Облигатными анаэробами являются следующие бактерии. Отношение прокариот к О2 (облигатные аэробы, микроаэрофилы, факультативные анаэробы, облигатные анаэробы, аэротолерантные анаэробы). Основной принцип идентификации бактерий по Бержди

Оглавление темы "Перенос веществ в бактериальной клетке. Питательные субстраты бактерий. Энергетический метаболизм бактерий.":
1. Активный перенос веществ в бактериальной клетке. Транспорт веществ обусловленный фосфорилированием. Выделение веществ из бактериальной клетки.
2. Фермент. Ферменты бактерий. Регуляторные (аллостерические) ферменты. Эффекторные ферменты. Определение ферментативной активности бактерий.
3. Питательные субстраты бактерий. Углерод. Аутотрофия. Гетеротрофия. Азот. Использование неорганического азота. Ассимиляционные процессы в клетке.
4. Диссимиляционные процессы. Использование органического азота в клетке. Аммонификация органических соединений.
5. Фосфор. Сера. Кислород. Облигатные (строгие) аэробы. Облигатные (строгие) анаэробы. Факультативные анаэробы. Аэротолерантные бактерии. Микроаэрофильные бактерии.
6. Ростовые факторы бактерий. Ауксотрофы. Прототрофы. Классификация факторов стимулирующих рост бактерий. Пусковые факторы роста бактерии.
7. Энергетический метаболизм бактерий. Схема идентификации неизвестной бактерии. Экзэргонические реакции.
8. Синтез (регенерация) АТФ. Получение энергии в процессе фотосинтеза. Бактерии фототрофы. Реакции фотосинтеза. Стадии фотосинтеза. Световая и темновая фаза фотосинтеза.
9. Получение энергии при окислении химических соединений. Бактерии хемотрофы. Получение энергии субстратным фосфорилированием. Брожение.
10. Спиртовое брожение. Гомоферментативное молочнокислое брожение. Гетероферментативное брожение. Муравьинокислое брожение.

Фосфор. Сера. Кислород. Облигатные (строгие) аэробы. Облигатные (строгие) анаэробы. Факультативные анаэробы. Аэротолерантные бактерии. Микроаэрофильные бактерии.

Фосфор

В клетках бактерий фосфор присутствует в виде фосфатов (преимущественно фосфатов Сахаров) в составе нуклеотидов и нуклеозидов. Фосфор также входит в состав фосфолипидов различных мембран. Фосфаты играют особую роль в энергетическом обмене, расщеплении углеводов и в мембранном транспорте. Ферментативный синтез ряда биополимеров может начаться только после образования фосфорных эфиров исходных соединений (то есть после их фосфо-рилирования). Основной природный источник фосфора для бактерий - неорганические фосфаты и нуклеиновые кислоты. Они присутствуют в составе бульонов, в синтетические питательные среды их вносят дополнительно.

Сера

Сера входит в состав некоторых аминокислот (цистеин, метионин), витаминов (биотин, тиамин), пептидов (глутатион) и белков; участвует в синтетических процессах в восстановленном состоянии - в виде R-SH-групп, обладающих высокой реакционной способностью и легко дегидрирующих в R-S-S-R"-группы. Последние используются для образования более сложных соединений, соединённых дисульфидными (S-S) мостиками. Гидратирование этих соединений восстанавливает их и разрывает мостики. Подобные реакции имеют важное значение для регуляции окислительно-восстановительного потенциала в цитоплазме бактерий. Основной серосодержащий компонент бактериальной клетки - цистеин, в состав которого сера входит в виде тиоловой (-SH) группы. Так, сера в составе метионина, биотина, тиамина и глутатиона происходит из тиоловой группы цистеина. Хотя сера входит в состав аминокислот и белков в восстановленной форме, большинство бактерий утилизирует серу в форме сульфатов . Перевод окисленной серы из сульфат-иона в восстановленную форму в тиоловой группе известен как ассимиляционная сульфатредукция .

У значительно меньшего числа бактерий (например, анаэробных бактерий рода Desulfovibrio) происходит диссимиляционная сульфатредукция , при которой сульфаты, сульфиты или тиосульфаты используются как терминальные акцепторы электронов. При этом образуется сероводород (H2S), как продукт восстановления. Способность бактерий выделять сероводород применяют на практике как дифференциально-диагностический признак. Отдельные группы бактерий (например, серобактерии родов Beggiatoa, Thiothrix) могут окислять сероводород и элементную серу до сульфатов.

Кислород

Кислород , входящий в состав органических веществ бактерий, включается в них двояким путём: опосредованно (из молекул воды либо из С02) и непосредственно. Специальные ферменты - оксигеназы - включают кислород (О2-) в органические соединения непосредственно из молекулярного кислорода (02). Оксигеназы необходимы для разложения многих веществ (например, ароматических углеводородов), трудно поддающихся действию других ферментов. Многие бактерии удовлетворяют свои энергетические потребности за счёт дыхания, в процессе которого кислород выступает в качестве терминального акцептора электронов и протонов в дыхательной цепи. В соответствии с потребностями в молекулярном кислороде бактерии разделяют на пять основных групп.

Облигатные (строгие) аэробы способны получать энергию только путём дыхания и поэтому обязательно нуждаются в молекулярном кислороде. К строгим аэробам относят, например, представителей рода Pseudomonas.

Облигатные (строгие) анаэробы . Рост таких бактерий может быть остановлен даже при низком р02 (например, при 10"s атм), поскольку у них отсутствуют ферменты, расщепляющие токсические соединения кислорода (каталазы, супероксид дисмутазы). К облигатным анаэробам относят роды Bacteroides, Desulfovibrio.

Факультативные анаэробы растут как в присутствии, так и в отсутствии 02. К факультативным анаэробам относят энтеробактерии и многие дрожжи, способные переключаться с дыхания в присутствии 02 на брожение в отсутствии 02.

Аэротолерантные бактерии способны расти в присутствии атмосферного кислорода, но не использовать его в качестве источника энергии. Энергию аэротолерантные бактерии получают исключительно с помощью брожения (например, молочнокислые бактерии).


Микроаэрофильные бактерии хотя и нуждаются в кислороде для получения энергии, лучше растут при повышенном содержании С02, поэтому они также известны как «капнофильные микроорганизмы» [от грсч. kapnos, дым, + philos, любовь1. К микроаэрофилам относят большинство аэробных бактерий (например, бактерии родов Campylobacter и Helicobacter). Бактерии могут существовать в среде, содержащей кислород только при наличии толерантности к кислороду, которая связана со способностью бактериальных ферментов нейтрализовать токсичные соединения кислорода. В зависимости от количества электронов, одновременно переносимых на молекулу 02, образуются: ион пероксида 02 (образуется флавиновыми оксида-зами при переносе 2е"), супероксид-радикал (могут образовать ксантин оксидаза, альдегид ок-сидаза, НАДФН-оксидаза при переносе 1е-), и гидроксил-радикал (продукт реакции супероксид-радикала с перекисью водорода). В детоксикации реактивных кислородных радикалов участвуют супероксид дисмутаза, пероксидаза и каталаза.

Супероксид дисмутаза конвертирует супероксид-радикал (наиболее токсичный метаболит) в Н202. Фермент присутствует в аэробных и аэротолерантных бактериях. Катализа превращает Н202 в Н20 и 02 Фермент имеется у всех аэробных бактерий, но отсутствует у аэротолерантных организмов.

Строгие анаэробы обычно каталаза - и супероксиддисмутаза -отрицательны.

Пероксидаза . Из всех каталаза-отрицательных микроорганизмов лишь молочнокислые бактерии способны расти в присутствии воздуха. Их аэротолерантность связана со способностью накапливать пероксидазу . Фермент нейтрализует Н202 в реакции с глутатионом; при этом перекись водорода превращается в воду.

а) бактероиды

б) клостридии

в) бифидобактерии

162. Ферменты постоянно синтезирующиеся в микробных клетках:

г) конститутивные

163. Ферменты, синтез которых зависит от наличия субстрата:

а) индуцибельные

164. По типу питания клинически значимые виды микроорганизмов:

г) хемогетеротрофы

165. По типу дыхания клинически значимые микроорганизмы в основном:

г) факультативные анаэробы

166. Фазы развития бактериальной популяции (к р о м е):

д) бинарное деление

167. Избирательное поступление веществ в бактериальную клетку, в основном, обеспечивает:

168. Бактерии по типу дыхания (к р о м е):

а) микроаэрофилы

б) облигатные анаэробы

в) облигатные аэробы

г) факультативные анаэробы

169. Способы размножения прокариот (к р о м е):

170. Способ размножения бактерий:

б) бинарное деление

171. Бактерии наиболее биохимически активны в:

б) логарифмической фазе

172. Бактерии наиболее чувствительны к антибиотикам в:

б) логарифмической фазе

173. Механизмы поступления веществ в бактериальную клетку (к р о м е):

д) фагоцитоз

174. Поступление веществ в бактериальную клетку без затраты энергии происходит при:

б) простой диффузии

175. Микроорганизмы, нуждающиеся в меньшей концентрации 0 2 , чем его содержание в воздухе:

г) микроэрофилы

176. Способность анаэробных микроорганизмов существовать в присутствии свободного 0 2

б) аэротолерантность

177. Тип метаболизма облигатных анаэробов:

б) бродильный

178. Тип метаболизма факультативно-анаэробных микроорганизмов:

в) окислительный, бродильный

179. Способы создания анаэробиоза (к р о м е):

д) генотипический

180. Для создания анаэробиоза физическим способом используют:

б) анаэростат

181. Физические методы создания анаэробиоза основаны на:

а) механическом удалении кислорода

182. Для создания анаэробиоза химическим способом используют:

б) метод Биттнера

183. Химические методы создания анаэробиоза основаны на:

б) использовании химических сорбентов

184. Для создания анаэробиоза биологическим способом используют:

д) метод Фортнера

185. Для создания анаэробиоза комбинированным способом используют (к р о м е):

д) метод Биттнера

186. Облигатные анаэробы:

в) клостридии

187. В биологическом методе Фортнера для удаления кислорода используют:

г) сарцину

188. Цель П этапа бак.метода:

в) накопление чистой культуры

189. Цель III этапа бак.метода:

г) идентификация чистой культуры

190. На III этапе бак.метода:

г) определяют видовые свойства и антибиотикограммы

191. Целью микроскопии культуры на III этапе бак.метода является определение:

а) морфологической и тинкториальной однородности

192. Подвижность бактерий определяют:

б) при посеве уколом в столбик полужидкогоагара

193. Принцип определения биохимической активности бактерий:

194. Принцип определения биохимической активности бактерий:

б) определение промежуточных и конечных продуктов метаболизма

195. Для определения биохимических свойств микроорганизмов используют (к р о м е):

г) культуры клеток ткани

196. О сахаролитической активности бактерий свидетельствует:

в) образование кислых и газообразных продуктов метаболизма

197. Сахаролитические свойства бактерий определяют на среде:

198. Протеолитические свойства бактерий определяют на средах с (к р о м е):

в) углеводами

199. Критерий учёта при определении протеолитических свойств бактерий на МПБ:

г) образование сероводорода, индола

200. О чистоте культуры на III этапе бак.метода свидетельствует:

в) однородность роста и однотипность микроорганизмов в мазке

201. Чистая культура –это популяция бактерий одного:

202. Популяция бактерий одного вида:

б) чистая культура

203. Определение антибиотикограмм культур вызвано:

г) приобретением лекарственной устойчивости

204. Определение антибиотикограмм культур вызвано:

б) приобретением лекарственной устойчивости

205. При определении антибиотикограммы методом дисков (кроме):

б) засевают культуру методом «штрих с площадкой»

206. Определение антибиотикограммы проводят (к р о м е):

г) для идентификации микроорганизмов

207. Основной таксон прокариот:

208. Вид – это популяция микроорганизмов сходных по (к р о м е):

д) половому пути размножения

209. Внутри вида микроорганизмы могут отличаться по (к р о м е):

б) способности к спорообразованию

210. Внутри вида микроорганизмы могут отличаться по (к р о м е):

а) окраске по Граму

211. Таксоны прокариот (к р о м е):

212. Вид – это популяция микроорганизмов сходных по (к р о м е):

д) чувствительности к антибиотикам

213. Для идентификация микроорганизмов по Берджи определяют (к р о м е):

б) чувствительность к антибиотикам

214. Основной принцип идентификации бактерий по Бержди:

в) строение клеточной стенки и отношение к окраске по Граму

215. Ферменты микроорганизмов обеспечивают (к р о м е):

д) морфологию

216. Ферменты микроорганизмов определяют по разложению:

в) соответствующего субстрата

217. По назначению питательные среды «пестрого ряда»:

б) дифференциально-диагностические

218. Цель III этапа бак.метода:

в) идентификация чистой культуры

219. На III этапе бак.метода проводят (к р о м е):

д) отбор изолированных колоний

220. Цель II этапа бак.метода выделения возбудителей анаэробных раневых инфекций при исследовании почвы:

б) получение изолированных колоний

221. Выделение чистой культуры анаэробов осуществляется по методу:

б) Цейсслера

222. Выделение чистой культуры анаэробов осуществляется по методу:

б) Вейнберга

223. Возможные спорообразующие возбудители анаэробных инфекций в почве:

в) клостридии газовой гангрены


| | 3 | | | | облигатные анаэробы это, облигатные анаэробы представители
Облига́тные (стро́гие) анаэро́бы - организмы, живущие и растущие только при отсутствии молекулярного кислорода в среде, он для них губителен.

Метаболизм

Распространено представление, что облигатные анаэробы погибают в присутствии кислорода из-за отсутствия ферментов супероксиддисмутазы и каталазы, которые перерабатывают смертельный супероксид, образующийся в их клетках при наличии кислорода. Хотя в некоторых случаях это действительно так, тем не менее, у некоторых облигатных анаэробов была обнаружена активность вышеупомянутых ферментов, а в их геномах были найдены гены, ответственные за эти ферменты и родственные белки. К таким облигатным анаэробам относятся, например, Clostridium butyricum и Methanosarcina barkeri. И всё же эти организмы неспособны существовать в присутствии кислорода.

Имеется несколько других гипотез, объясняющих, почему строгие анаэробы чувствительны к кислороду:

  1. Разлагаясь, кислород увеличивает окислительно-восстановительный потенциал среды, а высокий потенциал, в свою очередь, подавляет рост некоторых анаэробов. Например, метаногены растут при окислительно-восстановительном потенциале менее -0,3 V.
  2. Сульфид является неотъемлемой составляющей некоторых ферментов, а молекулярный кислород окисляет сульфид до дисульфида и тем самым нарушает активность фермента.
  3. Рост может подавляться отсутствием доступных для биосинтеза электронов, так как все электроны идут на восстановление кислорода.

Наиболее вероятно, что чувствительность строгих анаэробов к кислороду обусловлена этими факторами в совокупности.

Вместо кислорода облигатные анаэробы используют альтернативные акцепторы электронов для клеточного дыхания, как то: сульфаты, нитраты, железо, марганец, ртуть, угарный газ (CO). Например, сульфатредуцирующие бактерии, в большом количестве обитающие в придонных морских отложениях, обусловливают запах тухлых яиц в этих местах из-за выделения сероводорода. Энергия, выделяющаяся при таких дыхательных процессах, меньше, чем при кислородном дыхании, и вышеперечисленные альтернативные акцепторы электронов не дают равное количество энергии.

Представители

Bacteroides и Clostridium могут служить примерами неспорообразующих и спорообразующих строгих анаэробов соответственно.

Другими примерами облигатных анаэробов являются Peptostreptococcus, Treponema, Fusiform, Porphyromonas, Veillonella и Actinomyces.

Примечания

  1. Kim, Byung Hong and Geoffrey Michael Gadd. Bacterial Physiology and Metabolism. Cambridge University Press, Cambridge, UK. 2008.
  2. ANAEROBIC BACILLI(недоступная ссылка - история). Проверено 10 марта 2009. Архивировано из первоисточника 29 января 2009.

облигатные анаэробы и, облигатные анаэробы представители, облигатные анаэробы это

Кислород широко распространен в природе, находясь как в связанном, так и свободном состоянии. В первом случае он входит в состав молекул воды, органических и неорганических соединений. Во втором - присутствует в современной атмосфере в виде молекулярного кислорода (О2), объемная доля которого составляет 21%.

Кислород является обязательным химическим компонентом любой клетки. Подавляющее большинство организмов удовлетворяет свои потребности в этом элементе, используя обе формы кислорода. При выращивании Pseudomonas в присутствии 18О2 и Н218О источником приблизительно 10% кислорода, входящего в состав клеточного материала, служил газообразный кислород, 50-60% клеточного кислорода происходило из воды. Остальной кислород в клетку поставляли органические и неорганические компоненты питательной среды (глюкоза, фосфаты, нитраты, сульфаты и др.).

Среди прокариот существуют значительные различия в отношении к молекулярному кислороду. По этому признаку они могут быть разделены на несколько групп (рис. 34). Прокариоты, для роста которых О2 необходим, называют облигатными (обязательными) аэробами. К ним относится большинство прокариотных организмов. Среди облигатных аэробов обнаружены существенные различия в отношении к уровню молекулярного кислорода в среде. Некоторые представители этой группы не способны к росту при концентрации О2, равной атмосферной, но могут расти, если содержание О2 в окружающей среде будет значительно ниже (порядка 2%). Такие облигатно аэробные прокариоты получили название микроаэрофилов.

Потребность прокариот в низкой концентрации О2 в окружающей среде связана с их метаболическими особенностями. Многие аэробные азотфиксирующие бактерии могут расти в среде с молекулярным азотом только при концентрации О2 ниже 2%, т.е. как микроаэрофилы, а в присутствии связанного азота, например аммонийного, - на воздухе. Это объясняется ингибирующим действием молекулярного кислорода на активность нитрогеназы - ферментного комплекса, ответственного за фиксацию N2.

Аналогичная картина обнаружена у многих водородокисляющих бактерий. На среде с органическими соединениями в качестве источника энергии они хорошо растут при атмосферном содержании О2. Если источником энергии является окисление молекулярного водорода, эти же бактерии для роста требуют низкой концентрации О2. Последнее связывают с инактивацией молекулярным кислородом гидрогеназы - фермента, катализирующего использование Н2.

Наконец, среди облигатных аэробов существуют значительные различия в устойчивости к высоким уровням О2 в среде. 100%-й молекулярный кислород подавляет рост всех облигатных аэробов. Многие аэробные бактерии могут формировать колонии на поверхности твердой питательной среды в атмосфере, содержащей 40% О2, но рост их прекращается, когда содержание О2 в атмосфере повышается до 50%.

Известны прокариоты, для метаболизма которых О2 не нужен, т. е. энергетические и конструктивные процессы у них происходят без участия молекулярного кислорода. Такие организмы получили название облигатных анаэробов. К ним относятся метанобразующие архебактерии, сульфатвосстанавливающие, маслянокислые и некоторые другие эубактерии. До сравнительно недавнего времени считали, что облигатные анаэробы могут получать энергию только в процессе брожения. В настоящее время известно много облигатно анаэробных прокариот, которые произошли от аэробов в результате вторичного приспособления к анаэробным условиям, приведшего к потере способности использовать О2 в качестве конечного акцептора электронов в процессе дыхания. Такие облигатные анаэробы получают энергию в процессах анаэробного дыхания, т.е. переноса электронов по цепи переносчиков на СО2, SO4--, фумарат и другие акцепторы.

В ряду облигатно анаэробных прокариот, не включающих O2 в метаболические реакции, существует широкий спектр степени устойчивости к молекулярному кислороду, находящемуся во внешней среде. Многие из облигатных анаэробов не выносят присутствия даже незначительных количеств молекулярного кислорода в среде и быстро погибают. Такие организмы называют строгими анаэробами. К числу строгих анаэробов относятся представители родов Bacteroides ,Fusobacterium , Butyrivibrio , Methanobacterium и др.

Маслянокислые бактерии относятся также к группе облигатных анаэробов, но среди них есть виды, умеренно (Clostridium tetani , Сlostridium carnis , Сlostridium tertium , Сlostridium sporogenes) или достаточно высоко (Сlostridium perfringens , Сlostridium acetobutylicum) толерантные к О2.

Наконец, молочнокислые бактерии, обладающие метаболизмом только анаэробного типа, могут расти в присутствии воздуха и выделены в отдельную группу аэротолерантных анаэробов. (Некоторые авторы относят молочнокислые бактерии рода Lactobacillus к микроаэрофилам на том основании, что в их клетках содержатся флавопротеины, катализирующие перенос электронов с НАД*Н2 на О2. Однако этот процесс не связан с получением клеткой энергии).

Хотя облигатно анаэробные бактерии в целом очень чувствительны к О2, они могут в природе находиться в аэробных зонах. Широкое распространение представителей рода Clostridium в местах с высоким парциальным давлением О2 объясняется наличием у них эндоспор, не чувствительных к молекулярному кислороду. Однако и многие не образующие спор строго анаэробные прокариоты обнаружены в природе в местах, где наблюдается активное развитие облигатных аэробов. Вероятно, совместное развитие с облигатными аэробами, активно потребляющими молекулярный кислород, приводящее к образованию зон с низкой концентрацией 02, создает возможности и для развития строго анаэробных видов.

Описаны прокариотные организмы, которые могут расти как в аэробных, так и в анаэробных условиях. Изучение этого явления показало, что природа его различна. Бактерии, не нуждающиеся в О2 (последний не участвует в осуществляемых ими метаболических реакциях), но способные расти в его присутствии, являются по типу осуществляемого ими метаболизма облигатными анаэробами, устойчивыми к О2 внешней среды. Примером таких организмов служат молочнокислые бактерии. Многие прокариоты, относящиеся к этой же группе, приспособились в зависимости от наличия или отсутствия О2 в среде переключаться с одного метаболического пути на другой, например с дыхания на брожение, и наоборот. Такие организмы получили название факультативных анаэробов, или факультативных аэробов. Представителями этой физиологической группы прокариот являются энтеробактерии. В аэробных условиях они получают энергию в процессе дыхания. (Среди факультативных анаэробов в условиях осуществления ими метаболизма аэробного типа также могут быть микроаэрофилы). В анаэробных условиях источником энергии для них служат процессы брожения или анаэробного дыхания.

Потребность в О2 у аэробов определяется его участием в энергетических и конструктивных процессах. В первом случае О2 служит обязательным конечным акцептором электронов, во втором - участвует в реакциях (или единственной реакции) на пути многоступенчатого преобразования клеточных метаболитов или экзогенных субстратов. У облигатных аэробов большая часть О2 используется в качестве конечного акцептора электронов в реакциях, катализируемых цитохромоксидазами. Меньшая часть включается в молекулы с помощью ферментов, получивших общее название оксигеназ. В клетках факультативных анаэробов также содержатся цитохромоксидазы. У облигатных анаэробов нет ферментов, катализирующих взаимодействие с О2.

Влияние температуры на жизнедеятельность микроорганизмов. Температурный диапазон. Психрофилы, мезофилы, термофилы и их распространение в природе. Механизмы психро- и термофилии. Использование высоких температур для инактивации микроорганизмов. Использование низких температур для хранения микроорганизмов.

Температура: жизнедеятельность каждого микроорганизма ограничена определенными температурными границами. Эту температурную зависимость обычно выражают тремя точками: минимальная (min) температура - ниже которой размножение прекращается, оптимальная (opt) температура - наилучшая температура для роста и развития микроорганизмов и максимальная (max) температура - температура, при которой рост клеток или замедляется, или прекращается совсем. Впервые в истории науки Пастером были разработаны методы уничтожения микроорганизмов при воздействии на них высоких температур.
Оптимальная температура обычно приравнивается к температуре окружающей среды.
Все микроорганизмы по отношению к температуре условно можно разделить на 3 группы:
Первая группа: психрофилы - это холодолюбивые микроорганизмы, растут при низких температурах: min t - 0 °С, opt t - от 10-20 °С, max t - до 40 °С. К таким микроорганизмам относятся обитатели северных морей и водоемов. К действию низких температур многие микроорганизмы очень устойчивы. Например, холерный вибрион долго может храниться во льду, не утратив при этом своей жизнеспособности. Некоторые микроорганизмы выдерживают температуру до -190°С, а споры бактерий могут выдерживать до -250°С. Действие низких температур приостанавливает гнилостные и бродильные процессы, поэтому в быту мы пользуемся холодильниками. При низких температурах микроорганизмы впадают в состояние анабиоза, при котором замедляются все процессы жизнедеятельности, протекающие в клетке.
Ко второй группе относятся мезофилы - это наиболее обширная группа бактерий, в которую входят сапрофиты и почти все патогенные микроорганизмы, так как opt температура для них 37 °С (температура тела), min t = 10 °С, maxt = 45 °C.
К третьей группе относятся термофилы - теплолюбивые бактерии, развиваются при t выше 55 °С, min t для них = 30 °С, max t = 70-76 °С. Эти микроорганизмы обитают в горячих источниках. Среди термофилов встречается много споровых форм. Споры бактерий гораздо устойчивей к высоким температурам, чем вегетативные формы бактерий. Например, споры бацилл сибирской язвы выдерживают кипячение в течение 10-20 с. Все микроорганизмы, включая и споровые, погибают при температуре 165-170°С в течение часа. Действие высоких температур на микроорганизмы положено в основу стерилизации.

Получают энергию либо путем ферментации (при этом конечными акцепторами электронов являются органические соединения), либо путем анаэробного дыхания, при котором акцептором электронов являются неорганические кислородсодержащие соединения (нитраты, сульфаты, СО2). Облигатные анаэробы культивируют в бескислородных условиях или при низком парциальном давления кислорода. При наличии кислорода облигатные анаэробы погибают. Толерантность бактерий к кислороду зависит от наличия супероксиддисмутазы, каталазы и пероксидазы, инактивирующих токсичный для анаэробов кислород.

Облигатные неспорообразующие (неклостридиальные) анаэробы - многочисленная группа бактерий , относящихся к различным родам и семействам. Представлены грамположительными и грамотрицательными палочками, кокками, а также извитыми и ветвящимися формами. Большинство из них являются условно-патогенными бактериями, преобладающими в нормальной микрофлоре человека и животного. Инфекции, вызываемые неклостридиальными анаэробами , развиваются чаще всего у иммунокомпромиссных больных как оппортунистические эндогенные инфекции (аутоинфекции).

Материал для исследования - гной или пораженная ткань, кровь. Проводят бактериоскопию, в т. ч. люминесцентную микроскопию , и бактериологическое исследование в условиях анаэробиоза. Посевы помещают в анаэростат или анаэробоксы. Для ускоренного обнаружения анаэробов применяют газожидкостную хроматографию, ИФА, РИФ и др. Обязательна антибиотикограмма. В ММА им. И. М. Сеченова предложены флюоресцентный и лазерно-флюоресцентный методы экспресс- диагностики гнойно-воспалительных заболеваний, вызываемых анаэробами .

При флюоресцентном методе обнаружения анаэробов в биологическом субстрате исследуемый материал (гной, первичный посев, чистая культура) облучают светом с длиной волны 400-420 нм. Наблюдение ведут через запирающий желтый фильтр. При наличии анаэробов или их продуктов наблюдают малиново-красную флюоресценцию.

Лазерно-флюоресцентный метод позволяет обнаружить анаэробы в субстрате или непосредственно в организме. Эти методы значительно сокращают сроки диагностики и выбора целенаправленного лечения.

Микробиологическая диагностика . Материалом для исследования может быть сыворотка крови пациента и отделяемое из пораженных органов (лаважная жидкость, мокрота и т. п.). Серологический метод: ИФА и РИФ - для выявления антигена ; РПГА и ИФА - для выявления антител . Бактериологический метод применяется для выявления урогенитальных микоплазм. Посевы на плотных средах просматривают при малом увеличении на 3-5-е сутки инкубации. Молекулярно-генетический метод: ПЦР , ДНК-ДНК-гибридизация.

Рис. 3.124.

Таблица 3.50. Факторы вирулентности неспорообразующих (неклостридиальных) анаэробных бактерии (НАБ)

Факторы вирулентности Биологический эффект Бактерии

эндотоксин

Общетоксическое повреждающее действие на органы и ткани

Грамотрицательные НАБ

лейкоцидин

Повреждает лейкоциты

Бактероиды, фузобактерии

гемолизин

Лизирует эритроциты

Fusobacterium necrophorum

гемагглютинин

Склеивает эритроциты

Fusobacterium necrophorum

Ферменты

коллагеназа

Разрушает коллагеновые волокна соединительной ткани

Bacteroides fragilis, фузобактерии

нейраминидаза

Разрушает гликопротеины, содержащие нейраминовую кислоту

Prevotella melaninogenica

дезоксирибонуклеаза

Вызывают внутрисосудистые изменения из-за повышенной свертываемости крови при разрушении гепарина

Бактероиды гепариназа

фибринолизин

Растворяет тромб, способствует развитию септического тромбофлебита

Бактероиды

бета-лактамаза

Разрушает бета-лактамные антибиотики

Бактероиды

Структуры

Адгезия к субстрату

Грамотрицательные НАБ

Защищает бактерии от фагоцитоза

Бактероиды

Метаболиты

летучие и длинноцепочечные жирные кислоты

Угнетают хемотаксис и кислородзависимую цитотоксичность лейкоцитов

Большинство НАБ