Теорема о сумме углов треугольника

Вопрос открыт 08.04.2017 в 12:25

Да___ Нет___
2.В равнобедренном треугольнике углы при основании тупые.
Да___ Нет___
3.При пересечении двух параллельных прямых секущей накрест лежащие углы равны
соответственным углам.
Да___ Нет___
4.При пересечении двух параллельных прямых секущей сумма односторонних углов равна 180°.
Да___ Нет___
5.Внешний угол треугольника равен разности двух углов треугольника, не смежных с ним.
Да___ Нет___
6.Диагонали параллелограмма равны.
Да___ Нет___
7.Диагонали квадрата взаимно перпендикулярны.
Да___ Нет___
8.Диагонали прямоугольника делят углы прямоугольника пополам.
Да___ Нет___
9.Медиана треугольника делит стороны треугольника в отношении 2:1, считая от вершины.
Да___ Нет___
10.Биссектрисы треугольника пересекаются в одной точке.
Да___ Нет___
11.Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
Да___ Нет___
12.Треугольник, у которого квадрат одной из сторон равен сумме квадратов двух других сторон, прямоугольный.
Да___ Нет___
13.Четырехугольник, у которого две стороны параллельны,- трапеция.
Да___ Нет___
14.В параллелограмме сумма квадратов диагоналей равна сумме квадратов всех его сторон.
Да___ Нет___
15.Площадь ромба равна произведению квадрата стороны на синус угла ромба.
Да___ Нет___
16.Площадь прямоугольника равна половине произведения квадрата диагонали на синус угла между диагоналями.
Да___ Нет___
17.Тангенс острого угла прямоугольного треугольника равен отношению прилежащего катета к противолежащему.
Да___ Нет___
18.Радиус окружности, описанной около прямоугольного треугольника равен отношению прилежащего катета к противолежащему.
Да___ Нет___
19.Середины сторон любого четырехугольника являются вершинами параллелограмма.
Да___ Нет___
20.Если диагонали параллелограмма равны, то этот параллелограмм - квадрат.
Да___ Нет___
21.Отрезок, соединяющий середины диагоналей трапеции, равен полуразности ее оснований.
Да___ Нет___
22.Точка пересечения продолжения боковых сторон трапеции и середины её оснований лежат на одной прямой.
Да___ Нет___
23.Если углы при основании трапеции равны, то она равнобедренная.
Да___ Нет___
24.Средняя линия трапеции равна полуразности ее оснований.
Да___ Нет___
25.Отношение площадей подобных фигур равно коэффициенту подобия.
Да___ Нет___
26.Диаметр, перпендикулярный хорде, делит стягиваемые ею дуги пополам.
Да___ Нет___
27.Из двух хорд больше та,которая более удалена от центра.
Да___ Нет___
28.Радиус окружности в два раза больше диаметра.
Да___ Нет___
29.Прямая, имеющая с окружностью две общие точки,-касательная.
Да___ Нет___
30.Центр окружности вписанной в угол, лежит на биссектрисе этого угла.
Да___ Нет___
31.Вершина вписанного угла лежит в центре окружности.
Да___ Нет___
32.Центры вписанной и описанной окружности равностороннего треугольника совпадают.
Да___ Нет___
33.В четырехугольник можно вписать окружность, если сумма противоположных углов равна 180°.
Да___ Нет___
34.Длина окружности равна ∏d, где d- диаметр окружности.
Да___ Нет___
35.Сумма углов многоугольника равна 180°:(n-2).
Да___ Нет___
36.Гипотенуза прямоугольного треугольника равна катету, деленному на синус угла, противолежащего этому катету.
Да___ Нет___
37.Биссектриса треугольника делит его сторону на отрезки, пропорциональные двум другим сторонам.
Да___ Нет___
38.Прямые, содержащие высоты треугольника, пересекаются в трех точках.
Да___ Нет___
39.точка пересечения биссектрис треугольника - центр окружности, описанной около этого треугольника.
Да___ Нет___
40.Угол между биссектрисами вертикальных углов равен 180°.
Да___ Нет___

Теорема. Сумма внутренних углов треугольника равна двум прямым углам.

Возьмём какой-нибудь треугольник AВС (рис. 208). Обозначим его внутренние углы цифрами 1, 2 и 3. Докажем, что

∠1 + ∠2 + ∠3 = 180°.

Проведём через какую-нибудь вершину треугольника, например В, прямую МN параллельно АС.

При вершине В мы получили три угла: ∠4, ∠2 и ∠5. Их сумма составляет развёрнутый угол, следовательно, она равна 180°:

∠4 + ∠2 + ∠5 = 180°.

Но ∠4 = ∠1 - это внутренние накрест лежащие углы при параллельных прямых МN и АС и секущей АВ.

∠5 = ∠3 - это внутренние накрест лежащие углы при параллельных прямых МN и АС и секущей ВС.

Значит, ∠4 и ∠5 можно заменить равными им ∠1 и ∠3.

Следовательно, ∠1 + ∠2 + ∠3 = 180°. Теорема доказана.

2. Свойство внешнего угла треугольника.

Теорема. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

В самом деле, в треугольнике ABC (рис. 209) ∠1 + ∠2 = 180° - ∠3, но и ∠ВСD, внешний угол этого треугольника, не смежный с ∠1 и ∠2, также равен 180° - ∠3.

Таким образом:

∠1 + ∠2 = 180° - ∠3;

∠BCD = 180° - ∠3.

Следовательно, ∠1 + ∠2= ∠BCD.

Выведенное свойство внешнего угла треугольника уточняет содержание ранее доказанной теоремы о внешнем угле треугольника, в которой утверждалось только, что внешний угол треугольника больше каждого внутреннего угла треугольника, не смежного с ним; теперь же устанавливается, что внешний угол равен сумме обоих внутренних углов, не смежных с ним.

3. Свойство прямоугольного треугольника с углом в 30°.

Теорема. Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы.

Пусть в прямоугольном треугольнике АСВ угол В равен 30° (рис. 210). Тогда другой его острый угол будет равен 60°.

Докажем, что катет АС равен половине гипотенузы АВ. Продолжим катет АС за вершину прямого угла С и отложим отрезок СМ, равный отрезку АС. Точку М соединим с точкой В. Полученный треугольник ВСМ равен треугольнику АСВ. Мы видим, что каждый угол треугольника АВМ равен 60°, следовательно, этот треугольник - равносторонний.

Катет АС равен половине АМ, а так как АМ равняется АВ, то катет АС будет равен половине гипотенузы АВ.