Кто доказал теорема ферма доказательство. Великая теорема ферма. Некоторые вариации и обобщения

Судя по популярности запроса "теорема Ферма - краткое доказательство", эта математическая проблема действительно многих интересует. Эта теорема была впервые высказана Пьером де Ферма в 1637 году на краю копии "Арифметики", где он утверждал, что у него было ее решение, оно было слишком велико для того, чтобы поместиться на краю.

Первое успешное доказательство было опубликовано в 1995 году - это было полное доказательство теоремы Ферма, осуществленное Эндрю Уайлсом. Оно было описано как «ошеломляющий прогресс», и привело Уайлса к получению премии Абеля в 2016 году. Будучи описанным относительно кратко, доказательство теоремы Ферма также доказало большую часть теоремы модульности и открыло новые подходы к многочисленным другим проблемам и эффективным методам подъема модульности. Эти свершения продвинули математику на 100 лет вперед. Доказательство малой теоремы Ферма сегодня не является чем-то из ряда вон выходящим.

Неразрешенная проблема стимулировала развитие алгебраической теории чисел в XIX веке и поиск доказательства теоремы модульности в XX веке. Это одна из самых заметных теорем в истории математики и до полного доказательства великой теоремы Ферма методом деления она была в Книге рекордов Гиннеса как «самая сложная математическая проблема», одной из особенностей которой является то, что она имеет наибольшее количество неудачных доказательств.

Историческая справка

Пифагорейское уравнение x 2 + y 2 = z 2 имеет бесконечное число положительных целочисленных решений для x, y и z. Эти решения известны как троицы Пифагора. Примерно в 1637 году Ферма написал на краю книги, что более общее уравнение a n + b n = c n не имеет решений в натуральных числах, если n является целым числом, большим чем 2. Хотя сам Ферма утверждал, что имеет решение своей задачи, он не оставил никаких подробностей о ее доказательстве. Элементарное доказательство теоремы Ферма, заявленное ее создателем, скорее было его хвастливой выдумкой. Книга великого французского математика была обнаружена спустя 30 лет после его смерти. Это уравнение, получившее название «Последняя теорема Ферма», в течение трех с половиной столетий оставалось нерешенным в математике.

Теорема в конечном итоге стала одной из самых заметных нерешенных проблем математики. Попытки доказать это вызвали существенное развитие теории чисел, и с течением времени последняя теорема Ферма получила известность как нерешенная проблема математики.

Краткая история доказательств

Если n = 4, что доказано самим Ферма, достаточно доказать теорему для индексов n, которые являются простыми числами. В течение следующих двух столетий (1637-1839) гипотеза была доказана только для простых чисел 3, 5 и 7, хотя Софи Жермен обновляла и доказывала подход, который имел отношение ко всему классу простых чисел. В середине 19 века Эрнст Куммер расширил это и доказал теорему для всех правильных простых чисел, в результате чего нерегулярные простые числа анализировались индивидуально. Основываясь на работе Куммера и, используя сложные компьютерные исследования, другие математики смогли расширить решение теоремы, имея цель охватить все основные показатели до четырех миллионов, но док-во для всех экспонентов по-прежнему было недоступным (это означает, что математики обычно считали решение теоремы невозможным, чрезвычайно сложным, или недостижимым с современными знаниями).

Работа Шимуры и Таниямы

В 1955 году японские математики Горо Шимура и Ютака Танияма подозревали, что существует связь между эллиптическими кривыми и модульными формами, двумя совершенно разными областями математики. Известная в то время, как гипотеза Танияма-Шимура-Вейля и (в конечном счете) как теорема модульности, она существовала сама по себе, без видимой связи с последней теоремой Ферма. Она сама по себе широко рассматривалась как важная математическая теорема, но при этом считалась (как и теорема Ферма) невозможной для доказательства. В то же время доказательство великой теоремы Ферма (методом деления и применения сложных математических формул) было осуществлено лишь полвека спустя.

В 1984 году Герхард Фрей заметил очевидную связь между этими двумя ранее не связанными и нерешенными проблемами. Полное подтверждение того, что две теоремы были тесно связаны, было опубликовано в 1986 году Кеном Рибетом, который основывался на частичном доказательстве Жана-Пьера Серра, который доказал все, кроме одной части, известной как «гипотеза эпсилона». Проще говоря, эти работы Фрея, Серра и Рибе показали, что если бы теорема о модульности могла быть доказана, по крайней мере, для полустабильного класса эллиптических кривых, то и доказательство последней теоремы Ферма также рано или поздно будет открыто. Любое решение, которое может противоречить последней теореме Ферма, может также использоваться, чтобы противоречить теореме модульности. Поэтому, если теорема о модульности оказалась истинной, то по определению не может существовать решение, противоречащее последней теореме Ферма, а значит она вскоре должна была быть доказана.

Хотя обе теоремы были сложными проблемами для математики, считающимися нерешаемыми, работа двух японцев стала первым предположением о том, как последняя теорема Ферма могла бы быть продолжена и доказана для всех чисел, а не только для некоторых. Важным для исследователей, выбравших тему исследования, был тот факт, что в отличие от последней теоремы Ферма, теорема модульности была основной активной областью исследований, для которой было разработано доказательство, а не только исторической странностью, поэтому время, затраченное на ее работу, могло быть оправдано с профессиональной точки зрения. Однако общее мнение заключалось в том, что решение гипотезы Таниямы-Шимуры оказалось нецелесообразным.

Великая теорема Ферма: доказательство Уайлса

Узнав, что Рибет доказал правильность теории Фрея, английский математик Эндрю Уайлс, с детства интересующийся последней теоремой Ферма и имеющий опыт работы с эллиптическими кривыми и смежными областями, решил попытаться доказать гипотезу Таниямы-Шимуры, как способ доказать последнюю теорему Ферма. В 1993 году, спустя шесть лет после объявления о своей цели, тайно работая над проблемой решения теоремы, Уайльсу удалось доказать смежную гипотезу, что, в свою очередь, помогло бы ему доказать последнюю теорему Ферма. Документ Уайлса был огромным по размеру и масштабу.

Недостаток был обнаружен в одной части его оригинальной статьи во время рецензирования и потребовал еще один год сотрудничества с Ричардом Тейлором, чтобы совместно решить теорему. В результате окончательное доказательство Уайлсом великой теоремы Ферма не заставило долго себя ждать. В 1995 году оно было опубликовано в куда меньшем масштабе, чем предыдущая математическая работа Уайлса, наглядно показывая, он не ошибся в своих предыдущих выводах о возможности доказательства теоремы. Достижение Уайлса было широко растиражировано в популярной прессе и популяризировано в книгах и телевизионных программах. Остальные части гипотезы Танияма-Шимура-Вейля, которые теперь были доказаны и известны как теорема о модульности, впоследствии были доказаны другими математиками, которые основывались на работе Уайлса в период между 1996 и 2001 годами. За свое достижение Уайлс был удостоен чести и получил многочисленные награды, в том числе, премию Абеля 2016 года.

Доказательство Уайлсом последней теоремы Ферма является частным случаем решения теоремы модульности для эллиптических кривых. Тем не менее, это самый известный случай столь масштабной математической операции. Вместе с решением теоремы Рибе, британский математик также получил доказательство последней теоремы Ферма. Последняя теорема Ферма и теорема о модульности почти повсеместно считались недоказуемыми современными математиками, но Эндрю Уайлс смог доказать всему научному миру, что даже ученые мужи способны заблуждаться.

Уайлс впервые объявил о своем открытии в среду 23 июня 1993 года на лекции в Кембридже под названием «Модульные формы, эллиптические кривые и представления Галуа». Однако в сентябре 1993 года было установлено, что его расчеты содержат ошибку. Год спустя, 19 сентября 1994 года, в том, что он назвал бы «самым важным моментом его трудовой жизни», Уайлс наткнулся на откровение, которое позволило ему исправить решение задачи до того уровня, когда оно сможет удовлетворить математическое сообщество.

Характеристика работы

Доказательство теоремы Ферма Эндрю Уайлсом использует многие методы из алгебраической геометрии и теории чисел и имеет много разветвлений в этих областях математики. Он также использует стандартные конструкции современной алгебраической геометрии, такие как категория схем и теория Ивасавы, а также другие методы XX века, которые не были доступны Пьеру Ферма.

Две статьи, содержащие доказательства, составляют 129 страниц, которые писались в течение семи лет. Джон Коутс описал это открытие как одно из величайших достижений теории чисел, а Джон Конвей назвал его главным математическим свершением 20 века. Уайлс, чтобы доказать последнюю теорему Ферма путем доказательства теоремы модульности для частного случая полустабильных эллиптических кривых, разработал действенные методы подъема модульности и открыл новые подходы к многочисленным другим проблемам. За решение последней теоремы Ферма он был посвящен в рыцари и получил другие награды. Когда стало известно, что Уайлс выиграл премию Абеля, Норвежская академия наук описала его достижение как «восхитительное и элементарное доказательство последней теоремы Ферма».

Как это было

Одним из людей, анализировавших первоначальную рукопись Уайлса с решением теоремы, был Ник Кац. В ходе своего обзора он задал британцу ряд уточняющих вопросов, которые заставили Уайлса признать, что его работа явно содержит пробел. В одной критической части доказательства была допущена ошибка, которая давала оценку для порядка конкретной группы: система Эйлера, используемая для расширения метода Колывагина и Флача, была неполной. Ошибка, однако, не сделала его работу бесполезной - каждая часть работы Уайлса была очень значительной и новаторской сама по себе, как и многие разработки и методы, которые он создал в ходе своей работы и которые затрагивали лишь одну часть рукописи. Тем не менее в этой первоначальной работе, опубликованной в 1993 году, действительно не было доказательства великой теоремы Ферма.

Уайлс провел почти год, пытаясь заново найти решение теоремы - сперва в одиночку, а затем в сотрудничестве со своим бывшим учеником Ричардом Тейлором, но все, казалось, было тщетным. К концу 1993 года распространились слухи, что при проверке доказательство Уайльса потерпело неудачу, но насколько серьезной была эта неудача, известно не было. Математики начали оказывать давление на Уайлса, чтобы он раскрыл детали своей работы, независимо от того, была она выполнена или нет, чтобы более широкое сообщество математиков могло исследовать и использовать все, чего ему удалось добиться. Вместо того, чтобы быстро исправить свою ошибку, Уайлс лишь обнаружил дополнительные сложные аспекты в доказательстве великой теоремы Ферма, и наконец-то осознал, насколько сложной она является.

Уайлс заявляет, что утром 19 сентября 1994 года он был на грани того, чтобы бросить все и сдаться, и почти смирился с тем, что потерпел неудачу. Он готов был опубликовать свою неоконченную работу, чтобы другие могли на ней основываться и найти, в чем он ошибся. Английский математик решил дать себе последний шанс и в последний раз проанализировал теорему, чтобы попытаться понять основные причины, по которым его подход не работал, как вдруг внезапно осознал, что подход Колывагина-Флака не будет работать, пока он не подключит к процессу доказательства еще и теорию Ивасавы, заставив ее работать.

6 октября Уайлс попросил трех коллег (включая Фалтинса) рассмотреть его новую работу, а 24 октября 1994 г. он представил две рукописи - «Модульные эллиптические кривые и последняя теорема Ферма» и «Теоретические свойства кольца некоторых Гекке-алгебр», вторую из которых Уайлс написал совместно с Тейлором и доказал, что были выполнены определенные условия, необходимые для оправдания исправленного шага в основной статье.

Эти две статьи были проверены и, наконец, опубликованы в качестве полнотекстового издания в журнале «Анналы математики» за май 1995 года. Новые расчеты Эндрю были широко проанализированы и научное сообщество в конце концов их признало. В этих работах была установлена теорема модульности для полустабильных эллиптических кривых - последний шаг к доказательству великой теоремы Ферма, спустя 358 лет после того, как она была создана.

История великой проблемы

Решение этой теоремы считалось самой большой проблемой в математике на протяжении многих столетий. В 1816 и в 1850 годах Французская академия наук предложила приз за общее доказательство великой теоремы Ферма. В 1857 году Академия присудила 3000 франков и золотую медаль Куммеру за исследования идеальных чисел, хотя он и не подавал заявку на приз. Еще одна премия была предложена ему в 1883 году Брюссельской академией.

Премия Вольфскеля

В 1908 году немецкий промышленник и математик-любитель Пауль Вольфскель завещал 100 000 золотых марок (большую сумму для того времени) Академии наук Геттингена, чтобы эти деньги стали призом за полное доказательство великой теоремы Ферма. 27 июня 1908 года Академия опубликовала девять правил награждения. Среди прочего, эти правила требовали опубликования доказательства в рецензируемом журнале. Приз должен был присуждаться лишь через два года после публикации. Срок конкурса должен был истечь 13 сентября 2007 - примерно через столетие после своего начала. 27 июня 1997 года Уайлс получил призовые деньги Вольфсхеля, а затем еще 50 000 долларов. В марте 2016 года он получил 600 000 евро от правительства Норвегии в рамках премии Абеля за «потрясающее доказательство последней теоремы Ферма с помощью гипотезы модульности для полустабильных эллиптических кривых, открывающей новую эру в теории чисел». Это был мировой триумф скромного англичанина.

До доказательства Уайлса теорема Ферма, как уже говорилось ранее, считалась абсолютно нерешаемой на протяжении целых столетий. Тысячи неверных доказательств в разное время были представлены комитету Вольфскеля, составив примерно 10 футов (3 метра) корреспонденции. Только в первый год существования премии (1907-1908) было подано 621 заявок с претензией на решение теоремы, хотя к 1970-м годам их количество уменьшилось примерно до 3-4 заявок в месяц. По мнению Ф. Шлихтинга, рецензента Вольфсхеля, большинство доказательств были основаны на элементарных методах, преподаваемых в школах, и часто представлялись «людьми с техническим образованием, но неудачной карьерой». По словам историка математики Говарда Эйвса, последняя теорема Ферма установила своеобразный рекорд - это теорема, набравшая наибольшее количество неверных доказательств.

Лавры Ферма достались японцам

Как уже говорилось ранее, примерно в 1955 году японские математики Горо Шимура и Ютака Танияма открыли возможную связь между двумя, по-видимому, совершенно разными отраслями математики - эллиптическими кривыми и модульными формами. Полученная в результате их исследований теорема модульности (в то время известная как гипотеза Таниямы-Шимуры) гласит, что каждая эллиптическая кривая является модулярной, что означает, что она может быть связана с уникальной модулярной формой.

Теория первоначально была отклонена как маловероятная или весьма спекулятивная, но была воспринята более серьезно, когда теоретик чисел Андре Вейль нашел доказательства, подтверждающие выводы японцев. В результате гипотеза часто называлась гипотезой Таниямы-Шимуры-Вейля. Она стала частью программы Langlands, представляющей собой список важных гипотез, требующих доказательства в будущем.

Даже после серьезного внимания, гипотеза была признана современными математиками как чрезвычайно трудная или, возможно, недоступная для доказательства. Теперь именно эта теорема ждет своего Эндрю Уайлса, который смог бы удивить весь мир ее решением.

Теорема Ферма: доказательство Перельмана

Не смотря на расхожий миф, российский математик Григорий Перельман, при всей своей гениальности, не имеет никакого отношения к теореме Ферма. Что, впрочем, никак не умаляет его многочисленных заслуг перед научным сообществом.

Пьер Ферма утверждал, что:

невозможно разложить куб на два куба или биквадрат на два биквадрата и вообще невозможно разложить какую-либо степень, большую чем два, на две степени с таким же показателем.

Как же подойти к доказательству этого утверждения Ферма?

(картинка для привлечения внимания)

Представим себе, что мы нашли или построили прямоугольный треугольник со следующими сторонами: катеты - , и гипотенузой где (p, q, k, n) - числа натуральные. Тогда по теореме Пифагора получим или . Таким образом, если мы найдем или построим такой треугольник, то мы опровергнем Ферма. Если же мы докажем, что такой треугольник не существует, то мы докажем теорему.

Так как в утверждении речь идёт о натуральных числах, то найдем, чему равняется разность квадратов двух нечетных натуральных чисел. Т.е. решим уравнение . Для этого построим прямоугольные треугольники, гипотенуза которых равна , а катет равен , где и (a > b) . Тогда по теореме Пифагора можно вычислить второй катет по формуле (1) , или (2) . Мы получили, что стороны этих треугольников равны и . Таким образом, мы можем перебрать все пары чисел a и b из натурального множества (назовем эти числа “генераторами” данного тождества) и получить все возможные треугольники с заданными свойствами , . Докажем необходимость данного решения. Перепишем (1) в виде . Так как Z и Y нечетные числа, значит можно написать (Z - Y) = 2b и (Z + Y)=2a. Решая их относительно Z и Y, получим Z = (a + b) и Y = (a - b). Тогда можно записать, что X = 4ab и, подставляя эти значения в (1) , получим .

Примечание
Чтобы избежать получения подобных треугольников, и, учитывая, что Z и Y - нечетные числа по условию, числа a и b должны быть взаимно простыми и разной четности. Далее будем считать, что четным является число a . Для того, чтобы упорядочить распределение прямоугольных треугольников в множестве натуральных чисел N , поступим следующим образом: из этого множества вычтем все числа, которые являются четными степенями натуральных чисел. Обозначим это множество , где n - натуральное число. Затем из оставшихся натуральных чисел вычтем все числа, которые являются нечетными (≥3) степенями натуральных чисел и обозначим множество этих чисел как . Оставшиеся натуральные числа составят множество, числа которого есть натуральные числа в первой степени. Обозначим это множество . Очевидно, соединение этих 3-х множеств есть множество натуральных чисел, или . Множество представим как ряд = {1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17,………}. Представим множества и в виде рядов. Тогда множество будет представлять собой матрицу, состоящую из бесконечного числа строк, каждая строка будет состоять из чисел ряда , возведенных в степень 2n , а n - есть номер строки. Так первая строка состоит из квадратов всех чисел ряда , вторая строка состоит из 4-х степеней этих чисел и т.д. Рассмотрим множество , которое будет представлять собой матрицу, состоящую из бесконечного числа строк, каждая строка которой будет состоять из чисел ряда , возведенных в степень 2n+1 . (n - есть номер строки). Так первая строка этой матрицы состоит из кубов чисел ряда , вторая строка состоит из чисел ряда в пятой степени и т.д. Рассмотрим множество . Т.к. , то примем тот же алгоритм построения треугольников (см. выше). Найдем «генераторы» тождества, Это будут числа , где , составим тождество: (3) , мы получили множество прямоугольных треугольников с целочисленными сторонами. Здесь - гипотенуза, - катет и - второй катет. Для опровержения утверждения Ферма нужно, чтобы стороны X, Y, Z искомого треугольника равнялись (4) . Где (p, q, k, n) - натуральные числа. По теореме Пифагора будем иметь или и утверждение Ферма будет опровергнуто. Из тождества видно, что . Рассмотрим последнее равенство , в этом равенстве «p » ни при каких значениях «a и b » не будет натуральным числом, если . Это означает, что в рассмотренном множестве треугольников не существует ни одного треугольника с искомыми сторонами (4) .
Теперь рассмотрим множество . Обозначим (2n+1) как «m », тогда во множестве получим прямоугольные треугольники, описываемые тождеством (6) . Если мы сможем построить прямоугольный треугольник X, Y, Z со сторонами (7) , где , то мы опровергнем утверждение Ферма, т.к. по теореме Пифагора и (p, q и k) - натуральные числа. Надо, чтобы . Рассматривая последнее равенство заметим, что «p » не может быть натуральным числом ни при каких значениях «a и b », , если . Значит и в этом множестве треугольников не существует ни одного треугольника с искомыми сторонами (7) .

Однако из вышесказанного видно, что все доказательство сводится к анализу числа , где «» при любых натуральных «a и b » не будет натуральным числом в степени «m/2 ». Или же (8) при тех же условиях не будет натуральным числом в степени «m». Из доказательства видно, что «генераторами» тождества (6) являются числа «» из ряда Но, анализируя (8) , можно подставить вместо «» число . Так как есть четное число, (см.Примечание), то - натуральное число. После подстановки его в (8) получим , то есть натуральные числа в степени «m». Совершив вышеуказанную подстановку в тождество (6) , и, обозначив через , получим следующее тождество: . Мы получили множество прямоугольных треугольников со сторонами . Если (k,q, p) - натуральные числа в нечетной степени, т.е. где r - любое нечетное число, а . Чтобы опровергнуть Ферма нужно, чтобы: В последнем равенстве при любых натуральных a и b , - числа натуральные, но первые два равенства невозможны, так как, если «m и r » любые нечетные числа, то - иррациональные числа, а числа в скобках - числа натуральные. Если же (k,q, p) - натуральные числа в четной степени, т.е. , то мы получим следующие равенства (5) . В данном варианте последнее равенство невозможно, т.к. извлекая корень m степени из обеих частей равенства получим , т.е. в скобках иррациональное число, а - натуральное. Это значит, что и в этом множестве не найдено «нужного» треугольника. А это значит, что для любых нечетных «m » утверждение Ферма верно, а значит, верно, для всех простых показателей «m ≥ 3».

Остается найти доказательство теоремы для четных показателей. Из (5) следует, что, если в каноническом разложении четного показателя степени есть нечетное простое число, то утверждение Ферма для этой степени верно. Очевидно, что этому условию отвечают все четные числа, кроме числа «4 » и чисел кратных четырем, т.е. 8, 16, 32, 64 … и т.д. В разложении этих чисел есть только простое число 2 . Поэтому вышеприведенное доказательство не дает ответа для этих степеней.

Значит остается доказать теорему для «n = 4 ». Можно предположить, что у Ферма было общее доказательство, но не полное. Может быть, поэтому он и не записал свое доказательство. И только через несколько лет, создав свой метод «бесконечного или неопределенного спуска», он доказал, что не существует прямоугольного треугольника с целочисленными сторонами, у которого площадь равнялась бы квадрату натурального числа. После этого доказательство теоремы для «n = 4 » не составило труда. Это доказательство Ферма записал. И теорема оказалась доказанной полностью.

Теги: теорема Ферма, краткое доказательство

Завистники утверждают, что французский математик Пьер Ферма вписал свое имя в историю всего одной фразой. На полях рукописи с формулировкой знаменитой теоремы в 1637 году он сделал пометку: "Я нашел удивительное решение, но здесь маловато места, чтобы его поместить". Тогда и началась удивительная математическая гонка, в которую наряду с выдающимися учеными включилась армия дилетантов.

В чем коварство задачи Ферма? На первый взгляд, она понятна даже школьнику.

В основе - известная каждому теорема Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: х 2 + у 2 = z 2 . Ферма утверждал: уравнение при любых степенях больше двух не имеет решения в целых числах.

Казалось бы, просто. Протяни руку, и вот ответ. Неудивительно, что академии разных стран, научные институты, даже редакции газет были завалены десятками тысяч доказательств. Их число беспрецедентно, уступает разве что проектам "вечных двигателей". Но если эти сумасшедшие идеи серьезная наука давно не рассматривает, то работы "фермистов" честно и заинтересованно изучает. И, увы, находит ошибки. Говорят, что за три с лишним века образовалось целое математическое кладбище решений теоремы.

Не зря говорят: близок локоть, а не укусишь. Проходили года, десятилетия, века, и задача Ферма представлялась все более удивительной и заманчивой. Вроде бы простенькая, она оказалась не по зубам стремительно наращивающему мускулы прогрессу. Человек уже расщепил атом, добрался до гена, ступил на Луну, а Ферма не давался, продолжая манить потомков ложными надеждами.

Однако попытки одолеть научную вершину не прошли даром. Первый шаг сделал великий Эйлер, доказав теорему для четвертой степени, затем для третьей. В конце XIX века немец Эрнст Куммер довел число степеней до ста. Наконец, вооружившись компьютерами, ученые увеличили эту цифру до 100 тысяч. Но Ферма-то говорил о любых степенях. В этом состояла вся загвоздка.

Конечно, мучились ученые над задачей не из-за спортивного интереса. Знаменитый математик Давид Гильберт говорил, что теорема - это пример, как вроде бы малозначительная проблема может оказать на науку огромное влияние. Работая над ней, ученые открыли совершенно новые математические горизонты, например, были заложены фундаменты теории чисел, алгебры, теории функций.

И все же Великая теорема была в 1995 году покорена. Ее решение представил американец из Принстонского университета Эндрю Уайлс, и оно официально признано научным сообществом. Более семи лет жизни отдал он, чтобы найти доказательство. По мнению ученых, эта выдающаяся работа свела воедино труды многих математиков, восстановив утраченные связи между разными ее разделами.

Итак, вершина взята, и наука ответ получила, - сказал корреспонденту "РГ" ученый секретарь Отделения математики Российской академии наук, доктор технических наук Юрий Вишняков. - Теорема доказана, пусть и не простейшим способом, на чем настаивал сам Ферма. А теперь желающие могут печатать свои варианты.

Однако семейство "фермистов" вовсе не собирается признавать доказательство Уайлса. Нет, они не опровергают решение американца, ведь оно очень сложное, а потому понятно лишь узкому кругу специалистов. Но не проходит недели, чтобы в Интернете ни появилось новое откровение очередного энтузиаста, "наконец-то поставившего точку в многолетней эпопее".

Кстати, буквально вчера в редакцию "РГ" позвонил один из старейших в нашей стране "фермистов" Всеволод Ярош: "А вы знаете, что теорему Ферма я доказал еще до Уайлса. Более того, потом нашел у него ошибку, о чем написал выдающемуся нашему математику академику Арнольду с просьбой напечатать об этом в научном журнале. Теперь жду ответа. Переписываюсь по этому поводу и с французской академией наук".

И вот только что, как сообщается в ряде СМИ, с "легким изяществом раскрыл великую тайну математики", еще один энтузиаст - бывший генеральный конструктор ПО "Полет" из Омска, доктор технических наук Александр Ильин. Решение оказалось настолько простым и коротким, что поместилось на маленьком участке газетной площади одного из центральных изданий.

Редакция "РГ" обратилась в ведущий в стране Институт математики им. Стеклова РАН с просьбой оценить это решение. Ученые были категоричны: нельзя комментировать газетную публикацию. Но после долгих уговоров и учитывая повышенный интерес к знаменитой задаче, согласились. По их словам, в опубликованном очередном доказательстве допущено несколько принципиальных ошибок. Кстати, их вполне мог бы заметить даже студент математического факультета.

И все же редакция хотела получить информацию из первых рук. Тем более что вчера в академии авиации и воздухоплавания Ильин должен был представить свое доказательство. Однако оказалось, что о такой академии мало кто знает даже среди специалистов. А когда все-таки с величайшим трудом удалось разыскать телефон ученого секретаря этой организации, то, как выяснилось, он даже не подозревал, что именно у них должно состояться столь историческое событие. Словом, корреспонденту "РГ" стать свидетелем мировой сенсации так и не удалось.

Много лет назад я получил письмо из Ташкента от Валерия Муратова, судя по почерку, человека юношеского возраста, проживавшего тогда на улице Коммунистической в доме № 31. Парень был настроен решительно: "Сразу к делу. Сколько вы мне заплатите за доказательство теоремы Ферма? Меня устраивает не менее 500 рублей. В другое время я бы доказал вам бесплатно, но сейчас мне нужны деньги..."

Удивительный парадокс: мало кто знает, кто такой Ферма, когда он жил и что сделал. Еще меньше людей могут даже в самых общих словах описать его великую теорему. Но всем известно, что есть какая-то теорема Ферма, над доказательством которой математики всего мира бьются уже более 300 лет, а доказать не могут!

Людей честолюбивых много, и само сознание того, что есть нечто, чего другие сделать не могут, еще больше подстегивает их честолюбие. Поэтому в академии, научные институты и даже редакции газет всего мира приходили и приходят тысячи (!) доказательств Великой теоремы, — невиданный и никем никогда не побитый рекорд псевдонаучной самодеятельности. Существует даже термин: "ферматисты", т. е. люди, одержимые желанием доказать Великую теорему, которые совершенно измучили математиков-профессионалов требованиями оценить их труды. Известный немецкий математик Эдмунд Ландау даже заготовил стандартку, по которой и отвечал: "В вашем доказательстве теоремы Ферма ошибка на странице... ", а номер страницы проставляли его аспиранты. И вот летом 1994 года газеты всего мира сообщают нечто совершенно сенсационное: Великая теорема доказана!

Итак, кто такой Ферма, в чем суть проблемы и решена ли она действительно? Пьер Ферма родился в 1601 году в семье кожевника, человека состоятельного и уважаемого, — он занимал должность второго консула в родном городке Бомоне, — это что-то вроде помощника мэра. Пьер учился сначала у монахов-францисканцев, потом на юридическом факультете в Тулузе, где затем занимался адвокатурой. Однако круг интересов Ферма выходил далеко за рамки юриспруденции. Особенно занимала его классическая филология, известны его комментарии к текстам древних авторов. И вторая страсть — математика.

В XVII веке, как, впрочем, и долгие годы спустя, не существовало такой профессии: математик. Поэтому все великие математики того времени были математиками "по совместительству": Рене Декарт служил в армии, Франсуа Виет был юристом, Франческо Кавальери — монахом. Научных журналов тогда не было, и классик науки Пьер Ферма при жизни не опубликовал ни одной научной работы. Существовал достаточно узкий круг "любителей", которые решали разные для них интересные задачи и писали по этому поводу письма друг другу, иногда спорили (как Ферма с Декартом), но, в основном, оставались единомышленниками. Они и стали основателями новой математики, сеятелями гениальных зерен, из которых пошло в рост, набирая силу и ветвясь, могучее древо современных математических знаний.

Так вот, таким же "любителем" был и Ферма. В Тулузе, где он прожил 34 года, все знали его, прежде всего, как советника следственной палаты и опытнейшего юриста. В 30 лет он женился, имел трех сыновей и двух дочерей, иногда отлучался в служебные командировки и во время одной из них скоропостижно скончался в возрасте 63 лет. Все! Жизнь этого человека, современника "Трех мушкетеров", удивительна бедна событиями и лишена приключений. Приключения достались на долю его Великой теоремы. Не будем говорить обо всем математическом наследии Ферма, да и трудно рассказать о нем популярно. Поверьте на слово: наследие это велико и разнообразно. Утверждение, что Великая теорема — вершина его творчества, весьма спорно. Просто судьба Великой теоремы удивительно интересна, и огромный мир людей, непосвященных в таинства математики, всегда интересовала не сама теорема, а все, что вокруг нее...

Корни всей этой истории надо искать в античности, столь любимой Ферма. Примерно в III веке жил в Александрии греческий математик Диофант, — ученый своеобразно, нестандартно мыслящий и нестандартно мысли свои излагающий. Из 13 томов его "Арифметики" до нас дошло только 6. Как раз, когда Ферма исполнилось 20 лет, вышел новый перевод его сочинений. Ферма очень увлекался Диофантом, и эти сочинения были его настольной книгой. На ее полях Ферма и записал свою Великую теорему, которая в самом простом современном виде выглядит так: уравнение Xn + Yn = Zn не имеет решения в целых числах при п — больше 2. (При п = 2 решение очевидно: З2 + 42 = 52). Там же, на полях Диофантова тома, Ферма добавляет: "Я открыл это поистине чудесное доказательство, но эти поля для него слишком узки".

На первый взгляд, вещица простенькая, но когда другие математики начали доказывать эту "простенькую" теорему, ни у кого ничего не получалось лет сто. Наконец, великий Леонард Эйлер доказал ее для п = 4, потом через 20 (!) лет — для п = 3. И снова работа застопорилась на многие годы. Следующая победа принадлежит немцу Петеру Дирихле (1805—1859) и французу Андриену Лежандру (1752—1833), — они признали, что Ферма прав при п = 5. Потом француз Габриель Ламе (1795—1870) сделал то же для п = 7. Наконец, в середине прошлого века немец Эрнст Куммер (1810—1893) доказал Великую теорему для всех значений п меньше или равных 100. Причем доказал методами, которые не могли быть известны Ферма, чем еще более усилил флер таинственности вокруг Великой теоремы.

Таким образом, получалось, что доказывали теорему Ферма "по кусочкам", а "целиком" ни у кого не получалось. Новые попытки доказательств приводили лишь к количественному увеличению значений п. Все понимали, что, затратив бездну труда, можно доказать Великую теорему для сколь угодно большого числа п, но Ферма-то говорил о любом его значении больше 2! Вот в этой-то разнице между "сколько угодно большим" и "любым" и сосредотачивался весь смысл проблемы.

Однако надо отметить, что попытки доказать теорему Фермга не были просто некоей математической игрой, рсшсением сложного ребуса. В процессе этих доказательств открывались новые математичес кие горизонты, возникали и решались задачи, становившиеся новыми ветгвями математического древа. Великий немецкий математик Давид Гильберт (1862—1943) приводил Великую теорему, как пример того, "какое побуждающее влияние на науку может оказать специальная и на первыш взгляд малозначительная проблема". Тот же Куммер, работая над теоремой Ферма, сам доказал теоремы, которые легли в фундамент теории чисел, алгебры и теории функций. Так что доказательство Великой теорсемы — не спорт, а настоящая наука.

Время шло, и на помощь профеессиональным "фсрматнтстам" пришла электроника. Электронные мозги но)вых методов выдумать не могли, но зато брали скоростыю. Примерно к началу 80-х годов теорема Ферма с помощью ЭВМ была доказана для n меньше или равной 5500. Постепенно эта цифра выросла до 100 000, но все понимали, что подобное "накопление" — дело чисстой техники, ничего не дающее ни уму ни сердцу. Крепость Великой теоремы "в лоб" взять не смогли щ начали искать обходные маневрья.

В середине 80-х годов молодой немеадкий математик Г. Филытингс доказал так называемую "гипотезу Морделла", которая, кстати, тоже "не давалась в руки" никому из математиков 61 год. Возникла надежда, что теперь, так сказать, "атакой с фланга", может быть решена и теорема Ферма. Однако тогда ничего не получилось. В 1986 году немецкий математик Герхард Фрей в Эссеще предложил новый метод доказательства. Не берусь объяснить его строго, но не на маатематическом, а на общечеловеческом языке он звучит примерно так: если мы убедимся, что доказательство некой другой теоремы есть косвенное, неким образом трансформированное доказательство теоремы Ферма, то, следовательно, мы докажем Великую теорему. Через год американец Кеннет Рибет из Беркли показал, что Фрей прав и, действительно, можно одно доказательство свести к другому. По этому пути пошли многие математики в разных странах мира. У нас очень много для доказательства Великой теоремы сделал Виктор Александрович Колыванов. Трехсотлетние стены неприступной крепости зашатались. Математики поняли, что долго она не устоит.

Летом 1993 года в старинном Кембридже, в Институте математических наук имени Исаака Ньютона собрались 75 виднейших математиков мира, чтобы обсудить свои проблемы. Среди них был и американский профессор Эндрю Уайлс из Принстонскош университета, — крупный специалист в теории чисел. Все знали, что он уже много лет занимается Великой теоремой. Уайлс сделал три доклада и на последнем — 23 июня 1993 года — в самом конце, отвернувшись от доски, сказал с улыбкой:

— Пожалуй, я продолжать не буду...

Вначале наступила мертвая тишина, затем — обвал аплодисментов. Сидящие в зале были достаточно квалифицированы, чтобы понять: Великая теорема Ферма доказана! Во всяком случае, никто из присутствующих не обнаружил в приведенном доказательстве каких-либо погрешностей. Заместитель директора Ньютоновского института Питер Годдард заявил журналистам:

— Большинство экспертов не думали, что узнают разгадку до конца своей жизни. Это одно из крупнейших достижений математики нашего столетия...

Прошло несколько месяцев, никаких замечаний и опровержений не последовало. Правда, Уайлс доказательства своего не опубликовал, а лишь разослал, так называемые, припринты своей работы очень узкому кругу своих коллег, что, естественно, мешает математикам комментировать эту научную сенсацию, и я понимаю академика Людвига Дмитриевича Фаддеева, который сказал:

— Смогу утверждать, что сенсация произошла, когда увижу доказательство своими глазами.

Фаддеев считает, что вероятность победы Уайлса весьма велика.

— Мой отец, известный специалист в теории чисел, был, например, уверен, что теорема будет доказана, но не элементарными средствами, — добавил он.

Скептически отнесся к новости другой наш академик, — Виктор Павлович Маслов, который считает, что доказательство Великой теоремы вообще не является актуальной математической проблемой. По своим научным интересам Маслов — председатель совета по прикладной математике — далек от "ферматистов", и, когда он говорит о том, что полное решение Великой теоремы представляет лишь спортивный интерес, его понять можно. Однако смею заметить, что понятие актуальности в любой науке есть величина переменная. 90 лет назад Резерфорду, наверное, тоже говорили: "Ну, хорошо, ну теория радиоактивного распада... И что? Какой от нее прок?.."

Работа над доказательством Великой теоремы уже дала очень много математике, и можно надеется, что даст еще.

— То, что сделал Уайлс, продвинет математиков в другие области, — сказал Питер Годдард. — Скорее, это не закрывает одно из направлений мысли, а ставит новые вопросы, которые потребуют ответа...

Профессор МГУ Михаил Ильич Зеликин так объяснил мне сегодняшнюю ситуацию:

Никто не видит в работе Уайлса каких-то ошибок. Но чтобы работа эта стала научным фактом, необходимо, чтобы несколько авторитетных математиков независимо друг от друга повторили это доказательство и подтвердили его правильность. Это непременное условие осознания работы Уайлса математической общественностью...

Как много времени потребуется для этого?

Этот вопрос я задал одному из ведущих наших специалистов в области теории чисел, доктору физико-математических наук Алексею Николаевичу Паршину.

— У Эндрю Уайлса еще много времени впереди...

Дело в том, что 13 сентября 1907 года немецкий математик П. Вольфскель, который, в отличие от подавляющего большинства математиков, был человек богатый, завещал тому, кто в ближайшие 100 лет докажет Великую теорему, 100 тысяч марок. В начале века проценты с завещанной суммы шли в казну знаменитого Гетгангентского университета. На эти деньги приглашали ведущих математиков для чтения лекций, вели научную работу. В то время председателем комиссии по присуждению премии был уже упоминавшийся мною Давид Гильберт. Выплачивать премию ему очень не хотелось.

— К счастью, — говорил великий математик, — кажется, у нас нет математика, кроме меня, которому была бы под силу эта задача, я же никогда не решусь зарезать курицу, которая несет нам золотые яйца-

До срока — 2007 года, обозначенного Вольфскелем, осталось немного лет, и, мне кажется, над "курицей Гильберта" нависла серьезная опасность. Но не в премии, собственно, дело. Дело в пытливости мысли и человеческом упорстве. Триста с лишним лет бились, а все же доказали!

И еще. Для меня самое интересное во всей этой истории: как доказал свою Великую теорему сам Ферма? Ведь все сегодняшние математические ухищрения были ему неведомы. И доказал ли он ее вообще? Ведь есть версия, что доказал вроде бы, но сам нашел ошибку, а потому и доказательства другим математикам рассылать не стал, а зачеркнуть запись на полях Диофантова тома забыл. Поэтому, мне кажется, что доказательство Великой теоремы, очевидно, состоялось, но тайна теоремы Ферма осталась, и вряд ли мы когда-нибудь раскроем ее...

Может быть, Ферма и ошибся тогда, но он не ошибался, когда писал: "Быть может, потомство будет признательно мне за то, что я показал ему, что древние не все знали, и это может проникнуть в сознание тех, которые придут после меня для передачи факела сыновьям..."

В 17 веке во Франции жил юрист и по совместительству математик Пьер Ферма , который отдавал своему увлечению долгие часы досуга. Как-то зимним вечером, сидя у камина, он выдвинул одно прелюбопытнейшее утверждение из области теории чисел – именно оно в дальнейшем было названо Великой или Большой теоремой Ферма. Возможно, ажиотаж не был бы настолько весомым в математических кругах, не случись одно событие. Математик часто проводил вечера за штудированием любимой книги Диофанта Александрийского «Арифметика» (3 век), при этом записывал на ее полях важные мысли – этот раритет бережно сохранил для потомков его сын. Так вот, на широких полях этой книги рукой Ферма была оставлена такая надпись: «У меня есть довольно поразительное доказательство, но оно слишком большое, чтобы его можно было поместить на полях». Именно эта запись стала причиной ошеломительного ажиотажа вокруг теоремы. У математиков не вызывало сомнений, что великий ученый заявил о том, что доказал собственную теорему. Вы наверняка задаетесь вопросом: «Неужели он на самом деле ее доказал, или это была банальная ложь, а может есть другие версии, зачем эта запись, не дававшая умиротворенно спать математикам последующих поколений, оказалась на полях книги?».

Суть Великой теоремы

Довольно известная теорема Ферма проста по своей сути и заключается в том, что при условии, когда n больше двойки, положительного числа, уравнение Х n +Y n =Z n не будет иметь решений нулевого типа в рамках натуральных чисел. В этой с виду простой формуле была замаскирована невероятная сложность, и на ее доказательством бились целых три века. Есть одна странность – теорема опоздала с рождением на свет, так как ее частный случай при n=2 появился еще 2200 лет тому назад – это не менее знаменитая теорема Пифагора.

Необходимо отметить, что история, касающаяся всем известной теоремы Ферма, является очень поучительной и занимательной, причем не только для ученых-математиков. Что самое интересное, так это то, что наука являлась для ученого не работой, а простым хобби, которое в свою очередь, доставляла Фермеру огромное удовольствие. Также он постоянно поддерживал связь с ученым-математиком, а по совместительству, еще и другом, делился идеями, но как ни странно, собственные работы опубликовывать в свет не стремился.

Труды математика Фермера

Что касается самих работ Фермера, то их обнаружили именно в форме обычных писем. Местами не было целых страниц, и сохранились лишь обрывки переписок. Более интересен тот факт, что на протяжении трех веков ученые искали ту теорему, которая была обнаружена в трудах Фермера.

Но кто бы не решался ее доказать, попытки сводились к «нулю». Известный математик Декарт и вовсе обвинял ученого в хвастовстве, но все это сводилось лишь к самой обычной зависти. Помимо создания, Фермер еще и доказал собственную теорему. Правда решение было найдено для того случая, где n=4. Что касается случая для n=3, то его выявил математик Эйлер.

Как пытались доказать теорему Фермера

В самом начале 19 века данная теорема продолжила свое существование. Математики нашли много доказательств теорем, которые ограничивались натуральными числами в пределах двухсот.

А в 1909 году была поставлена на кон довольно крупная сумма, равная ста тысячам маркам немецкого происхождения – и все это только лишь за то, чтобы решить вопрос, связанный с этой теоремой. Сам фонд призовой категории был оставлен богатым любителем математики Паулем Вольфскелем, родом из Германии, кстати, именно он хотел «наложить на себя руки», но благодаря такой вовлеченности в теорему Фермера, захотел жить. Возникший ажиотаж породил тонны «доказательств», заполонивших германские университеты, а в кругу математиков родилось прозвище «фермист», которым полупрезрительно называли всякого амбициозного выскочку, не сумевшего привести явные доказательства.

Гипотеза японского математика Ютаки Танияма

Сдвигов в истории Великой теоремы до середины 20 столетия так и не наблюдалось, но одно занимательное событие все-таки произошло. В 1955 году математик из Японии Ютака Танияма, которому было 28 лет, явил миру утверждение из абсолютно другой математической области – его гипотеза в отличие от Ферма опередило свое время. Она гласит: «Каждой эллиптической кривой соответствует определенная модулярная форма». Вроде бы абсурд для каждого математика, подобно, что дерево состоит из определенного металла! Парадоксальную гипотезу, как и большинство прочих ошеломляющих и гениальных открытий, не приняли, так как еще попросту не доросли до нее. И Ютака Танияма покончил жизнь самоубийством, спустя три года – поступок необъяснимый, но, вероятно, честь для истинного гения-самурая была превыше всего.

Целое десятилетие о гипотезе не вспоминали, но в семидесятые она поднялась на пик популярности – ее подтверждали все, кто мог в ней разобраться, но, как и теорема Ферма, она оставалась недоказанной.

Как связаны гипотеза Таниямы и теорема Ферма

Спустя 15 лет в математике произошло ключевое событие, и оно объединило гипотезу прославленного японца и теорему Ферма. Герхард Грей заявил, что когда будет доказана гипотеза Танияма, тогда и найдутся доказательства теоремы Ферма. То есть последняя – это следствие гипотезы Танияма, и уже через полтора года профессором университета в Калифорнии Кеннетом Рибетом теорема Ферма была доказана.

Шло время, регресс заменялся прогрессом, а наука стремительно продвигалась вперед, особенно в области компьютерных технологий. Таким образом, значение n стало все больше повышаться.

В самом конце 20 века самые мощные компьютеры находились в лабораториях военного направления, было осуществлено программирование на вывод решения задачи всем известного Ферма. Как следствие всем попыткам было выявлено то, что данная теорема правильная для многих значений n, x, y. Но, к сожалению, окончательным доказательством это не стало, так как не было конкретики как таковой.

Джон Уайлс доказал великую Теорему Ферма

И вот, наконец, только в конце 1994 года, математик из Англии, Джон Уайлс нашел и продемонстрировал точное доказательство спорной теоремы Фермера. Тогда, после множества доработок, дискуссии по этому поводу пришли к своему логическому завершению.

Опровержение было размещено на более ста страницах одного журнала! Причем теорема была доказана на более современном аппарате высшей математики. И что удивительно, на тот момент, когда Фермер писал свой труд, такого аппарата в природе не существовало. Словом, человек был признан гением в этой области, с чем поспорить не мог никто. Несмотря на все что было, на сегодняшний день можно быть уверенными в том, что представленная теорема великого ученого Фермера оправдана и доказана, и споры и на эту тему не заведет ни одни математик со здравым смыслом, с чем согласны даже самые заядлые скептики всего человечества.

Полное имя человека, в честь которого была названа представленная теорема, звали Пьер де Фермер. Он внес свой вклад в самые разнообразные области математики. Но, к сожалению, большинство его трудов были опубликованы только после его смерти.