. Поэтому, он неплохо противостоит коррозии, ведь доступ кислорода блокирован.

Оксидная пленка защищает металл и от воды. Если удалить с поверхности алюминия налет, запустится реакция с Н 2 О. Выделение газов водорода произойдет даже при комнатной температуре. Так что, алюминиевая лодка не превращается в дым лишь за счет оксидной пленки и защитной краски, нанесенной на корпус судна.

Наиболее активно взаимодействие алюминия с неметаллами. Реакции с бромом и хлором проходят даже при обычны условиях. В итоге, образуются соли алюминия . Соли водорода получаются, если соединить 13-ый элемент с растворами кислот. Реакция состоится и со щелочами, но лишь после удаления оксидной пленки. Выделится чистый водород.

Применение алюминия

Металл напыляют на зеркала. Пригождаются высокие показатели отражения света. Процесс проходит в условиях вакуума. Изготавливают не только стандартные зеркала, но предметы с зеркальными поверхностями. Таковыми становятся: керамическая плитка, бытовая техника, светильники.

Дуэт алюминий-медь – основа дюралюминий. Попросту его называют дюраль. В качестве добавляют . Состав прочнее чистого алюминия в 7 раз, поэтому, подходит для области машиностроения и авиаконструирования.

Медь придает 13-му элементу прочность, но не тяжесть. Дюраль остается в 3 раза легче железа. Небольшая масса алюминия – залог легкости авто, самолетов, кораблей. Это упрощает перевозку, эксплуатацию, снижает цену продукции.

Купить алюминий автопромышленники стремятся еще и потому, что на его сплавы легко наносятся защитные и декоративные составы. Краска ложится быстрее и ровнее, чем на сталь, пластик.

При этом, сплавы податливы, просто обрабатываются. Это ценно, учитывая массу изгибов и конструктивных переходов на современных моделях автомобилей.

13-ый элемент не только легко красится, но и сам может выступать в роли красителя. В текстильной промышленности закупается сульфат алюминия . Он же пригождается в печатном деле, где требуются нерастворимые пигменты.

Интересно, что раствор сульфата алюминия применяют еще и для очистки воды. В присутствии «агента» вредные примеси выпадают в осадок, нейтрализуются.

Нейтрализует 13-ый элемент и кислоты. Особенно хорошо с этой ролью справляется гидроксид алюминия . Его ценят в фармакологии, медицине, добавляя в лекарства от изжоги.

Выписывают гидроксид и при язвах, воспалительных процессах кишечного тракта. Так что в аптечных препарата тоже есть алюминий. Кислота в желудке – повод узнать о таких лекарствах побольше.

В СССР и бронзы с 11-процентной добавкой алюминия чеканили . Достоинство знаков – 1, 2 и 5 копеек. Начали выпускать в 1926-ом, закончили в 1957-ом году. А вот производство алюминиевых банок для консервов не прекратили.

Тушенку, сайру и прочие завтраки туристов до си пор упаковывают в тару на основе 13-го элемента. Такие банки не вступают в реакцию с продуктами питания, при этом, легки и дешевы.

Порошок алюминия входит в состав многих взрывчатых смесей, в том числе и пиротехники. В промышленности применяют подрывные механизмы на основе тринитротолуола и измельченного 13-го элемента. Мощная взрывчатка получается и при добавлении к алюминию аммиачной селитры.

В нефтяной отрасли необходим хлорид алюминия . Он играет роль катализатора при разложении органики на фракции. У нефти есть свойство выделять газообразные, легкие углеводороды бензинового типа, взаимодействуя с хлоридом 13-го металла. Реагент должен быть безводным. После добавления хлорида, смесь прогревают до 280-ти градусов Цельсия.

В строительстве нередко смешиваю натрий и алюминий . Получается присадка к бетону. Алюминат натрия ускоряет его затвердение за счет убыстрения гидратации.

Повышается скорость микрокристаллизации, значит, увеличивается прочность и твердость бетона. К тому же, алюминат натрия спасает арматуру, уложенную в раствор, от коррозии.

Добыча алюминия

Металл замыкает тройку самых распространенных на земле. Это объясняет его доступность и широкое применение. Однако, в чистом виде природа элемент человеку не дает. Алюминий приходится выделять из различных соединений. Больше всего 13-го элемента в бокситах. Это глиноподобные породы, сосредоточенные, в основном, в тропическом поясе.

Бокситы дробят, потом сушат, снова дробят и перемалывают в присутствии небольшого объема воды. Получается густая масса. Ее нагревают паром. При этом большая часть , коим бокситы тоже не бедны, испаряется. Остается оксид 13-го металла.

Его помещают в промышленные ванны. В них уже находится расплавленный криолит. Температура держится на отметке 950 градусов Цельсия. Нужен и электрический ток силой минимум в 400 кА. То есть, используется электролиз, как и 200 лет назад, когда элемент выделял Чарльз Холл.

Проходя через раскаленный раствор, ток разрывает связи между металлом и кислородом. В итоге, на дне ванн остается чистый алюминий. Реакции окончены. Завершает процесс отливание из осадка и их отправка потребителю, или же, использование для формирования различных сплавов.

Основные производства алюминия находятся там же, где и залежи бокситов. В передовика – Гвинея. В ее недрах скрыто почти 8 000 000 тонн 13-го элемента. На 2-ом месте Австралия с показателем в 6 000 000. В Бразилии алюминия уже в 2 раза меньше. Общемировые же запасы оцениваются в 29 000 000 тонн.

Цена алюминия

За тонну алюминия просят почти 1 500 долларов США. Таковы данные бирж цветных металлов на 20 января 2016-го. Стоимость устанавливается, в основном, промышленниками. Точнее, на цену алюминия влияет их спрос на сырье. Влияет на запросы поставщиков и стоимость электроэнергии, ведь производство 13-го элемента энергоемко.

Иные цены установлены на алюминия. Он идет на переплавку. Стоимость оглашается за килограмм, причем, имеет значение характер сдаваемого материала.

Так, за электротехнический металл дают примерно 70 рублей. За пищевой алюминий можно получить на 5-10 рублей меньше. Столько же платят за моторный металл. Если сдается разносортица, ее цена – 50-55 рублей за килограмм.

Самый дешевый вид лома – стружка алюминия. За нее удается выручить лишь 15-20 рублей. Чуть больше дадут за из 13-го элемента. Имеется в виду тара из-под напитков, консервов.

Невысоко ценят и алюминиевые радиаторы. Цена за килограмм лома – около 30-ти рублей. Это усредненные показатели. В разных регионах, на разных точках алюминий принимают дороже, либо дешевле. Нередко стоимость материалов зависит от сдаваемых объемов.