Вакуоль, её особенности: строение, состав, функции. Сократительная вакуоль Основная функция сократительной вакуоли у простейших

Сократительными вакуолями обладают две группы животных- простейшие и губки. По-видимому, такие вакуоли есть у всех пресноводных простейших. Не столь ясно, имеются ли они у всех морских форм, но они обнаружены по крайней мере у некоторых морских инфузорий. Наличие сократительных вакуолей у пресноводных губок раньше подвергалось сомнению, но теперь доказано бесспорно (Jepps, 1947).
Так как пресноводные формы всегда гиперосмогичны по отношению к среде и поверхность их проницаема для воды, им постоянно приходится выводить из организма воду. Они должны не только удалять излишек воды, но также возмещать утраченные растворенные вещества, вероятно, путем активного поглощения солей из внешней среды. Определение водной проницаемости крупной амебы Chaos chaos показало, что вычисленный осмотический приток воды хорошо согласуется с наблюдаемой скоростью выведения жидкости сократительной вакуолью. Этим подтверждается широко распространенное мнение, что главная функция сократительной вакуоли состоит в оеморегуляции и регуляции объема клетки (L^vtrup, Pigon, 1951).
Наблюдая сократительную вакуоль у пресноводных простейших под микроскопом, можно видеть непрерывные циклические изменения. Вакуоль набирает воду и постепенно увеличивается в объеме, пока не достигнет критических размеров. Тогда она внезапно выбрасывает свое содержимое наружу и уменьшается

Рис. 10.1. Сократительная вакуоль Amoeba proteus ограничена мембраной ю окружена слоем мелких пузырьков, которые наполнены жидкостью и, по-видимому, опорожняются в вакуоль. Вокруг этой структуры лежит слой митохондрий, которые, вероятно, доставляют энергию для секреторного процесса. (Mercer,

в объеме, после чего снова начинает увеличиваться, и цикл повторяется.
Просвет сократительной вакуоли у амебы окружен одиночной тонкой мембраной. К этой мембране снаружи прилегает толстый (0,5-2 мкм) слой плотно упакованных мелких пузырьков диаметром от 0,02 до 0,2 мкм. Вокруг этого слоя мелких пузырьков лежит слой митохондрий, которые, по-видимому, доставляют энергию для осмотической работы, создающей гипо- тоничность содержимого вакуоли (рис. 10.1). Судя по электронным микрофотографиям, пузырьки опорожняются в сократительную вакуоль в результате слияния мембран.
Роль сократительной вакуоли в осморегуляции хорошо продемонстрирована у эвригалинной амебы Amoeba lacerata. Эта амеба исходно является пресноводным организмом, но обладает высокой толерантностью к соли и даже может адаптироваться к 50%-ной морской воде. Скорость опорожнения ее сократи,-
тельной вакуоли при адаптации к разным концентрациям солей находится в обратной зависимости от осмотической концентрации среды (рис. 10.2).
По-видимому, сократительные вакуоли удаляют воду с той же скоростью, с какой происходит ее осмотический приток, так. как по мере повышения концентрации среды количество посту-

Рис. 10.2. Скорость выведения жидкости сократительной вакуолью Amoeba lacerate в зависимости от концентрации внешней среды (выраженной в процентах от концентрации морской воды). Амебы исследовались в том же растворе, в каком были выращены. (Hopkins, 1946.)

пающей воды снижается. В морской среде, где, как надо полагать, внутренняя и внешняя осмотические концентрации почти одинаковы, сократительные вакуоли (у тех форм, у которых их наблюдали) опорожняются очень медленно. В этих случаях приходится предположить, что они не служат в первую очередь для осмо регуляции, а выполняют другие экскреторные функции.
Если у пресноводных простейших главная функция сократительной вакуоли состоит в удалении воды, то ее содержимое должно быть гипотоничным по отношению к остальной части клетки. Так и обстоит дело в действительности. В микроскопических пробах жидкости, взятых из сократительной вакуоли, осмотическая концентрация примерно в три раза ниже, чем в цитоплазме, но в несколько раз выше, чем во внешней среде (В. Sichmidt-Nielsen, Schrauger, 1963).

Сократительная вакуоль может удалять гипотоничную жидкость и служить для выведения воды. Но из-за того, что выводимая жидкость обладает более высокой осмотической концентрацией, чем внешняя среда, происходит непрерывная потеря растворенных веществ, и из этого следует, что амеба должна быть способна поглощать нужные ей вещества, вероятно, путем их активного переноса прямо из внешней среды.
Каким образом вакуоль может увеличиваться в объеме и в то же время содержать жидкость менее концентрированную, чем цитоплазма? Здесь возможны разные объяснения. Согласно одному из них, происходит активный транспорт воды в вакуоль. Но по ряду причин такая гипотеза мало правдоподобна. Другая возможность состоит в том, что вначале вакуоль содержит изо- тоничную жидкость, из которой осмотически активные вещества извлекаются, перед тем как жидкость будет выведена наружу.. Но такое предположение противоречит данным о том, что жидкость гипотонична и состав ее относительно постоянен на протяжении всего периода увеличения вакуоли.
Сведения о составе вакуолярной жидкости позволяют нам предположить третий механизм. Как видно из табл. 10.1, осмо-
Таблица ЮЛ
Концентрация веществ, растворенных в цитоплазме и в сократительной вакуоли пресноводной амебы. Средний объем вакуоли составлял около 0,2 нл. (Riddick, 1968)

тическая концентрация жидкости в вакуоли примерно вдвое ниже, чем в цитоплнзме, но более чем в 25 раз превышает концентрацию в наружной среде. Содержание натрия в жидкости вакуоли относительно велико - оно в 3 раза выше, чем в цитоплазме. В то же времи калия в вакуоли сравнительно мало, его концентрация здесь существенно ниже, чем в цитоплазме. В сумме натрий и калий в вакуолярной жидкости составляют около 25 ммоль/л, а если анионом является С’1_, то эти три иона обеспечивают почти всю осмотическую концентрацию жидкобти (51 мобмоль/л).

Наиболее вероятен следующий механизм образования сократительной вакуоли. Окружающие ее мелкие пузырьки вначале наполняются жидкостью, изотрничной по отношению к цитоплазме. Затем пузырьки путем активного транспорта накачивают в эту жидкость натрий и удаляют калий - таким образом, что удаление калия превышает накопление натрия. Мембрана пузырьков должна быть относительно непроницаема для воды, чтобы в пузырьке могла образоваться жидкость, гипотоничная по отношению к цитоплазме. Если затем эти гипотоничные пузырьки будут сливаться и опорожняться в сократительную вакуоль, как на это указывают электронные микрофотографии, то вакуоль будет вместилищем вырабатываемой пузырьками жидкости. Энергия для осмотической работы поставляется слоем митохондрий, смежным с пузырьками. Поскольку активность сократительной вакуоли приводит к непрерывной потере натрия, необходимо предположить,. что эта потеря возмещается активным захватом натрия поверхностью клетки (Riddick, 1968).

– удобный орган, где переваривается пища, расщепляется на простые соединения, которые после усваиваются организмом и используются на его нужды. Однако у крошечных – простейших и губок - желудка, разумеется, нет. Его роль играет фагосома, также называемая пищеварительной вакуолью – пузырек, мембраной. Он образуется вокруг твердой частицы или клетки, которую организм решил в пищу. Возникает пищеварительная вакуоль и вокруг заглоченной капли жидкости. Фагосома сливается с лизосомой, активизируются ферменты и начинается процесс пищеварения, который длится около часа. В ходе переваривания среда внутри фагосомы меняется с кислой на щелочную. После того как все питательные вещества извлечены, непереваренные остатки пищи выводятся из тела через порошицу или клеточную мембрану.

Переваривание твердой пищи называется фагоцитоз, жидкой – пиноцитоз.

Сократительная вакуоль

У многих и некоторых представителей губок имеется сократительная вакуоль. Основная функция этого органоида – регуляция осмотического давления. Через клеточную мембрану вода поступает в клетку губки или простейших, и периодически с равным промежутком времени жидкость выводится наружу с использованием сократительной вакуоли, которая, разрастаясь до определенного момента, затем начинает сокращаться с помощью имеющихся в ней эластичных пучков.

Существует гипотеза, что сократительная вакуоль принимает участие и в клеточном дыхании.

Вакуоль в растительной клетке

У растений также имеются вакуоли. В молодой клетке, как правило, их присутствует несколько штук небольшого размера, однако по мере роста клетки они увеличиваются и сливаются в одну крупную вакуоль, которая способна занимать 70-80% всей клетки. Растительная вакуоль содержит в себе клеточный сок, в состав которого входят минералы, сахара и органические вещества. Основная функция этого органоида – поддержание тургора. Также растительные вакуоли участвуют в водно-солевом обмене, расщеплении и усвоении питательных веществ и утилизации соединений, которые могут оказать вред клетке. Зеленые части растений, не покрытые древесиной, сохраняют свою форму благодаря прочной клеточной стенке и вакуолям, которые поддерживают форму клеток неизменной и не допускают деформации.

Кроме пищеварительных вакуолей в организме простейших и ряда других живых организмов существует сократительная (или пульсирующая) вакуоль. Подробно охарактеризуем ее, коснувшись описания органеллы, ее работы и функций.

Общее понятие вакуоли

В самом общем значении вакуоль - это полость или пузырек, ограниченный мембраной и заполненный водным содержимым. Образуется он из провакуолей, которые, в свой черед, берут начало от пузырьков клеточного комплекса Гольджи или из подобных расширений эндоплазматической сети. Их рассматривают как обособленный от цитоплазмы компонент клетки.

В природе два вида вакуолей - пищеварительные и сократительные.

У растений вакуоли выполняют важную функцию - это резервуары-хранители воды. Также они поддерживают тургорное давление (внутреннее давление, напряжение внешних стенок растения) и накапливают в себе ионы. И именно вакуоли отвечают за окраску почек, плодов, листьев, лепестков и корнеплодов.

В зрелых растительных клетках вакуоли особенно заметны - они могут занимать до половины всего объема. Не исключено, что эти органеллы могут слиться в одну гигантскую.

Растительные вакуоли содержат в себе клеточный сок. В его составе следующие вещества:

  • органические кислоты;
  • танины;
  • дисахариды, моносахариды;
  • углеводы;
  • неорганические соединения - хлориды, фосфаты, нитраты и т. д.

Характеристика сократительной разновидности

Сократительная вакуоль - это органоид, располагающийся в мембране клетки, ответственный за удаление излишков жидкости из цитоплазмы. Иными словами, это периодически опорожняющийся клеточный резервуар.

Работа комплекса, частью которого является сократительная вакуоль, поддерживает стабильный объем клетки. Если сократительная вакуоль выводит "отработанную" жидкость из клетки, то за приток воды в нее отвечает плазматическая мембрана. Вызывается он высоким цитоплазменным осмотическим давлением.

Другие определения термина

Сократительную вакуоль амебы, инфузории и иных организмов можно также определить следующими толкованиями:

  • временная или постоянная органелла, которая выводит из организма воду и растворенные в ней вещества, а также участвует в регуляции осмотического давления;
  • окруженная мембраной полость в цитоплазме, заполненная жидкостью;
  • вид вакуоли, характерный для некоторых протистов, который при сокращении выводит из организма последних воду и растворы, а при расширении поглощает влагу из окружающей среды, выступая в роли регулятора осмотического давления.

Для кого характерна пульсирующая вакуоль

Сократительная вакуоль характерна для следующих групп живых организмов:

  • пресноводные протисты (существа, не относящиеся к царствам животных, растений и грибов) - амебы (протей), инфузории (туфелька, трубач);
  • некоторые морские формы протистов;
  • пресноводные губки, относящиеся к семейству бадяговых.

Особенности функционирования органеллы

Жизненный цикл органоида несложен. Сократительная вакуоль инфузории, амебы и других протистов - пузырек, наполненный жидкостью. По мере заполнения водой и растворами он нарастает, а в конце цикла лопается - все его содержимое выплескивается наружу. Затем на его месте образуется новый пузырек-капелька, повторяющий участь предыдущего. Другой вариант - жидкость выходит из органеллы через специальный выделительный канал. В зависимости от разновидности животного, данный жизненный цикл-пульсация занимает от 1 до 5 минут.

Количество сократительных вакуолей у простейших варьируется в пределах 1-100. К органеллам влага поступает через пульсирующие канальцы (5-7 "артерий"). Работают данные вакуоли ритмично, попеременно расширяясь и сокращаясь (или же лопаясь), создавая видимость пульсации. Сокращение органоида происходит трудами окружающих его микрофиламентов и микротрубочек. Ритм обратно зависим от температуры и солености поступающей жидкости - чем больше в воде солей, тем медленнее будут пульсировать органеллы.

Источник, откуда в сократительную вакуоль поступает жидкость, - это спонгиом (ударение на последний слог). Так именуется система трубчатых или пузыревидных вакуолей организма. Выводится же жидкость с помощью диффузии через пелликулу. Надо сказать, что пульсирующие вакуоли выполняют громадную работу - например, у инфузории-туфельки (имеющей два таких органоида) через них за 40-50 минут выделяется объем жидкости, равный всей массе этого простейшего.

Функции сократительной вакуоли

Рассмотрим основные задачи данной органеллы:

  1. Поддержание должного осмотического давления внутри тела простейшего (осморегуляция) - это основная задача органоида. Так как концентрация разнообразных растворенных элементов внутри тела протиста или губки отличается от концентрации тех же веществ в окружающей его воде, то наблюдается разность осмотического давления внутри и вовне организма этого живого существа. Сократительная вакуоль устраняет дисбаланс, выполняя роль своеобразного насоса, откачивающего лишнюю жидкость из клетки. Доказательством наличия этой функции служит то, что более всего пульсирующие вакуоли развиты у пресноводных обитателей. У морских протистов они встречаются крайне редко, а также отличаются существенно замедленным циклом сокращений. Ведь, как известно, морская вода характеризуется более повышенным осмотическим давлением, чем пресная.
  2. Выделительная функция - второстепенная задача сократительной вакуоли. Вместе с водой она выводит из клетки и ряд продуктов обмена веществ организма. Напомним, что основной эта функция считается у наружной клеточной мембраны.
  3. Участие в процессе дыхания - водный раствор, поступающий в сократительную вакуоль, в какой-то мере обогащен растворенным кислородом, используемым простейшим, губкой.

Подводя итог, еще раз отметим, что пульсирующая (сократительная) вакуоль - это один из важных органоидов простейших, пресноводных и морских, а также ряда других живых существ. Она активно участвует в процессе их жизнедеятельности, выполняя осморегулирующую, выделительную и отчасти дыхательную функцию, проделывая гигантскую для размеров такого микроорганизма деятельность.

Представляет собой наиболее заметную часть согласованно работающего комплекса, в котором выступает в роли периодически опорожняющегося резервуара . Жидкость поступает в сократительную вакуоль из системы пузыревидных или трубчатых вакуолей, называемой спонгио́м . Работа комплекса позволяет поддерживать более или менее постоянный объём клетки, компенсируя постоянный приток воды через плазматическую мембрану , вызываемый высоким осмотическим давлением цитоплазмы.

Сократительные вакуоли распространены в первую очередь среди пресноводных протистов , однако отмечены также и у морских форм. Сходные структуры обнаружены в клетках пресноводных губок из семейства бадяговых .

Напишите отзыв о статье "Сократительная вакуоль"

Примечания

Источники

  • Hausmann K., Hülsmann N, Radek R. Protistology. - Berlin, Stuttgart, E. Schweizerbert’sche Verlagbuchhandlung, 2003.
  • Карпов С. А. Строение клетки протистов: Учебное пособие. - СПб.: ТЕССА, 2001. - 384 с. - ил.

Отрывок, характеризующий Сократительная вакуоль

– Ежели его обвиняют в том, что он распространял прокламации Наполеона, то ведь это не доказано, – сказал Пьер (не глядя на Растопчина), – и Верещагина…
– Nous y voila, [Так и есть,] – вдруг нахмурившись, перебивая Пьера, еще громче прежнего вскрикнул Растопчин. – Верещагин изменник и предатель, который получит заслуженную казнь, – сказал Растопчин с тем жаром злобы, с которым говорят люди при воспоминании об оскорблении. – Но я не призвал вас для того, чтобы обсуждать мои дела, а для того, чтобы дать вам совет или приказание, ежели вы этого хотите. Прошу вас прекратить сношения с такими господами, как Ключарев, и ехать отсюда. А я дурь выбью, в ком бы она ни была. – И, вероятно, спохватившись, что он как будто кричал на Безухова, который еще ни в чем не был виноват, он прибавил, дружески взяв за руку Пьера: – Nous sommes a la veille d"un desastre publique, et je n"ai pas le temps de dire des gentillesses a tous ceux qui ont affaire a moi. Голова иногда кругом идет! Eh! bien, mon cher, qu"est ce que vous faites, vous personnellement? [Мы накануне общего бедствия, и мне некогда быть любезным со всеми, с кем у меня есть дело. Итак, любезнейший, что вы предпринимаете, вы лично?]
– Mais rien, [Да ничего,] – отвечал Пьер, все не поднимая глаз и не изменяя выражения задумчивого лица.

1. Что представляют собой вакуоли? Как они образуются?

Вакуоли – крупные пузырьки или полости, ограниченные мембраной от гиалоплазмы и заполненные преимущественно водным содержимым. Вакуоли характерны для клеток растений, грибов и многих протистов, они образуются из пузыревидных расширений ЭПС или из пузырьков комплекса Гольджи.

2. Какие вещества содержатся в клеточном соке вакуолей растительных клеток?

Клеточный сок представляет собой водный раствор различных неорганических и органических веществ. Химический состав и концентрация клеточного сока очень изменчивы и зависят от вида растения, органа, ткани и возраста клетки.

В клеточном соке вакуолей растительных клеток могут содержаться:

● Запасные вещества, которые временно выведены из обмена веществ и могут использоваться клеткой снова. Например, соли, углеводы (сахароза, глюкоза, фруктоза), карбоновые кислоты (яблочная, лимонная, щавелевая, уксусная), аминокислоты, белки.

● Конечные продукты обмена, которые выводятся в вакуоль и таким путём изолируются. Например, танины (дубильные вещества), алкалоиды, некоторые пигменты, оксалат кальция.

● Пигменты, самыми распространёнными из которых являются антоцианы, придающие клеточному соку пурпурный, красный, синий или фиолетовый цвета. Близкие к антоцианам флавоноиды окрашивают клеточный сок в жёлтые и кремовые оттенки.

● Биологически активные вещества, например, фитогормоны (регуляторы роста растений), фитонциды (вещества, убивающие или подавляющие рост микроорганизмов), ферменты...

3. Какие функции выполняют вакуоли в растительных клетках?

Основные функции вакуолей в клетках растений:

● Хранение и изоляция различных веществ (запасных, биологически активных, конечных продуктов обмена и др.).

● Обеспечение окраски лепестков, плодов, почек, листьев, корнеплодов.

● Регуляция водного баланса клетки, поддержание тургорного давления.

4. У каких организмов имеются сократительные вакуоли? Какова их функция?

Сократительные (пульсирующие) вакуоли характерны для одноклеточных пресноводных протистов. В их клетки путём осмоса непрерывно поступает вода, избыток которой накапливается в сократительных вакуолях. Пульсирующие вакуоли периодически сокращаются благодаря взаимодействию расположенных вокруг них микротрубочек и микрофиламентов. Вода выводится наружу через специальную выделительную пору и клетка сохраняет более или менее постоянный объём.

Таким образом, сократительные вакуоли выполняют в клетках функцию осморегуляции – поддерживают на определённом уровне содержание воды и концентрацию солей.

5. Чем пищеварительные вакуоли отличаются от других вакуолей клетки?

Пищеварительными вакуолями называют вторичные лизосомы в клетках гетеротрофных протистов. Они образуются путём слияния лизосом с фагоцитарными пузырьками, содержащими пищевые частицы. После переваривания пищи и поступления питательных веществ в гиалоплазму, непереваренные остатки выводятся из клетки путём экзоцитоза, а мембрана пищеварительной вакуоли сливается с плазмалеммой.

Таким образом, в отличие от других вакуолей, пищеварительные вакуоли являются не постоянными, а временными органоидами, служат для переваривания пищевых частиц и образуются путём слияния лизосом с фагоцитарными пузырьками.

6. Амёбу и эритроцит поместили в дистиллированную воду. Что произойдёт с каждой клеткой? Почему?

В отличие от дистиллированной воды цитоплазма амёбы и эритроцита содержит определённое количество солей и других растворённых веществ. Поэтому вода будет путём осмоса поступать в клетку амёбы и в эритроцит. Объём эритроцита увеличится, а затем он лопнет. Клетка амёбы будет сохранять более или менее постоянный объём благодаря интенсивной работе сократительной вакуоли.

7. Докажите справедливость утверждения: «Одномембранные органоиды клетки взаимосвязаны и образуют единую мембранную систему, каждый компонент которой специализирован на выполнении определенных функций».

Одномембранными органоидами являются эндоплазматическая сеть, комплекс Гольджи, лизосомы и вакуоли. Каждый из этих органоидов представляет собой отсек (компартмент) или систему отсеков, обособленных от других компартментов и гиалоплазмы. В каждом органоиде содержатся или синтезируются определённые вещества, протекают специфические биохимические процессы.

Вместе с тем одномембранные органоиды взаимосвязаны транспортом веществ и способностью перехода мембран одних органоидов в мембраны других. Например, пузырьки, которые отделяются от ЭПС, сливаются с мембранами комплекса Гольджи. При этом вещества, синтезированные на мембранах ЭПС, поступают в комплекс Гольджи для накопления, модификации и последующего выведения из клетки. Лизосомы, содержащие пищеварительные ферменты, отшнуровываются от цистерн комплекса Гольджи. Вакуоли формируются из пузырьков комплекса Гольджи или пузыревидных расширений ЭПС. Всё это свидетельствует о специализации одномембранных органоидов по выполняемым функциям, а также об их тесной взаимосвязи.

8. У морских протистов сократительные вакуоли пульсируют очень редко или вообще отсутствуют. С чем это связано?

Основная функция сократительных вакуолей – выведение из клеток избытка воды. В морской воде содержание солей такое же, как в клетках протистов, либо выше. Поэтому вода не поступает в клетки морских протистов, а наоборот, может выходить из них путём осмоса (если содержание солей в клетке протиста ниже, чем в морской воде).