Время темновой адаптации нормального глаза. Механизмы световосприятия. Зрительная адаптация. (темновая и световая). Учебное видео определения темновой адаптации по методу Кравкова-Пуркинье

ваны статьи Терстиге (1972), Ханта (1976), Бартлесона (1978), Райта (1981), Ленни и Д`Змура (1988).

Удачи любознательному читателю в изучении этой славной литературы!

8.1 СВЕТОВАЯ, ТЕМНОВАЯ И ХРОМАТИЧЕСКАЯ АДАПТАЦИИ

Адаптация - это способность организма менять свою чувствитель ность к стимулу в ответ на изменения в условиях стимуляции.

Отметим, что общая концепция адаптации охватывает все области воспри ятия.

Механизмы адаптации по продолжительности могут быть сверхкороткими (порядка миллисекунд) или наоборот - сверхдлинными, тянущимися недели, месяцы и даже годы. В целом механизмы адаптации служат понижению чувст вительности наблюдателя к стимулу при росте физической интенсивности по следнего (к примеру, можно ясно слышать тиканье часов посреди тихой ночи

и совсем не слышать его на шумном приеме).

В отношении зрения важны три вида адаптации: световая, темновая и хро матическая.

Световая адаптация

Световая адаптация - это процесс понижения чувствительности зре ния по мере роста общего уровня освещения.

К примеру: ясной ночью легко увидеть миллионы звезд, но в полдень их на небе столько же - однако днем звезд не видно. Так получается потому, что днем суммарная яркость неба на несколько порядков выше, чем ночью, и по этому днем чувствительность зрения понижена в сравнении с ночной чувстви тельностью. Таким образом, разница в яркостях ночного неба и звезд в состоя нии обеспечить зрительное восприятие последних, тогда как днем она недоста точно велика.

Другой пример: представьте себе, что вы проснулись среди ночи и включили яркий свет. В первый момент вы ослеплены, не в состоянии разобрать что либо

и можете даже почувствовать легкую боль, но спустя уже несколько десятков секунд вы начинаете постепенно различать предметы. Так происходит потому, что в темноте механизмы зрения находились в наиболее чувствительном со стоянии и сразу после включения света (из за своей повышенной чувствитель ности) оказываются перегруженными, но спустя непродолжительное время они адаптируются, понижая чувствительность и обеспечивая тем самым нор мальное зрение.

Темновая адаптация

Темновая адаптация подобна световой, за исключением того, что процесс идет в обратном направлении, то есть:

Г Л А В А 8

ХРОМАТИЧЕСКАЯ АДАПТАЦИЯ

Темновая адаптация - это процесс повышения чувствительности зре ния по мере снижения уровня фотометрической яркости.

Несмотря на то, что феномены световой и темновой адаптаций сходны меж ду собой, - это все таки два самостоятельных явления, обусловленные разны ми механизмами и выполняющие разную зрительную работу (например, свето вая адаптация наступает значительно быстрее, нежели темновая).

Каждый может испытать темновую адаптацию, войдя с залитой солнцем улицы в полумрак кинотеатра: в первый момент помещение кажется совер шенно темным, и многие просто останавливаются на пороге, потому что ничего не видят. Однако по прошествии короткого периода времени предметы в поме щении (кресла, зрители) начинают выступать из темноты. Спустя еще несколь ко минут они станут уже хорошо различимыми, и не составит большого труда распознать фигуры знакомых, найти нужное кресло и т.п., поскольку механиз мы темновой адаптации постепенно увеличивают общую чувствительность зрительной системы.

О световой и темновой адаптациях можно говорить как об аналогии автома тическому контролю экспозиции в фотоаппаратах.

Хроматическая адаптация

Процессы световой и темновой адаптаций радикально влияют на цветовое восприятие стимулов и поэтому учитываются многими моделями цветового восприятия. Однако третий вид адаптации зрения - хроматическая адапта ция - самый важный, и его обязательно должны учитывать все модели.

Хроматическая адаптация - это процесс в значительной мере незави симой регулировки чувствительности механизмов цветового зрения.

Более того, часто звучит мнение, что хроматическая адаптация основана только на независимом изменении чувствительности трех типов колбочковых фоторецепторов (в то время как световая и темновая адаптации - это результат общего изменения чувствительности всего рецепторного аппарата). Однако важно помнить, что существуют иные механизмы цветового зрения (действую щие, к примеру, на оппонентном уровне и даже на уровне распознавания объ ектов), способные к изменению чувствительности, которые также можно отне сти к механизмам хроматической адаптации.

В качестве примера хроматической адаптации возьмем лист белой бумаги, освещенной дневным светом. Если этот лист перенести в помещение, освещен ное лампами накаливания, он по прежнему будет восприниматься белым, не смотря на то, что энергия, отраженная от листа, сменилась с преимущественно «синей», на преимущественно «желтую» (это то самое изменение, к которому не может приспособиться цветная обращаемая фотопленка, о чем мы говорили во введении к данной главе).

Рис. 8.1 иллюстрирует данную ситуацию: на рис. 8.1 (а) показана типичная сцена при дневном освещении; на рис. 8.1 (b) - та же сцена, освещенная лампа

Рис. 8.2 Пример постобразов, вызванных локальной ретинальной адаптацией.

На 30 секунд зафиксируйте взгляд на черной точке, а затем переведите его на равномерную бе лую поверхность. Обратите внимание на цвета постобразов и сравните их с цветами оригиналь ных стимулов.

ми накаливания и воспринятая некоей зрительной системой, не способной к адаптации; на рис. 8.1 (с) - опять та же сцена при свете ламп накаливания, воспринятая некоей зрительной системой, способной к адаптации подобно зри тельной системе человека.

Второй иллюстративный пример хроматической адаптации - т.н. постоб разы , показанные на рис. 8.2: сосредоточьтесь на черной точке в центре фигуры и запомните позиции ее цветов; спустя примерно 30 секунд переведите взгляд на освещенную белую область, например, на белую стену или чистый лист бу маги. Обратите внимание на появившиеся цвета и их взаиморасположение. Возникшие постобразы - это результат независимого изменения чувствитель ности цветовых механизмов. К примеру, области сетчатки, экспонированные красным стимулом рисунка 8.2, понижают свою чувствительность к «крас ной» энергии по мере адаптирующей экспозиции вызывая недостаточность «красного» ответа данной области сетчатки (в норме ожидаемого при воздейст вии белых стимулов), в результате при взгляде на белую поверхность появляет ся голубой постобраз. Возникновение остальных цветов в постобразах объясня ется аналогично.

Итак, если о световой адаптации можно говорить как об аналогии автомати ческому контролю экспозиции, то об адаптации хроматической мы говорим как об аналогии автоматическому балансу белого в видео или цифровых фото камерах.

Райт (1981) дает исторический обзор того, зачем и как изучалась хроматиче ская адаптация.

3-11-2012, 22:44

Описание

Диапазон воспринимаемых глазом яркостей

Адаптацией называется перестройка зрительной системы для наилучшего приспособления к данному уровню яркости. Глазу приходится работать при яркостях, меняющихся в чрезвычайно широком диапазоне, примерно от 104 до 10-6 кд/м2, т. е. в пределах десяти порядков. При изменении уровня яркости поля зрения автоматически включается целый ряд механизмов, которые и обеспечивают адаптационную перестройку зрения. Если уровень яркости длительное время существенно не меняется, состояние адаптации приходит в соответствие с этим уровнем. В таких случаях можно говорить уже не о процессе адаптации, а о состоянии: адаптации глаза к такой-то яркости L.

При резком изменении яркости происходит разрыв между яркостью и состоянием зрительной системы , разрыв, который и служит сигналом для включения адаптационных механизмов.

В зависимости от знака изменения яркости различают световую адаптацию - перестройку на более высокую яркость и темновую - перестройку на более низкую яркость.

Световая адаптация

Световая адаптация протекает значительно быстрее темновой. Выходя из темного помещения на яркий дневной свет, человек бывает ослеплен и в первые секунды почти ничего не видит. Образно выражаясь, зрительный прибор зашкаливает. Но если милливольтметр перегорает при попытке измерить им напряжение в десятки вольт, то глаз отказывается работать только короткое время. Чувствительность его автоматически и достаточно быстро падает. Прежде всего сужается зрачок. Кроме того, под непосредственным действием света выцветает зрительный пурпур палочек, в результате их чувствительность резко падает. Начинают действовать колбочки, которые, по-видимому, оказывают тормозящее действие на палочковый аппарат и выключают его. Наконец, происходит перестройка нервных связей в сетчатке и понижение возбудимости мозговых центров. В результате уже через несколько секунд человек начинает видеть в общих чертах окружающую картину, а минут через пять световая чувствительность его зрения приходит в полное соответствие с окружающей яркостью, что обеспечивает нормальную работу глаза в новых условиях.

Темновая адаптация. Адаптометр

Темновая адаптация изучена гораздо лучше, чем световая, что в значительной степени объясняется практической важностью этого процесса. Во многих случаях, когда человек попадает в условия низкой освещенности, важно заранее знать, через сколько времени и что он сможет видеть. Кроме того, нормальное течение темновой адаптации нарушается при некоторых болезнях, и поэтому ее изучение имеет диагностическое значение. Поэтому созданы специальные приборы для исследования темновой адаптации - адаптометры . В Советском Союзе серийно выпускается адаптометр АДМ. Опишем его устройство и метод работы с ним. Оптическая схема прибора изображена на рис. 22.

Рис. 22. Схема адаптометра АДМ

Пациент прижимает лицо к резиновой полумаске 2 и смотрит обоими глазами внутрь шара 1, покрытого изнутри белой окисью бария. Через отверстие 12 врач может видеть глаза пациента. С помощью лампы 3 и фильтров 4 стенкам шара можно сообщить яркость Lc, создающую предварительную световую адаптацию, во время которой отверстия шара закрывают заслонками 6 и 33, белыми с внутренней стороны.

При измерении световой чувствительности лампу 3 выключают и открывают заслонки 6 и 33. Включают лампу 22 и по изображению на пластинке 20 проверяют центрирование ее нити. Лампа 22 освещает через конденсор 23 и светофильтр дневного света 24 молочное стекло 25, которое служит вторичным источником света для пластинки из молочного стекла 16. Часть этой пластинки, видимая пациентом через один из вырезов в диске 15, служит тест-объектом при измерении пороговой яркости. Регулировка яркости тест-объекта производится ступенями с помощью фильтров 27-31 и плавно с помощью диафрагмы 26, площадь котором изменяется при вращении барабана 17. Фильтр 31 имеет оптическую плотность 2, т. е. пропускание 1%, а остальные фильтры - плотность 1,3, т. е. пропускание 5%. Осветитель 7-11 служит для боковой засветки глаз через отверстие 5 при исследовании остроты зрения в условиях ослепления. При снятии кривой адаптации лампа 7 выключена.

Небольшое, прикрытое красным светофильтром отверстие в пластинке 14, освещаемое лампой 22 с помощью матовой пластинки 18 и зеркальца 19, служит фиксационной точкой, которую пациент видит через отверстие 13.

Основная процедура измерения хода темновой адаптации состоит в следующем . В затемненном помещении пациент садится перед адаптометром и смотрит внутрь шара, плотно прижав лицо к полумаске. Врач включает лампу 3, установив с помощью фильтров 4 яркость Lc - 38 кд/м2. Пациент адаптируется к этой яркости в течение 10 мин. Установив поворотом диска 15 круглую диафрагму, видимую пациентом под углом 10°, врач по истечении 10 мин гасит лампу 3, включает лампу 22, фильтр 31 и открывает отверстие 32. При полностью открытой диафрагме и фильтре 31 яркость L1 стекла 16 равна 0,07 кд/м2. Пациенту дается указание смотреть на фиксационную точку 14 и сказать «вижу», как только он увидит светлое пятно на месте пластинки 16. Врач отмечает это время t1 уменьшает яркость пластинки 16 до значения L2, ждет, пока пациент снова скажет «вижу», отмечает время t2 и снова уменьшает яркость. Измерение длится 1 ч после выключения адаптирующей яркости. Получается ряд значений ti, каждому из которых соответствует свое, L1, что позволяет построить зависимость пороговой яркости Ln или световой чувствительности Sc от времени темновой адаптации t.

Обозначим через Lm максимальную яркость пластинки 16, т. е. ее яркость при полном раскрытии диафрагмы 26 и при выключенных фильтрах. Суммарное пропускание фильтров и диафрагмы обозначим?ф. Оптическая плотность Dф системы, ослабляющей яркость, равна логарифму обратной ему величины.

Значит, яркость при введенных ослабителях L = Lm ?ф, a lgL, = lgLm - Dф.

Так как световая чувствительность обратно пропорциональна пороговой яркости, т. е.

В адаптометре АДМ Lm - 7 кд/м2.

В описании адаптометра приведена зависимость D от времени темновой адаптации t, принимаемая врачами за норму. Отклонение хода темновой адаптации от нормы указывает на ряд заболеваний не только глаза, но и всего организма . Приведены средние значения Dф и допустимые граничные значения, еще не выходящие за пределы нормы. Исходя из значений Dф, мы вычислили по формуле (50) и на рис. 24

Рис. 24. Нормальный ход зависимости Sc от времени темновой адаптации t

приводим зависимость Sc от t в полулогарифмическом масштабе.

Более детальное изучение темновой адаптации указывает на большую сложность этого процесса. Ход кривой зависит от многих факторов : от яркости предварительной засветки глаз Lc, от места на сетчатке, на которое проецируется тест-объект, от его площади и т. д. Не входя в подробности, укажем на различие адаптационных свойств колбочек и палочек. На рис. 25

Рис. 25. Кривая темновой адаптации по Н. И. Пинегину

изображен график уменьшения пороговой яркости, взятый из работы Пинегина. Кривая снята после сильной засветки глаз белым светом с Lс = 27 000 кд/м2. Тестовое поле освещалось зеленым светом с? = 546 нм, тест-объект размером 20" проецировался на периферию сетчатки По оси абсцисс отложено время темновой адаптации t, по оси ординат lg (Lп/L0), где L0-пороговая яркость в момент t = 0, a Ln - в любой другой момент. Мы видим, что примерно за 2 мин чувствительность повышается в 10 раз, а за следующие 8 мин - еще в 6 раз. На 10-й минуте возрастание чувствительности опять ускоряется (пороговая яркость уменьшается), а затем снова становится медленным. Объяснение хода кривой такое. Сначала быстро адаптируются колбочки, но они могут повысить чувствительность только примерно в 60 раз. Через 10 мин. адаптации возможности колбочек исчерпаны. Но к этому времени уже расторможены палочки, обеспечивающие дальнейший рост чувствительности.

Факторы, повышающие световую чувствительность при адаптации

Раньше, изучая темновую адаптацию, основное значение придавали возрастанию концентрации светочувствительного вещества в рецепторах сетчатки, главным образом родопсина . Академик П. П. Лазарев при построении теории процесса темновой адаптации исходил нз допущения, что световая чувствительность Sс пропорциональна концентрации а светочувствительного вещества. Таких же взглядов придерживался и Хехт. Между тем легко показать, что вклад повышения концентрации в общее увеличение чувствительности не так уж велик.

В § 30 мы указали границы яркостей, при которых приходится работать глазу - от 104 до 10-6 кд/м2. При нижнем пределе пороговую яркость можно считать равной самому пределу Lп = 10-6 кд/м2. А при верхнем? При высоком уровне адаптации L пороговой яркостью Lп можно назвать минимальную яркость, которую еще можно отличить от полной темноты. Используя экспериментальный материал работы, можно сделать вывод, что Lп при высоких яркостях составляет примерно 0,006L. Итак, нужно оценить роль различных факторов при уменьшении пороговой яркости от 60 до 10_6 кд/м2, т. ". в 60 млн. раз. Перечислим эти факторы :

  1. Переход от колбочкового зрения к палочковому. Из того, что для точечного источника, когда можно считать, что свет действует на один рецептор, Еп = 2-10-9 лк, а Ец = 2-10-8 лк, можно сделать вывод, что палочка чувствительней колбочки в 10 раз.
  2. Расширение зрачка от 2 до 8 мм, т. е. по площади в 16 раз.
  3. Увеличение времени инерции зрения от 0,05 до 0,2 с, т. е. в 4 раза.
  4. Увеличение площади, по которой производится суммирование воздействия света на сетчатку. При большой яркости угловой предел разрешения? = 0,6", а при малой? = 50". Увеличение этого числа означает, что множество рецепторов объединяется для совместного восприятия света, образуя, как обычно говорят физиологи, одно рецептивное поле (Глезер). Площадь рецептивного поля увеличивается в 6900 раз.
  5. Увеличение чувствительности мозговых центров зрения.
  6. Увеличение концентрации а светочувствительного вещества. Именно этот фактор мы и хотим оценить.

Допустим, что увеличение чувствительности мозга мало и им можно пренебречь. Тогда мы сможем оценить влияние возрастания а или, по крайней мере, верхний предел возможного увеличения концентрации.

Таким образом, повышение чувствительности, обусловленное только первыми факторами, будет 10X16X4X6900 = 4,4-106. Теперь можно оценить, во сколько раз чувствительность возрастает из-за увеличения концентрации светочувствительного вещества: (60-106)/(4,4-10)6= 13,6, т. е. примерно в 14 раз. Это число невелико по сравнению с 60 миллионами.

Как мы уже упоминали, адаптация - это весьма сложный процесс. Сейчас, не углубляясь в механизм его, мы количественно оценили значимость отдельных его звеньев.

Следует отметить, что ухудшение остроты зрения с падением яркости есть не просто недостаток зрения, а активный процесс, позволяющий при недостатке света видеть в поле зрения хотя бы крупные предметы или детали.

Если человек находится на ярком свете в течение нескольких часов, и в палочках, и в колбочках происходит разрушение фоточувствительных веществ до ретиналя и опсинов. Кроме того, большое количество ретиналя в обоих типах рецепторов превращается в витамин А. В результате концентрация фоточувствительных веществ в рецепторах сетчатки значительно уменьшается, и чувствительность глаз к свету снижается. Этот процесс называют световой адаптацией .

Наоборот, если человек длительно находится в темноте, ретиналь и опсины в палочках и колбочках снова превращаются в светочувствительные пигменты. Кроме того, витамин А переходит в ретиналь, пополняя запасы светочувствительного пигмента, предельная концентрация которого определяется количеством опсинов в палочках и колбочках, способных соединяться с ретиналем. Этот процесс называют темповой адаптацией.

На рисунке показан ход темновой адаптации у человека, находящегося в полной темноте после нескольких часов пребывания на ярком свете. Видно, что сразу после попадания человека в темноту чувствительность его сетчатки очень низкая, но в течение 1 мин она увеличивается уже в 10 раз, т.е. сетчатка может реагировать на свет, интенсивность которого составляет 1/10 часть от предварительно требуемой интенсивности. Через 20 мин чувствительность возрастает в 6000 раз, а через 40 мин - примерно в 25000 раз.

Законы световой и темновой адаптации

  1. Темновая адаптация определяется достижением максимума световой чувствительности в течение первых 30 - 45 мин;
  2. Световая чувствительность нарастает тем скорее, чем менее до этого глаз был адаптирован к свету;
  3. Во время темновой адаптации светочувствительность повышается в 8 - 10 тысяч раз и более;
  4. После 45 мин пребывания в темноте световая чувствительность повышается, но незначительно, если обследуемый остается в темноте.

Темновая адаптация глаза есть приспособление органа зрения к работе в условиях пониженного освещения. Адаптация колбочек завершается в пределах 7 мин, а палочек - в течение приблизительно часа. Существует тесная связь между фотохимией зрительного пурпура (родопсина) и изменяющейся чувствительностью палочкового аппарата глаз, т. е. интенсивность ощущения в принципе связана с количеством родопсина, «обесцвечиваемого» под воздействием света. Если перед исследованием темновой адаптации сделать яркий за-свет глаза, например, предложить смотреть на ярко освещенную белую поверхность 10-20 мин, то в сетчатке произойдет значительное изменение молекул зрительного пурпура, и чувствительность глаза к свету будет ничтожной (свето(фото) стресс). После перехода к полной темноте чувствительность к свету начнет весьма быстро расти. Способность глаза восстанавливать чувствительность к свету измеряют с помощью специальных приборов - адаптометров Нагеля, Дашевского, Белостоцкого - Гофмана, Гартингера и др. Максимум чувствительности глаза к свету достигается в течение приблизительно 1-2 ч, повышаясь по сравнению с первоначальной в 5000-10 000 раз и более.

Измерение темновой адаптации
Темновая адаптация может быть измерена следующим образом. Сначала испытуемый в течение короткого промежутка времени смотрит на ярко освещенную поверхность (обычно до достижения им определенной, контролируемой степени световой адаптации). При этом чувствительность испытуемого уменьшается, и тем самым создается точно регистрируемая точка отсчета времени, необходимого для его темновой адаптации. Затем выключают свет и через определенные промежутки времени определяют порог восприятия испытуемым светового стимула. Определенный участок сетчатки стимулируется раздражителем с определенной длиной волны, имеющим определенные продолжительность и интенсивность. По результатам такого эксперимента строится кривая зависимости минимального количества энергии, необходимого для достижения порога, от времени пребывания в темноте. Кривая показывает, что увеличение времени пребывания в темноте (абсцисса) приводит к снижению порога (или к возрастанию чувствительности) (ордината).

Кривая адаптации к темноте состоит из двух фрагментов: верхний относится к колбочкам, нижний - к палочкам. Эти фрагменты отражают разные стадии адаптации, скорость протекания которых различна. В начале адаптационного периода порог резко снижается и быстро достигает постоянного значения, что связано с увеличением чувствительности колбочек. Общее возрастание чувствительности зрения за счет колбочек значительно уступает возрастанию чувствительности за счет палочек, и темновая адаптация наступает за 5-10 мин пребывания в темном помещении. Нижний фрагмент кривой описывает темновую адаптацию палочкового зрения. Рост чувствительности палочек наступает после 20-30-минутного пребывания в темноте. Это значит, что в результате примерно получасовой адаптации к темноте глаз становится примерно в тысячу раз более чувствительным, чем был в начале адаптации. Однако хотя увеличение чувствительности в результате темновой адаптации, как правило, происходит постепенно и для завершения этого процесса требуется время, даже весьма непродолжительное воздействие света может прервать его.

Ход кривой темновой адаптации зависит от скорости фотохимической реакции в сетчатке, а достигнутый уровень зависит уже не от периферического, а от центрального процесса, а именно от возбудимости высших корковых зрительных центров.

Виды памяти человека. Психофизиологические особенности восприятия информации. Временные характеристики восприятия, переработки информации и выполнения действий управления человеком.

Эргономика. Эргатические системы. Проектно-эргономическая модель деятельности человека в сочетании со средой.

Психофизиологическая характеристика приема информации у человека. Закон Вебера-Фехнера.

Функционирование нервной системы. Регулирующая функция ЦНС

Виды анализаторов и рецепторов человека. Рефлекторная дуга.

Количественные показатели производственной опасности (Кч, Кт, Кп.п., Кн).

Определение вероятности безотказной, безаварийной работы объекта. Расчет вероятности аварии.

Фазы развития аварий и аварийных ситуаций по терминологии академика В.А. Легава. Основные пути по повышению безаварийности объекта.

Параметрические и функциональные отказы. Постепенные, внезапные и сложные отказы. Нормальное распределение вероятностей параметрических отказов.

Функция распределения времени (наработки) между отказами (вероятность отказа) по экспоненциальному закону.

Зависимость вероятности безотказной работы машины от времени ее эксплуатации (анализ по графику).

Показатели, характеризующие свойство безотказности и долговечности. Вероятность отказа и вероятность безотказной работы.

Безопасность, надежность, безотказность, долговечность систем и элементов.

15. Интенсивность отказов. Параметр потока отказов. Плот­ность распределения случайной величины t.

19. Определение вероятности возникновения n аварий (ЧП) в N технологических циклах (поездках) при помощи биноминального распределения и распределения Пуассона.

20. Типы ошибок оператора и их влияние на надежность работы технических систем. Пути повышения надежности системы «человек–производственная среда».

24. Надежность оператора и системы «человек–машина». Психофизиологические аспекты проблемы надежности оператора.

27. Факторы взаимодействия в кибернетической системе «человек-среда». Структурная модель системы «человек – среда». Пути и перспективы развития биотехнических комплексов.

Любая деятельность включает ряд обязательных психических процессов и функций, которые обеспечивают достижение необходимого результата.

Память - комплекс физиологических процессов запоминания, сохранения, последующего узнавания и воспроизведения того, что было в прошлом опыте человека.



1. Двигательная (моторная) память - запоминание и воспроизведение движений и их систем, лежит в основе выработки информирования двигательных навыков и привычек.

2. Эмоциональная память - память человека на пережитые им в прошлом чувства.

3. Образная память - сохранение и воспроизведение образов предметов и явлений, воспринимались ранее.

4. Эйдетическая память - очень ярко выраженная образная память, связанная с наличием ярких, четких, живых, наглядных представлений.

5. Словесно-логическая память - запоминание и воспроизведение мыслей, текста, речи.

6. Непроизвольная память проявляется в тех случаях, когда не ставится специальная цель запомнить тот или иной материал и последний запоминается без применения специальных приемов и волевых усилий.

7. Произвольная память связана специальной целью запоминания и применением соответствующих приемов, а также определенных волевых усилий.

8. Кратковременная (первичная или оперативная) память - кратковременный (на несколько минут или секунд) процесс достаточно точного воспроизведения только что воспринятых предметов или явлений через анализаторы. После этого момента полнота и точность воспроизведения, как правило, резко ухудшаются.

9. Долговременная память - вид памяти, для которой характерно длительное сохранение материала после многократного его повторения и воспроизведения.

10. Оперативная память - процессы памяти, которые обслуживают непосредственно осуществляемые человеком актуальные действия и операции.

Знание процессов преобразования, запоминания и восстановления информации в кратковременной памяти оператора и их характеристик позволяет решать проблему использования информации, правильно выбрать информационную модель, определить структуру и количество сигналов при их последовательном представлении, правильно выбрать ограничения по объему информации, требующей запомнить "запоминания, при выработке стратегии безопасного управления или принятия решения.

Наряду с объемом и длительностью хранения информации важной характеристикой оперативной памяти является скорость исключения, забывания материала, не нужного для дальнейшей работы. Своевременное забывание исключает ошибки, связанные с использованием устаревшей информации, и освобождает место для хранения новых данных.

Характеристики оперативной памяти изменяются под влиянием значительных физических нагрузок, специфических экстремальных факторов и эмоциогенных воздействий. В целом сохранение высоких показателей оперативной памяти и готовности к воспроизведению долгосрочной информации при воздействии экстремальных факторов зависит от их силы и продолжительности, общей неспецифической устойчивости и от степени индивидуальной адаптации человека к конкретным факторам.

Долговременная память обеспечивает хранение информации в течение длительного времени. Объем долговременной памяти в общем случае оценивают отношением числа стимулов, сохранившихся в памяти через некоторое время (более 30 мин.), В число повторений, необходимых для запоминания.

Информация, поступившая в долговременную память, со временем забывается. Усвоена информация наиболее значительно уменьшается за первые 9:00: из 100% она падает до 35%. Число удержанных оставшихся элементов, через несколько дней практически остается прежним. В конкретных условиях забывания зависит от степени осмысления информации, характера фундаментальных знаний по полученной информации, индивидуальных особенностей

Кратковременная память связана прежде всего с первичной ориентацией в окружающей среде, поэтому направлена, главным образом, на фиксацию общего числа сигналов, снова появляются, независимо от

их информационного содержания. Задача долговременной памяти - организация поведения в будущем, которая требует прогнозирования вероятностей событий.

Зрительный анализатор система рецепторов, нервных центров мозга и соединяющих их путей, функция которой заключается в восприятии зрительных раздражений, их трансформации в нервные импульсы и передаче последних в корковые центры мозга, где формируется зрительное ощущение, в анализе и синтезе зрительных раздражений. В систему 3. а. включаются также пути и центры, обеспечивающие движения глаз и рефлекторные реакции зрачка на световое раздражение. 3. а. позволяет осуществлять прием и анализ информации в световом диапазоне - 760 нм), он является физиологической основой формирования зрительного образа.

Возможности 3. а. определяются его энергетическими, пространственными, временными и информационными характеристиками. Энергетические характеристики определяются мощностью (интенсивностью) световых сигналов, воспринимаемых глазом. К ним относятся диапазон воспринимаемых яркостей, контраст и цветоощущение. Пространственные характеристики 3. а. определяются воспринимаемыми глазом размерами предметов и их месторасположением в пространстве. В их число входят: острота зрения, поле зрения, объем зрительного восприятия. Временные характеристики определяются временем, необходимым для возникновения зрительного ощущения при тех или иных условиях работы оператора. К ним относятся латентный (скрытый) период зрительной реакции, длительность инерции ощущения, критическая частота слияния мельканий, время адаптации, длительность информационного поиска. Основной информационной характеристикой 3. а. является пропускная способность, т. е. то максимальное количество информации, которое 3. а. способен принять в единицу времени. Учет этих характеристик необходим при проектировании как отдельных индикаторов, так и систем отображения информации.

Исходя из характеристик 3. а., определяются яркость и контраст изображения, размеры знаков и их отдельных деталей, месторасположение их в поле зрения оператора, временные параметры предъявляемой информации, темп поступления сигналов оператору и т. д.

Организуя работу оператора, следует осмотрительно относиться к резервным возможностям 3. а. С этой целью необходимо решать вопрос о необходимости разгрузки 3. а. Этот вопрос может решаться за счет использования возможностей взаимодействия анализаторов, создания полисенсорных систем отображения информации.

Человеческий глаз способен работать при очень больших колебаниях яркости. Приспособление глаза к различным уровням яркости называется адаптацией. Различают световую и темновую адаптации.

Световая адаптация - снижение чувствительности глаза к свету при большой яркости поля зрения. Механизм световой адаптации: работает колбочковый аппарат сетчатки, зрачок суживается, зрительный пигмент подымается с глазного дна.

Темновая адаптация - повышение чувствительности глаза к свету при малой яркости поля зрения. Механизм темновой адаптации: работает палочковый аппарат, зрачок расширяется, зрительный пигмент опускается ниже сетчатой оболочки. При яркостях от 0,001 до 1 кд/кв.м происходит совместная работа палочек и колбочек. Это так называемое сумеречное зрение.

Темновая адаптация глаза есть приспособление органа зрения к работе в условиях пониженного освещения. Адаптация колбочек завершается в пределах 7 мин, а палочек - в течение приблизительно часа. Существует тесная связь между фотохимией зрительного пурпура (родопсина) и изменяющейся чувствительностью палочкового аппарата глаз, т. е. интенсивность ощущения в принципе связана с количеством родопсина, «обесцвечиваемого» под воздействием света. Если перед исследованием темновой адаптации сделать яркий засвет глаза, например, предложить смотреть на ярко освещенную белую поверхность 10-20 мин, то в сетчатке произойдет значительное изменение молекул зрительного пурпура, и чувствительность глаза к свету будет ничтожной [свето(фото) стресс]. После перехода к полной темноте чувствительность к свету начнет весьма быстро расти. Способность глаза восстанавливать чувствительность к свету измеряют с помощью специальных приборов - адаптометров Нагеля, Дашевского, Белостоцкого - Гофмана (рис. 51), Гартингера и др. Максимум чувствительности глаза к свету достигается в течение приблизительно 1-2 ч, повышаясь по сравнению с первоначальной в 5000-10 000 раз и более.

Цветовое зрение - способность воспринимать и дифференцировать цвет, сенсорный ответ на возбуждение колбочек светом с длиной волны 400-700 нм.

Физиологическая основа цветового зрения - поглощение волн различной длины тремя типами колбочек. Характеристики цвета: оттенок, насыщенность и яркость. Оттенок («цвет») определяется длиной волны; насыщенность отражает глубину и чистоту или яркость («сочность») цвета; яркость зависит от интенсивности излучения светового потока.

Если световая адаптация нарушена, то зрение в сумерках лучше, чем на свету (никталопия), что бывает иногда у детей с врожденной полной цветослепотой.

Нарушения цветового зрения и цветовая слепота могут быть врождёнными и приобретёнными.

Основа вышеупомянутой патологии - потеря или нарушение функции колбочковых пигментов. Потеря колбочек, чувствительных к красному спектру, - протан-дефект, к зелёному - дейтан-дефект, к сине-жёлтому - тритан-дефект.

3-11-2012, 22:44

Описание

Диапазон воспринимаемых глазом яркостей

Адаптацией называется перестройка зрительной системы для наилучшего приспособления к данному уровню яркости. Глазу приходится работать при яркостях, меняющихся в чрезвычайно широком диапазоне, примерно от 104 до 10-6 кд/м2, т. е. в пределах десяти порядков. При изменении уровня яркости поля зрения автоматически включается целый ряд механизмов, которые и обеспечивают адаптационную перестройку зрения. Если уровень яркости длительное время существенно не меняется, состояние адаптации приходит в соответствие с этим уровнем. В таких случаях можно говорить уже не о процессе адаптации, а о состоянии: адаптации глаза к такой-то яркости L.

При резком изменении яркости происходит разрыв между яркостью и состоянием зрительной системы , разрыв, который и служит сигналом для включения адаптационных механизмов.

В зависимости от знака изменения яркости различают световую адаптацию - перестройку на более высокую яркость и темновую - перестройку на более низкую яркость.

Световая адаптация

Световая адаптация протекает значительно быстрее темновой. Выходя из темного помещения на яркий дневной свет, человек бывает ослеплен и в первые секунды почти ничего не видит. Образно выражаясь, зрительный прибор зашкаливает. Но если милливольтметр перегорает при попытке измерить им напряжение в десятки вольт, то глаз отказывается работать только короткое время. Чувствительность его автоматически и достаточно быстро падает. Прежде всего сужается зрачок. Кроме того, под непосредственным действием света выцветает зрительный пурпур палочек, в результате их чувствительность резко падает. Начинают действовать колбочки, которые, по-видимому, оказывают тормозящее действие на палочковый аппарат и выключают его. Наконец, происходит перестройка нервных связей в сетчатке и понижение возбудимости мозговых центров. В результате уже через несколько секунд человек начинает видеть в общих чертах окружающую картину, а минут через пять световая чувствительность его зрения приходит в полное соответствие с окружающей яркостью, что обеспечивает нормальную работу глаза в новых условиях.

Темновая адаптация. Адаптометр

Темновая адаптация изучена гораздо лучше, чем световая, что в значительной степени объясняется практической важностью этого процесса. Во многих случаях, когда человек попадает в условия низкой освещенности, важно заранее знать, через сколько времени и что он сможет видеть. Кроме того, нормальное течение темновой адаптации нарушается при некоторых болезнях, и поэтому ее изучение имеет диагностическое значение. Поэтому созданы специальные приборы для исследования темновой адаптации - адаптометры . В Советском Союзе серийно выпускается адаптометр АДМ. Опишем его устройство и метод работы с ним. Оптическая схема прибора изображена на рис. 22.

Рис. 22. Схема адаптометра АДМ

Пациент прижимает лицо к резиновой полумаске 2 и смотрит обоими глазами внутрь шара 1, покрытого изнутри белой окисью бария. Через отверстие 12 врач может видеть глаза пациента. С помощью лампы 3 и фильтров 4 стенкам шара можно сообщить яркость Lc, создающую предварительную световую адаптацию, во время которой отверстия шара закрывают заслонками 6 и 33, белыми с внутренней стороны.

При измерении световой чувствительности лампу 3 выключают и открывают заслонки 6 и 33. Включают лампу 22 и по изображению на пластинке 20 проверяют центрирование ее нити. Лампа 22 освещает через конденсор 23 и светофильтр дневного света 24 молочное стекло 25, которое служит вторичным источником света для пластинки из молочного стекла 16. Часть этой пластинки, видимая пациентом через один из вырезов в диске 15, служит тест-объектом при измерении пороговой яркости. Регулировка яркости тест-объекта производится ступенями с помощью фильтров 27-31 и плавно с помощью диафрагмы 26, площадь котором изменяется при вращении барабана 17. Фильтр 31 имеет оптическую плотность 2, т. е. пропускание 1%, а остальные фильтры - плотность 1,3, т. е. пропускание 5%. Осветитель 7-11 служит для боковой засветки глаз через отверстие 5 при исследовании остроты зрения в условиях ослепления. При снятии кривой адаптации лампа 7 выключена.

Небольшое, прикрытое красным светофильтром отверстие в пластинке 14, освещаемое лампой 22 с помощью матовой пластинки 18 и зеркальца 19, служит фиксационной точкой, которую пациент видит через отверстие 13.

Основная процедура измерения хода темновой адаптации состоит в следующем . В затемненном помещении пациент садится перед адаптометром и смотрит внутрь шара, плотно прижав лицо к полумаске. Врач включает лампу 3, установив с помощью фильтров 4 яркость Lc - 38 кд/м2. Пациент адаптируется к этой яркости в течение 10 мин. Установив поворотом диска 15 круглую диафрагму, видимую пациентом под углом 10°, врач по истечении 10 мин гасит лампу 3, включает лампу 22, фильтр 31 и открывает отверстие 32. При полностью открытой диафрагме и фильтре 31 яркость L1 стекла 16 равна 0,07 кд/м2. Пациенту дается указание смотреть на фиксационную точку 14 и сказать «вижу», как только он увидит светлое пятно на месте пластинки 16. Врач отмечает это время t1 уменьшает яркость пластинки 16 до значения L2, ждет, пока пациент снова скажет «вижу», отмечает время t2 и снова уменьшает яркость. Измерение длится 1 ч после выключения адаптирующей яркости. Получается ряд значений ti, каждому из которых соответствует свое, L1, что позволяет построить зависимость пороговой яркости Ln или световой чувствительности Sc от времени темновой адаптации t.

Обозначим через Lm максимальную яркость пластинки 16, т. е. ее яркость при полном раскрытии диафрагмы 26 и при выключенных фильтрах. Суммарное пропускание фильтров и диафрагмы обозначим?ф. Оптическая плотность Dф системы, ослабляющей яркость, равна логарифму обратной ему величины.

Значит, яркость при введенных ослабителях L = Lm ?ф, a lgL, = lgLm - Dф.

Так как световая чувствительность обратно пропорциональна пороговой яркости, т. е.

В адаптометре АДМ Lm - 7 кд/м2.

В описании адаптометра приведена зависимость D от времени темновой адаптации t, принимаемая врачами за норму. Отклонение хода темновой адаптации от нормы указывает на ряд заболеваний не только глаза, но и всего организма . Приведены средние значения Dф и допустимые граничные значения, еще не выходящие за пределы нормы. Исходя из значений Dф, мы вычислили по формуле (50) и на рис. 24

Рис. 24. Нормальный ход зависимости Sc от времени темновой адаптации t

приводим зависимость Sc от t в полулогарифмическом масштабе.

Более детальное изучение темновой адаптации указывает на большую сложность этого процесса. Ход кривой зависит от многих факторов : от яркости предварительной засветки глаз Lc, от места на сетчатке, на которое проецируется тест-объект, от его площади и т. д. Не входя в подробности, укажем на различие адаптационных свойств колбочек и палочек. На рис. 25

Рис. 25. Кривая темновой адаптации по Н. И. Пинегину

изображен график уменьшения пороговой яркости, взятый из работы Пинегина. Кривая снята после сильной засветки глаз белым светом с Lс = 27 000 кд/м2. Тестовое поле освещалось зеленым светом с? = 546 нм, тест-объект размером 20" проецировался на периферию сетчатки По оси абсцисс отложено время темновой адаптации t, по оси ординат lg (Lп/L0), где L0-пороговая яркость в момент t = 0, a Ln - в любой другой момент. Мы видим, что примерно за 2 мин чувствительность повышается в 10 раз, а за следующие 8 мин - еще в 6 раз. На 10-й минуте возрастание чувствительности опять ускоряется (пороговая яркость уменьшается), а затем снова становится медленным. Объяснение хода кривой такое. Сначала быстро адаптируются колбочки, но они могут повысить чувствительность только примерно в 60 раз. Через 10 мин. адаптации возможности колбочек исчерпаны. Но к этому времени уже расторможены палочки, обеспечивающие дальнейший рост чувствительности.

Факторы, повышающие световую чувствительность при адаптации

Раньше, изучая темновую адаптацию, основное значение придавали возрастанию концентрации светочувствительного вещества в рецепторах сетчатки, главным образом родопсина . Академик П. П. Лазарев при построении теории процесса темновой адаптации исходил нз допущения, что световая чувствительность Sс пропорциональна концентрации а светочувствительного вещества. Таких же взглядов придерживался и Хехт. Между тем легко показать, что вклад повышения концентрации в общее увеличение чувствительности не так уж велик.

В § 30 мы указали границы яркостей, при которых приходится работать глазу - от 104 до 10-6 кд/м2. При нижнем пределе пороговую яркость можно считать равной самому пределу Lп = 10-6 кд/м2. А при верхнем? При высоком уровне адаптации L пороговой яркостью Lп можно назвать минимальную яркость, которую еще можно отличить от полной темноты. Используя экспериментальный материал работы, можно сделать вывод, что Lп при высоких яркостях составляет примерно 0,006L. Итак, нужно оценить роль различных факторов при уменьшении пороговой яркости от 60 до 10_6 кд/м2, т. ". в 60 млн. раз. Перечислим эти факторы :

  1. Переход от колбочкового зрения к палочковому. Из того, что для точечного источника, когда можно считать, что свет действует на один рецептор, Еп = 2-10-9 лк, а Ец = 2-10-8 лк, можно сделать вывод, что палочка чувствительней колбочки в 10 раз.
  2. Расширение зрачка от 2 до 8 мм, т. е. по площади в 16 раз.
  3. Увеличение времени инерции зрения от 0,05 до 0,2 с, т. е. в 4 раза.
  4. Увеличение площади, по которой производится суммирование воздействия света на сетчатку. При большой яркости угловой предел разрешения? = 0,6", а при малой? = 50". Увеличение этого числа означает, что множество рецепторов объединяется для совместного восприятия света, образуя, как обычно говорят физиологи, одно рецептивное поле (Глезер). Площадь рецептивного поля увеличивается в 6900 раз.
  5. Увеличение чувствительности мозговых центров зрения.
  6. Увеличение концентрации а светочувствительного вещества. Именно этот фактор мы и хотим оценить.

Допустим, что увеличение чувствительности мозга мало и им можно пренебречь. Тогда мы сможем оценить влияние возрастания а или, по крайней мере, верхний предел возможного увеличения концентрации.

Таким образом, повышение чувствительности, обусловленное только первыми факторами, будет 10X16X4X6900 = 4,4-106. Теперь можно оценить, во сколько раз чувствительность возрастает из-за увеличения концентрации светочувствительного вещества: (60-106)/(4,4-10)6= 13,6, т. е. примерно в 14 раз. Это число невелико по сравнению с 60 миллионами.

Как мы уже упоминали, адаптация - это весьма сложный процесс. Сейчас, не углубляясь в механизм его, мы количественно оценили значимость отдельных его звеньев.

Следует отметить, что ухудшение остроты зрения с падением яркости есть не просто недостаток зрения, а активный процесс, позволяющий при недостатке света видеть в поле зрения хотя бы крупные предметы или детали.