Вычисление площади боковой поверхности конуса. Площадь полной поверхности конуса равна

Здесь представлены задачи с конусами, условие связано с его площадью поверхности. В частности в некоторых задачах стоит вопрос об изменении площади при увеличении (уменьшении) высоты конуса или радиуса его основания. Теория для решения задач в . Рассмотрим следующие задачи:

27135. Длина окружности основания конуса равна 3, образующая равна 2. Найдите площадь боковой поверхности конуса.

Площадь боковой поверхности конуса равна:

Подставляем данные:

75697. Во сколько раз увеличится площадь боковой поверхности конуса, если его образующую увеличить в 36 раз, а радиус основания останется прежним?

Площадь боковой поверхности конуса:

Образующая увеличивается в 36 раз. Радиус остался прежним, значит длина окружности основания не изменилась.

Значит площадь боковой поверхности изменённого конуса будет иметь вид:

Таким образом, она увеличится в 36 раз.

*Зависимость прямолинейная, поэтому эту задачу без труда можно решить устно.

27137. Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 1,5 раза?

Площадь боковой поверхности конуса равна:

Радиус уменьшается в 1,5 раза, то есть:

Получили, что площадь боковой поверхности уменьшилась в 1,5 раза.

27159. Высота конуса равна 6, образующая равна 10. Найдите площадь его полной поверхности, деленную на Пи.

Полная поверхность конуса:

Необходимо найти радиус:

Известна высота и образующая, по теореме Пифагора вычислим радиус:

Таким образом:

Полученный результат разделим на Пи и запишем ответ.

76299. Площадь полной поверхности конуса равна 108. Параллельно основанию конуса проведено сечение, делящее высоту пополам. Найдите площадь полной поверхности отсеченного конуса.

Сечение проходит через середину высоты параллельно основанию. Значит радиус основания и образующая отсеченного конуса будут в 2 раза меньше радиуса и образующей исходного конуса. Запишем чему равна площадь поверхности отсечённого конуса:

Получили, что она будет в 4 раза меньше площади поверхности исходного, то есть 108:4 = 27.

*Так как исходный и отсечённый конус являются подобными телами, то также можно было воспользоваться свойством подобия:

27167. Радиус основания конуса равен 3, высота равна 4. Найдите площадь полной поверхности конуса, деленную на Пи.

Формула полной поверхности конуса:

Радиус известен, необходимо найти образующую.

По теореме Пифагора:

Таким образом:

Результат разделим на Пи и запишем ответ.

Задача. Площадь боковой поверхности конуса в четыре раза больше площади основания. Найдите чему равен косинус угла между образующей конуса и плоскостью основания.

Площадь основания конуса равна:




































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока: урок изучения нового материала с применением элементов проблемно-развивающего метода обучения.

Цели урока:

  • познавательные:
    • ознакомление с новым математическим понятием;
    • формирование новых ЗУН;
    • формирование практических навыков решения задач.
  • развивающие:
    • развитие самостоятельного мышления учащихся;
    • развитие навыков правильной речи школьников.
  • воспитательные:
    • воспитание навыков работы в коллективе.

Оборудование урока: магнитная доска, компьютер, экран, мультимедийный проектор, модель конуса, презентация к уроку, раздаточный материал.

Задачи урока (для учащихся):

  • познакомиться с новым геометрическим понятием - конус;
  • вывести формулу для вычисления площади поверхности конуса;
  • научиться применять полученные знания при решении практических задач.

Ход урока

I этап. Организационный.

Сдача тетрадей с домашней проверочной работой по пройденной теме.

Учащимся предлагается узнать тему предстоящего урока, разгадав ребус (слайд 1) :

Рисунок 1.

Объявление учащимся темы и задач урока (слайд 2) .

II этап. Объяснение нового материала.

1) Лекция учителя.

На доске – таблица с изображением конуса. Новый материал объясняется в сопровождении программного материала «Стереометрия». На экране появляется трёхмерное изображение конуса. Учитель даёт определение конуса, рассказывает о его элементах.(слайд 3) . Говорится о том, что конус – это тело, образованное при вращении прямоугольного треугольника относительно катета. (слайды 4, 5). Появляется изображение развёртки боковой поверхности конуса. (слайд 6)

2) Практическая работа.

Актуализация опорных знаний: повторить формулы для вычисления площади круга, площади сектора, длины окружности, длины дуги окружности. (слайды 7–10)

Класс делится на группы. Каждая группа получает вырезанную из бумаги развёртку боковой поверхности конуса (сектор круга с присвоенным номером). Учащиеся выполняют необходимые измерения и вычисляют площадь полученного сектора. Инструкции по выполнению работы, вопросы – постановки проблем – появляются на экране (слайды 11–14) . Результаты вычислений представитель каждой группы записывает в заготовленную на доске таблицу. Участники каждой группы склеивают модель конуса из имеющейся у них развёртки. (слайд 15)

3) Постановка и решение проблемы.

Как вычислить площадь боковой поверхности конуса, если известны только радиус основания и длина образующей конуса? (слайд 16)

Каждая группа производит необходимые измерения и пытается вывести формулу вычисления искомой площади с помощью имеющихся данных. При выполнении этой работы школьники должны заметить, что длина окружности основания конуса равна длине дуги сектора – развёртки боковой поверхности этого конуса. (слайды 17–21) Используя необходимые формулы, выводится искомая формула. Рассуждения учащихся должны выглядеть примерно таким образом:

Радиус сектора – развёртки равен l, градусная мера дуги – φ. Площадь сектора вычисляется по формуле длина дуги, ограничивающей этот сектор, равна Радиус основания конуса R. Длина окружности, лежащей в основании конуса, равна С = 2πR. Заметим, что Так как площадь боковой поверхности конуса равна площади развёртки его боковой поверхности, то

Итак, площадь боковой поверхности конуса вычисляется по формуле S БПК = πRl.

После вычисления площади боковой поверхности модели конуса по выведенной самостоятельно формуле представитель каждой группы записывает результат вычислений в таблицу на доске в соответствии с номерами моделей. Результаты вычислений в каждой строке должны быть равны. По этому признаку учитель определяет правильность выводов каждой группы. Таблица результатов должна выглядеть таким образом:

№ модели

I задание

II задание

(125/3)π ~ 41,67 π

(425/9)π ~ 47,22 π

(539/9)π ~ 59,89 π

Параметры моделей:

  1. l=12 см, φ =120 °
  2. l=10 см, φ =150 °
  3. l=15 см, φ =120 °
  4. l=10 см, φ =170 °
  5. l=14 см, φ =110 °

Приближённость вычислений связана с погрешностями измерений.

После проверки результатов вывод формул площадей боковой и полной поверхностей конуса появляется на экране (слайды 22–26) , ученики ведут записи в тетрадях.

III этап. Закрепление изученного материала.

1) Учащимся предлагаются задачи для устного решения на готовых чертежах.

Найти площади полных поверхностей конусов, изображённых на рисунках (слайды 27–32) .

2) Вопрос: равны ли площади поверхностей конусов, образованных вращением одного прямоугольного треугольника относительно разных катетов? Учащиеся выдвигают гипотезу и проверяют её. Проверка гипотезы осуществляется путём решения задач и записывается учеником на доске.

Дано: Δ АВС, ∠С=90°, АВ=с, АС=b, ВС=а;

ВАА", АВВ" – тела вращения.

Найти: S ППК 1 , S ППК 2 .

Рисунок 5. (слайд 33)

Решение:

1) R=ВС= а ; S ППК 1 = S БПК 1 + S осн 1 = π а с+π а 2 = π а (а + с).

2) R=АС= b ; S ППК 2 = S БПК 2 + S осн 2 = π b с+π b 2 = π b (b + с).

Если S ППК 1 = S ППК 2 , то а 2 +ас = b 2 + bc, a 2 - b 2 + ac - bc = 0, (a-b)(a+b+c) = 0. Т.к. a, b, c – положительные числа (длины сторон треугольника), торавенство верно только в случае, если a = b.

Вывод: Площади поверхностей двух конусов равны только в случае равенства катетов треугольника.(слайд 34)

3) Решение задачи из учебника: № 565.

IV этап. Подведение итогов урока.

Домашнее задание: п.55, 56; № 548, № 561. (слайд 35)

Объявление поставленных оценок.

Выводы по ходу урока, повторение основных сведений, полученных на уроке.

Литература (слайд 36)

  1. Геометрия 10–11 классы – Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др., М., «Просвещение», 2008.
  2. «Математические ребусы и шарады» – Н.В. Удальцова, библиотечка «Первого сентября», серия «МАТЕМАТИКА», выпуск 35, М., Чистые пруды, 2010.

Сегодня мы расскажем вам о том, как найти образующую конуса, что частенько требуется в школьных задачках по геометрии.

Понятие образующей конуса

Прямой конус — это фигура, которая получается в результате вращения прямоугольного треугольника вокруг одно из его катетов. Основание конуса образует круг. Вертикальное сечение конуса — это треугольник, горизонтальное — круг. Высотой конуса является отрезок, соединяющий вершину конуса с центром основания. Образующей конуса является отрезок, который соединяет вершину конуса с любой точкой на линии окружности основания.

Так как конус образуется вращением прямоугольного треугольника, то получается, что первым катетом такого треугольника является высота, вторым — радиус круга, лежащего в основании, а гипотенузой будет образующая конуса. Нетрудно догадаться, что для расчета длины образующей пригодится теорема Пифагора. А теперь подробнее о том, как найти длину образующей конуса.

Находим образующую

Легче всего понять, как найти образующую, можно на конкретном примере. Допустим, даны такие условия задачи: высота равна 9 см., диаметр круга основания составляет 18 см. Необходимо найти образующую.

Итак, высота конуса (9 см.) - это один из катетов прямоугольного треугольника, с помощью которого был образован данный конус. Второй катет будет являться радиусом круга основания. Радиус — это половина диаметра. Таким образом, делим данный нам диаметр пополам и получаем длину радиуса: 18:2 = 9. Радиус равен 9.

Теперь найти образующую конуса очень легко. Так как она является гипотенузой, то квадрат ее длины будет равен сумме квадратов катетов, то есть сумме квадратов радиуса и высоты. Итак, квадрат длины образующей = 64 (квадрат длины радиуса) + 64 (квадрат длины высоты) = 64x2 = 128. Теперь извлекаем квадратный корень из 128. В итоге получаем восемь корней из двух. Это и будет образующая конуса.

Как видите, ничего сложного в этом нет. Для примера мы взяли простые условия задачи, однако в школьном курсе они могут быть и сложнее. Помните, что для расчета длины образующей вам нужно выяснить радиус круга и высоту конуса. Зная эти данные, найти длину образующей легко.

Тела вращения, изучаемые в школе, - это цилиндр, конус и шар.

Если в задаче на ЕГЭ по математике вам надо посчитать объем конуса или площадь сферы - считайте, что повезло.

Применяйте формулы объема и площади поверхности цилиндра, конуса и шара. Все они есть в нашей таблице. Учите наизусть. Отсюда начинается знание стереометрии.

Иногда неплохо нарисовать вид сверху. Или, как в этой задаче, - снизу.

2. Во сколько раз объем конуса, описанного около правильной четырехугольной пирамиды, больше объема конуса, вписанного в эту пирамиду?

Всё просто - рисуем вид снизу. Видим, что радиус большего круга в раз больше, чем радиус меньшего. Высоты у обоих конусов одинаковы. Следовательно, объем большего конуса будет в раза больше.

Еще один важный момент. Помним, что в задачах части В вариантов ЕГЭ по математике ответ записывается в виде целого числа или конечной десятичной дроби. Поэтому никаких или у вас в ответе в части В быть не должно. Подставлять приближенное значение числа тоже не нужно! Оно обязательно должно сократиться!. Именно для этого в некоторых задачах задание формулируется, например, так: «Найдите площадь боковой поверхности цилиндра, деленную на ».

А где же еще применяются формулы объема и площади поверхности тел вращения? Конечно же, в задаче С2 (16). Мы тоже расскажем о ней.