Протоны в атоме находятся. Основные характеристики протона, нейтрона и электрона


Введение

Существующая в настоящее время теория строения атома не дает ответа на многие вопросы, возникающие при проведении различных практических и экспериментальных работ. В частности, до сих пор не определена физическая сущность электрического сопротивления. Поиск высокотемпературной сверхпроводимости может быть успешным только если знать суть электрического сопротивления. Зная строение атома, можно понять суть электрического сопротивления. Рассмотрим строение атома с учетом известных свойств зарядов и магнитных полей. Наиболее близка к реальности и отвечает экспериментальным данным планетарная модель атома, предложенная Резерфордом. Однако эта модель соответствует только атому водорода.


ГЛАВА ПЕРВАЯ

ПРОТОН И ЭЛЕКТРОН

1. ВОДОРОД

Водород является наименьшим из атомов, поэтому его атом должен содержать стабильную основу как атома водорода, так и остальных атомов. Атом водорода — протон и электрон, при этом электрон вращается вокруг протона. Считается, что заряды электрона и протона — единичные заряды, т. е. минимальные. Представление об электроне как о вихревом кольце с переменным радиусом было введено В. Ф. Миткевичем (Л. 1). Последующие работы Ву и некоторых других физиков показали, что электрон ведет себя подобно вращающемуся вихревому кольцу, спин которого направлен вдоль оси его движения, т. е. то, что электрон — вихревое кольцо, было подтверждено экспериментально. В состоянии покоя электрон, вращаясь вокруг своей оси, магнитных полей не создает. Только при движении электрон образует магнитные силовые линии.

Если заряд протона распределен по поверхности, то, вращаясь вместе с протоном, он будет вращаться вокруг только своей собственной оси. В этом случае, как и электрон, заряд протона не будет образовывать магнитное поле.

Экспериментально установлено, что протон имеет магнитное поле. Для того чтобы протон имел магнитное поле, его заряд должен быть в виде пятна на его поверхности. В этом случае при вращении протона его заряд будет двигаться по окружности, т. е. иметь линейную скорость, что необходимо для получения магнитного поля протона.

Кроме электрона существует и позитрон, отличающийся от электрона только тем, что заряд у него положительный, т. е. заряд позитрона равен заряду протона и по знаку, и по величине. Иными словами, положительный заряд протона есть позитрон, но позитрон — античастица электрона и, следовательно, — вихревое кольцо, которое не может растекаться по всей поверхности протона. Таким образом, заряд протона — позитрон.

При движении электрона, имеющего отрицательный заряд, позитрон протона под действием кулоновских сил должен находиться на поверхности протона на минимальном расстоянии от электрона (Рис. 1). Таким образом, образуется пара противоположных зарядов, связанных между собой максимальной кулоновской силой. Именно потому, что заряд протона — позитрон, его заряд равен электрону по абсолютной величине. Когда весь заряд протона взаимодействует с зарядом электрона, то и нет «лишнего» заряда протона, который бы создавал электрические отталкивающие силы между протонами.

При движении электрона вокруг протона в направлении, указанном на рис. 1, положительный заряд двигается синхронно с ним благодаря кулоновской силе. Движущиеся заряды образуют вокруг себя магнитные поля (Рис. 1). При этом вокруг электрона образуется магнитное поле против часовой стрелки, а вокруг позитрона — магнитное поле по часовой стрелке. В результате между зарядами образуется суммарное поле от двух зарядов, которое препятствует «падению» электрона на протон.

На всех рисунках протоны и нейтроны изображены в виде шаров для упрощения изображения. В действительности они должны быть в виде тороидальных вихревых образований эфира (Л. 3).

Таким образом, атом водорода имеет вид согласно рис. 2 а ). Форма магнитного поля у атома соответствует торообразному магниту с намагниченностью по оси вращения зарядов (Рис. 2 б ).

Еще в 1820 г. Ампер открыл взаимодействие токов — притяжение параллельных проводников с током, текущим в одном направлении. Позднее экспериментально определили, что одноимённые электрические заряды, двигаясь в одном направлении, притягиваются друг к другу (Л. 2).

О том, что заряды должны сближаться, т. е. притягиваться друг к другу, свидетельствует и пинч-эффект. Пинч-эффект — это эффект самостягивания разряда, свойство электрического токового канала в сжимаемой проводящей среде уменьшать своё сечение под действием собственного, порождаемого самим током, магнитного поля (Л. 4).

Так как электрический ток — всякое упорядоченное движение электрических зарядов в пространстве, то траектории электронов и позитронов протонов — это токовые каналы, способные сближаться под действием магнитного поля, порождаемого самими зарядами.

Следовательно, при соединении двух атомов водорода в молекулу одноимённые заряды объединятся в пары и будут продолжать вращение в том же направлении, но уже между протонами, что приведёт к объединению их полей.

Сближение электронов и протонов происходит до момента, когда сила отталкивания одноимённых зарядов станет равной силе, стягивающей заряды от двойного магнитного поля.

На рис. 3 а), б), и в) показано взаимодействие зарядов электрона и протона атомов водорода при соединении их в молекулу водорода.

На рис. 4 изображена молекула водорода с магнитными силовыми линиями, образованными генераторами полей двух атомов водорода. Т. е. молекула водорода имеет один сдвоенный генератор поля и общий магнитный поток, больший в 2 раза.

Мы рассмотрели, как происходит соединение водорода в молекулу, но молекула водорода с другими элементами в реакцию не вступает даже в смеси с кислородом.

Теперь рассмотрим, как происходит разделение молекулы водорода на атомы (Рис. 5). При взаимодействии молекулы водорода с электромагнитной волной электрон приобретает дополнительную энергию, и это выводит электроны на орбитальные траектории (Рис. 5 г ).

Сегодня известны сверхпроводники, которые имеют нулевое электрическое сопротивление. Эти проводники состоят из атомов и могут быть сверхпроводниками только в том случае, если их атомы — сверхпроводники, т. е. и протон тоже. Давно известна левитация сверхпроводника над постоянным магнитом, обусловленная наведением постоянным магнитом в нем тока, магнитное поле которого направлено навстречу полю постоянного магнита. При снятии внешнего поля со сверхпроводника ток в нём исчезает. Взаимодействие протонов с электромагнитной волной приводит к тому, что на их поверхностях наводятся вихревые токи. Так как протоны расположены рядом друг с другом, вихревые токи направляют магнитные поля навстречу друг другу, что увеличивает токи и их поля до разрыва молекулы водорода на атомы (Рис. 5 г ).

Выход электронов на орбитальные траектории и возникновение токов, разрывающих молекулу, происходят одновременно. При отлёте атомов водорода друг от друга вихревые токи исчезают, а электроны остаются на орбитальных траекториях.

Таким образом, на основе известных физических эффектов мы получили модель атома водорода. При этом:

1. Положительные и отрицательные заряды в атоме служат для получения силовых линий магнитных полей, которые, как известно из классической физики, образуются только при движении зарядов. Силовые линии магнитных полей и определяют все внутриатомные, межатомные и молекулярные связи.

2. Весь положительный заряд протона — позитрон — взаимодействует с зарядом электрона, создаёт максимальную кулоновскую силу притяжения для электрона, а равенство зарядов по абсолютной величине исключает у протона наличие отталкивающих сил для соседних протонов.

3. Практически атом водорода представляет собой протонно-электронный магнитный генератор (ПЭМГ), который работает только тогда, когда протон и электрон вместе, т. е. протонно-электронная пара должна быть всегда вместе.

4. При образовании молекулы водорода электроны соединяются в пару и вращаются вместе между атомами, создавая общее магнитное поле, которое удерживает их в паре. Позитроны протонов также соединяются в пару под действием своих магнитных полей и стягивают протоны, образуя молекулу водорода или любую другую молекулу. Соединённые в пару положительные заряды являются главной определяющей силой в молекулярной связи, т. к. позитроны связаны с протонами непосредственно и неотделимы от протонов.

5. Молекулярные связи всех элементов происходят аналогичным образом. Соединение атомов в молекулы других элементов обеспечивается валентными протонами со своими электронами, т. е. валентные электроны участвуют как в соединении атомов в молекулы, так и в разрыве молекулярных связей. Таким образом, каждое соединение атомов в молекулу обеспечивается по одной валентной паре протона с электроном (ВППЭ) от каждого атома на одну молекулярную связь. ВППЭ всегда состоят из протона и электрона.

6. При разрыве молекулярной связи главную роль играет электрон, т. к., выходя на орбитальную траекторию вокруг своего протона, он выдёргивает позитрон протона из пары, находящейся между протонами, на «экватор» протона, обеспечивая этим разрыв молекулярной связи.

7. При образовании молекулы водорода и молекул других элементов образуется двойной ПЭМГ.

Атом - это наименьшая частица химического элемента, сохраняющая все его химические свойства. Атом состоит из ядра, имеющего положительный электрический заряд, и отрицательно заряженных электронов. Заряд ядра любого химического элемента равен произведению Z на e, где Z - порядковый номер данного элемента в периодической системе химических элементов, е - величина элементарного электрического заряда.

Электрон - это мельчайшая частица вещества с отрицательным электрическим зарядом е=1,6·10 -19 кулона, принятым за элементарный электрический заряд. Электроны, вращаясь вокруг ядра, располагаются на электронных оболочках К, L, М и т. д. К - оболочка, ближайшая к ядру. Размер атома определяется размером его электронной оболочки. Атом может терять электроны и становиться положительным ионом или присоединять электроны и становиться отрицательным ионом. Заряд иона определяет число потерянных или присоединенных электронов. Процесс превращения нейтрального атома в заряженный ион называется ионизацией.

Атомное ядро (центральная часть атома) состоит из элементарных ядерных частиц - протонов и нейтронов. Радиус ядра примерно в сто тысяч раз меньше радиуса атома. Плотность атомного ядра чрезвычайно велика. Протоны - это стабильные элементарные частицы, имеющие единичный положительный электрический заряд и массу, в 1836 раз большую, чем масса электрона. Протон представляет собой ядро атома самого легкого элемента - водорода. Число протонов в ядре равно Z. Нейтрон - это нейтральная (не имеющая электрического заряда) элементарная частица с массой, очень близкой к массе протона. Поскольку масса ядра складывается из массы протонов и нейтронов, то число нейтронов в ядре атома равно А - Z, где А - массовое число данного изотопа (см. ). Протон и нейтрон, входящие в состав ядра, называются нуклонами. В ядре нуклоны связаны особыми ядерными силами.

В атомном ядре имеется огромный запас энергии, которая высвобождается при ядерных реакциях. Ядерные реакции возникают при взаимодействии атомных ядер с элементарными частицами или с ядрами других элементов. В результате ядерных реакций образуются новые ядра. Например, нейтрон может переходить в протон. В этом случае из ядра выбрасывается бета-частица, т. е. электрон.

Переход в ядре протона в нейтрон может осуществляться двумя путями: либо из ядра испускается частица с массой, равной массе электрона, но с положительным зарядом, называемая позитроном (позитронный распад), либо ядро захватывает один из электронов с ближайшей к нему К-оболочки (К-захват).

Иногда образовавшееся ядро обладает избытком энергии (находится в возбужденном состоянии) и, переходя в нормальное состояние, выделяет лишнюю энергию в виде электромагнитного излучения с очень малой длиной волны - . Энергия, выделяющаяся при ядерных реакциях, практически используется в различных отраслях промышленности.

Атом (греч. atomos - неделимый) наименьшая частица химического элемента, обладающая его химическими свойствами. Каждый элемент состоит из атомов определенного вида. В состав атома входят ядро, несущее положительный электрический заряд, и отрицательно заряженные электроны (см.), образующие его электронные оболочки. Величина электрического заряда ядра равна Z-e, где е - элементарный электрический заряд, равный по величине заряду электрона (4,8·10 -10 эл.-ст. ед.), и Z - атомный номер данного элемента в периодической системе химических элементов (см.). Так как неионизированный атом нейтрален, то число электронов, входящих в него, также равно Z. В состав ядра (см. Ядро атомное) входят нуклоны, элементарные частицы с массой, примерно в 1840 раз большей массы электрона (равной 9,1·10 -28 г), протоны (см.), заряженные положительно, и не имеющие заряда нейтроны (см.). Число нуклонов в ядре называется массовым числом и обозначается буквой А. Количество протонов в ядре, равное Z, определяет число входящих в атом электронов, строение электронных оболочек и химические свойства атома. Количество нейтронов в ядре равно А-Z. Изотопами называются разновидности одного и того же элемента, атомы которых отличаются друг от друга массовым числом А, но имеют одинаковые Z. Таким образом, в ядрах атомов различных изотопов одного элемента имеется разное число нейтронов при одинаковом числе протонов. При обозначении изотопов массовое число А записывается сверху от символа элемента, а атомный номер внизу; например, изотопы кислорода обозначаются:

Размеры атома определяются размерами электронных оболочек и составляют для всех Z величину порядка 10 -8 см. Поскольку масса всех электронов атома в несколько тысяч раз меньше массы ядра, масса атома пропорциональна массовому числу. Относительная масса атома данного изотопа определяется по отношению к массе атома изотопа углерода С 12 , принятой за 12 единиц, и называется изотопной массой. Она оказывается близкой к массовому числу соответствующего изотопа. Относительный вес атома химического элемента представляет собой среднее (с учетом относительной распространенности изотопов данного элемента) значение изотопного веса и называется атомным весом (массой).

Атом является микроскопической системой, и его строение и свойства могут быть объяснены лишь при помощи квантовой теории, созданной в основном в 20-е годы 20 века и предназначенной для описания явлений атомного масштаба. Опыты показали, что микрочастицы - электроны, протоны, атомы и т. д.,- кроме корпускулярных, обладают волновыми свойствами, проявляющимися в дифракции и интерференции. В квантовой теории для описания состояния микрообъектов используется некоторое волновое поле, характеризуемое волновой функцией (Ψ-функция). Эта функция определяет вероятности возможных состояний микрообъекта, т. е. характеризует потенциальные возможности проявления тех или иных его свойств. Закон изменения функции Ψ в пространстве и времени (уравнение Шредингера), позволяющий найти эту функцию, играет в квантовой теории ту же роль, что в классической механике законы движения Ньютона. Решение уравнения Шредингера во многих случаях приводит к дискретным возможным состояниям системы. Так, например, в случае атома получается ряд волновых функций для электронов, соответствующих различным (квантованным) значениям энергии. Система энергетических уровней атома, рассчитанная методами квантовой теории, получила блестящее подтверждение в спектроскопии. Переход атома из основного состояния, соответствующего низшему энергетическому уровню Е 0 , в какое-либо из возбужденных состояний E i происходит при поглощении определенной порции энергии Е i - Е 0 . Возбужденный атом переходит в менее возбужденное или основное состояние обычно с испусканием фотона. При этом энергия фотона hv равна разности энергий атома в двух состояниях: hv= E i - Е k где h - постоянная Планка (6,62·10 -27 эрг·сек), v - частота света.

Кроме атомных спектров, квантовая теория позволила объяснить и другие свойства атомов. В частности, были объяснены валентность, природа химической связи и строение молекул, создана теория периодической системы элементов.

  • Ассоциативные примеры процесса эзоосмоса, передачи и распределения энергии и информации
  • Состав ядра атома. Расчет протонов и нейтронов
  • Формулы реакций, лежащие в основе управляемого термоядерного синтеза
  • Состав ядра атома. Расчет протонов и нейтронов


    Согласно современным представлениям, атом состоит из ядра и расположенных вокруг него электронов. Ядро атома, в свою очередь, состоит из более малых элементарных частиц ‒ из определенного количества протонов и нейтронов (общепринятое название для которых – нуклоны), связанных между собой ядерными силами.

    Количество протонов в ядре определяет строение электронной оболочки атома. А электронная оболочка определяет физико-химические свойства вещества. Число протонов соответствует порядковому номеру атома в периодической системе химических элементов Менделеева, именуется также зарядовое число, атомный номер, атомное число. Например, число протонов у атома Гелия – 2. В периодической таблице он стоит под номером 2 и обозначается как He 2 Символом для обозначения количества протонов служит латинская буква Z. При записи формул зачастую цифра, указывающая на количество протонов, располагается снизу от символа элемента либо справа, либо слева: He 2 / 2 He.

    Количество нейтронов соответствует определённому изотопу того или иного элемента. Изотопы – это элементы с одинаковым атомным номером (одинаковым количеством протонов и электронов), но с разным массовым числом. Массовое число общее количество нейтронов и протонов в ядре атома (обозначается латинской буквой А). При записи формул массовое число указывается вверху символа элемента с одной из сторон: He 4 2 / 4 2 He (Изотоп Гелия – Гелий - 4)

    Таким образом, чтобы узнать число нейтронов в том или ином изотопе, следует от общего массового числа отнять число протонов. Например, нам известно, что в атоме Гелия-4 He 4 2 cодержится 4 элементарные частицы, так как массовое число изотопа – 4 . При этом нам известно, что He 4 2 меет 2 протона. Отняв от 4 (общее массовое число) 2 (кол-во протонов) получаем 2 – количество нейтронов в ядре Гелия-4.

    ПРОЦЕСС РАСЧЁТА КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО В ЯДРЕ АТОМА. В качестве примера мы не случайно рассмотрели Гелий-4 (He 4 2), ядро которого состоит из двух протонов и двух нейтронов. Поскольку ядро Гелия-4, именуемое альфа-частицей (α-частица) обладает наибольшей эффективностью в ядерных реакциях, его часто используют для экспериментов в этом направлении. Стоит отметить, что в формулах ядерных реакций зачастую вместо He 4 2 используется символ α.

    Именно с участием альфа-частиц была проведена Э. Резерфордом первая в официальной истории физики реакция ядерного превращения. В ходе реакции α-частицами (He 4 2) «бомбардировались» ядра изотопа азота (N 14 7), вследствие чего образовался изотоп оксигена (O 17 8) и один протон (p 1 1)

    Данная ядерная реакция выглядит следующим образом:

    Осуществим расчёт количества фантомных частичек По до и после данного преобразования.

    ДЛЯ РАСЧЁТА КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО НЕОБХОДИМО:
    Шаг 1. Посчитать количество нейтронов и протонов в каждом ядре:
    - количество протонов указано в нижнем показателе;
    - количество нейтронов узнаем, отняв от общего массового числа (верхний показатель) количество протонов (нижний показатель).

    Шаг 2. Посчитать количество фантомных частичек По в атомном ядре:
    - умножить количество протонов на количество фантомных частичек По, содержащихся в 1 протоне;
    - умножить количество нейтронов на количество фантомных частичек По, содержащихся в 1 нейтроне;

    Шаг 3. Сложить количество фантомных частичек По:
    - сложить полученное количество фантомных частичек По в протонах с полученным количеством в нейтронах в ядрах до реакции;
    - сложить полученное количество фантомных частичек По в протонах с полученным количеством в нейтронах в ядрах после реакции;
    - сравнить количество фантомных частичек По до реакции с количеством фантомных частичек По после реакции.

    ПРИМЕР РАЗВЁРНУТОГО ВЫЧИСЛЕНИЯ КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО В ЯДРАХ АТОМОВ.
    (Ядерная реакция с участием α-частицы (He 4 2), провёденная Э. Резерфордом в 1919 году)

    ДО РЕАКЦИИ (N 14 7 + He 4 2)
    N 14 7

    Количество протонов: 7
    Количество нейтронов: 14-7 = 7
    в 1 протоне – 12 По, значит в 7 протонах: (12 х 7) = 84;
    в 1 нейтроне – 33 По, значит в 7 нейтронах: (33 х 7) = 231;
    Общее количество фантомных частичек По в ядре: 84+231 = 315

    He 4 2
    Количество протонов – 2
    Количество нейтронов 4-2 = 2
    Количество фантомных частичек По:
    в 1 протоне – 12 По, значит в 2 протонах: (12 х 2) = 24
    в 1 нейтроне – 33 По, значит в 2 нейтронах: (33 х 2) = 66
    Общее количество фантомных частичек По в ядре: 24+66 = 90

    Итого, количество фантомных частичек По до реакции

    N 14 7 + He 4 2
    315 + 90 = 405

    ПОСЛЕ РЕАКЦИИ (O 17 8) и один протон (p 1 1):
    O 17 8
    Количество протонов: 8
    Количество нейтронов: 17-8 = 9
    Количество фантомных частичек По:
    в 1 протоне – 12 По, значит в 8 протонах: (12 х 8) = 96
    в 1 нейтроне – 33 По, значит в 9 нейтронах: (9 х 33) = 297
    Общее количество фантомных частичек По в ядре: 96+297 = 393

    p 1 1
    Количество протонов: 1
    Количество нейтронов: 1-1=0
    Количество фантомных частичек По:
    В 1 протоне – 12 По
    Нейтроны отсутствуют.
    Общее количество фантомных частичек По в ядре: 12

    Итого, количество фантомных частичек По после реакции
    (O 17 8 + p 1 1):
    393 + 12 = 405

    Сравним количество фантомных частичек По до и после реакции:


    ПРИМЕР СОКРАЩЁННОЙ ФОРМЫ ВЫЧИСЛЕНИЯ КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО В ЯДЕРНОЙ РЕАКЦИИ.

    Известной ядерной реакцией является реакция взаимодействия α-частиц с изотопом бериллия, прикоторой впервые был обнаружен нейтрон, проявивший себя как самостоятельная частица в результате ядерного преобразования. Данная реакция была осуществлена в 1932 году английским физиком Джеймсом Чедвиком. Формула реакции:

    213 + 90 → 270 + 33 - количество фантомных частичек По в каждом из ядер

    303 = 303 - общая сумма фантомных частичек По до и после реакции

    Количества фантомных частичек По до и после реакции равны.

    Что такое нейтрон? Каковы его структура, свойства и функции? Нейтроны - это самые большие из частиц, составляющих атомы, являющиеся строительными блоками всей материи.

    Структура атома

    Нейтроны находятся в ядре - плотной области атома, также заполненной протонами (положительно заряженными частицами). Эти два элемента удерживаются вместе при помощи силы, называем ядерной. Нейтроны имеют нейтральный заряд. Положительный заряд протона сопоставляется с отрицательным зарядом электрона для создания нейтрального атома. Несмотря на то что нейтроны в ядре не влияют на заряд атома, они все же обладают многими свойствами, которые влияют на атом, включая уровень радиоактивности.

    Нейтроны, изотопы и радиоактивность

    Частица, которая находится в ядре атома - нейтрон на 0,2% больше протона. Вместе они составляют 99,99% всей массы одного и того же элемента могут иметь различное количество нейтронов. Когда ученые ссылаются на атомную массу, они имеют в виду среднюю атомную массу. Например, углерод обычно имеет 6 нейтронов и 6 протонов с атомной массой 12, но иногда он встречается с атомной массой 13 (6 протонов и 7 нейтронов). Углерод с атомным номером 14 также существует, но встречается редко. Итак, атомная масса для углерода усредняется до 12,011.

    Когда атомы имеют различное количество нейтронов, их называют изотопами. Ученые нашли способы добавления этих частиц в ядро ​​для создания больших изотопов. Теперь добавление нейтронов не влияет на заряд атома, так как они не имеют заряда. Однако они увеличивают радиоактивность атома. Это может привести к очень неустойчивым атомам, которые могут разряжать высокие уровни энергии.

    Что такое ядро?

    В химии ядро ​​является положительно заряженным центром атома, который состоит из протонов и нейтронов. Слово «ядро» происходит от латинского nucleus, которое является формой слова, означающего "орех" или "ядро". Этот термин был придуман в 1844 году Майклом Фарадеем для описания центра атома. Науки, участвующие в исследовании ядра, изучении его состава и характеристик, называются ядерной физикой и ядерной химией.

    Протоны и нейтроны удерживаются сильной ядерной силой. Электроны притягиваются к ядру, но двигаются так быстро, что их вращение осуществляется на некотором расстоянии от центра атома. Заряд ядра со знаком плюс исходит от протонов, а что такое нейтрон? Это частица, которая не имеет электрического заряда. Почти весь вес атома содержится в ядре, так как протоны и нейтроны имеют гораздо большую массу, чем электроны. Число протонов в атомном ядре определяет его идентичность как элемента. Число нейтронов означает, какой изотоп элемента является атомом.

    Размер атомного ядра

    Ядро намного меньше общего диаметра атома, потому что электроны могут быть отдалены от центра. Атом водорода в 145 000 раз больше своего ядра, а атом урана в 23 000 раз больше своего центра. Ядро водорода является наименьшим, потому что оно состоит из одиночного протона.

    Расположение протонов и нейтронов в ядре

    Протон и нейтроны обычно изображаются как уплотненные вместе и равномерно распределенные по сферам. Однако это упрощение фактической структуры. Каждый нуклон (протон или нейтрон) может занимать определенный уровень энергии и диапазон местоположений. В то время как ядро ​​может быть сферическим, оно может быть также грушевидным, шаровидным или дисковидным.

    Ядра протонов и нейтронов представляют собой барионы, состоящие из наименьших называемых кварками. Сила притяжения имеет очень короткий диапазон, поэтому протоны и нейтроны должны быть очень близки друг к другу, чтобы быть связанными. Это сильное притяжение преодолевает естественное отталкивание заряженных протонов.

    Протон, нейтрон и электрон

    Мощным толчком в развитии такой науки, как ядерная физика, стало открытие нейтрона (1932 год). Благодарить за это следует английского физика который был учеником Резерфорда. Что такое нейтрон? Это нестабильная частица, которая в свободном состоянии всего за 15 минут способна распадаться на протон, электрон и нейтрино, так называемую безмассовую нейтральную частицу.

    Частица получила свое название из-за того, что она не имеет электрического заряда, она нейтральна. Нейтроны являются чрезвычайно плотными. В изолированном состоянии один нейтрон будет иметь массу всего 1,67·10 - 27 , а если взять чайную ложку плотно упакованную нейтронами, то получившийся кусок материи будет весить миллионы тонн.

    Количество протонов в ядре элемента называется атомным номером. Это число дает каждому элементу свою уникальную идентичность. В атомах некоторых элементов, например углерода, число протонов в ядрах всегда одинаково, но количество нейтронов может различаться. Атом данного элемента с определенным количеством нейтронов в ядре называется изотопом.

    Опасны ли одиночные нейтроны?

    Что такое нейтрон? Это частица, которая наряду с протоном входит в Однако иногда они могут существовать сами по себе. Когда нейтроны находятся вне ядер атомов, они приобретают потенциально опасные свойства. Когда они двигаются с высокой скоростью, они производят смертельную радиацию. Так называемые нейтронные бомбы, известные своей способностью убивать людей и животных, при этом оказывают минимальное влияние на неживые физические структуры.

    Нейтроны являются очень важной частью атома. Высокая плотность этих частиц в сочетании с их скоростью придает им чрезвычайную разрушительную силу и энергию. Как следствие, они могут изменить или даже разорвать на части ядра атомов, которые поражают. Хотя нейтрон имеет чистый нейтральный электрический заряд, он состоит из заряженных компонентов, которые отменяют друг друга относительно заряда.

    Нейтрон в атоме - это крошечная частица. Как и протоны, они слишком малы, чтобы увидеть их даже с помощью электронного микроскопа, но они там есть, потому что это единственный способ, объясняющий поведение атомов. Нейтроны очень важны для обеспечения стабильности атома, однако за пределами его атомного центра они не могут существовать долго и распадаются в среднем всего лишь за 885 секунд (около 15 минут).

    §1. Знакомьтесь: электрон, протон, нейтрон

    Атомы - мельчайшие частицы вещества.
    Если увеличить до размеров Земного шара яблоко средней величины, то атомы станут размером всего лишь с яблоко. Несмотря на столь малые размеры, атом состоит из еще более мелких физических частиц.
    Со строением атома вы должны быть уже знакомы из школьного курса физики. И все-таки напомним, что в составе атома есть ядро и электроны, которые вращаются вокруг ядра так быстро, что становятся неразличимыми - образуют "электронное облако", или электронную оболочку атома.

    Электроны принято обозначать так: e . Электроны e − очень легкие, почти невесомые, но зато имеют отрицательный электрический заряд. Он равен −1. Электрический ток, которым все мы пользуемся - это поток электронов, бегущий в проводах.

    Ядро атома , в котором сосредоточена почти вся его масса, состоит из частиц двух сортов - нейтронов и протонов.

    Нейтроны обозначают так: n 0 , а протоны так: p + .
    По массе нейтроны и протоны почти одинаковы - 1,675 · 10 −24 г и 1,673 · 10 −24 г.
    Правда, считать массу таких маленьких частиц в граммах очень неудобно, поэтому ее выражают в углеродных единицах , каждая из которых равна 1,673 · 10 −24 г.
    Для каждой частицы получают относительную атомную массу , равную частному от деления массы атома (в граммах) на массу углеродной единицы. Относительные атомные массы протона и нейтрона равны 1, а вот заряд у протонов положительный и равен +1, в то время как у нейтронов заряда нет.

    . Загадки про атом


    Атом можно собрать "в уме" из частиц, как игрушку или машинку из деталей детского конструктора. Надо только при этом соблюдать два важных условия.

    • Первое условие : каждому виду атомов соответствует свой собственный набор "деталей" - элементарных частиц . Например, в атоме водорода обязательно будет ядро с положительным зарядом +1, значит, в нем непременно должен быть один протон (и не больше).
      В атоме водорода могут быть и нейтроны. Об этом - в следующем параграфе .
      Атом кислорода (порядковый номер в Периодической системе равен 8) будет иметь ядро, заряженное восемью положительными зарядами (+8), - значит, там восемь протонов. Поскольку масса атома кислорода равна 16 относительных единиц, чтобы получить ядро кислорода, добавим еще 8 нейтронов.
    • Второе условие состоит в том, чтобы каждый атом оказался электронейтральным . Для этого в нем должно быть электронов столько, чтобы уравновесить заряд ядра. Иначе говоря, число электронов в атоме равно числу протонов в его ядре, а также порядковому номеру этого элемента в Периодической системе .