Уравнения на логику. Решение логических уравнений и систем логических уравнений. Логические элементы ЭВМ. Построение функциональных схем

Пусть – логическая функция от n переменных. Логическое уравнение имеет вид:

Константа С имеет значение 1 или 0.

Логическое уравнение может иметь от 0 до различных решений. Если С равно 1, то решениями являются все те наборы переменных из таблицы истинности, на которых функция F принимает значение истина (1). Оставшиеся наборы являются решениями уравнения при C, равном нулю. Можно всегда рассматривать только уравнения вида:

Действительно, пусть задано уравнение:

В этом случае можно перейти к эквивалентному уравнению:

Рассмотрим систему из k логических уравнений:

Решением системы является набор переменных, на котором выполняются все уравнения системы. В терминах логических функций для получения решения системы логических уравнений следует найти набор, на котором истинна логическая функция Ф, представляющая конъюнкцию исходных функций :

Если число переменных невелико, например, менее 5, то нетрудно построить таблицу истинности для функции , что позволяет сказать, сколько решений имеет система и каковы наборы, дающие решения.

В некоторых задачах ЕГЭ по нахождению решений системы логических уравнений число переменных доходит до значения 10. Тогда построить таблицу истинности становится практически неразрешимой задачей. Для решения задачи требуется другой подход. Для произвольной системы уравнений не существует общего способа, отличного от перебора, позволяющего решать такие задачи.

В предлагаемых на экзамене задачах решение обычно основано на учете специфики системы уравнений. Повторяю, кроме перебора всех вариантов набора переменных, общего способа решения задачи нет. Решение нужно строить исходя из специфики системы. Часто полезно провести предварительное упрощение системы уравнений, используя известные законы логики. Другой полезный прием решения этой задачи состоит в следующем. Нам интересны не все наборы, а только те, на которых функция имеет значение 1. Вместо построения полной таблицы истинности будем строить ее аналог - бинарное дерево решений. Каждая ветвь этого дерева соответствует одному решению и задает набор, на котором функция имеет значение 1. Число ветвей в дереве решений совпадает с числом решений системы уравнений.

Что такое бинарное дерево решений и как оно строится, поясню на примерах нескольких задач.

Задача 18

Сколько существует различных наборов значений логических переменных x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, которые удовлетворяют системе из двух уравнений?

Ответ: Система имеет 36 различных решений.

Решение: Система уравнений включает два уравнения. Найдем число решений для первого уравнения, зависящего от 5 переменных – . Первое уравнение можно в свою очередь рассматривать как систему из 5 уравнений. Как было показано, система уравнений фактически представляет конъюнкцию логических функций. Справедливо и обратное утверждение, - конъюнкцию условий можно рассматривать как систему уравнений.

Построим дерево решений для импликации () - первого члена конъюнкции, который можно рассматривать как первое уравнение. Вот как выглядит графическое изображение этого дерева


Дерево состоит из двух уровней по числу переменных уравнения. Первый уровень описывает первую переменную . Две ветви этого уровня отражают возможные значения этой переменной – 1 и 0. На втором уровне ветви дерева отражают только те возможные значения переменной , для которых уравнение принимает значение истина. Поскольку уравнение задает импликацию, то ветвь, на которой имеет значение 1, требует, чтобы на этой ветви имело значение 1. Ветвь, на которой имеет значение 0, порождает две ветви со значениями , равными 0 и 1. Построенное дерево задает три решения, на которых импликация принимает значение 1. На каждой ветви выписан соответствующий набор значений переменных, дающий решение уравнения.

Вот эти наборы: {(1, 1), (0, 1), (0, 0)}

Продолжим построение дерева решений, добавляя следующее уравнение, следующую импликацию . Специфика нашей системы уравнений в том, что каждое новое уравнение системы использует одну переменную из предыдущего уравнения, добавляя одну новую переменную. Поскольку переменная уже имеет значения на дереве, то на всех ветвях, где переменная имеет значение 1, переменная также будет иметь значение 1. Для таких ветвей построение дерева продолжается на следующий уровень, но новые ветви не появляются. Единственная ветвь, где переменная имеет значение 0, даст разветвление на две ветви, где переменная получит значения 0 и 1. Таким образом, каждое добавление нового уравнения, учитывая его специфику, добавляет одно решение. Исходное первое уравнение:

имеет 6 решений. Вот как выглядит полное дерево решений для этого уравнения:


Второе уравнение нашей системы аналогично первому:

Разница лишь в том, что в уравнении используются переменные Y. Это уравнение также имеет 6 решений. Поскольку каждое решение для переменных может быть скомбинировано с каждым решением для переменных , то общее число решений равно 36.

Заметьте, построенное дерево решений дает не только число решений (по числу ветвей), но и сами решения, выписанные на каждой ветви дерева.

Задача 19

Сколько существует различных наборов значений логических переменных x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, которые удовлетворяют всем перечисленным ниже условиям?

Эта задача является модификацией предыдущей задачи. Разница в том, что добавляется еще одно уравнение, связывающее переменные X и Y.

Из уравнения следует, что когда имеет значение 1(одно такое решение существует), то и имеет значение 1. Таким образом, существует один набор, на котором и имеют значения 1. При , равном 0, может иметь любое значение, как 0, так и 1. Поэтому каждому набору с , равном 0, а таких наборов 5, соответствует все 6 наборов с переменными Y. Следовательно, общее число решений равно 31.

Задача 20

Решение: Вспоминания основные эквивалентности, запишем наше уравнение в виде:

Циклическая цепочка импликаций означает тождественность переменных, так что наше уравнение эквивалентно уравнению:

Это уравнение имеет два решения, когда все равны либо 1, либо 0.

Задача 21

Сколько решений имеет уравнение:

Решение: Так же, как и в задаче 20, от циклических импликаций перейдем к тождествам, переписав уравнение в виде:

Построим дерево решений для этого уравнения:


Задача 22

Сколько решений имеет следующая система уравнений?

142. Найдите наибольшее однобайтное двоичное решение уравнения
.

143. Найдите X , если .

144. Последовательность высказываний определена следующим рекуррентным соотношением: . Высказывания заданы, причем и истинны, ложно. Истинно или ложно высказывание ? Как выражается через ?

145. Сколько различных решений имеет логическое уравнение
?

146. Сколько различных решений имеет логическое уравнение
?

147. Сколько различных решений имеет логическое уравнение:
.

148. Сколько различных решений имеет логическое уравнение: .

149. Сколько различных решений имеет логическое уравнение: .

150. Сколько различных решений имеет логическое уравнение: .

151. Сколько различных решений имеет логическое уравнение:
.

152. Решить уравнение:

153. Найдите все различные решения уравнения: .

Найти корни логического уравнения:

Найти корни систем логических уравнений:

Найдите количество решений следующих систем логических уравнений:

x 3
l 2
l 3
k
M
N
Электрическая цепь между точками M и N составлена по схеме, изображенной на рисунке. Рассмотрим следующие четыре высказывания:
A = {Элемент цепи k вышел из строя},
B i = {Элемент цепи l i вышел из строя}. Замкнута ли цепь, если:
а) высказывание истинно,
б) высказывание истинно?
Является ли одно из этих высказываний отрицанием другого?

183. (Экономная задача) Построить схему электрической цепи для подъезда трехэтажного здания, чтобы выключателем на любом этаже можно было бы включить и выключить свет во всем подъезде.

184. (Аварийный станок) На участке цеха стоят три станка – два рабочих, третий аварийный. Требуется соединить станки автоматической линией так, чтобы третий станок включался тогда, и только тогда, когда останавливается хотя бы один из первых двух станков.

185. Пусть в некотором конкурсе решается вопрос о допуске того или иного участника к следующему туру тремя членами жюри: A, B, C. Решение положительно тогда и только тогда, когда хотя бы двое членов жюри высказываются за допуск, причем среди них обязательно должен быть председатель жюри С . Необходимо разработать устройство для голосования, в котором каждый член жюри нажимает на одну из двух кнопок – «За» или «Против», а результат голосования всех трех членов жюри определяется по тому, загорится (решение принято) или нет (решение не принято) сигнальная лампочка.

186. Три преподавателя отбирают задачи для олимпиады. На выбор предлагается несколько задач. По каждой из задач каждый из преподавателей высказывает свое мнение: легкая задача (0) или трудная задача (1). Задача включается в олимпиадное задание, если не менее двух преподавателей отметили ее как трудную, но если все три преподавателя считают ее трудной, то такая задача не включается в олимпиадное задание как слишком сложная. Составьте функциональную схему устройства, которое будет выдавать на выходе 1, если задача включается в олимпиадное задание, и 0, если не включается.

187. Запишите структурную формулу для следующей логической схемы:

&
a
b
c
f

191. Имеются только два конъюнктора и один инвертор. Можно ли из этих трех логических элементов (вентилей) составить логическую схему, эквивалентную схеме выражения . Какой вид имеет эта схема?

192. Имеется только 1 конъюнктор, 1 дизъюнктор и 1 инвертор. Можно ли составить из этих элементов логическую схему, эквивалентную схеме логического выражения ? Все три вентиля должны быть использованы. Какой вид имеет эта схема?

Данной материал содержит презентацию, в которой представлены методы решения логических уравнений и систем логических уравнений в задании В15 (№ 23, 2015) ЕГЭ по информатике. Известно, что это задание является одним из самых сложных среди заданий ЕГЭ. Презентация может быть полезна при проведении уроков по теме "Логика" в профильных классах, а также при подготовке к сдаче ЕГЭ.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Решение задания В15 (системы логических уравнений) Вишневская М.П., МАОУ «Гимназия №3» 18 ноября 2013 г., г. Саратов

Задание В15 - одно из самых сложных в ЕГЭ по информатике!!! Проверяются умения: преобразовывать выражения, содержащие логические переменные; описывать на естественном языке множество значений логических переменных, при которых заданный набор логических переменных истинен; подсчитывать число двоичных наборов, удовлетворяющих заданным условиям. Самое сложное, т.к. нет формальных правил, как это сделать, требуется догадка.

Без чего не обойтись!

Без чего не обойтись!

Условные обозначения конъюнкция: A /\ B , A  B , AB , А &B, A and B дизъюнкция: A \ / B , A + B , A | B , А or B отрицание:  A , А, not A эквиваленция: A  В, A  B, A  B исключающее «или»: A  B , A xor B

Метод замены переменных Сколько существует различных наборов значений логических переменных х1, х2, …, х9, х10, которые удовлетворяют всем перечисленным ниже условиям: ((x1 ≡ x2) \/ (x3 ≡ x4)) /\ (¬(x1 ≡ x2) \/ ¬(x3 ≡ x4)) = 1 ((x3 ≡ x4) \/ (x5 ≡ x6)) /\ (¬(x3 ≡ x4) \/ ¬(x5 ≡ x6)) = 1 ((x5 ≡ x6) \/ (x7 ≡ x8)) /\ (¬(x5 ≡ x7) \/ ¬(x7 ≡ x8)) = 1 ((x7 ≡ x8) \/ (x9 ≡ x10)) /\ (¬(x7 ≡ x8) \/ ¬(x9 ≡ x10)) = 1 В ответе не нужно перечислять все различные наборы х1, х2, …, х9, х10, при которых выполняется данная система равенств. В качестве ответа необходимо указать количество таких наборов (демо-версия 2012 г.)

Решение Шаг 1. Упрощаем, выполнив замену переменных t1 = x1  x2 t2 = x3  x4 t3 = x5  x6 t4 = x7  x8 t5 = x9  x10 После упрощения: (t1 \/ t2) /\ (¬t1 \/ ¬ t2) =1 (t2 \/ t3) /\ (¬t2 \/ ¬ t3) =1 (t3 \/ t4) /\ (¬t3 \/ ¬ t4) =1 (t4 \/ t5) /\ (¬t4 \/ ¬ t5) =1 Рассмотрим одно из уравнений: (t1 \/ t2) /\ (¬t1 \/ ¬ t2) =1 Очевидно, оно =1 только если одна из переменных равна 0, а другая – 1. Воспользуемся формулой для выражения операции XOR через конъюнкцию и дизъюнкцию: (t1 \/ t2) /\ (¬t1 \/ ¬ t2) = t1  t2 = ¬(t1 ≡ t2) =1 ¬(t1 ≡ t2) =1 ¬(t2 ≡ t3) =1 ¬(t3 ≡ t4) =1 ¬(t4 ≡ t5) =1

Шаг2. Анализ системы ¬(t1 ≡ t2) =1 ¬(t2 ≡ t3) =1 ¬(t3 ≡ t4) =1 ¬(t4 ≡ t5) =1 t1 t2 t3 t4 t5 0 1 0 1 0 1 0 1 0 1 Т.к. tk = x2k-1 ≡ x2k (t1 = x1  x2 ,….), то каждому значению tk соответствует две пары значений x2k-1 и x2k , например: tk =0 соответствуют две пары - (0,1) и (1,0) , а tk =1 – пары (0,0) и (1,1).

Шаг3. Подсчет числа решений. Каждое t имеет 2 решения, количество t – 5. Т.о. для переменных t существует 2 5 = 32 решения. Но каждому t соответствует пара решений х, т.е. исходная система имеет 2*32 = 64 решения. Ответ: 64

Метод исключения части решений Сколько существует различных наборов значений логических переменных х1, х2, …, х5, y1,y2,… , y5 , которые удовлетворяют всем перечисленным ниже условиям: (x1→ x2)∧(x2→ x3)∧(x3→ x4)∧(x4→ x5) =1; (y1→ y2)∧(y2→ y3)∧(y3→ y4) ∧(y4→ y5) =1; y5→ x5 =1. В ответе не нужно перечислять все различные наборы х1, х2, …, х5, y 1 ,y2,… , y5, при которых выполняется данная система равенств. В качестве ответа необходимо указать количество таких наборов.

Решение. Шаг1. Последовательное решение уравнений х1 1 0 х2 1 0 1 х3 1 0 1 1 х4 1 0 1 1 1 х5 1 0 1 1 1 1 Первое уравнение – конъюнкция нескольких операций импликации, равна 1, т.е. каждая из импликаций истинна. Импликация ложна только в одном случае, когда 1  0, во всех других случаях (0  0, 0  1, 1  1) операция возвращает 1. Запишем это в виде таблицы:

Шаг1. Последовательное решение уравнений Т.о. получено 6 наборов решений для х1,х2,х3,х4,х5: (00000), (00001), (00011), (00111), (01111), (11111). Рассуждая аналогично, приходим к выводу, что для y1, y2, y3, y4, y5 существует такой же набор решений. Т.к. уравнения эти независимы, т.е. в них нет общих переменных, то решением этой системы уравнений (без учета третьего уравнения) будет 6*6= 36 пар «иксов» и «игреков». Рассмотрим третье уравнение: y5→ x5 =1 Решением являются пары: 0 0 0 1 1 1 Не является решением пара: 1 0

Сопоставим полученные решения Там, где y5 =1, не подходят x5=0. таких пар 5. Количество решений системы: 36-5= 31 . Ответ: 31 Понадобилась комбинаторика!!!

Метод динамического программирования Сколько различных решений имеет логическое уравнение x 1 → x 2 → x 3 → x 4 → x 5 → x 6 = 1, где x 1, x 2, …, x 6 – логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количеств о таких наборов.

Решение Шаг1. Анализ условия Слева в уравнении последовательно записаны операции импликации, приоритет одинаков. Перепишем: ((((X 1 → X 2) → X 3) → X 4) → X 5) → X 6 = 1 NB! Каждая следующая переменная зависит не от предыдущей, а от результата предыдущей импликации!

Шаг2. Выявление закономерности Рассмотрим первую импликацию, X 1 → X 2. Таблица истинности: X 1 X 2 X 1 → X 2 0 0 1 0 1 1 1 0 0 1 1 1 Из одного 0 получили 2 единицы, а из 1 получили один 0 и одну 1. Всего один 0 и три 1, это результат первой операции.

Шаг2. Выявление закономерности Подключив к результату первой операции x 3 , получим: F(x 1 ,x 2) x 3 F(x 1 ,x 2)  x 3 0 0 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 Из двух 0 – две 1, из каждой 1 (их 3) по одному 0 и 1 (3+3)

Шаг 3. Вывод формулы Т.о. можно составить формулы для вычисления количества нулей N i и количества единиц E i для уравнения с i переменными: ,

Шаг 4. Заполнение таблицы Заполним слева направо таблицу для i = 6, вычисляя число нулей и единиц по приведенным выше формулам; в таблице показано, как строится следующий столбец по предыдущему: : число переменных 1 2 3 4 5 6 Число нулей N i 1 1 3 5 11 21 Число единиц E i 1 2*1+1= 3 2*1+3= 5 11 21 43 Ответ: 43

Метод с использованием упрощений логических выражений Сколько различных решений имеет уравнение ((J → K) → (M  N  L))  ((M  N  L) → (¬ J  K))  (M → J) = 1 где J , K, L, M, N – логические переменные? В ответе не нужно перечислять все различные наборы значений J , K, L, M и N, при которых выполнено данное равенство. В качестве ответа Вам нужно указать количество таких наборов.

Решение Заметим, что J → K = ¬ J  K Введем замену переменных: J → K=А, M  N  L =В Перепишем уравнение с учетом замены: (A → B)  (B → A)  (M → J)=1 4. (A  B)  (M → J)= 1 5. Очевидно, что A  B при одинаковых значениях А и В 6. Рассмотрим последнюю импликацию M → J =1 Это возможно, если: M=J=0 M=0, J=1 M=J=1

Решение Т.к. A  B , то При M=J=0 получаем 1 + К=0. Нет решений. При M=0, J=1 получаем 0 + К=0, К=0, а N и L - любые, 4 решения: ¬ J  K = M  N  L K N L 0 0 0 0 0 1 0 1 0 0 1 1

Решение 10. При M=J=1 получаем 0+К=1 *N * L , или K=N*L, 4 решения: 11. Итого имеет 4+4=8 решений Ответ: 8 K N L 0 0 0 0 0 1 0 1 0 1 1 1

Источники информации: О.Б. Богомолова, Д.Ю. Усенков. В15: новые задачи и новое решение // Информатика, № 6, 2012, с. 35 – 39. К.Ю. Поляков. Логические уравнения // Информатика, № 14, 2011, с. 30-35. http://ege-go.ru/zadania/grb/b15/ , [ Электронный ресурс ] . http://kpolyakov.narod.ru/school/ege.htm , [ Электронный ресурс ] .


По завершению года оказалось, что только одно из трех предположений истинно. Какие подразделения получили по итогам года прибыль?

Решение. Запишем предположения из условия задачи в виде логических высказываний: «Получение прибыли подразделением B не является необходимым условием для получения

прибыли подразделением A »: F 1 (A , B , C ) = A → B

«Получение прибыли хотя бы одним подразделений B и C не является достаточным для получения прибыли подразделением A »: F 2 (A , B , C ) = (B + C ) → A

«Подразделения A и B не получат прибыль одновременно»: F 3 (A , B , C ) = A B

Из условия известно, что только одно из трех предположений истинно. Это значит, что мы должны найти какое из трех следующих логических выражений не является тождественно ложным:

1) F 1 F 2 F 3

2) F 1 F 2 F 3

3) F 1 F 2 F 3

1) (A → B) ((B + C) → A) (A ↔ B) = A B (B C + A) (A B + A B) = 0

2) (A → B) ((B + C) → A) (A ↔ B) = (A + B) (A B + A C) (A B + A B) = A B C

3) (A → B) ((B + C) → A) (A B) = (A + B) (B C + A) (A B + A B) = 0

Следовательно, по итогам годы истинным оказалось второе предположение, а первое и третье – ложными.

A = 0

F1 F2 F3 = A B C = 1

в том и только в том случае, когда B = 0 .

C = 1

Следовательно, что прибыль получит подразделение C , а подразделения A и B прибыль не получат.

Решение логических уравнений

В текстах государственного централизованного тестирования есть задание (А8), в котором предлагается найти корень логического уравнения. Давайте разберем способы решения подобных заданий на примере.

Найти корень логического уравнения: (A + B )(X AB ) = B + X → A .

Первый способ решения – построение таблицы истинности. Построим таблицы истинности правой и левой части уравнения и посмотрим, при каком X , значения в последних столбцах этих таблиц совпадут.

F1 (A, B, X ) = (A + B)(X AB)

A + B

(A + B)(X AB)

F 1 (A , B , X )

F2 (A, B, X ) = B + X → A

X → A

F 2 (A , B , X )

X → A

X → A

Сравним полученные таблицы истинности и выберем те строки, в которых значения F 1 (A , B , X ) и F 2 (A , B , X ) совпадают.

F 1 (A , B , X )

F 2 (A , B , X )

Перепишем только выбранные строки, оставив только столбцы аргументов. Посмотрим на переменную X как на функцию от A и B .

Очевидно, что X = B → A .

Второй способ решения – заменить знак равенства в уравнении на знак эквиваленции, а затем упростить полученное логическое уравнение.

Для облегчения дальнейшей работы предварительно упростим правую и левую части логического уравнения и найдем их отрицания:

F1 = (A + B)(X AB) = A + B + (X ↔ AB) = A B + X A B + X A + X B

F1 = (A + B)(X AB) = (A + B)(X A + X B + X A B) = X A B + X A B + X A B

F2 = B + X → A = B (X → A) = B (X + A) = X B + A B F2 = B + X → A = B + X + A = B + X A

Заменим в нашем логическом уравнении знак равенства на знак эквивалентности:

F1 ↔ F2 = F1 F2 + F1 F2 = (A B + X A B + X A + X B) (X B + A B) +

+ (X A B + X A B + X A B) (B + X A) =

= (X A B + X B + X A B) + (X A B + X A B) =

Перегруппируем логические слагаемые данного выражения, вынеся за скобку множители X и X .

X (A B) + X (B + AB) = X (A B) + X (B + A) =

Обозначим T = A B , тогда

X T + X T = X ↔ T .

Следовательно, чтобы логическое уравнение имеет решение: X = A B = B + A = B → A .

Логические элементы ЭВМ. Построение функциональных схем

Математическая логика с развитием ВТ оказалась в тесной взаимосвязи с вопросами конструирования и программирования вычислительной техники. Алгебра логики нашла широкое применение первоначально при разработке релейно-контактных схем . Первым фундаментальным исследованием, обратившим внимание инженеров, занимавшихся проектированием ЭВМ, на возможность анализа электрических цепей с помощью булевой алгебры была опубликована в декабре 1938 года статья американца Клода Шеннона «Символический анализ релейно-контактных схем». После этой статьи проектирование ЭВМ не обходилось без применения булевой алгебры.

Логический элемент - это схема, реализующая логические операции дизъюнкции, конъюнкции и инверсии. Рассмотрим реализацию логических элементов через электрические релейно-контактные схемы, знакомые вам из школьного курса физики.

Последовательное соединение контактов

Параллельное соединение контактов

Составим таблицу зависимостей состояния цепей от всевозможных состояний контактов. Введем обозначения: 1 – контакт замкнут, ток в цепи есть; 0 – контакт разомкнут, тока в цепи нет.

Состояние цепи с

Состояние цепи с параллельным

последовательным соединением

соединением

Как видно, цепь с последовательным соединением соответствует логической операции конъюнкция, так как ток в цепи появляется только при одновременном замыкании контактов A и B . Цепь с параллельным соединением соответствует логической операции дизъюнкция, так как ток в цепи отсутствует только в момент, когда оба контакта разомкнуты.

Логическая операция инверсии реализуется через контактную схему электромагнитного реле, принцип которого изучается в школьном курсе физики. Контакт x разомкнут, когда x замкнут, и наоборот.

Использование релейно-контактных элементов для построения логических схем вычислительных машин не оправдало себя ввиду низкой надежности, больших габаритов, большого энергопотребления и низкого быстродействия. Появление электронных приборов (вакуумных и полупроводниковых) создало возможность построения логических элементов с быстродействием от 1 миллиона переключений в секунду и выше. Логические элементы на полупроводниках работают в режиме ключа аналогично электромагнитному реле. Вся теория, изложенная для контактных схем, переносится на полупроводниковые элементы. Логические элементы на полупроводниках характеризуются не состоянием контактов, а наличием сигналов на входе и выходе.

Рассмотрим логические элементы, реализующие основные логические операции:

Инвертор - реализует операцию отрицания или инверсию. У

инвертора один вход и один выход. Сигнал на выходе появляется

тогда, когда на входе его нет, и наоборот.

Конъюнктор -

X1 X 2 ... X n

реализует операцию конъюнкции.

У конъюнктора

один выход и не менее двух входов. Сигнал на

выходе появляется тогда и только тогда, когда на

все входы поданы сигналы.

X 2 + ... X n

Дизъюнктор - реализует операцию дизъюнкции. У

дизъюнктора один выход и не менее двух

Сигнал на выходе не появляется тогда и только тогда,

когда на все входы не поданы сигналы.

Построить

функциональную

F(X , Y, Z) = X (Y + Z)

X + Z

схему, соответствующую функции:

& F(X , Y , Z )

Решение задач с использованием конъюнктивно-нормальной

и дизъюнктивно-нормальной форм

В задачниках по логике часто встречаются стандартные задачи, где нужно записать функцию, реализующую релейно-контактную схему, упростить ее и построить таблицу истинности для этой функции. А как решать обратную задачу? Дана произвольная таблица истинности, нужно построить функциональную или релейно-контактную схему. Этим вопросом мы и займемся сегодня.

Любую функцию алгебры логики можно представить комбинацией трех операций: конъюнкции, дизъюнкции и инверсии. Давайте разберемся, как это делается. Для этого запишем несколько определений.

Минтерм - это функция, образованная конъюнкцией некоторого числа переменных или их отрицаний. Минтерм принимает значение 1 при единственном из всех возможных наборов

аргументов, и значение 0 при всех остальных. Пример: x 1 x 2 x 3 x 4 .

Макстерм - это функция, образованная дизъюнкцией некоторого числа переменных или их отрицаний. Макстерм принимает значение 0 в одном из возможных наборов, и 1 при всех других.

Пример: x 1 + x 2 + x 3 .

Функция в дизъюнктивной нормальной форме (ДНФ) является логической суммой минтермов.

Пример: x 1 x 2 + x 1 x 2 + x 1 x 2 x 3 .

Конъюнктивная нормальная форма (КНФ) является логическим произведением элементарных дизъюнкций (макстермов).

Пример: (x 1 + x 2 + x 3 ) (x 1 + x 2 ) .

Совершенной дизъюнктивно-нормальной формой называется ДНФ, в каждом минтерме которой присутствуют все переменные или их отрицания.

Пример: x 1 x 2 x 3 + x 1 x 2 x 3 + x 1 x 2 x 3

Совершенной конъюктивно-нормальной формой называется КНФ, в каждом макстерме которой присутствуют все переменные или их отрицания.

Пример: (x 1 + x 2 + x 3 ) (x 1 + x 2 + x 3 )

Запись логической функции по таблице

Любая логическая функция может быть выражена в виде СДНФ или СКНФ. В качестве примера рассмотрим функцию f , представленную в таблице.

f(x1 , x2 , x3 )

Функции G0, G1, G4, G5, G7 – это минтермы (см. определение). Каждая из этих функций является произведением трех переменных или их инверсий и принимает значение 1 только в одной ситуации. Видно, что для того, чтобы получить 1 в значении функции f, нужен один минтерм. Следовательно, количество минтермов, составляющих СДНФ этой функции, равно количеству единиц в значении функции: f= G0+G1+G4+G5+G7. Таким образом, СДНФ имеет вид:

f (x 1, x 2 , x 3 ) = x 1 x 2 x 3 + x 1 x 2 x 3 + x 1 x 2 x 3 + x 1 x 2 x 3 + x 1 x 2 x 3.

Аналогично можно построить СКНФ. Количество сомножителей равно количеству нулей в значениях функции:

f (x 1, x 2 , x 3 ) = (x 1 + x 2 + x 3 ) (x 1 + x 2 + x 3 ) (x 1 + x 2 + x 3 ) .

Таким образом, можно записать в виде формулы любую логическую функцию, заданную в виде таблицы.

Алгоритм построения СДНФ по таблице истинности

Дана таблица истинности некоторой функции. Для построения СДНФ необходимо выполнить следующую последовательность шагов:

1. Выбрать все строки таблицы, в которых функция принимает значение 1.

2. Каждой такой строке поставить в соответствие конъюнкцию всех аргументов или их инверсий (минтерм). При этом аргумент, принимающий значение 0, входит в минтерм с отрицанием, а значение 1 – без отрицания.

3. Наконец, образуем дизъюнкцию всех полученных минтермов. Количество минтермов должно совпадать с количеством единиц логической функции.

Алгоритм построения СКНФ по таблице истинности

Дана таблица истинности некоторой функции. Для построения СКНФ необходимо выполнить следующую последовательность шагов:

1. Выбрать все строки таблицы, в которых функция принимает значение 0.

2. Каждой такой строке поставить в соответствие дизъюнкцию всех аргументов или их инверсий (макстерм). При этом аргумент, принимающий значение 1, входит в макстерм с отрицанием, а значение 1 – без отрицания.

3. Наконец, образуем конъюнкцию всех полученных макстермов. Количество макстермов должно совпадать с количеством нулей логической функции.

Если условиться из двух форм (СДНФ или СКНФ) отдавать предпочтение той, которая содержит меньше букв, то СДНФ предпочтительней, если среди значений функции таблицы истинности меньше единиц, СКНФ – если меньше нулей.

Пример. Дана таблица истинности логической функции от трех переменных. Построить логическую формулу, реализующую эту функцию.

F(A, B, C)

Выберем те строки в данной таблице истинности, в которых значения функции равна 0.

F(A, B, C) = (A + B + C) (A + B + C)

Проверим выведенную функцию, составив таблицу истинности.

Сравнив начальную и итоговую таблицу истинности можно сделать вывод, что логическая функция построена правильно.

Решение задач

1. Три преподавателя отбирают задачи для олимпиады. На выбор предлагается несколько задач. По каждой задаче каждый из преподавателей высказывает свое мнение: легкая (0) или трудная (1) задача. Задача включается в олимпиадное задание, если не менее двух преподавателей отметили ее как трудную, но если все три преподавателя считают ее трудной, то такая задача не включается в олимпиадное задание как слишком сложная. Составьте логическую схему устройства, которое будет выдавать на выходе 1, если задача включается в олимпиадное задание, и 0, если не включается.

Построим таблицу истинности искомой функции. У нас есть три входные переменные (три преподавателя). Следовательно, искомая функция будет функцией от трех переменных.

Анализируя условие задачи, получаем следующую таблицу истинности:

Строим СДНФ. F(A, B, C) = ABC + ABC + ABC

Теперь строим логическую схему этой функции.

B & 1 F(A,B,C)

2. Городская олимпиада по базовому курсу информатики, 2007 год. Постройте схему электрической цепи для подъезда трехэтажного дома такую, чтобы выключателем на любом этаже можно было бы включить или выключить свет во всем доме.

Итак, у нас есть три выключателя, которыми мы должны включать и выключать свет. У каждого выключателя есть два состояния: верхнее (0) и нижнее (1). Предположим, что если все три выключателя в положении 0, свет в подъезде выключен. Тогда при переводе любого из трех выключателей в положение 1 свет в подъезде должен загореться. Очевидно, что при переводе любого другого выключателя в положение 1, свет в подъезде выключится. Если третий выключатель перевести в положение 1, свет в подъезде загорится. Строим таблицу истинности.

Тогда, F(A, B, C) = ABC + ABC + ABC + ABC .

3. Условие изменения

значения логической функции

F(A, B, C) = C →

A + B

одновременном изменении аргументов B и C равно:

A → (B C)

(B C) → A

A(B C)

4) (B C) → A

A → (B C)

Примечание. Для успешного решения данной задачи вспомним следующие логические формулы:

x → y = x + y x y = x y + x y

x ↔ y = x y + x y

Нам дана логическая функция от трех переменных F 1 (A , B , C ) = C → A + B = C + A B .

Изменим одновременно переменные B и C : F 2 (A , B , C ) = F 1 (A , B , C ) = C + A B . Построим таблицы истинности этих двух функций:

Анализируем полученную таблицу. Из восьми строк таблицы лишь в двух (2-й и 3-й) функция не изменяет своего значения. Обратите внимание, что в этих строках переменная A не изменяет своего значения на противоположное, а переменные B и C – изменяют.

Строим СКНФ функции по этим строкам:

F3 (A, B, C) = (A + B + C) (A + B C) = A + AB + AC + AB + BC + AC + B C = .

A + (B ↔ C) = A + B C = (B C) → A

Следовательно, искомый ответ – 4.

4. Условие изменения значения логической функции F (A , B , C ) = C + AB при одновременном изменении аргументов A и B равно:

1) C + (A B)

C + (A B)

C(A B)

4) C(A B)

C → (A B)

F 1 (A , B ,C ) =

C + AB

F 2 (A , B ,C ) = F 1 (

C ) = A

Строим таблицу истинности.

Анализируем полученную таблицу. Из восьми строк таблицы лишь в двух (1-й и 7-й) функция меняет свое значение. Обратите внимание, что в этих строках переменная С не меняет свое значение, а переменные A и B – меняют.

Строим СДНФ функции по этим строкам:

F3 (A, B, C) = A B C + A B C = C(A B + A B) = C(A ↔ B) = C + (A B)

Следовательно, искомый ответ – 2.

Использованная литература

1. Шапиро С.И. Решение логических и игровых задач (логико-психологические этюды). – М.: Радио и связь, 1984. – 152 с.

2. Шоломов Л.А. Основы теории дискретных логических и вычислительных устройств. – М.: Наука. Гл. ред. физ. - мат. лит., 1980. - 400 с.

3. Пухальский Г.И., Новосельцева Т.Я. Проектирование дискретных устройств на интегральных микросхемах.: Справочник. – М.: Радио и связь, 1990.

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. В математике существуют определенные задачи, которые посвящены логике высказываний. Чтобы решить данного рода уравнения необходимо обладать неким багажом знаний: знания законов логики высказываний, знания таблиц истинности логических функций 1 или 2 переменных, методы преобразования логических выражений. Кроме того, необходимо знать следующие свойства логических операций: конъюнкции, дизъюнкции, инверсии, импликации и эквивалентности.

Любую логическую функцию от \ переменных - \можно задать таблицей истинности.

Решим несколько логически уравнений:

\[\rightharpoondown X1\vee X2=1 \]

\[\rightharpoondown X2\vee X3=1\]

\[\rightharpoondown X3\vee X4=1 \]

\[\rightharpoondown X9\vee X10=1\]

Начнем решение с \[Х1\] и определим какие значения данная переменная может принимать: 0 и 1. Далее рассмотрим каждое их вышеприведенных значений и посмотрим, какое может быть при этом \[Х2.\]

Как видно из таблицы наше логическое уравнение имеет 11 решений.

Где можно решить логическое уравнение онлайн?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.