Как запомнить таблицу тригонометрических значений. Как легко запомнить табличные значения тригонометрических функций

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

Всегда найдутся ученики, у которых есть проблемы с запоминанием табличных значений тригонометрических функций. Все дети разные. У одних хорошо запоминается логически построенная система знаний. Другие опираются на зрительные образы.

В первом случае хорошо работает мнемонический способ запоминания значений тригонометрических функций. Легко увидеть закономерность: у синусов в числителях - корни целых последовательных чисел от нуля до четырех, в знаменателе — всегда число 2. У косинусов значения записываются в обратном порядке.

Из чисел 0, 1, 4 квадратный корень легко извлекается, получаем рациональные числа.

Образ числовой окружности помогает ученикам с развитой зрительной памятью. Чтобы легче запомнить, что значения sin α находим на оси Оу, а значения соs α - на оси Ох, применяем ассоциативный прием. Ученики придумывают подсказку - какое-нибудь слово, которое позволит «привязать» косинусы к оси Ох, а синусы - к оси Оу. Например, слово «коса» позволяет объединить кос инус и ось а бсцисс.

Уточняем положительное направление - против часовой стрелки и отрицательное направление - по часовой стрелке).

Ученики должны знать, где на единичной окружности находятся углы, для которых находим значения синуса и косинуса.

На оси Ох находим точку пересечения единичной окружности и оси Ох - начальную точку. В криволинейной системе координат эта точка соответствует углу 0 радиан (0 0). В прямоугольной системе координат находим значения sin0= 0 и cos0= 1.

Чтобы на окружности найти точку, соответствующую углу π /3 (60 0), на оси Ох находим точку с абсциссой ½ и проводим прямую, перпендикулярную оси Ох. Эта прямая пересекает окружность в точках, соответствующих углам π /3 и - π /3.

Чтобы на окружности найти точку, соответствующую углу π /6 (30 0), на оси Оу находим точку с ординатой ½ и проводим прямую, перпендикулярную оси Оу. Эта прямая пересекает окружность в точках, соответствующих углам π /6 (30 0) и 5π /6 (150 0).

Чтобы на окружности найти точку, соответствующую углу π /4 (45 0), проводим биссектрису I координатного угла.

Глядя на единичную окружность, легко заметить, что точки, симметричные относительно оси Ох, имеют одинаковые абсциссы и противоположные ординаты. Поэтому синусы противоположных углов противоположны, а косинусы этих углов равны.

Точки, симметричные относительно оси Оу, имеют одинаковые ординаты и противоположные абсциссы. Поэтому косинусы этих углов противоположны, а синусы равны. Другими словами:

  • синусы углов равны, если сумма углов равна 180 0 ;
  • косинусы углов противоположны, если сумма углов равна 180 0 .

Точки, симметричные относительно начала координат, имеют противоположные координаты. Поэтому углы, которые расположены диаметрально противоположно на окружности, имеют противоположные значения синусов и косинусов.

А также видим, что синусы и косинусы острых углов равны, если сумма углов равна 90 0 .

Рассматривая эти особенности, закрепляем также знания и по темам «Формулы приведения», «Четность функции».

Значения тангенсов и котангенсов углов находим, используя данные таблицы, по формулам tgα = sinα / cosα, сtgα = cosα / sinα.

Полезно запомнить расположения оси тангенсов и котангенсов для нахождения значения тангенсов и котангенсов углов, решения тригонометрических уравнений и неравенств.

Эти методы помогают моим ученикам легко вспоминать или находить табличные значения тригонометрических функций. Надеюсь, что они помогут и другим учащимся.

Гениальное- просто!

Чтобы запомнить значения синуса и косинуса, нам нужно создать табличку. Записываем в строчку градусную меру углов: ноль градусов, тридцать градусов, сорок пять градусов, шестьдесят градусов, девяносто градусов.

2 шаг

3 шаг

Теперь делим каждый из этих корней на два. Все гениальное просто! Выполняем нехитрый расчет, и вот Вам пожалуйста – значения синусов.
Согласитесь, нетрудно. Только нужно запомнить порядок выполнения действий. Записали градусы, извлекли корни и следующим этапом поделили все на два. Записываем числа, начиная с нуля.
То есть такая своеобразная мнемоника.

4 шаг

А как же косинусы? Ну куда же без них! С косинусами дело обстоит не сложнее, чем с синусами. В первой строчке записываем градусную меру углов: ноль градусов, тридцать градусов, сорок пять градусов, шестьдесят градусов, девяносто градусов. Далее, подобно методу нахождения синусов, извлекаем из каждого числа корень. Делим все значения на два. Получили значения косинусов.

5 шаг

Также теперь, имея эти данные, можно найти тангенс угла. Напоминаю тем, кто забыл: тангенс – это отношение синуса к косинусу.

  • Согласитесь, интересный способ нахождения синусов и косинусов. Надеюсь, пригодится!) Интересная мнемоника. Кстати, есть разные способы запоминания информации, формул, в частности, и в физике. Подняло настроение): V= корень из 3 KT/M. Эту формулу можно запомнить как три кота на мясо xD)

Запоминание таблицы значений тригонометрических функций — актуальная тема не только для старшеклассников, но и для самих учителей и репетиторов по математике, которые часто не могут правильно расставить акценты на особенностях таблицы и тем самым вносят дополнительные препятствия для ее использования. Чего только я не насмотрелся в тетрадях учеников за годы моей практики. Такое впечатление, что сами учителя и репетиторы не знают, как лучше действовать. Кто-то предлагает отдельные таблицы для прямых и отдельно для обратных тригонометрических функций. Кто-то предлагает тригонометр, записи с неудобным представлением самих значений функций и используют, например, вместо числа выбивающегося из общего правила . По моей статистике примерно детей не могут самостоятельно отследить закономерности математических формул и свойств, упрощающие запоминание. Школьные преподаватели не всегда обращают на них внимание и часто именно репетитор по математике открывает ребенку глаза на очевидное.

Что должен делать репетитор по математике?

Я запускаю на занятие некоего помощника – навигатора, позволяющего облегчить ученику запоминание важной для практического решения задач информации. Продумываются сопроводительные подсказки в теоретических шпаргалках, при которых:

  • максимально широкий охват сведений обеспечивается минимальным объемом записей.
  • информацию можно будет получать при помощи неких выявленных особенностей и закономерностей в поведении чисел

Как этот принцип применить к запоминанию таблицы значений?

1) Репетитору по математике следует провести своего рода экскурсию по таблице и рассказать о ее особенностях. Важно заметить, что для перевода углов из градусов в радианы, достаточно вспомнить о том, какой у этих радианов должен получиться знаменатель. это , а это .Если у ребенка хотя бы немножко работает ассоциативная память, то он будет помнить, что в «радианных знаменателях» располагаются только числа и 6. Они же стоят в разряде десятков соответствующей им градусной меры. Только тройка соответствует шестерке, шестерка тройке, а четверка (промежуточная цифра) при переходе к сохраняется. Я говорю так — тройка меняется на шестерку, шестерку на тройку, а четверка замирает и остается первой цифрой градусной меры угла .

При переводе можно заметить, что данный угол 5 раз больше чем . Тогда, умножая радианы для на 5, получаем .

Значения синусов и косинусов для основных углов лучше всего по таблице не смотреть, а вспомнить определение для их функций через тригонометрический круг.

Модули значений функций углов больших cимметричны значениям для углов до . Надо только учесть отрицательные знаки косинуса, тангенса и котангенса во второй четверти.

Репетитору по математике остается выучить с учеником главную часть таблицы. И здесь есть красивые закономерности. Если репетитор дал ученику для тригонометрической таблицы числа , то можно заметить, что если мы представим в виде , то получим единую структуру дробей и заучивать придется числа и . В этот момент ученику станет просто смешно и удивительно: почему он раньше не видел таких закономерностей.

Осталось запомнить порядок. Так как синус в первой четверти возрастает, то большему углу соответствует большее число под корнем. Я говорю так: большему углу — больший синус. Слабому ученику я многократно повторяю: синус работает в прямом порядке: большему большее, а меньшему меньшее. Это повторение слов, как правило, откладывается в его голове.

Легко понять. что с косинусом все наоборот: меньшему углу — больший косинус. Тоже самое выявляется у тангенсов, и котангенсов.

В таблицу значений тангенсов репетитору по математике необходимо записать числа без выбивающегося числа , а именно так: , и . Тогда помимо соответствия меньшему — меньшее , а большему — большее тангенсы будут образованы всеми различными комбинациями действий деления чисел: 1 и . После таких аналогий 90-95 процентов учеников репетитора по математике не ошибаются в табличных значениях.

Вычисление арксинусов, арккосинусов, арктангенсов...

1. слово арксинус трудно и долго произносимое. Я намеренно проглатываю в некоторых ситуациях слово «синус» и говорю, например, так: для нахождения арка , требуется... Школьники понимают, о чем идет речь, а репетитор по математике при этом может акцентировать внимание на чем-то более важном.

2. В таблице, которую вы видите ниже, специально выделена область красным цветом. Она используется для нахождения арков .


В этой статье собраны таблицы синусов, косинусов, тангенсов и котангенсов . Сначала мы приведем таблицу основных значений тригонометрических функций, то есть, таблицу синусов, косинусов, тангенсов и котангенсов углов 0, 30, 45, 60, 90, …, 360 градусов (0, π/6, π/4, π/3, π/2, …, 2π радиан). После этого мы дадим таблицу синусов и косинусов, а также таблицу тангенсов и котангенсов В. М. Брадиса, и покажем, как использовать эти таблицы при нахождении значений тригонометрических функций.

Навигация по странице.

Таблица синусов, косинусов, тангенсов и котангенсов для углов 0, 30, 45, 60, 90, … градусов

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
  • Брадис В. М. Четырехзначные математические таблицы: Для общеобразоват. учеб. заведений. - 2-е изд. - М.: Дрофа, 1999.- 96 с.: ил. ISBN 5-7107-2667-2