Получение ядерного топлива. Атомные электрические станции

Атомная электростанция (АЭС) - комплекс технических сооружений , предназначенных для выработки электрической энергии путем использования энергии, выделяемой при контролируемой ядерной реакции.

В качестве распространенного топлива для атомных электростанций применяется уран. Реакция деления осуществляется в основном блоке атомной электростанции - ядерном реакторе.

Реактор смонтирован в стальном корпусе, рассчитанном на высокое давление - до 1,6 х 107 Па, или 160 атмосфер.
Основными частями ВВЭР-1000 являются:

1. Активная зона, где находится ядерное топливо, протекает цепная реакция деления ядер и выделяется энергия.
2. Отражатель нейтронов, окружающий активную зону.
3. Теплоноситель.
4. Система управления защиты (СУЗ).
5. Радиационная защита.

Теплота в реакторе выделяется за счет цепной реакции деления ядерного топлива под действием тепловых нейтронов. При этом образуются продукты деления ядер, среди которых есть и твердые вещества, и газы - ксенон, криптон. Продукты деления обладают очень высокой радиоактивностью, поэтому топливо (таблетки двуокиси урана) помещают в герметичные циркониевые трубки - ТВЭЛы (тепловыделяющие элементы). Эти трубки объединяются по несколько штук рядом в единую тепловыделяющую сборку. Для управления и защиты ядерного реактора используются регулирующие стержни, которые можно перемещать по всей высоте активной зоны. Стержни изготавливаются из веществ, сильно поглощающих нейтроны - например, из бора или кадмия. При глубоком введении стержней цепная реакция становится невозможной, поскольку нейтроны сильно поглощаются и выводятся из зоны реакции. Перемещение стержней производится дистанционно с пульта управления. При небольшом перемещении стержней цепной процесс будет либо развиваться, либо затухать. Таким способом регулируется мощность реактора.

Схема станции - двухконтурная. Первый, радиоактивный, контур состоит из одного реактора ВВЭР 1000 и четырех циркуляционных петель охлаждения. Второй контур, нерадиоактивный, включает в себя парогенераторную и водопитательную установки и один турбоагрегат мощностью 1030 МВт. Теплоносителем первого контура является некипящая вода высокой чистоты под давлением в 16 МПа с добавлением раствора борной кислоты - сильного поглотителя нейтронов, что используется для регулирования мощности реактора.

1. Главными циркуляционными насосами вода прокачивается через активную зону реактора, где она нагревается до температуры 320 градусов за счет тепла, выделяемого при ядерной реакции.
2. Нагретый теплоноситель отдает свою теплоту воде второго контура (рабочему телу), испаряя ее в парогенераторе.
3. Охлажденный теплоноситель вновь поступает в реактор.
4. Парогенератор выдает насыщенный пар под давлением 6,4 МПа, который подается к паровой турбине.
5. Турбина приводит в движение ротор электрогенератора.
6. Отработанный пар конденсируется в конденсаторе и вновь подается в парогенератор конденсатным насосом. Для поддержания постоянного давления в контуре установлен паровой компенсатор объема.
7. Теплота конденсации пара отводится из конденсатора циркуляционной водой, которая подается питательным насосом из пруда охладителя.
8. И первый, и второй контур реактора герметичны. Это обеспечивает безопасность работы реактора для персонала и населения.

В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища, вода может охлаждаться в специальных охладительных башнях (градирнях).

Безопасность и экологичность работы реактора обеспечиваются жестким выполнением регламента (правил эксплуатации) и большим количеством контрольного оборудования. Все оно предназначено для продуманного и эффективного управления реактором.
Аварийная защита ядерного реактора - совокупность устройств, предназначенная для быстрого прекращения цепной ядерной реакции в активной зоне реактора.

Активная аварийная защита автоматически срабатывает при достижении одним из параметров ядерного реактора значения, которое может привести к аварии. В качестве таких параметров могут выступать: температура, давление и расход теплоносителя, уровень и скорость увеличения мощности.

Исполнительными элементами аварийной защиты являются, в большинстве случаев, стержни с веществом, хорошо поглощающим нейтроны (бором или кадмием). Иногда для остановки реактора жидкий поглотитель впрыскивают в контур теплоносителя.

Дополнительно к активной защите, многие современные проекты включают также элементы пассивной защиты . Например, современные варианты реакторов ВВЭР включают "Систему аварийного охлаждения активной зоны" (САОЗ) - специальные баки с борной кислотой, находящиеся над реактором. В случае максимальной проектной аварии (разрыва первого контура охлаждения реактора), содержимое этих баков самотеком оказываются внутри активной зоны реактора и цепная ядерная реакция гасится большим количеством борсодержащего вещества, хорошо поглощающего нейтроны.

Согласно "Правилам ядерной безопасности реакторных установок атомных станций", по крайней мере одна из предусмотренных систем остановки реактора должна выполнять функцию аварийной защиты (АЗ). Аварийная защита должна иметь не менее двух независимых групп рабочих органов. По сигналу АЗ рабочие органы АЗ должны приводиться в действие из любых рабочих или промежуточных положений.
Аппаратура АЗ должна состоять минимум из двух независимых комплектов.

Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы в диапазоне изменения плотности нейтронного потока от 7% до 120% номинального обеспечивалась защита:
1. По плотности нейтронного потока - не менее чем тремя независимыми каналами;
2. По скорости нарастания плотности нейтронного потока - не менее чем тремя независимыми каналами.

Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы во всем диапазоне изменения технологических параметров, установленном в проекте реакторной установки (РУ), обеспечивалась аварийная защита не менее чем тремя независимыми каналами по каждому технологическому параметру, по которому необходимо осуществлять защиту.

Управляющие команды каждого комплекта для исполнительных механизмов АЗ должны передаваться минимум по двум каналам. При выводе из работы одного канала в одном из комплектов аппаратуры АЗ без вывода данного комплекта из работы для этого канала должен автоматически формироваться аварийный сигнал.

Срабатывание аварийной защиты должно происходить как минимум в следующих случаях:
1. При достижении уставки АЗ по плотности нейтронного потока.
2. При достижении уставки АЗ по скорости нарастания плотности нейтронного потока.
3. При исчезновении напряжения в любом не выведенном из работы комплекте аппаратуры АЗ и шинах электропитания СУЗ.
4. При отказе любых двух из трех каналов защиты по плотности нейтронного потока или по скорости нарастания нейтронного потока в любом не выведенном из работы комплекте аппаратуры АЗ.
5. При достижении уставок АЗ технологическими параметрами, по которым необходимо осуществлять защиту.
6. При инициировании срабатывания АЗ от ключа с блочного пункта управления (БПУ) или резервного пункта управления (РПУ).

Материал подготовлен интернет-редакцией www.rian.ru на основе информации РИА Новости и открытых источников

Атомная энергетика состоит из большого количества предприятий разного назначения. Сырье для этой индустрии добывается на урановых рудниках. После оно доставляется на предприятия по изготовлению топлива.

Далее топливо транспортируют на атомные станции, где оно попадает в активную зону реактора. Когда ядерное топливо отрабатывает свой срок, его подлежат захоронению. Стоит отметить, что опасные отходы появляются не только после переработки топлива, но и на любом этапе - от добычи урана до работы в реакторе.

Ядерное топливо

Топливо бывает двух видов. Первое - это уран, добытый в шахтах, соответственно, природного происхождения. Он содержит сырье, которое способно образовать плутоний. Второе - это топливо, которое создано искусственно (вторичное).

Также ядерное топливо делится по химическому составу: металлическое, оксидное, карбидное, нитридное и смешанное.

Добыча урана и производство топлива

Большая доля добычи урана приходится всего лишь на несколько стран: Россию, Францию, Австралию, США, Канаду и ЮАР.

Уран - это основной элемент для топлива на атомных электростанциях. Чтобы попасть в реактор, он проходит несколько стадий обработки. Чаще всего залежи урана находятся рядом с золотом и медью, поэтому его добычу осуществляют с добычей драгоценных металлов.

На разработках здоровье людей подвергается большой опасности, потому что уран - токсичный материал, и газы, которые появляются в процессе его добычи, вызывают разнообразные формы рака. Хотя в самой руде содержится очень малое количество урана - от 0,1 до 1 процента. Также большому риску подвергается население, которое проживает рядом с урановыми шахтами.

Обогащенный уран - главное топливо для атомных станций, но после его использования остается огромное количество радиоактивных отходов. Несмотря на всю его опасность, обогащение урана является неотъемлемым процессом создания ядерного топлива.

В природном виде уран практически нельзя нигде применить. Для того чтобы использовать, его нужно обогатить. Для обогащения используются газовые центрифуги.

Обогащенный уран используют не только в атомной энергетике, но и в производстве оружия.

Транспортировка

На любом этапе топливного цикла есть транспортировка. Она осуществляется всеми доступными способами: по земле, морем, воздухом. Это большой риск и большая опасность не только для экологии, но и для человека.

Во время перевозки ядерного топлива или его элементов происходит немало аварий, следствием которых является выброс радиоактивных элементов. Это одна из многих причин, по которой считают небезопасной.

Вывод из строя реакторов

Ни один из реакторов не демонтирован. Даже печально известная Чернобыльская Все дело в том, что по подсчетам экспертов цена демонтажа равняется, а то и превосходит цену постройки нового реактора. Но точно никто не может сказать, сколько понадобится средств: стоимость рассчитывалась на опыте демонтажа небольших станций для исследования. Специалисты предлагают два варианта:

  1. Помещать реакторы и отработанное ядерное топливо в могильники.
  2. Строить над вышедшими из эксплуатации реакторами саркофаги.

В ближайшие десять лет около 350 реакторов по всему миру выработают свой ресурс и должны быть выведены из строя. Но так как наиболее подходящего по безопасности и цене способа не придумали, это вопрос еще решается.

Сейчас по всему миру работают 436 реакторов. Безусловно, это большой вклад в энергосистему, но он очень небезопасен. Исследования показывают, что через 15-20 лет АЭС смогут заменить станциями, которые работают на энергии ветра и солнечных батареях.

Ядерные отходы

Огромное количество ядерных отходов образуется в результате деятельности АЭС. Переработка ядерного топлива также оставляет после себя опасные отходы. При этом ни одна из стран не нашла решения проблемы.

Сегодня ядерные отходы содержатся во временных хранилищах, в бассейнах с водой или захороняются неглубоко под землей.

Наиболее безопасный способ - это хранение в специальных хранилищах, но тут тоже возможна утечка радиации, как и при других способах.

На самом деле ядерные отходы имеют некоторую ценность, но требуют строго соблюдения правил их хранения. И это наиболее острая проблема.

Важным фактором является время, в течение которого отходы опасны. У каждого свой срок распада, в течение которого оно токсично.

Виды ядерных отходов

При эксплуатации любой атомной электростанции ее отходы попадают в окружающую среду. Это вода для охлаждения турбин и газообразные отходы.

Ядерные отходы делят на три категории:

  1. Низкого уровня - одежда сотрудников АЭС, лабораторное оборудование. Такие отходы могут поступать и из медицинских учреждений, научных лабораторий. Они не представляют большой опасности, но требуют соблюдения мер безопасности.
  2. Промежуточного уровня - металлические емкости, в которых перевозят топливо. Уровень радиации их достаточно высок, и те, кто находится от них недалеко, должны быть защищены.
  3. Высокого уровня - это отработанное ядерное топливо и продукты его переработки. Уровень радиоактивности быстро уменьшается. Отходов высокого уровня очень мало, около 3 процентов, но они содержат 95 процентов всей радиоактивности.

Ядерную энергию используют в теплоэнергетике, когда из ядерного топлива в реакторах получают энергию в форме тепла. Оно используется для выработки электрической энергии в атомных электростанциях (АЭС) , для энергетических установок крупных морских судов, для опреснения морской воды.

Ядерная энергетика обязана своим появлением, в первую очередь, природе открытого в 1932 году нейтрона. Нейтроны входят в состав всех атомных ядер, кроме ядра водорода. Связанные нейтроны в ядре существуют бесконечно долго. В свободном виде они недолговечны, так как или распадаются с периодом полураспада 11,7 минуты, превращаясь в протон и испуская при этом электрон и нейтрино, или быстро захватываются ядрами атомов.

Современная ядерная энергетика основана на использовании энергии, выделяющейся при делении природного изотопа урана-235 . На атомных электростанциях управляемая реакция деления ядер осуществляется в ядерном реакторе . По энергии нейтронов, производящих деление ядер, различают реакторы на тепловых и на быстрых нейтронах .

Основной агрегат атомной электростанции — ядерный реактор, схема которого показана на рис. 1. Получают энергию из ядерного топлива, а затем она передается другому рабочему телу (воде, металлической или органической жидкости, газу) в форме тепла; далее ее превращают в электричество по той же схеме, что и в обычных .

Управляют процессом, поддерживают реакцию, стабилизируют мощность, осуществляют пуск и остановку реактора с помощью специальных подвижных управляющих стержней 6 и 7 из материалов, интенсивно поглощающих тепловые нейтроны. Их приводят в движение с помощью системы управления 5 . Действия регулирующих стержней проявляются в изменение мощности потока нейтронов в активной зоне. По каналам 10 циркулирует вода, охлаждающая бетон биологической защиты

Управляющие стержни изготовлены из бора или кадмия, которые термически, радиационно и коррозионно устойчивы, механически прочны, имеют хорошие теплопередающие свойства.

Внутри массивного стального корпуса 3 находится корзина 8 с тепловыделяющими элементами 9 . Теплоноситель поступает по трубопроводу 2 , проходит через активную зону, омывает все тепловыделяющие элементы, нагревается и по трубопроводу 4 поступает в парогенератор.

Рис. 1. Ядерный реактор

Реактор размещен внутри толстого бетонного биологического защитного устройства 1 , которое защищает окружающее пространство от потока нейтронов, альфа-, бета-, гамма-излучения.

Тепловыделяющие элементы (твэлы) — главная часть реактора. В них непосредственно происходит ядерная реакция и выделяется тепло, все остальные части служат для изоляции, управления и отвода тепла. Конструктивно твэлы можно выполнить стержневыми, пластинчатыми, трубчатыми, шаровыми и т. д. Чаще всего они стержневые, длиной до 1 метра, диаметром 10 мм. Обычно их собирают из урановых таблеток или из коротких трубок и пластин. Снаружи твэлы покрыты коррозионностойкой, тонкой металлической оболочкой. На оболочку используются циркониевые, алюминиевые, магниевые сплавы, а также легированная нержавеющая сталь.

Передача тепла, выделяющегося при ядерной реакции в активной зоне реактора, к рабочему телу двигателя (турбины) энергетических установок осуществляется по одноконтурной, двухконтурной и трехконтурной схемам (рис. 2).

Рис. 2. Ядерная энергетическая установка
а – по одноконтурной схеме; б – по двухконтурной схеме; в – по трёхконтурной схеме
1 – реактор; 2, 3 – биологическая защита; 4 – регулятор давления; 5 – турбина; 6 – электрогенератор; 7 – конденсатор; 8 – насос; 9 – резервная ёмкость; 10 – регенеративный подогреватель; 11 – парогенератор; 12 – насос; 13 – промежуточный теплообменник

Каждый контур — замкнутая система. Реактор 1 (во всех тепловых схемах) размещен внутри первичной 2 и вторичной 3 биологических защит. Если АЭС построена по одноконтурной тепловой схеме, пар из реактора через регулятор давления 4 поступает в турбину 5 . Вал турбины соединен с валом электрогенератора 6 , в котором вырабатывается электрический ток. Отработавший пар поступает в конденсатор, где охлаждается и полностью конденсируется. Насос 8 направляет конденсат в регенеративный подогреватель 10 , и далее он поступает в реактор.

При двухконтурной схеме нагретый в реакторе теплоноситель поступает в парогенератор 11 , где тепло поверхностным подогревом передается теплоносителю рабочего тела (питательной воде второго контура). В водо-водяных реакторах теплоноситель в парогенераторе охлаждается примерно на 15…40 о С и далее циркуляционным насосом 12 обратно направляется в реактор.


При трехконтурной схеме теплоноситель (обычно жидкий натрий) из реактора направляется в промежуточный теплообменник 13 и оттуда циркуляционным насосом 12 возвращается в реактор. Теплоноситель во втором контуре тоже жидкий натрий. Этот контур не облучается и, следовательно, нерадиоактивен. Натрий второго контура поступает в парогенератор 11 , отдает тепло рабочему телу, а затем циркуляционным насосом отправляется обратно в промежуточный теплообменник.

Число циркуляционных контуров определяет тип реактора, применяемый теплоноситель, его ядерно-физические свойства, степень радиоактивности. Одноконтурная схема может быть использована в кипящих реакторах и в реакторах с газовым теплоносителем. Наибольшее распространение получила двухконтурная схема при использовании в качестве теплоносителя воды, газа и органических жидкостей. Трехконтурная схема применяется на АЭС с реакторами на быстрых нейтронах при использовании жидкометаллических теплоносителей (натрий, калий, сплавы натрий-калий).

Ядерным горючим могут быть уран-235, уран-233 и плутоний-232 . Сырье для получения ядерного топлива — природный уран и торий . При ядерной реакции одного грамма делящегося вещества (уран-235) освобождается энергия, эквивалентная 22×10 3 кВт × ч (19×10 6 кал). Для получения такого количества энергии необходимо сжечь 1900 кг нефти.

Уран-235 легко доступен, его энергетические запасы примерно такие же, как и органического топлива. Однако при использовании ядерного топлива с такой низкой эффективностью, как ныне, доступные урановые источники будут истощены через 50-100 лет. В то же время практически неисчерпаемы «залежи» ядерного топлива — это уран, растворенный в морской воде. В океане его в сотни раз больше, чем на суше. Стоимость получения одного килограмма двуокиси урана из морской воды около 60-80$, а в перспективе снизится до 30$, а стоимость двуокиси урана, добываемой в наиболее богатых месторождениях на суше, 10-20$. Стало быть, через некоторое время затраты на суше и «на морской воде» станут одного и того же порядка.

Стоимость ядерного топлива примерно в два раза ниже, чем ископаемых углей. На электростанциях, работающих на угле, на долю горючего падает 50-70% стоимости электроэнергии, а на АЭС — 15-30%. Современная ТЭС мощностью 2,3 млн кВт (например, Самарская ГРЭС) ежесуточно потребляет около 18 тонн угля (6 железнодорожных составов) или 12 тыс. тонн мазута (4 железнодорожных состава). Атомная же, такой же мощности, расходует в течение суток всего 11 кг ядерного горючего, а в течение года 4 тонны. Однако атомная электростанция дороже тепловой с точки зрения строительства, эксплуатации, ремонта. Например, сооружение АЭС мощностью 2 — 4 млн кВт обходится примерно на 50-100 % дороже, чем тепловой.

Уменьшить капитальные затраты на строительство АЭС возможно за счет:

  1. стандартизации и унификации оборудования;
  2. разработки компактных конструкций реакторов;
  3. совершенствования систем управления и регулирования;
  4. сокращения продолжительности остановки реактора для перегрузки топлива.

Важной характеристикой ядерных энергетических установок (ядерного реактора) является экономичность топливного цикла. Чтобы повысить экономичность топливного цикла, следует:

  • увеличить глубину выгорания ядерного топлива;
  • поднять коэффициент воспроизводства плутония.

При каждом делении ядра урана-235 освобождается 2-3 нейтрона. Из них для дальнейшей реакции используют только один, остальные теряются. Однако существует возможность использовать их для воспроизводства ядерного топлива, создавая реакторы на быстрых нейтронах. При работе реактора на быстрых нейтронах можно на 1 кг сожженного урана-235 одновременно получить примерно 1,7 кг плутония-239. Таким образом можно покрыть низкий термический КПД АЭС.

Реакторы на быстрых нейтронах в десятки раз эффективнее (в плане использования ядерного топлива) реакторов на топливных нейтронах. В них отсутствует замедлитель, применяется высокообогащенное ядерное горючее. Вылетающие из активной зоны нейтроны поглощаются не конструктивными материалами, а расположенным вокруг ураном-238 или торием-232.

В будущем основными делящимися материалами для атомных энергетических установок станут плутоний-239 и уран-233, полученных соответственно из урана-238 и тория-232 в реакторах на быстрых нейтронах. Превращение в реакторах урана -238 в плутоний-239 увеличит ресурсы ядерного топлива примерно в 100 раз, а тория-232 в уран-233 — в 200 раз.

На рис. 3 приведена схема ядерной энергетической установки на быстрых нейтронах.

Отличительными особенностями ядерной электроустановки на быстрых нейтронах являются:

  1. изменение критичности ядерного реактора осуществляется за счет отражения части нейтронов деления ядерного топлива с периферии обратно в активную зону при помощи отражателей 3 ;
  2. отражатели 3 могут поворачиваться, изменяя утечку нейтронов и, следовательно, интенсивность реакций деления;
  3. воспроизводится ядерное топливо;
  4. отвод излишней тепловой энергии от реактора осуществляется при помощи холодильника-излучателя 6 .

Рис. 3. Схема ядерной энергетической установки на быстрых нейтронах:
1 – тепловыделяющие элементы; 2 – воспроизводимое ядерное топливо; 3 – отражатели быстрых нейтронов; 4 – ядерный реактор; 5 – потребитель электроэнергии; 6 – холодильник-излучатель; 7 – преобразователь тепловой энергии в электрическую; 8 – радиационная защита.

Преобразователи тепловой энергии в электрическую

По принципу использования тепловой энергии, вырабатываемой ядерной энергетической установкой, преобразователи можно разделить на 2 класса:

  1. машинные (динамические);
  2. безмашинные (прямые преобразователи).

В машинных преобразователях с реактором обычно связывают газотурбинную установку, в которой рабочим телом может быть водород, гелий, гелий-ксеноновая смесь. Эффективность преобразования в электроэнергию тепла, подведенного непосредственно к турбогенератору, достаточно высока — КПД преобразователя η= 0,7-0,75.

Схема ядерной энергетической установки с динамическим газотурбинным (машинным) преобразователем показана на рис. 4.

Другой тип машинного преобразователя — магнитогазодинамический или магнитогидродинамический генератор (МГДГ). Схема такого генератора приведена на рис. 5. Генератор представляет собой канал прямоугольного сечения, две стенки которого выполнены из диэлектрика, а две — из электропроводящего материала. По каналам движется электропроводящее рабочее тело — жидкое или газообразное, которое пронизывается магнитным полем. Как известно, при движении проводника в магнитном поле возникает ЭДС, которая по электродам 2 передается потребителю электроэнергии 3 . Источником энергии потока рабочего тепла является тепло, выделяющееся в ядерном реакторе. Эта тепловая энергия затрачивается на перемещение зарядов в магнитном поле, т.е. превращается в кинетическую энергию токопроводящей струи, а кинетическая энергия — в электрическую.

Рис. 4. Схема ядерной энергоустановки с газотурбинным преобразователем:
1 – реактор; 2 – контур с жидкометаллическим теплоносителем; 3 – теплообменник для подвода теплоты к газу; 4 – турбина; 5 – электрогенератор; 6 – компрессор; 7 – холодильник-излучатель; 8 – контур отвода теплоты; 9 – насос циркуляционный; 10 – теплообменник для отвода теплоты; 11 – теплообменник-регенератор; 12 – контур с рабочим телом газотурбинного преобразователя.

Прямые преобразователи (безмашинные) тепловой энергии в электрическую подразделяются на:

  1. термоэлектрические;
  2. термоэмиссионные;
  3. электрохимические.

Термоэлектрические генераторы (ТЭГ) основаны на принципе Зеебека, заключающемся в том, что в замкнутой цепи, состоящей из разнородных материалов, возникает термо-ЭДС, если поддерживается разность температур в местах контакта этих материалов (рис. 6). Для получения электроэнергии целесообразно использовать полупроводниковые ТЭГ, имеющие более высокий КПД, при этом температуру горячего спая нужно доводить до 1400 К и выше.

Термоэмиссионные преобразователи (ТЭП) позволяют получать электроэнергию в результате эмиссии электронов с нагретого до высоких температур катода (рис. 7).

Рис. 5. Магнитогазодинамический генератор:
1 – магнитное поле; 2 – электроды; 3 – потребитель электроэнергии; 4 – диэлектрик; 5 – проводник; 6 – рабочее тело (газ).

Рис. 6. Схема работы термоэлектрического генератора

Рис. 7. Схема работы термоэмиссионного преобразователя

Для поддержания тока эмиссии к катоду подводится теплота Q 1 . Эмитируемые катодом электроны, преодолев вакуумный промежуток, достигают анода и поглощаются им. При «конденсации» электронов на аноде выделяется энергия, равная работе выхода электронов с противоположным знаком. Если обеспечить непрерывный подвод теплоты к катоду и отвод её от анода, то через нагрузку R потечет постоянный ток. Электронная эмиссия протекает эффективно при температурах катода выше 2200 К.

Безопасность и надежность работы АЭС

Одним из главных вопросов развития атомной энергетики является обеспечение надёжности и безопасности работы АЭС.

Радиационная безопасность обеспечивается:

  1. созданием надёжных конструкций и устройств биологической защиты персонала от облучений;
  2. очисткой воздуха и воды, выходящих из помещений АЭС за ее пределы;
  3. извлечением и надёжной локализацией радиоактивных загрязнений;
  4. повседневным дозиметрическим контролем помещений АЭС и индивидуальным дозиметрическим контролем персонала.

Помещения АЭС в зависимости от режима работы и установленного в них оборудования делятся на 3 категории:

  1. зона строгого режима;
  2. зона ограниченного режима;
  3. зона нормального режима.

В помещениях третьей категории персонал находится постоянно, эти помещения на станции радиационно безопасны.

При работе АЭС образуются твёрдые, жидкие и газообразные радиоактивные отходы. Они должны выводиться так, чтобы не создавалось загрязнения окружающей среды.

Удаляемые из помещения газы при их вентиляции могут содержать радиоактивные вещества в виде аэрозолей, радиоактивную пыль и радиоактивные газы. Вентиляция станции строится так, чтобы потоки воздуха проходили из наиболее «чистых» в «загрязненные», а перетоки в обратном направлении исключались. Во всех помещениях станции полная замена воздуха производится в течение не более одного часа.

При эксплуатации АЭС возникает проблема удаления и захоронения радиоактивных отходов. Отработавшие в реакторах твэлы выдерживают определенное время в бассейнах с водой непосредственно на АЭС, пока не произойдет стабилизация изотопов с малым временем полураспада, после чего твэлы отправляются на специальные радиохимические заводы для регенерации. Там из твэлов извлекается ядерное горючее, а радиоактивные отходы подлежат захоронению.

Которые, в свою очередь, могут вызвать деление следующих ядер. Такое деление происходит при попадании нейтрона в ядро атома исходного вещества. Образующиеся при делении ядра осколки деления обладают большой . Торможение осколков деления в веществе сопровождается выделением большого количества тепла. Осколки деления - это ядра, образовавшиеся непосредственно в результате деления. Осколки деления и продукты их радиоактивного распада обычно называют продуктами деления . Ядра, делящиеся нейтронами любых энергий, называют ядерным горючим (как правило, это вещества с нечетным атомным числом). Существуют ядра, которые делятся только нейтронами с энергией выше некоторого порогового значения (как правило, это элементы с четным атомным числом). Такие ядра называют сырьевым материалом, т. к. при захвате нейтрона пороговым ядром образуются ядра ядерного горючего. Комбинация ядерного горючего и сырьевого материала называется ядерным топливом. Ниже приведено распределение энергии деления ядра 235 U между различными продуктами деления (в МэВ):

Природный уран состоит из трех изотопов: 238 U (99,282%), 235 U (0,712%) и 234 U (0,006%). Он не всегда пригоден как ядерное топливо, особенно если конструкционные материалы и интенсивно поглощают . В этом случае ядерное топливо приготовляют на основе обогащённого урана. В энергетических используют уран с обогащением менее 10%, а в реакторах на и нейтронах обогащение урана превышает 20%. Обогащённый уран получают на специальных обогатительных заводах.

Классификация

Ядерное топливо делится на два вида:

  • Природное , содержащее делящиеся ядра 235 U, а также сырьё 238 U, способное при захвате нейтрона образовывать 239 Pu;
  • Вторичное топливо, которое не встречается в природе, в том числе 239 Pu, получаемый из топлива первого вида, а также изотопы 233 U, образующиеся при захвате нейтронов ядрами 232 Th.

По химическому составу, ядерное топливо может быть:

  • , включая ;
  • (например, );
  • (например, )
  • Смешанным (PuO 2 + UO 2)

Применение

Ядерное топливо используется в , где оно обычно располагается в герметично закрытых тепловыделяющих элементах () в виде таблеток размером в несколько сантиметров.

К ядерному топливу применяются высокие требования по химической совместимости с оболочками ТВЭЛов, у него должна быть достаточная температура плавления и испарения, хорошая , небольшое увеличение объёма при облучении, технологичность производства.

Получение

Урановое топливо

Ядерное топливо получают переработкой руд. Процесс происходит в несколько этапов:

  • Для бедных месторождений : В современной промышленности в силу отсутствия богатых урановых руд (исключения составляют канадские месторождения несогласия, где концентрация урана доходит до 30% и австралийских с содержанеим урана до 3%) используется способ подземного вышелачивания руд. Это исключает дорогостоящую добычу руды. Предварительная подготовка идёт непосредственно под землёй. Через закачные трубы под землю над месторождением закачивается , иногда с добавлением солей трёхвалентного железа (для окисления урана U(IV) до U(VI)), хотя руды часто содеражат железо и пиролюзит, которые облегчают окисение. Через откачные трубы специальными насосами раствор серной кислоты с ураном поднимается на поверхность. Далее он непосредственно поступает на сорбционное, гидрометаллургическое извлечение и одновременное концентрирование урана.
  • Для рудных месторождений : используют и .
  • Гидрометаллургическая переработка - дробление, выщелачивание, или извлечение урана с получением очищенной закиси-окиси урана U 3 O 8 или диураната натрия Na 2 U 2 O 7 или диураната аммония.
  • Перевод урана из оксида в тетрафторид , или из оксидов непосредственно для получения гексафторида , который используется для обогащения урана по изотопу 235.
  • Обогащение методами газовой термодиффузии или центрифугированием (См. )
  • UF 6 , обогащенный по 235

Cтраница 3


После периода старения вагонетки с урановыми стержнями под водой передвигают в крытую часть водоема. Здесь рабочие длинными алюминиевыми щипцами извлекают урановые стержни из воды и подают их на машину, которая снимает с них алюминиевые оболочки.  

Для добывания атомной энергии пользуются специальным аппаратом, который часто называют урановым котлом. Он представляет собой довольно большое сооружение, в котором урановые стержни чередуются с прослойками замедлителя. Быстрые нейтроны, вырывающиеся при делении ядер урана-235, попадают в прослойку замедлителя и, проталкиваясь между его атомами, теряют большую часть своей скорости.  

Отношение & N1 / N, выражающее эффективное сечение процесса деления, зависит от энергии нейтронов. Этот процесс (названный замедлением нейтронов) осуществляется помещением в объем реактора, где находятся урановые стержни некоторых веществ (тяжелая вода, графит и др.); при упругих столкновениях с ядрами этих веществ нейтрон постепенно теряет кинетическую энергию до значений, соответствующих температуре реактора.  

Две стальные профилированные балки расположены вблизи центрального отделения. Поперек этих балок проложен ряд параллельных брусьев, которые перекрывают верхнее отверстие бака и поддерживают урановые стержни. Стальные брусья покрыты медью, никелем и хромом для предотвращения коррозии. Расположение урановых стержней в квадратной решетке можно менять, изменяя расстояние между соответствующими брусьями. Металлический уран в форме коротких стержней может быть помещен на желаемой высоте в алюминиевых трубах, в нижний конец которых вварены пробки.  

При делении ядер урана-235 быстрые нейтроны, вылетая из урановых стержней, попадают в графит. Здесь они сталкиваются с ядрами углерода, из которых состоит графит, быстро теряют скорость и вновь попадают в другие урановые стержни уже замедленными.  

Использование азотной кислоты предпочтительно для растворения любых твэ-лов, так как получаемые при этом растворы можно направлять на переработку по стандартной экстракционной системе. Урановые стержни после удаления алюминиевых оболочек растворяются быстро и нацело без выделения водорода. Процесс протекает удовлетворительно при наивысших уровнях радиации.  

Наконец, энергетические реакторы предназначаются для производства и утилизации ядерной энергии. На рис. 21 приведена типовая схема энергетического ядерного реактора. Урановые стержни составляют активную зону реактора. В этой же зоне находятся стержни, замедляющие нейтроны.  

Крупную роль в атомной технике играют тугоплавкие металлы. В центре внимания ученых стоят исследования ряда карбидов, особенно карбида силиция, карбида хрома, карбида гафния. Важным конструкционным материалом является алюминий высокой степени чистоты, которым покрывают урановые стержни реакторов с целью защиты их от коррозии.  

Реакторы, в которых горючее и замедлитель разделены друг от друга, называются гетерогенными. Примером может служить уран-графитовый реактор. При применении его в качестве источника ядерной энергии реактор (например, сами урановые стержни) пронизывается трубками, по которым циркулирует вещество, отводящее тепло. Это вещество - теплоноситель-должно, по возможности, мало поглощать нейтроны.  

Однако при работе ядерного реактора в результате деления ядер урана-235 в урановых стержнях начинают накапливаться продукты радиоактивного распада, или, как их называют, осколки деления. Некоторые из этих ядер жадно поглощают нейтроны. Поэтому по мере накопления в урановых стержнях осколков деления все большее и большее количество выделяющихся в результате цепной реакции нейтронов начинает пропадать впустую, их захватывают ядра осколков деления. Поэтому через некоторое время урановые стержни вынимают из реактора, а на их место вставляют новые, свежие урановые стержни. Чтобы работа реактора протекала непрерывно, замену урановых стержней производят по секциям. Поэтому в атомном реакторе всегда наряду со старыми, уже кончающими свой срок службы, имеются и молодые стержни, которые лишь недавно попали в реактор.  

Заводы по химическому отделению плутония обслуживают по нескольку атомных реакторов. Оборудование на этих заводах размещено в помещениях с толстыми бетонными стенами, расположенных почти целиком под землей. Сюда поступают урановые стержни, обработанные в атомных реакторах и выдержанные некоторое время в специальных хранилищах. Однако и после периода старения урановые стержни содержат большое количество радиоактивных продуктов деления и чрезвычайно опасны для людей. Поэтому управление всеми операциями по их транспортировке и обработке осуществляют на расстоянии с помощью специальных приборов.  

Газ, предположительно Не, С02, S02 или другой с малым ас при тепловых энергиях, использован в качестве теплоносителя гетерогенной установки. Этот газ протекает в цилиндрических зазорах вокруг урановых стержней, один из которых (служит управляющим) показан частично вытянутым. Толщина защиты вокруг бойлера составляет только около одной трети защиты, окружающей непосредственно реактор. Для извлечения продуктов деления необходимо вынимать урановые стержни и обрабатывать их химически, а не так, как это упрощенно показано на эскизе.