Кристаллы гидроксиапатита. Лечебно-профилактические зубные пасты. Способы укрепления эмали

Вот такая статья и фото гуляют уже некоторое время по интернету, читаем:

Революцию в области гигиены рта совершает японский ученый Каузе Ямагаши. Он изобрел зубную пасту, которая быстро и безболезненно восстанавливает зубную эмаль, заделывает дырки и трещины в зубах. И все это без помощи стоматологов! Состав пасты был получен в результате экспериментов с гидроксил-апатитом - главным компонентом зубов - и он схож с составом зубной эмали.

Пасту можно наносить сразу на поврежденный участок зуба. Сначала содержащаяся в веществе кислота слегка растворяет поверхность треснувшей эмали. Спустя три минуты паста кристаллизуется и искусственный материал прочно встраивается в структуру естественной эмали.

Тесты, проведенные японскими стоматологами, показывают, что залеченный с помощью такой пасты зуб ничем не отличается от здорового. Разница не видна даже под микроскопом.

А что же на самом деле?

Начнем с того, что на картинке чёрная корейская паста Charcle с активированным углем (для устранения запаха изо рта)

Вот что пишут на одном из форумов:

В последнее время по рунету пролетела серия статей про зубную пасту с гидроксиапатитом. Фото везде правда были чёрной корейской пасты. Это и сподвигло на заказ в Японии пасты Adguard. На eBay быстро найдены продавцы такой пасты с бесплатной доставкой и ценой 15$. С доставкой соврал = 3,6$
Итак, заказ 1.03 получена на почте 27.03. Меньше месяца, что считаю достаточно быстро. Цена аналога в России 1150р.
Паста пришла мелким пакетом.
Упаковка выше всяких похвал. Сама паста переложена гофрокартоном и завёрнута в пузырку
Паста кстати белая….
А теперь немного подробнее о самой пасте и фирме производителю:

Hydroxyapatite SP-1 - минерал природного происхождения, ячейка его кристалла включает в себя две молекулы.

Примерно 70% твердого основного вещества кости образовано неорганическими соединениями, главным компонентом которых является неорганический минерал гидроксиапатит. Лишенный примесей, он является основным минералом в составе зубной эмали и дентина.

Гидроксиапатит является основным минералом костной ткани и твердых тканей зуба. Керамика на его основе не вызывает реакции отторжения и способна активно связываться со здоровой костной тканью. Благодаря этим свойствам, гидроксиапатит может успешно использоваться при восстановлении поврежденных костей, а также в составе биоактивного слоя для лучшего врастания имплантата.

Обменные реакции на поверхности зуба

Белизна наших зубов зависит от цвета дентина, именуемого еще цветом «слоновой кости». Дентин - это обызвествленная ткань зуба, образующая его основную массу и определяющая его форму. Поверх дентина располагается эмаль - самая твердая ткань организма, защищающая дентин и пульпу зуба от воздействия внешних факторов. Красота наших зубов зависит от состояния эмали. Эмаль здорового зуба полупрозрачна, ее цвет приближен к истинному цвету слоновой кости. Когда эмаль покрывается зубным налетом и пятнами, подвергается резкому механическому воздействию, а также в результате нарушения равновесия между процессами деминерализации и реминерализации, поверхность зуба становится матовой и мутной, а сам зуб нуждается в профессиональном лечении.

Основная составляющая дентина (70%) и эмали (97%)– гидроксиапатит - это биологический фосфат кальция и третий по объему компонент нашего организма (после воды и коллагена). Человеческая слюна, в состав которой входит большое количество ионов кальция и фосфат ионов, является своего рода насыщенным раствором гидроксиапатита. Она защищает зубы, нейтрализуя кислоты зубного налета, и восполняет потерю минералов при деминерализации.

После попадания сахара в полость рта бактерии, находящиеся в зубном налёте, превращают сахар в кислоту, а pH налета резко снижается. Пока этот показатель остается в кислотном диапазоне, и жидкости налета недонасыщены по сравнению с минералами зуба, кислоты, произведенные бактериями, диффундируют сквозь налет и внутрь зуба, вымывая кальций и фосфор из эмали. Происходит деминерализация.

Между периодами образования кислот щелочные буферы, присутствующие в слюне, диффундируют в налет и нейтрализуют присутствующие кислоты, что приостанавливает потерю кальция и фосфора. Происходит реминерализация.

Реминерализация происходит между периодами деминерализации.

Деминерализация

Реминерализация

В идеале, когда эти процессы, протекающие на зубной поверхности, находятся в динамическом равновесии, потери минералов не происходит. Но при избыточном образовании налета, пониженном слюноотделении, приеме пищи, богатой углеводами, баланс полностью смещается в сторону деминерализации. Как следствие, происходит разрушение зуба.

Известно, что на ранней стадии деминерализации, или стадии «белого пятна», развитие кариеса можно предотвратить засчет своевременного поступления необходимого количества минералов. В итоге формируются полноценные ткани зуба, стабилизирующие дальнейшее развитие заболевания и его осложнения.

Инновация на рынке средств по уходу за полостью рта

В 1970 году для удовлетворения потребностей населения компания Sangi Co., Ltd разработала реминерализующую зубную пасту, содержащую наночастицы гидроксиапатита. Впервые ее производство было запущено в 1980 домом Apagard, продажи составили свыше 50 миллионов тюбиков. Затем были проведены расширенные лабораторные испытания активных ингредиентов зубной пасты, после чего в 1993 году гидроксиапатит одобрили в Японии в качестве антикариесного агента. Его назвали медицинским гидроксиапатитом, чтобы отличать от других видов гидроксиапатита (стоматологических абразивов).

Размеры частиц гидроксиапатита, производимого компанией Sangi, измерялись в нанометрах (преимущественно 100 nm и выше). В 2003 г усовершенствованная технология получения гидроксиапатита позволила получать гидроксиапатит с частицами меньшего размера (20-80 nm)

Лабораторные тесты продемонстрировали их большую реминерализующую способность в отношении зубной эмали. (1 нанометр = 0,000001 миллиметра)

Реминерализующие зубные пасты и продукты по уходу за полостью рта c медицинским наногидроксиапатитом, разработанные компанией Sangi, подразделяются на два основных вида:

Впервые Sangi проявил серьезный интерес к гидроксиапатиту после получения от NASA в 1970 году патента на его использование. Третий основной компонент нашего организма после воды и коллагена, гидроксиапатит широко используется в медицине и стоматологической практике, благодаря отличной биосовместимости. Как материал, восстанавливающий костную ткань, он применяется в стоматологии, ортопедии, челюстно-лицевой хирургии при пересадке костей и вживлении имплантатов. Гидроксиапатит добавляется также в парфюмерно-косметические и пищевые изделия, преимущественно в зубные пасты.

На сегодняшний день средства по уходу за полостью рта - основной источник доходов компании, хотя гидроксиапатит входит и во многие другие выпускаемые ими продукты: пищевые добавки, косметические ингридиенты, а также адсорбенты для хроматографического анализа и других исследований.

Приоритетное направление их деятельности - разработка продуктов. И вот уже более 30 лет компания Sangi сосредотачивает свое внимание на научных исследованиях и разработках, тщательно оберегая свой патент. В их распоряжении - более 70 одобренных патентов, касающихся разных сфер применения, еще около сотни находится на стадии рассмотрения в Японии и других странах. В настоящий момент компания Sangi является крупнейшим производителем гидроксиапатита в мире.

Реальную эффективность всего этого конечно надо смотреть на практике применения и опыте. Поройтесь в интернете, почитайте что пишут. Я вообще скептически отношусь ко всяким там видам паст, шампуней и т.п. Зачастую бывает, что это как минимум безопасно и то хорошо, а уж до всяких там уникальных свойств... Вот вам еще немного разоблачений: вот например , а вот и действительно ли А вот говорят, что и вот это Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Был ли у Вас повод задуматься о том, что такое оригинальный препарат?

Ещё в 2004 году Всемирная Организация Здравоохранения приняла резолюцию, провозгласившую своей самой приоритетной задачей радикальное увеличение безопасности лечения.

Особый акцент в ней сделан на право больного знать всё о своём заболевании, методах его лечения и на необходимости получения информированного согласия больного на лечение, что, логично, предполагает предварительное разъяснение пациенту различий между «аналогами» препаратов.

Наведём «порядок» в определениях!

Оригинальный препарат – это препарат, который создан на основе новой, впервые синтезированной или полученной из природного сырья субстанции, прошёл полный курс доклинических и клинических исследований эффективности и безопасности и защищён патентом на определённый срок. В странах ЕС этот срок составляет 10–15 лет, в Украине - 20 лет.

Дженерик – это последователь, препарат, который появился после окончания срока патента. Минимизация затрат на производство и использование самых дешёвых ингредиентов приводит к тому, что знает каждый доктор - слишком дешёвые препараты не работают! Качественный дженерик не может быть дешёвым!

Лифтинговый филлер Radiesse - первый и единственный оригинальный препарат на основе гидроксиапатита кальция. Его уникальная формула на 30% состоит из микросфер гидроксиапатита кальция (CaHA) диаметром 25-45 мкм.

На что же нужно обратить внимание при выборе препарата гидроксиапатита кальция?

  • ЦВЕТ

Цвет Radiesse - белый.

Другие препараты, имеющие в своем составе гидроксиапатит кальция отличаются от цвета оригинального препарата. Их цвет - серый.

Белый цвет Radiesse определяется его уникальным производством, во время которого обработка ГАК производится в вакууме, что не даёт ему окислиться и изменить цвет, а также сохраняет диаметр микросфер стабильным и неизменным.

Как же это происходит?

В процессе окислительно-восстановительной реакции восстановитель отдаёт электроны, то есть окисляется. Любая окислительно-восстановительная реакция представляет собой единство двух противоположных превращений - окисления и восстановления, происходящих одновременно и без отрыва одного от другого. При окислении вещества в результате отдачи электронов увеличивается его степень окисления. В результате такого процесса препарат приобретает серый цвет. Также при окислении молекула исходного вещества может стать нестабильной и распасться на более стабильные и более мелкие составные части.

  • РАЗМЕР МИКРОСФЕР

Микросферы гидроксиапатита Radiesse округлые с гладкой поверхностью. Их размер самый безопасный – 25-45 микрон. Микросферы другого размера отсеиваются при производстве.

Больший разбег по размеру микросфер гидроксиапатита у других препаратов, имеющих в составе гидроксиапатит кальция – 15-60 микрон - говорит об их качестве и безопасности и, конечно, это объясняет их стоимость.

Микросферы до 25 микрон , которые создают массу, и, тем самым, удешевляют препарат, попадая в сосудистое русло или в лимфорусло, могут накапливаться в тех структурах, которые мы не предполагаем.

Размер больше 45 микрон вызывает стимуляцию травматической природы фибробласта, которая в свою очередь вызывает патологический фиброз.

  • БИОДЕГРАДАЦИЯ

Микросферы Radiesse медленно распадаются в результате естественных внутренних механизмов фагоцитоза. Вырабатываемый кальций и фосфат ионы идентичны минералам, которые содержатся в организме.

  • ПРОФИЛЬ БЕЗОПАСНОСТИ

Согласно международному стандарту дженерик – это лекарственный продукт с доказанной, в том числе и терапевтической эквивалентностью, с оригиналом.

«Терапевтически эквивалентными препараты могут считаться только в том случае, если они фармацевтически эквивалентны и можно ожидать, что они будут иметь одинаковый клинический эффект и одинаковый профиль безопасности при введении пациентам в соответствии с указаниями в инструкции», – FDA, Electronic Orange Book. Approved Drug Products with Therapeutic Equivalence Evaluations, 23th Edition, 2003.

Дженерик терапевтически эквивалентен другому препарату, если он содержит ту же активную субстанцию и, по результатам клинических исследований, обладает такой же эффективностью и безопасностью, как и препарат сравнения, чья эффективность и безопасность установлены.

Надо отметить, что сравнительное исследование должно проводиться по определённым правилам (GCP – надлежащая клиническая практика) и должно быть: независимым, многоцентровым, рандомизированным, контролируемым, длительным (средняя продолжительность лечения), с жёсткими конечными точками.

Отсутствие исследований на терапевтическую эквивалентность при регистрации дженериков имеет многочисленные негативные последствия.

В то же время неоспоримыми преимуществами оригинальных препаратов являются:

  • доказанная эффективность;
  • доказанная безопасность;
  • инновационность;
  • воспроизводимость эффекта;
  • жёсткий контроль качества.

Лифтинговый филлер Radiesse в 2003 году получил Европейский Сертификат (ЕС) соответствия для пластической и реконструктивной хирургии. В 2006 году одобрен FDA, в 2011 году зарегистрирован МОЗ Украины.

К 2016 году продано более 6 000 000 шприцев во всем мире.

  • ИССЛЕДОВАНИЯ ЭФФЕКТИВНОСТИ И БЕЗОПАСНОСТИ

Эффективность и безопасность Radiesse подтверждают :

  • Более 20 0 клинических исследований и научных публикаций.
  • Клинические данные о более чем 5000 пациентах по всему миру.
  • Дермальный филлер Radiesse является одним из самых безопасных дермальных филлеров , доступных на рынке.
  • Отличная переносимость и безопасность клинически доказана.
  • 90% удовлетворённых пациентов после 12 месяцев.
  • Доверие по всему миру с поставкой более чем 6 миллионов шприцев.

Что делать доктору, если он действительно хочет качественно и безопасно лечить пациента?

Гидроксиапатит – неорганический минерал, являющийся главным компонентом зубной эмали и костной ткани человека.

Керамика, изготовленная на основе гидроксиапатита, связывается со здоровой костной тканью человека и не вызывает отторжения. Такое свойство минерала позволяет активно использовать его для восстановления поврежденных костей. Кроме того, биологически активный слой препарата с гидроксиапатитом используют для улучшения врастания имплантатов в стоматологии.

Фармакологическое действие

Препарат на основе гидроксиапатита кальция стимулирует образование костной ткани, не вызывает реакции отторжения и характеризуется биологической совместимостью с тканями человека. После введения препарата в костные полости, он не затвердевает и не рассасывается, а с течением времени замещается на полноценную и здоровую костную ткань.

Показания к применению

Гидроксиапатит кальция используется в качестве одного из составляющих пломбировочных паст, которые применяются в следующих случаях:

Заполнение корневых каналов при терапии воспалительных заболеваний зуба (пульпит, периодонтит);

Терапия пародонтита (воспаление костной ткани, окружающей зубной корень);

Лечение костных дефектов посредством аплотрансплантантов (донорской кости);

Восстановление костной ткани после удаления кисты;

Восстановление зуба после резекции верхушки его корня;

Заполнение внутрикостных полостей различного происхождения и т.д.

Инструкция по применению (способ и дозировка)

Порошок гидроксиапатита кальция замешивают на этиленгликоле, масляном растворе ацетата ретинола или на стерильном физиологическом растворе до образования пастоподобной смеси. Данная манипуляция должна осуществляться с соблюдением всех правил асептитки.

Пасту из гидроксиапатита кальция, предназначенную для пломбирования корневых каналов зуба, готовят на основе эвгенола. В случае несовместимости пломбировочных материалов с эвгенолом, вместо эвгенола необходимо использовать физиологический раствор. В пасту может быть добавлена 50% окись цинка, позволяющая получить более точное рентгеноконтрастное исследование. Все последующие терапевтические манипуляции после внесения пасты из гидроксиапатита традиционные.

При лечении пародонтита, костный карман заполняют стерильными гранулами гидроксиапатита до уровня здоровой сохранившейся кости, затем рану ушивают. Послеоперационное ведение заболевания остается традиционным.

Заполнение костных полостей гранулами гидроксиапатита при резекции верхушки корня зуба или удалении омертвевшей костной ткани осуществляется так же, как и при использовании других, применяемых для данной цели, материалов.

Используют гидроксиапатит и при проведении хирургических операций, затрагивающих костную пластику, в частности при работе с трансплантантами. Так, чтобы усилить процесс замещения пересаженной костной ткани собственной костной тканью пациента, для предупреждения быстрого рассасывания трансплантанта, а также для снижения воспалительной реакции, препаратом на основе рассматриваемого минерала заполняют неровности или места неплотного прилегания между трансплантантом и костной тканью пациента.

Готовят препарат для хирургических операций следующим образом: стерильные гранулы или порошок гидроскиапатита необходимо увлажнять с помощью стерильного физиологического раствора до тех пор, пока не получится смесь, напоминающая по консистенции густую пасту. Стерилизуется препарат в сушильном шкафу в течение 10-15 минут при температуре в 150 °С. С помощью приготовленной пасты заполняют места неплотного прилегания трансплантанта к собственной костной ткани пациента. После чего рана послойно ушивается. Дальнейшая послеоперационная терапия остается традиционной.

Применение в косметологии

Не обошли гидроксиапатит вниманием и косметологи. На его основе создан инновационный инъекционный препарат, использующийся для коррекции морщин. В отличие от прочих косметологических препаратов, обеспечивающих коррекцию морщин на 4-8 месяцев, инъекции на основе гидроксиапатита помогают добиться более длительного эффекта от коррекции, вплоть до 13-15 месяцев и более.

Средство абсолютно биологически совместимостимо с тканями человеческого организма.

Используется при проведении следующих косметологических процедур:

Коррекция носогубных складок;

Коррекция выраженных и умеренных складок лица;

Коррекция и подтяжка овала лица;

Увеличение щек и подбородка.

Минерализованные ткани, к которым относятся костная ткань, дентин, клеточный и бесклеточный цемент и эмаль зуба, характери- зуются высоким содержанием минерального компонента, главной составной частью которого являются фосфорнокислые соли кальция.

3.1. ХИМИЧЕСКИЙ СОСТАВ МИНЕРАЛИЗОВАННЫХ ТКАНЕЙ

Образование и распад минерального компонента в этих тканях тесно связан с обменом кальция и фосфора в организме. В межклеточном матриксе минерализованных тканей происходит депонирование кальция, который выполняет также структурную функцию. В клетках кальций исполняет роль вторичного посредника в механизмах внутриклеточного переноса сигналов.

Особенностью всех минерализованных тканей, за исключением эмали и бесклеточного цемента, является малое количество клеток с длинными отростками, а большой межклеточный матрикс заполнен минералами. В белках матрикса формируются центры кристаллизации для формирования кристаллов минерального компонента - апатитов. Эмаль и бесклеточный цемент зубов образуются из эктодермы, а остальные минерализованные ткани из стволовых клеток мезодермы. Насыщенность минеральными соединениями зависит от вида твёрдой ткани, топографической локализацией внутри ткани, возраста и экологических условий.

Все минерализованные ткани различаются по содержанию воды, минеральных и органических соединений (табл. 3.1).

В эмали по сравнению с другими твёрдыми тканями определяется наиболее высокая концентрация кальция и фосфатов, и количество этих минералов снижается в направлении от поверхности к эмалеводентинной границе. В дентине, наряду с ионами кальция и фосфатов, определяется достаточно высокая концентрация магния и натрия. Наименьшее количество кальция и фосфатов присутствует в костной ткани и цементе (табл. 3.2).

В состав твёрдых тканей зубов и костей входят соли HPO 4 2- , или PO 4 3- . Ортофосфаты кальция могут быть в форме однозамещен-

Таблица 3.1

Процентное распределение воды, неорганических и органических веществ

в минерализованных тканях

Ткань

Вещества, %

минеральные

органические

вода

Эмаль

Дентин

Цемент

Кость

Таблица 3.2

Химический состав минерализованных тканей

Ткань

Химические элементы, в % от сухой массы

Са 2+

ро 4 3-

Mg 2+

К +

Na +

Cl -

Эмаль

32-39

16-18

0,25-0,56

0,05-0,3

0,25-0,9

0,2-0,3

Дентин

26-28

12-13

0,8-1,0

0,02-0,04

0,6-0,8

0,3-0,5

Цемент

21-24

10-12

0,4-0,7

0,15-0,2

0,6-0,8

0,03-0,08

Кость

22-24

0,01

ных (H 2 PO 4-), двузамещенных (HPO 4 2-) или фосфат ионов (PO 4 3-). Пирофосфаты встречаются только в зубных камнях и костной ткани. В растворах ион пирофосфата оказывает существенный эффект на кристаллизацию некоторых ортофосфатов кальция, что выражается в регуляции величины кристаллов.

Характеристика кристаллов

Большинство фосфорно-кальциевых солей кристаллизуются с образованием кристаллов разной величины и формы в зависимости от входящих элементов (табл. 3.3). Кристаллы присутствуют не только в минерализованных тканях, но и способны образовываться в других тканях в виде патологических образований.

Расположение атомов и молекул в кристалле можно исследовать при помощи рентгеноструктурного анализа кристаллических реше- ток. Как правило, частички располагаются в кристалле симметрично; их называют элементарными ячейками кристалла. Сеточка, образуемая ячейками, называется матрицей кристалла. Имеется 7 разных

Таблица 3.3

Кристаллические образования, присутствующие в различных тканях

В минерализованных тканях животного мира преобладают апатиты. Они имеют общую формулу Ca 10 (PO 4) 6 X 2 , где X представлен анионами фтора или гидроксильной группой (OH -).

Гидроксиапатит (гидроксилапатит) - основной кристалл мине- рализованных тканей; составляет 95-97% в эмали зуба, 70-75% в дентине и 60-70% в костной ткани. Формула гидроксиапатита - Са 10 (PO 4) 6 (ОН) 2 . В этом случае молярное соотношение Са/Р (кальциево-фосфатный коэффициент) равно 1,67. Решётка гидроксиапатита имеет гексагональную структуру (рис. 3.1, А). Гидроксильные группы расположены вдоль гексагональной оси, тогда как фосфатные группы, имеющие наибольшие размеры по сравнению с ионами кальция и гидроксилами, распределяются как равнобедренные треугольники вокруг гексагональной оси. Между кристаллами имеются микропространства, заполненные водой (рис. 3.1, Б). Гидроксиапатиты являются

Рис. 3.1. Гидроксиапатит:

А - гексагональная форма молекулы гидроксиапатита; Б - расположение

кристаллов гидроксиапатита в эмали зуба.

довольно устойчивыми соединениями и имеют очень стабильную ионную решётку, в которой ионы плотно упакованы и удерживаются за счёт электростатических сил. Сила связи прямо пропорциональна величине заряда ионов и обратно пропорциональна квадрату расстояния между ними. Гидроксиапатит электронейтрален. Если в структуре гидроксиапатита содержится 8 ионов кальция, то кристалл приобретает отрицательный заряд. Он может заряжаться и положительно, если количество ионов кальция достигает 12. Такие кристаллы обладают реакционной способностью, возникает поверхностная электро- химическая неуравновешенность и они становятся неустойчивыми.

Гидроксиапатиты легко обмениваются с окружающей средой, в результате чего в их составе могут появляться другие ионы (табл. 3.4). Наиболее часто встречаются следующие варианты обмена ионов: Са 2+ замещается катионами Sr 2+ , Ba 2+ , Mo 2+ , реже Mg 2+ , Pb 2+ .

Катионы Ca 2+ поверхностного слоя кристаллов, могут на короткое

время замещаться катионами К + , Na + .

PO 4 3- обменивается с НРО 4 2- , СО 3 2- .

ОН - замещается анионами галогенов Cl - , F - , I - , Br - .

Элементы кристаллической решётки апатитов могут обмениваться с ионами раствора, окружающего кристалл и изменяться за счёт ионов, находящихся в этом растворе. В живых системах это свойство апатитов делает их высокочувствительными к ионному составу крови и межклеточной жидкости. В свою очередь, ионный состав крови и межклеточной жидкости зависит от характера пищи и потребляемой воды. Сам процесс обмена элементов кристаллической решётки протекает в несколько этапов с разной скоростью.

Обмен ионов в кристаллической решётке гидроксиапатита изменяет его свойства, в том числе прочность, и существенно влияет на размеры кристаллов (рис. 3.2).

Некоторые ионы (К + , Cl -) в течение несколькольких минут путём диффузии из окружающей биологической жидкости заходят в гидрат-

Таблица 3.4

Замещаемые и замещающие ионы и молекулы в составе апатитов

Замещаемые ионы

Замещающие ионы

РО 4 3-

AsO 3 2- , НРО 4 2- , СО 2

Са 2+

Sr 2+ , Ba 2+ , Pb 2+ , Na + , K + , Mg 2+ , H 2 O

ОН -

F - , Cl - , Br - , I - , H 2 O

2ОН

СO 3 2- , O 2 -

Рис. 3.2. Размеры кристаллов различных апатитов .

ный слой гидроксиапатита, а затем также легко его покидают. Другие ионы (Na + , F -) легко проникают в гидратную оболочку и, не задерживаясь, встраиваются в поверхностные слои криста лла. Проникновение ионов Са 2+ , PO 4 3- , СО 3 2- , Sr 2+ , F - в поверхность кристаллов гидроксиапатита из гидратного слоя происходит очень медленно, в течение нескольких часов. Только немногие ионы: Са 2+ , PO 4 3- , СО 3 2- , Sr 2+ , F - встраиваются вглубь ионной решётки. Это может продолжаться от нескольких дней до нескольких месяцев. Преимущественным фак- тором, определяющим возможность замены, является размер атома. Схожесть в зарядах имеет второстепенное значение. Такой принцип замены носит название изоморфного замещения. Тем не менее, в ходе такого замещения поддерживается общее распределение зарядов по

принципу: Сa 10 х(HPO 4)х(PO 4) 6 х(OH) 2 х, где 0<х<1. Потеря Ca 2+ частич- -+ но компенсируется потерей OH и частично H , присоединённых к

фосфату.

В кислой среде ионы кальция способны замещаться протонами по

схеме:

Это замещение несовершенно, поскольку протоны во много раз меньше катиона кальция.

Такое замещение приводит к разрушению кристалла гидроксиапатита в кислой среде.

Фторапатиты Ca 10 (PO 4) 6 F 2 наиболее стабильные из всех апатитов. Они широко распространены в природе и прежде всего как почвенные минералы. Кристаллы фторапатита имеют гексагональную форму. В водной среде реакция взаимодействия фтора с фосфатами кальция зависит от концентрации фтора. Если она сравнительно невысока (до 500 мг/л), то образуются кристаллы фторапатита:

Фтор резко уменьшает растворимость гидроксиапатитов в кислой среде.

При высоких концентрациях фтора (>2 г/л) кристаллы не образуются:

Заболевание, развивающееся при избыточной концентрации фтора в воде и почве, зубах и костях в период формирования костного скелета и зубных зачатков назывется флюорозом.

Карбонатный апатит содержит в своем составе несколько процентов карбоната или гидрокарбоната. Процесс минерализации биологических апатитов в значительной степени определяется присутствием и локализацией карбонатных ионов в кристаллической решётке. Карбонатные радикалы СО 3 2- могут замещать как ОН - (А-узел), так и РО 4 3- (В-узел) в решётке гидроксиапатита. Например, около 4% апатита эмали зуба составляют карбонатные группы, которые замещают как фосфатные, так и гидроксильные ионы в пропорции 9:1 соответственно. Подобная ситуация характерна и для других гидроксиапатитов естественного происхождения. Условно химическая формула карбонированного гидроксиапатита может быть записана в виде Ca 10 [(PO 4) 6 -x(CO 3)x][(OH) 2 -2y(CO 3)y], где х характеризует В-замещение, а у - А-замещение. Для гидроксиапатита эмали зуба x =0,039, y =0,001. Карбонат уменьшает кристалличность апатита и делает его

более аморфным и хрупким. Чаще всего фосфат-анионы апатитов замещаются ионами НСО 3- по схеме:

Интенсивность замены зависит от числа образующихся гидрокарбонатов. В организме постоянно происходят реакции декарбоксилирования, и образующиеся молекулы СО 2 взаимодействуют с молекулами Н 2 O. Анионы НСО 3 - образуются в реакции, катализируемой карбоангидразой, и замещают фосфат-анионы.

Карбонатные апатиты более характерны для костной ткани. В тканях зуба они образуются в непосредственной близости от эма- лево-дентинной границы за счёт продукции анионов НСО 3 - одонтобластами. Возможно образование молекул НСО 3- за счёт активного метаболизма аэробной микрофлоры зубного налёта. Образующееся количество НСО 3- в этих участках может превышать PO 4 3- , что способствует образованию карбонатного апатита в поверхностных слоях эмали. Накопление карбонатапатита свыше 3-4% от общей массы гидроксиапатита повышает кариесвосприимчивость эмали. С возрастом количество карбонатных апатитов увеличивается.

Стронциевый апатит . В кристаллической решётке апатитов Sr 2+ может вытеснять или заменять вакантные места для Ca 2+ .

Это приводит к нарушению структуры кристаллов. В Забайкалье, вдоль берегов небольшой реки Уров, описано заболевание, получившее название «уровская» болезнь. Оно сопровождается поражением костного скелета, уменьшением конечностей у людей и у животных. В местности, загрязненной радионуклидами, неблагоприятное значение стронциевого апатита для организма человека связано с возможностью депонирования радиоактивного стронция.

Магниевый апатит образуется при замещении Ca 2+ на ионы Mg 2+ .

Органические вещества минерализованных тканей в основном представлены белками, а также углеводами и липидами.

3.2. БЕЛКИ МЕЖКЛЕТОЧНОГО МАТРИКСА

МИНЕРАЛИЗОВАННЫХ ТКАНЕЙ МЕЗЕНХИМНОГО

ПРОИСХОЖДЕНИЯ

Белки минерализованных тканей составляют основу для прикрепления минералов и определяют процессы минерализации. Особенностью всех белков минерализованных тканей является наличие остатков фосфосерина, глутамата и аспартата, которые способны связывать Ca 2+ и таким образом участвовать в образовании кристаллов апатита на начальном этапе. Второй особенностью является присутствие углеводов и последовательности аминокислотных остатков арг-гли-асп в первичной структуре белков, что обеспечивает их связывание с клетками или с белками, формирующими межклеточный матрикс.

Часть белков встречается в межклеточном матриксе большинства минерализованных тканей. Это белки адгезии, кальций-связывающие белки, протеолитические ферменты, факторы роста. Другие белки со специальными свойствами присущи только данной ткани и связаны с определёнными процессами, характерными для этого типа ткани.

Остеонектин - гликопротеин, присутствующий в большом количестве в минерализованной ткани. Белок синтезируется остеобластами, фибробластами, одонтобластами и в небольшом количестве хондроцитами и эндотелиальными клетками. В N-концевой области остеонектина располагается большое количество отрицательно заряженных аминокислот. В сформированной α-спирали на N-концевой области имеется до 12 участков связывания Ca 2+ , входящего в состав гидроксиапатита. Через углеводный компонент остеонектин связывается с коллагеном I типа. Таким образом, остеонектин обеспечивает взаимодействие компонентов матрикса. Он также регулирует пролиферацию клеток и принимает участие во многих процессах на этапе развития и созревания минерализованных тканей.

Остеопонтин - белок с мол. массой ~32 000 кДа, содержит несколько повторов, богатых аспарагиновой кислотой, которые придают остеопонтину способность связываться с кристаллами гидроксиапатита.

В средней части молекулы содержится последовательность RGD (аргглу-асп), ответственная за прикрепление клеток. Этот белок играет ключевую роль в построении минерализованного матрикса, взаимодействии клеток и матрикса и транспорте неорганических ионов.

Костный сиалопротеин - специфичный белок минерализованных тканей с мол. массой ~70 кДа, на 50% состоящий из углеводов (из них 12% составляет сиаловая кислота). Большинство углеводов представлены О-связанными олигосахаридами, которые содержатся в N-кон- цевой области белка. Этот белок подвергается в реакциях сульфатирования тирозина различным модификациям. В составе костного сиалопротеина определяется до 30% фосфорилированных остатков серина и повторяющихся последовательностей глутаминовой кислоты, которые участвуют в связывании Ca 2+ . Костный сиалопротеин выявлен в костях, дентине, цементе, гипертрофированных хондроци- тах и остеокластах. Данный белок отвечает за прикрепление клеток и участвует в минерализации матрикса.

Костный кислый гликопротеин-75 - белок с мол. массой 75 кДа, по своему составу на 30% гомологичный остеопонтину. Присутствие большого количества остатков глутаминовой (30%), фосфорной (8%) и сиаловых (7%) кислот обеспечивает его способность связывать Ca 2+ . Белок обнаружен в костной ткани, дентине и хрящевой ростовой пластинке и не определяется в неминерализованных тканях. Костный кислый гликопротеин-75 ингибирует процессы резорбции в минерализованных тканях.

Gla-белки . Отличительной особенностью семейства Gla-белков является присутствие в их первичной структуре остатков 7-кар- боксиглутаминовой кислоты. Они различаются по мол. массе и количеству остатков 7-карбоксиглутаминовой кислоты. Образование 7-карбоксиглутаминовой кислоты происходит в процессе посттрансляционной модификации в витамин К-зависимой реакции карбоксилирования остатков глутаминовой кислоты. Наличие дополнительной карбоксильной группы в 7-карбоксиглутаминовой кислоте обеспечивает лёгкое связывание и отдачу ионов Ca 2+ .

К Gla-белкам относят остеокальцин и матриксный Gla-белок.

Остеокальцин (костный глутаминовый белок) - белок с мол. массой 6 кДа. Состоит из 49 аминокислотных остатков, из которых 3 представлены 7-карбоксиглутаминовой кислотой. Белок присутствует в костной ткани и дентине зуба. Синтезируется в виде предшественника (рис. 3.3).

Рис. 3.3. Образование активной формы остеокальцина.

После отщепления сигнального пептида образуется про-остеокальцин, который далее подвергается посттрансляционной модификации. Вначале остатки глутаминовой кислоты окисляются, а затем происходит присоединение молекул СО 2 при участии витамин К-зависимой глутаматкарбоксилазы (рис. 3.4). Активность этого фермента снижается в присутствии варфарина - антагониста витамина К.

Нативный остеокальцин связывает Ca 2+ , идущие на образование кристаллов гидроксиапатита. В плазме крови содержится как нативный остеокальцин, так и его фрагменты.

Матриксный Gla-белок содержит 5 остатков 7-карбоксиглутами- новой кислоты и способен связываться с гидроксиапатитом. Белок обнаружен в пульпе зуба, легких, сердце, почках, хряще и появляется на ранних стадиях развития костной ткани.

Рис. 3.4. Посттрансляционная модификация остатков глутаминовой кислоты в молекуле про-остеокальцина. А - гидроксилирование глутаминовой кислоты; Б - связывание ионов кальция 7-карбоксиглутаминовой кислотой.

Протеин S содержит остатки 7-карбоксиглутаминовой кислоты и синтезируется главным образом в печени. Определяется в костной ткани, а при его дефиците обнаруживают изменения костного скелета.

Для коррекции внешности специалисты в области косметологии советуют применять филлеры. Особой популярностью среди пациентов пользуются наполнители на основе гидроксиапатита кальция. Одним из известных высокотехнологичных филлеров является . Препарат содержит два компонента:

  • кристаллы гидроксиапатита кальция;
  • гель.

Что такое гидроксиапатит

Гидроксиапатит – это вещество, присутствующее в органическом матриксе костных тканей. В состав входят:

  • фосфор;
  • кальций.

Содержит макроэлементы магния, железа, цинка и бора. По своей формуле схож со строением костной ткани человека. Благодаря этому свойству происходит его положительное усвоение организмом. Гидроксиапатит часто присутствует в косметике в виде нано частиц. В природе встречается в микрокристаллической форме. Для получения препарата вещество измельчают до состояния порошка белого цвета и смешивают с очищенной водой.

Где применяется

Препарат широко используется в:

  • стоматологии;
  • ортопедии;
  • челюстно-лицевой хирургии;
  • нейрохирургии;
  • офтальмологии;
  • отоларингологии;
  • косметологии.

В косметологической отрасли используется в виде основы для филеров. В стоматологии присутствует в зубной пасте и средствах для ухода за полостью рта. Для восполнения нехватки в организме может выпускаться в форме таблеток.

Принцип воздействия на организм

Механизм действия на организм следующий:

  1. Филлеры с гидроксиапатитом кальция вводятся в проблемную область.
  2. В результате внедрения морщины разглаживаются и кожа становится эластичной.
  3. С течением времени гель перерабатывается организмом и гидроксиапатит кальция активизирует синтез коллагена.
  4. Далее коллаген формирует новую кожную структуру с сохранением эффекта оздоровления до двух лет.

Плюсы и минусы применения в косметологии

К благоприятным характеристикам препарата относятся:

  • низкий риск аллергического проявления;
  • положительная реакция на усвояемость;
  • совместимость с тканями;
  • способность активизации синтеза коллагена;
  • продолжительность действия.

Отрицательная сторона применения лекарства:

  • невозможность вывода из организма;
  • запрет на использование гиалуроновой кислоты на срок до 1 года.

Показания и противопоказания

Задействовать состав можно в следующих случаях:

  • коррекция формы лица;
  • наполнение носогубной области;
  • ликвидация морщин;
  • устранение рубцов;
  • корректировка щек, подбородка, скул, ушей, висков, носа, кистей рук.

С помощью гидроксиапатита кальция можно скорректировать проблемные зоны с долго выраженным действием.

Использование препарата может нанести вред здоровью при следующих отклонениях:

  • инфекционные заболевания;
  • кожные болезни;
  • онкология;
  • сахарный диабет;
  • аутоиммунные заболевания;
  • неудовлетворительная свертываемость крови;
  • беременность;
  • лактация;
  • менструация.

На приеме у лечащего врача необходимо сообщить о возможности аллергии и принимаемых лекарствах.

Инструкция по применению

Порядок использования филлера следующий:

  • разметка проблемной зоны;
  • определение дозировки;
  • обработка антисептиком;
  • применение анестезии;
  • введение препарата сверхтонкой иглой;
  • нанесение противовоспалительного крема.

Проведение сеанса можно увидеть в этом видео:

Проводить процедуру может только высококвалифицированный врач-косметолог, прошедший специализированное обучение по использованию филлеров.

Для быстрого восстановления после процедуры необходимо придерживаться следующих правил:

  • отказаться от косметического макияжа;
  • прикладывать пакетики со льдом к местам уколов;
  • не употреблять алкоголь;
  • не посещать баню;
  • не массажировать проблемную область;
  • ограничить физические нагрузки;
  • спать на спине;
  • не принимать солнечные ванны.

Побочное действие и осложнения

Возможно проявление нежелательных последствий:

  • аллергическая реакция;
  • микро гематомы;
  • покраснение проблемной области;
  • онемение;
  • отеки;
  • синяки.

При выполнении рекомендаций по реабилитации отрицательные действия проходят самостоятельно через двое суток. Исключения составляют осложнения, вызванные непрофессиональными действиями специалиста при проведении процедуры в виде:

  • неровности и асимметрия кожного покрова;
  • выпирание геля в проблемной зоне;
  • белые полосы в месте введения;
  • воспалительная реакция.