Физиологические основы физической нагрузки. Физическая нагрузка и ее влияние на сердце Изменения деятельности сердца во время физической работы

Физическая активность человека, требующая больше энергии, чем её вырабатывается в покое, является физической нагрузкой. Во время физической нагрузки изменяется внутренняя среда орга- низма, вследствие чего нарушается гомеостаз. Потребность мышц в энгергии обеспечивается комплексом адаптационных процессов в различных тканях организма. В главе рассмотрены физиологические показатели, которые изменяются под влиянием резкой физической нагрузки, а также клеточные и системные механизмы адаптации, лежащие в основе повторной или хронической мышечной активности.

ОЦЕНКА МЫШЕЧНОЙ АКТИВНОСТИ

Отдельный эпизод мышечной работы или «острая нагрузка» вызывает ответные реакции организма, которые отличаются от реакций, возникающих при хронической нагрузке, другими словами при тренировке. Формы мышечной работы также могут различаться. Количество участвующей в работе мышечной массы, интенсивность усилий, их продолжительность и тип мышечных сокращений (изометрические, ритмические) влияют на ответы организма и характеристики приспособительных реакций. Основные изменения, возникающие в организме во время физической нагрузки, связаны с повышенным потреблением энергии скелетными мышцами, которое может возрастать с 1,2 до 30 ккал/мин, т.е. в 25 раз. Поскольку непосредственно измерить потребление АТФ во время физической нагрузки нельзя (оно происходит на субклеточном уровне), используется косвенная оценка энергетических затрат - измерение поглощаемого при дыхании кислорода. На рис. 29-1 показано потребление кислорода до, во время и после лёгкой равномерной работы.

Рис. 29-1. Потребление кислорода до, во время лёгкой нагрузки и после неё.

Поглощение кислорода и, следовательно, образование АТФ увеличиваются до того момента, пока не будет достигнуто устой- чивое состояние, при котором образование АТФ адекватно его потреблению при работе мышц. Постоянный уровень потребления кислорода (образование АТФ) поддерживается, пока не изменится интенсивность работы. Между началом работы и увеличением потребления кислорода до какого-то постоянного уровня происходит задержка, называемая кислородным долгом или дефицитом. Дефицит кислорода - период времени между началом мышечной работы и ростом потребления кислорода до достаточного уровня. В первые минуты после сокращения наблюдается избыток поглощения кислорода, так называемый кислородный долг (см. рис. 29-1). «Избыток» потребления кислорода в востановительном периоде - результат множества физиологических процессов. Во время динамической работы у каждого человека свой предел максимальной мышечной нагрузки, при которой поглощение кислорода не увеличивается. Этот предел называется максимальным потреблением кислорода (VO 2ma J. Он в 20 раз превышает потребление кислорода в состоянии покоя и не может быть выше, но при соответствующей тренировке его можно увеличить. Максимальное поглощение кислорода, при прочих равных условиях, уменьшается с возрастом, при постельном режиме и ожирении.

Реакции сердечно-сосудистой системы на физическую нагрузку

При увеличении энергетических затрат во время физической работы требуется больше продукции энергии. Окисление пищевых веществ производит эту энергию, а сердечно-сосудистая система доставляет кислород работающим мышцам.

Cердечно-сосудистая система в условиях динамической нагрузки

Локальный контроль кровотока обеспечивает условия, при которых только работающие мышцы с увеличенными метаболическими потребностями получают больше крови и кислорода. Если работают только нижние конечности, мыщцы ног получают увеличенное количество крови, в то время как кровоток мышц верхних конечностей остаётся неизменным или пониженным. В покое скелетные мышцы получают только небольшую часть сердечного выброса. При динамической нагрузке и общий сердечный выброс, и относительный и абсолютный кровоток, направленные к работающим скелетным мышцам, значительно усиливаются (табл. 29-1).

Таблица 29-1. Распределение кровотока в покое и при динамической на- грузке у спортсмена

Область

Покой, мл/мин

%

%

Внутренние органы

Почки

Коронарные сосуды

Скелетные мышцы

1200

22,0

Кожа

Мозг

Другие органы

Общий сердечный выброс

25,65

Во время динамической мышечной работы в контроль над сердечно-сосудистой системой вовлечена системная регуляция (сердечно-сосудистые центры в мозге, с их вегетативными эффекторными нервами к сердцу и резистивным сосудам) вместе с локальной регуляцией. Уже перед началом мышечной деятельности её

программа формируется в мозге. Прежде всего активируется моторная кора: общая активность нервной системы приблизительно пропорциональна мышечной массе и её рабочей интенсивности. Под влиянием сигналов моторной коры сосудодвигательные центры уменьшают тоническое воздействие блуждающего нерва на сердце (в связи с чем увеличивается частота сердечных сокращений) и переключают артериальные барорецепторы на более высокий уровень. В активно работающих мышцах образуется молочная кислота, ко- торая стимулирует мышечные афферентные нервы. Афферентные сигналы поступают в сосудодвигательные центры, которые увеличивают влияние симпатической системы на сердце и системные резистивные сосуды. Одновременно с этим мышечная хеморефлекторная активность внутри работающих мышц понижает Po 2 , увеличивает содержание оксида азота и сосудорасширяющих простагландинов. В результате комплекс локальных факторов расширяет артериолы, несмотря на повышение симпатического сосудосуживающего тонуса. Активация симпатической системы увеличивает сердечный выброс, а локальные факторы в коронарных сосудах обеспечивают их расширение. Высокий симпатический вазоконстрикторный тонус ограничивает кровоток в почках, сосудах внутренних органов и неактивных мышцах. Кровоток в неактивных областях может падать на 75% в условиях тяжёлой работы. Повышение сосудистого сопротивления и уменьшение объёма крови помогают поддерживать АД во время динамической нагрузки. В противоположность редуцированному кровотоку в висцеральных органах и неактивных мышцах, саморегуляторные механизмы мозга поддерживают кровоток на постоянном уровне, независимо от нагрузки. Кожные сосуды остаются суженными только до тех пор, пока не возникнет потребность в терморегуляции. Во время чрезмерной нагрузки симпатическая активность может ограничить сосудорасширение в работающих мышцах. Продолжительная работа в условиях высокой температуры сопряжена с повышенным кровотоком в коже и интенсивным выделением пота, приводящим к уменьшению объёма плазмы, что может вызвать возникновение гипертермии и гипотонии.

Реакции сердечно-сосудистой системы на изометрическую нагрузку

Изометрическая нагрузка (статическая мышечная активность) вызывает несколько иные сердечно-сосудистые реакции. Крово-

ток в мышцах и сердечный выброс возрастают по сравнению с покоем, но высокие средние значения внутримышечного давления ограничивают увеличение кровотока по сравнению с ритмической работой. В статически сокращённой мышце промежуточные продукты обмена в условиях слишком слабого снабжения кислородом появляются очень быстро. В условиях анаэробного метаболизма увеличивается выработка молочной кислоты, возрастает соотношение АДФ/АТФ и развивается утомление. Поддержание только 50% максимального потребления кислорода уже затруднительно после 1-й минуты и не может продолжаться более 2 мин. Длительный устойчивый уровень напряжения может поддерживаться на уровне 20% от максимума. Факторы анаэробного метаболизма в условиях изометрической нагрузки запускают мышечные хеморефлекторные ответы. Кровяное давление значительно повышается, а сердечный выброс и частота сердцебиений меньше, чем при динамической работе.

Реакции сердца и сосудов на разовые и постоянные мышечные нагрузки

Однократная интенсивная мышечная работа активирует симпатическую нервную систему, что повышает частоту и сократи- мость сердца пропорционально затраченным усилиям. Повышенный венозный возврат также способствует производительности сердца при выполнении динамической работы. Сюда включается «мышечный насос», сдавливающий вены во время ритмических сокращений мышц, и «дыхательный насос», который от вдоха к вдоху увеличивает осцилляции внутригрудного давления. Максимальная динамическая нагрузка вызывает максимальную частоту сокращений сердца: даже блокада блуждающего нерва не может более увеличить частоту сокращений сердца. Ударный объём достигает своего потолка при умеренной работе и не изменяется при переходе на максимальный уровень работы. Повышение кровяного давления, увеличение частоты сокращений, ударного объёма и сократимости миокарда, возникающие во время работы, повышают потребность миокарда в кислороде. Линейное увеличение коронарного кровотока во время работы может достигать величины, в 5 раз превышающей исходный уровень. Локальные метаболические факторы (оксид азота, аденозин и активация АТФ-чувствительных K-каналов) действуют сосудорасширяюще на коронарные рези-

стивные сосуды. Поглощение кислорода в коронарных сосудах в состоянии покоя высокое; оно увеличивается при работе и достигает 80% доставляемого кислорода.

Адаптация сердца к хроническим мышечным перегрузкам в значительной степени зависит от того, несёт ли выполняемая работа опасность возникновения патологических состояний. Примерами служат увеличение объёма левого желудочка, когда работа требует высокого кровотока и гипертрофия левого желудочка создаётся высоким системным артериальным давлением (высокая постнагрузка). Следовательно, у людей, адаптированных к продолжительной, ритмической физической нагрузке, которая сопровождается относительно низким АД, левый желудочек сердца имеет большой объём при нормальной толщине его стенок. У людей, привыкших к длительным изометрическим сокращениям, увеличена толщина стенки левого желудочка при нормальном объёме и повышенном давлении. Большой объём левого желудочка у людей, занятых постоянной динамической работой, обусловливает урежение ритма и рост сердечного выброса. Одновременно усиливается тонус блуждающего нерва и понижается β -адренергическая чувствительность. Тренировка на выносливость частично измененяет потребление миокардом кислорода, влияя, таким образом, на коронарный кровоток. Поглощение кислорода миокардом приблизительно пропорционально соотношению «частота сокращений сердца, умноженная на среднее артериальное давление», и поскольку в результате тренировки уменьшается частота сердечных сокращений, коронарный кровоток в условиях стандартной фиксированной субмаксимальной нагрузки параллельно уменьшается. Тренировка, тем не менее, увеличивает пиковый коронарный кровоток, уплотняя капилляры миокарда, и увеличивает капиллярную обменную ёмкость. Тренировка также улучшает опосредованную эндотелием регуляцию, оптимизирует ответы на аденозин и контроль внутриклеточного свободного кальция в ГМК коронарных сосудов. Сохранение эндотелием сосудорасширяющей функции является важнейшим фактором, обусловливающим положительное влияние хронической физической активности на коронарное кровообращение.

Действие физической тренировки на липиды крови

Постоянная динамическая мышечная работа связана с увеличением уровня циркулирующих липопротеинов высокой плот-

ности (ЛПВП) и уменьшением липопротеинов низкой плотности (ЛПНП). В связи с этим соотношение ЛПВП и содержания общего холестерина увеличивается. Такие изменения в холестериновых фракциях наблюдаются в любом возрасте, при условии что физическая нагрузка регулярна. Масса тела снижается, и увеличивается чувствительность к инсулину, что типично для людей сидячего образа жизни, начавших регулярные занятия физической культурой. У людей, у которых в связи с очень высоким уровнем липопротеинов и возникает риск коронарных заболеваний сердца, физическая нагрузка является необходимым дополнением к ограничениям в диете и средством похудания, что способствует снижению ЛПНП. Регулярная нагрузка улучшает жировой метаболизм и увеличивает клеточную метаболическую ёмкость, благоприят- ствуя β -окислению свободных жирных кислот, а также улучшает в мышечной и жировой ткани липопротеазную функцию. Изменения в липопротеиновой липазной деятельности вместе с увели- чением лецитин-холестериновой ацилтрансферазной активности и аполипопротеинами A-I синтеза повышают уровень циркуляции

ЛПВП.

Регулярная физическая активность в профилактике и лечении некоторых сердечно-сосудистых заболеваний

Изменения в соотношении ЛПВП общего холестерина, которые возникают при регулярной физической активности, уменьшают риск развития атеросклероза и заболеваний коронарных сосудов у активных людей, в сравнении с людьми, ведущими сидячий образ жизни. Установлено, что прекращение активной физической деятельности является фактором риска заболеваний коронарных артерий сердца, который так же значим, как гиперхолестеринемия, повышенное давление и курение. Риск уменьшается, как отмечалось ранее, в связи с изменением характера липидного обмена, уменьшением потребности в инсулине и повышением чувствительности к инсулину, а также за счет снижения β -адренергической реактивности и повышением тонуса блуждающего нерва. Регулярная мышечная на- грузка часто (но не всегда) уменьшает АД в покое. Установлено, что снижение АД связано со снижением тонуса симпатической системы и падением системного сосудистого сопротивления.

Увеличение дыхания - очевидный физиологический ответ на физическую нагрузку.

Рис. 29-2 показывает, что минутная вентиляция в начале работы увеличивается линейно с увеличением интенсивности работы и затем, достигнув какой-то точки в районе максимума, становится сверхлинейной. Благодаря нагрузке усиливает поглощение кислорода и выработка диоксида углерода работающими мышцами. Адаптация дыхательной системы заключается в исключительно точном поддержании гомеостаза этих газов в артериальной крови. При лёгкой или умеренной работе артериальное Po 2 (и, следова- тельно, содержание кислорода), Pco 2 и pH остаются без изменений на уровне покоя. Дыхательные мышцы, участвующие в увеличении вентиляции и прежде всего в увеличении дыхательного объёма, не создают ощущения одышки. При более интенсивной нагрузке уже на полпути от покоя к максимальной динамической работе молочная кислота, образующаяся в работающих мышцах, начинает появляться в крови. Это наблюдается тогда, когда молочная кислота образуется быстрее, чем (удаляется) метаболизирует-

Рис. 29-2. Зависимость минутной вентиляции от интенсивности физической нагрузки.

ся. Эта точка, которая зависит от типа работы и состояния тренированности испытуемого, называется анаэробным или лактатным порогом. Лактатный порог для конкретного человека, выполняющего определённую работу, относительно постоянен. Чем выше лактатный порог, тем выше интенсивность продолжительной работы. Концентрация молочной кислоты градуально увеличивается вместе с интенсивностью работы. При этом всё больше и больше мышечных волокон переходит на анаэробный метаболизм. Почти полностью диссоцированная молочная кислота вызывает метаболический ацидоз. Во время работы здоровые лёгкие отвечают на ацидоз дальнейшим увеличением вентиляции, снижением уровня артериального Pco 2 и поддержанием pH артериальной крови на нормальном уровне. Этот ответ на ацидоз, который подстёгивает нелинейную вентиляцию лёгких, может встречаться при напря- жённой работе (см. рис. 29-2). В определённых пределах работы дыхательная система полностью компенсирует снижение pH, вызванное молочной кислотой. Однако при тяжелейшей работе вентиляционная компенсация становится только частичной. В этом случае и pH, и артериальное Pco 2 могут падать ниже исходного уровня. Объём вдоха продолжает увеличиваться, пока рецепторы растяжения не ограничат его.

Контрольные механизмы лёгочной вентиляции, обепечивающие мышечную работу, включают нейрогенные и гуморальные влияния. Частота и глубина дыхания управляются дыхательным центром продолговатого мозга, получающего сигналы от центральных и периферических рецепторов, которые реагируют на изменения pH, артериального Pо 2 и Pto 2 . Кроме сигналов от хеморецепторов в дыхательный центр поступают афферентные импульсы от периферических рецепторов, включая мышечные веретёна, рецепторы растяжения Гольджи и рецепторы давления, расположенные в суставах. Центральные хеморецепторы воспринимают увеличение щелочности при интенсификации мышечной работы, что свидетельствует о проницаемости гематоэнцефалического барьера для CO 2 , но не для водородных ионов.

Тренировка не изменяет величину функций дыхательной системы

Воздействие тренировки на дыхательную систему минимально. Диффузионная ёмкость лёгких, их механика и даже лёгочные

объёмы очень мало изменяются при тренировке. Широко распро- странённое предположение о том, что тренировка улучшает жиз- ненную ёмкость лёгких, неверно: даже нагрузки, рассчитанные специально на увеличение силы дыхательных мышц, повышают жизненную ёмкость только на 3%. Одним из механизмов адаптации дыхательных мышц к физической нагрузке является уменьшение их чувствительности к одышке во время нагрузки. Тем не менее первичные дыхательные изменения при тренировке вторичны по отношению к пониженной выработке молочной кислоты, которая уменьшает потребность в вентиляции при тяжёлой работе.

Реакции мышц и костей на физическую нагрузку

Процессы, происходящие во время работы скелетной мышцы, являются первичным фактором её утомления. Те же самые про- цессы, повторяясь во время тренировки, способствуют адаптации, благодаря которой увеличивается объём работы и задерживается развитие утомления во время подобной работы. Сокращения скелетных мышц увеличивают также стрессорное воздействие на кости, вызывая специфическую костную адаптацию.

Мышечное утомление не зависит от молочной кислоты

Исторически сложилось представление о том, что увеличение внутриклеточных H+ (уменьшение pH в клетке) играло главную роль в утомлении мышцы, непосредственно ингибируя актинмиозиновые мостики и приводя тем самым к уменьшению сократительной силы. Хотя очень тяжёлая работа может уменьшать величину pH < 6,8 (pH артериальной крови может падать до 7,2), имеющиеся данные свидетельствуют, что повышенное содержание H+ хотя и является значительным фактором в снижении мышечной силы, но не служит исключительной причиной утомления. У здоровых людей утомление коррелирует с накоплением АДФ на фоне нормального или слегка редуцированного содержания АТФ. В этом случае соотношение АДФ/АТФ бывает высоким. Поскольку полное окисление глюкозы, гликогена или свободных жирных кислот до CO 2 и H 2 O является основным источником энергии при продолжительной работе, у людей с нарушениями гликолиза или электронного транспорта снижена способность к продолжительной

работе. Потенциальные факторы развития утомления могут возникать централизованно (болевые сигналы от утомлённой мышцы поступают по обратной связи к мозгу и снижают мотивацию и, возможно, уменьшают импульсы от моторной коры) либо на уровне мотонейрона или нервно-мышечного соединения.

Тренировка выносливости увеличивает кислородную ёмкость мышц

Адаптация скелетных мышц к тренировке специфична для формы мышечного сокращения. Регулярные упражнения в условиях небольшой нагрузки способствуют возрастанию окислительной метаболической ёмкости без гипертрофии мышц. Тренировка с усиленной нагрузкой вызывает гипертрофию мышц. Повышенная активность без перегрузки увеличивает плотность капилляров и митохондрий, концентрацию миоглобина и всего ферментативного аппарата для производства энергии. Координация производящей и использующей энергию систем в мышцах обеспечивается даже после атрофии, когда остающиеся сократительные белки адекватно поддерживаются метаболически. Локальная адаптация скелетной мышцы к выполнению длительной работы уменьшает зависимость от углеводов как энергетического топлива и позволяет в большей мере использовать метаболизм жиров, продлевает выносливость и уменьшает накопление молочной кислоты. Снижение содержания молочной кислоты в крови, в свою очередь, уменьшает вентиляционную зависимость от тяжести работы. В результате более медленного накопления метаболитов внутри натренированной мышцы снижается хемосенсорный поток импульсов в системе обратной связи в ЦНС при увеличении нагрузки. Это ослабляет активацию симпатической системы сердца и сосудов и уменьшает потребность миокарда в кислороде при фиксированном уровне работы.

Гипертрофия мышцы в ответ на растяжение

Обычные формы физической активности вовлекают комбинацию сокращений мышц с укорочением (концентрическое сокращение), с удлинением мышцы (эксцентрическое сокращение) и без изменения её длины (изометрическое сокращение). При действии внешних сил, растягивающих мышцу, для развития усилия требуется меньшее количество АТФ, так как часть моторных единиц

выключена из работы. Однако поскольку усилия, приходящиеся на отдельные моторные единицы, больше при эксцентрической работе, эксцентрические сокращения могут легко вызывать повреждения мышц. Это проявляется в слабости мышцы (возникает в первый день), болезненности, отёчности (держится 1-3 дня) и подъёме уровня внутримышечных ферментов в плазме (2-6 дней). Гистологические доказательства повреждения могут сохраняться до 2 нед. Повреждение сопровождается острой фазой реакции, которая включает активацию комплемента, увеличение циркулирующих цитокинов, мобилизацию нейротрофилов и моноцитов. Если адаптация к тренировке с элементами растяжения достаточна, то болезненность после повторной тренировки минимальна или от- сутствует совсем. Повреждение, вызванное тренировкой с растяжением, и комплекс реакций на него, вероятнее всего, являются важнейшим стимулом гипертрофии мышц. Немедленные изменения в синтезе актина и миозина, которые вызывают гипертрофию, опосредованы на посттрансляционном уровне; неделю спу- стя после нагрузки матричная РНК для этих белков изменяется. Хотя их роль в точности остаётся невыясненной, активность S6- протеинкиназы, тесно связанной с долговременными изменениями мышечной массы, повышена. Клеточные механизмы гипертрофии включают индукцию инсулиноподобного фактора роста I и других белков, входящих в семейство факторов роста фибробластов.

Сокращение скелетных мышц через сухожилия оказывает воздействие на кости. Поскольку архитектура кости меняется под влиянием активации остеобластов и остеокластов, вызванной нагрузкой или устранением нагрузки, физическая активность оказывает значительное специфическое воздействие на минеральную плотность кости и её геометрию. Повторяющаяся физическая активность может создавать необычайно сильное натяжение, при- водящее к недостаточному реструктурированию костной ткани и перелому кости; с другой стороны, малая активность обусловливает доминирование остеокластов и потерю костной ткани. Силы, воздействующие на кость во время физической нагрузки, зависят от массы кости и силы мышц. Следовательно, плотность кости имеет самое непосредственное отношение к силам гравитации и силе вовлечённых мышц. Это предполагает, что нагрузка с целью

предотвратить или ослабить остеопороз должна учитывать массу и силу применяемой активности. Поскольку нагрузка может улуч- шать походку, равновесие, координацию, проприоцепцию и время реакции даже у пожилых и слабых людей, постоянная активность уменьшает риск падений и остеопороза. Действительно, случаи переломов бедра сокращаются примерно на 50%, когда пожилые люди регулярно занимаются физической культурой. Однако, даже когда физическая активность оптимальна, генетическая роль костной массы значительно важнее, чем роль нагрузки. Возможно, 75% популяционной статистики имеет отношение к генетике и 25% является результатом различного уровня активности. Физическая нагрузка также играет роль в лечении остеоартритов. Контроли- руемые клинические испытания показали, что соответствующая регулярная нагрузка уменьшает суставные боли и степень инвалидности.

Динамическая напряжённая работа (требующая более 70% максимального потребления O 2) замедляет опорожнение жидкого содержимого желудка. Природа этого эффекта не выяснена. Однако разовая нагрузка различной интенсивности не изменяет секреторной функции желудка, и нет данных о влиянии нагрузки на факторы, способствующие развитию пептических язв. Известно, что напряжённая динамическая работа может вызывать желудочнопищеводный рефлюкс, нарушающий моторику пищевода. Хроническая физическая активность увеличивает скорость опорожнения желудка и движение пищевых масс по тонкой кишке. Эти адаптационные реакции постоянно увеличивают траты энергии, способствуют более быстрой переработке пищи и усиливают аппетит. Опыты на животных с моделью гиперфагии показывают специфическую адаптацию в тонкой кишке (увеличение поверхности слизистой, выраженность микроворсинок, большее содержание ферментов и транспортёров). Кровоток кишечника замедляется пропорционально интенсивности нагрузки, и возрастает симпатический сосудосуживающий тонус. Параллельно замедляется всасывание воды, электролитов и глюкозы. Однако эти эффекты преходящи и синдром пониженного всасывания как следствие острой или хронической нагрузки не наблюдается у здоровых людей. Физическая нагрузка рекомендуется для более быстрого вос-

становления после операции на подвздошной кишке, при запоре и синдроме раздражённой кишки. Постоянная динамическая на- грузка значительно уменьшает риск возникновения рака толстой кишки, возможно потому, что увеличивается количество и частота потребляемой пищи и, следовательно, ускоряется движение каловых масс по толстой кишке.

Физическая нагрузка повышает чувствительность к инсулину

Мышечная работа подавляет секрецию инсулина за счёт возросшего симпатического влияния на островковый аппарат подже- лудочной железы. Во время работы, несмотря на резкое снижение уровня инсулина в крови, происходит усиленное потребление мышцами глюкозы, - как инсулинзависимое, так и инсулиннезависимое. Мышечная активность мобилизует переносчиков глюкозы из внутриклеточных мест хранения к плазматической мембране работающих мышц. Поскольку мышечная нагрузка повышает чув- ствительность к инсулину у людей с диабетом 1-го типа (инсулинзависимым), требуется меньше инсулина, когда усиливается их мышечная активность. Однако этот положительный результат может оказаться коварным, так как работа ускоряет развитие гипогликемии и увеличивает риск возникновения гипогликемической комы. Регулярная мышечная активность уменьшает потребность в инсулине, повышая чувствительность рецепторов к инсулину. Этот результат достигается благодаря регулярному приспособлению к меньшим нагрузкам, а не просто повторением эпизодических нагрузок. Эффект вполне выражен после 2-3 дней регулярной физической тренировки, и так же быстро он может быть утрачен. Следовательно, у здоровых людей, ведущих физически активный образ жизни, чувствительность к инсулину значительно выше, чем у их коллег, предпочитающих сидячий образ жизни. Повышение чувствительности инсулиновых рецепторов и меньшее выделение инсулина после регулярной физической активности служат адек- ватной терапией диабета 2-го типа (не инсулинзависимого) - заболевания, характеризующегося высокой секрецией инсулина и низкой чувствительностью к нему рецепторов. У людей с диабетом 2-го типа даже одиночный эпизод физической активности существенно влияет на перемещение транспортёров глюкозы к плазма- тической мембране в скелетных мышцах.

Обобщение главы

Физическая нагрузка - вид деятельности, который вовлекает мышечные сокращения, сгибательные и разгибательные движения суставов и оказывает исключительное влияние на различные системы организма.

Количественная оценка динамической нагрузки определяется количеством поглощённого во время работы кислорода.

Избыточное потребление кислорода в первые минуты восстановления после работы называется кислородным долгом.

Во время мышечной нагрузки кровоток преимущественно направлен к работающим мышцам.

Во время работы кровяное давление, частота сокращений сердца, ударный объём, сократимость сердца повышены.

У людей, привыкших к продолжительной ритмической работе, сердце при нормальном АД и нормальной толщине стенки левого желудочка выбрасывает большие объёмы крови из левого желудочка.

Длительная динамическая работа связана с увеличением в крови липопротеинов высокой плотности и уменьшением липопро- теинов низкой плотности. В связи с этим увеличивается соотношение липопротеинов высокой плотности и общего содержания холестерина.

Мышечная нагрузка играет роль в профилактике и восстановлении после некоторых сердечно-сосудистых заболеваний.

Лёгочная вентиляция усиливается во время работы пропорционально потребностям в кислороде и удалении углекислого газа.

Утомление мышцы - процесс, вызванный выполнением нагрузки, приводящий к уменьшению её максимальной силы и неза- висимый от молочной кислоты.

Регулярная мышечная активность при незначительных нагрузках (тренировка выносливости) увеличивает мышечную кислородную ёмкость без гипертрофии мышц. Повышенная активность при больших нагрузках вызывает гипертрофию мышц.

Регулярные интенсивные физические нагрузки приводят к увеличению полостей миокарда и его утолщению. Спортивное сердце сокращается реже, но сильнее, этим обеспечивается достаточное питание мышечной ткани и внутренних органов, целесообразное расходование энергетических ресурсов. При перетренированности возникают заболевания миокарда.

📌 Читайте в этой статье

В чем отличия сердца спортсмена и обычного человека

Сердце у человека, который систематически занимается спортом, становится более работоспособным, при этом режим его функционирования переходит на более экономное расходование энергии. Это возможно благодаря трем особенностям – увеличению размера, повышению силы сокращений и замедлению пульса.

Общий объем

Для того чтобы иметь возможность обеспечить все органы достаточным поступлением кислорода при высоких физических нагрузках сердце должно перекачивать больший объем крови. Поэтому у спортсменов повышается общая вместимость сердечных камер за счет расширения ().

Также чрезмерное изменение сердца объясняется утолщением миокарда (), преимущественно в стенках желудочков. Эти особенности помогают обеспечить главное достоинство спортивного сердца – большую производительность.



Слева здоровое сердце, а справа сердце спортсмена

Величина сердца зависит от вида деятельности. Самые высокие показатели отмечены у лыжников, а также при занятиях велосипедным спортом или бегом на длинные дистанции. Немного меньше увеличивается сердце при тренировках на выносливость. При силовых видах нагрузок дилатации быть не должно, или она совсем незначительная, общий объем сердечных камер не должен существенно отличаться от показателей обычных людей.

Для примера можно привести несколько показателей рентгенографии с дальнего расстояния (телерентгенография), которая используется для измерений объема сердца в см3:

  • мужчины 25 летнего возраста, нетренированные – 750;
  • молодые женщины с низкой физической активностью – 560;
  • спортсмены скоростных видов спорта – до 1000, известны случаи повышения до 1800.


Сравнение УЗИ сердца обычного человека и спортсмена-атлета

Ритм

Самым стабильным признаком хорошей тренированности спортсмена является замедление сердечного ритма в состоянии покоя. Доказано, что брадикардия возникает чаще при тренировках выносливости, а у мужчин-мастеров спорта пульс снижается до 45 и менее ударов за минуту. Это расценивают как механизм перехода на более экономичный способ работы, так как медленный ритм обеспечивает:

  • понижение потребности сердечной мышцы в кислороде;
  • увеличение продолжительности диастолы;
  • восстановление запасов растраченной энергии;
  • усиление питания гипертрофированного миокарда (из-за сжимания сосудов в период систолы снижается кровоток в венечных сосудах).

Причиной замедления ритма сердца является изменение параметров активности вегетативной регуляции сердца – тонус парасимпатического отдела возрастает, а симпатические влияния ослабевают. Это становится возможным благодаря интенсивной физической работе.

Ударный объем

У здоровых людей, не занимающихся спортом, выброс крови в сосуды составляет 40 — 85 мл за одно сокращение. У спортсменов он повышается до 100, а в некоторых случаях и до 140 мл в состоянии покоя. Это объясняется как большей площадью тела (выше рост и вес), например, у баскетболистов, тяжелоатлетов, так и с характером нагрузок. Самые высокие показатели ударного объема у лыжников, велосипедистов, пловцов.

Низкорослые и худощавые спортсмены, занимающиеся низкоинтенсивными видами спорта, имеют показатели, лишь немного отличающиеся от остальных людей. Также нет прямого влияния занятий спортом на такой показатель, как сердечный индекс. Он рассчитывается делением ударного выброса за минуту на общую площадь тела.

Сердце и тренировки на скорость или выносливость

Сила сокращений сердечной мышцы подчиняется закону Франка-Старлинга: чем сильнее растянуты мышечные волокна, тем интенсивнее сжатие желудочков. Это справедливо не только для миокарда, но и для всех гладких и поперечнополосатых мышц.

Механизм этого действия можно представить натягиванием тетивы лука – чем больше ее вытянуть, тем сильнее будет пуск. Это возрастание в кардиомиоцитах не может быть беспредельным, если прирост длины волокон составляет более 35 — 38%, то миокард слабеет. Второй способ для усиления работы сердца – это повышение давления крови в его камерах. В ответ на это мышечный слой утолщается для противодействия гипертензии.

Все нагрузки делятся на динамические и статические. Они оказывают принципиально разное влияние на миокард. Первый вид тренировок предполагает развитие выносливости. Это в первую очередь важно для бегунов, конькобежцев, велосипедистов, пловцов. В организме происходят такие адаптационные процессы:


Таким образом, у спортсменов с преобладанием динамической (аэробной) нагрузки наблюдается дилатация (расширение) сердечных полостей при минимальной степени гипертрофии миокарда.

Изометрические нагрузки (силовые) не изменяют длину мышечных волокон, а повышают их тонус. Напряженные мышцы сдавливают артерии, возрастает сопротивление их стенок.

При этом виде тренировок потребность в кислороде умеренная, но усиления притока крови по сжатым артериям не происходит, поэтому питание тканей обеспечивается за счет повышения артериального давления. Постоянная гипертензия в период нагрузок провоцирует гипертрофию миокарда без расширения полостей.

Смотрите на видео о том, что происходит с сердцем во время физических нагрузок:

Заболевания спортсменов

Все приспособительные реакции повышают спортивные результаты только при физиологических режимах тренировок. При занятиях профессиональным спортом нередко происходит срыв адаптационных механизмов, когда сердце не выдерживает перегрузок. Подобные патологические явления возникают в ситуациях, когда для успеха в соревнованиях используются искусственные стимуляторы – энергетики и анаболики.

Брадикардия

Снижение частоты пульса не всегда является доказательством хорошей тренированности. Примерно у трети спортсменов низкий пульс сопровождается такими проявлениями:

  • снижается работоспособность;
  • плохо переносится повышение нагрузок;
  • нарушается сон;
  • падает аппетит;
  • возникает периодическое и потемнение в глазах;
  • затрудняется дыхание;
  • появляется давящая боль в груди;
  • снижается концентрация внимания.

Подобные жалобы нередко сопровождают переутомление или инфекционные процессы. Поэтому при снижении частоты пульса до 40 и менее ударов за одну минуту нужно проводить обследование сердца и внутренних органов для выявления вероятных патологических изменений.

Гипертрофия

Формирование утолщенного мышечного слоя связано с постоянным повышением уровня давления внутри сердца. Это запускает усиленное образование сократительных белков, масса сердца возрастает. В дальнейшем именно гипертрофия становится единственным способом адаптации к повышению спортивных нагрузок. Последствия нарастания мышечного объема проявляются в виде таких изменений:

  • миокард слабо восстанавливается в период диастолы;
  • увеличивается размер предсердий;
  • повышается возбудимость сердечной мышцы;
  • нарушается проведение импульсов.

Все эти факторы провоцируют развитие разнообразных нарушений ритма и системного кровообращения, появление болевого синдрома. При интенсивных нагрузках возникает одышка и ощущение перебоев, головокружение, боль в груди. В тяжелых случаях нарастает удушье, что является проявлением сердечной астмы или отека легких.

Аритмия

В нарушении ритма сердца существенное место отводится физиологическому повышению тонуса парасимпатической нервной системы, которое отмечается при интенсивных занятиях спортом. Это провоцирует , замедление проводимости импульсов в атриовентрикулярном узле, вплоть до .

Длительные нагрузки на выносливость могут быть причиной развития фибрилляции предсердий, приступов наджелудочковой и желудочковой тахикардии. Клиническая значимость аритмии многократно возрастает при наличии врожденных отклонений в строении и функционировании проводящей системы сердца. Так, например, наличие синдромов Вольфа-Паркинсона-Уайта или удлиненного интервала QT может быть причиной внезапной смерти.

Артериальная гипотония

Повышенный парасимпатический тонус приводит к понижению не только частоты пульса, но и сопротивления периферических артерий, поэтому давление крови у спортсменов ниже, чем у нетренированных сверстников. При этом большинство его не ощущают, так как в период нагрузок кровообращение активизируется – повышается минутный и ударный объем выброса крови. Если же компенсаторные механизмы слабеют, то изменений гемодинамики недостаточно.

Ухудшение самочувствия может быть связано с инфекцией, аллергической реакцией, травмой, обезвоживанием. В таких случаях возникает обморочное состояние, кратковременная утрата зрения, бледность кожи, шаткость при ходьбе, тошнота. Тяжелые случаи могут спровоцировать потерю сознания.

Изменения у детей

Если ребенок начинает интенсивно тренироваться в дошкольном возрасте, то из-за незавершенного процесса формирования сердечно-сосудистой и нервной системы адаптационные реакции нарушаются. Доказано, что через 7 — 10 месяцев от начала спортивных занятий у ребенка 5-7 лет повышается толщина миокарда и масса мышечной ткани в левом желудочке, но его растяжения не происходит. При этом существенное значение имеет отсутствие роста ударного объема сердца.

Гипертрофия сердечной мышцы без дилатации полостей происходит из-за высокого симпатического тонуса и чувствительности сердца к действию стрессовых гормонов. Этим можно объяснить большую степень напряженности миокарда и неэкономный расход энергии.

Детям рекомендуется более частый контроль всех гемодинамических показателей, чем в группе взрослых спортсменов, питание с достаточным содержанием белка и витаминов, а также щадящие тренировки с постепенным повышением интенсивности, перед соревнованиями.

Противопоказано заниматься спортом детям при наличии:

  • хронических болезней внутренних органов;
  • очагов инфекции в ЛОР-органах, зубах;
  • пороков сердца;
  • , в том числе и перенесенного;
  • аритмии;
  • врожденных нарушений проводимости;
  • нейроциркуляторной дистонии, особенно с повышенной активностью симпатической нервной системы.

Что особенного в сердце бывшего спортсмена

Мышечная ткань сердца, как и скелетной мускулатуры, после прекращения нагрузок имеет свойство возвращаться к исходному состоянию, утрачивая способность к активному функционированию. После месяца перерыва сердце начинает уменьшаться в размерах. При этом скорость такого процесса зависит от предшествующего этапа нагрузок – чем дольше занимался спортсмен, тем медленнее он теряет форму.

Особая опасность грозит тем людям, которые вынужденно или сознательно резко прекращают тренировки. Это в первую очередь приводит к нарушениям вегетативных влияний на сердце. Проявления могут быть в виде дискомфортных ощущений, одышки, застойных явлений в конечностях, нарушений ритма, вплоть до серьезных аритмий с недостаточностью кровообращения.

Препараты и витамины для миокарда

Специфическое лечение спортсменам не требуется, если отсутствуют:

  • боль в груди;
  • перебои в работе сердца;
  • повышенная утомляемость;
  • обморочные состояния;
  • изменения ЭКГ – ишемия, аритмия, нарушение проводимости.

В таких случаях изменения сердца считаются физиологическими, для укрепления миокарда могут быть использованы следующие препараты:

  • если преобладает гипертрофия миокарда – АТФ-форте, Неотон, Эспа-липон, Цитохром, при повышенном давлении и тахикардии назначают бета-блокаторы – , ;
  • при преимущественном расширении полостей сердца – Магне В6, Ритмокор, Метилурацил с фолиевой кислотой, Калия оротат, витамин В12;
  • витамины – специальные многокомпонентные комплексы для спортсменов (Оптимен, Оптивумен, Мультипро, Супермульти), витаминно-минеральные препараты (Супрадин, Фарматон, Олиговит);
  • адаптогены – настойка левзеи, родиолы, боярышника;
  • пищевые добавки – Омега 3, Убихинон, Янтарная кислота.

Если имеются существенные нарушения работы сердца, то этих средств недостаточно. При развитии синдрома патологического спортивного сердца проводится комплексное лечение с использованием гипотензивных, антиаритмических средств, кардиотоников.

Адаптация сердечно-сосудистой системы к спортивным занятиям зависит от специфики тренировок. При аэробных нагрузках преобладает расширение камер сердца, а при силовых – утолщение миокарда. При этом у всех спортсменов физиологическая парасимпатикотония вызывает замедление ритма, гипотонию и пониженную проводимость сердечных импульсов.

При появлении жалоб на работу сердца необходимо пройти полное обследование, так как перетренированность может привести к заболеваниям. Для повышения устойчивости к физическим нагрузкам используют препараты с учетом вида спорта и результатов диагностики.

Полезное видео

Смотрите на видео лекцию о беге и сердце:

Читайте также

Возникает гипертрофия левого желудочка сердца в основном из-за повышенного давления. Причины могут быть даже в гормональном фоне. Признаки и показания на ЭКГ довольно выражены. Бывает умеренная, концентрическая. Чем опасна гипертрофия у взрослых и детей? Как лечить патологию сердца?

  • Тренировать сердце нужно. Однако не все физические нагрузки при аритмии допустимы. Какие допустимые нагрузки при синусовой и мерцательной аритмии? Можно ли вообще заниматься спортом? Если выявлена аритмия у детей, спорт - табу? Почему аритмия возникает после занятий?
  • Проверять пульс человека необходимо с соблюдением ряда условий. Например, у мужчин и женщин, а также ребенка до 15 лет и спортсмена он будет сильно отличаться. Методы определения учитывают возраст. Нормальный показатель и нарушения в работе отразят состояние здоровья.
  • Объем потребления мышцей кислорода варьирует в зависимости от типа волокон. В медленных волокнах способность митохондрий извлекать кислород из крови примерно в 3-5 раз выше по сравнению с быстрыми волокнами.

    Минутный объем сердца - наиболее важ ный фактор, определяющий МПК. Во время тренировки на выносливость минутный объем сердца может увеличиться на 20%. Это является основной причиной изменений МПК, происходящих в результате тренировки, так как разница в (а~в)0 2 между выносливыми спортсменами и людьми, ведущими сидячий образ жизни, невелика.

    Несмотря на то, что высокий уровень МПК важен для выносливости, это не единственное условие успеха. Другие факторы спортивного успеха - способность продолжать тренироваться при высоком уровне потребления 0 2 , скорость и способность к удалению молочной кислоты.

    4. РЕГУЛЯЦИЯ ДЫХАНИЯ ПРИ ФИЗИЧЕСКОЙ НАГРУЗКЕ

    Во время физической нагрузки извлечение 0 2 из крови увеличивается втрое, что сопровождается 30-кратным или даже большим увеличением кровотока. Таким образом, во время физической нагрузки скорость метаболизма в мышцах может повыситься в целых 100 раз.

    4.1. Повышение альвеолярно-капиллярного градиента Р0 2 , кровоток и удаление С0 2

    Во время физической нагрузки увеличивается количество 0 2 , поступающего в кровь в легких. Р0 2 крови, попадающей в легочные капилляры, падает с 5,3 до 3,3 кПа (с 40 до 25 мм рт. ст.) или меньше, вследствие чего альвео-лярно-капиллярный градиент Р0 2 увеличивается, и больше 0 2 попадает в кровь. Минутный объем кровотока также увеличивается с 5,5 л/мин до 20~35 л/мин. Поэтому общее количество 0 2 , поступающего в кровь, увеличивается с 250 мл/мин в состоянии покое до значений, достигающих 4000 мл/мин. Увеличивается также количество С0 2 , удаленного из каждой единицы крови.

    Рост потребления 0 2 пропорционален нагрузке вплоть до максимального уровня. При увеличении нагрузки наступает момент, когда в крови начинает повышаться уровень молочной кислоты (лактатный порог). Когда аэробный ресинтез запасов энергии не поспевает за их использованием, образование молочной кислоты в мышцах возрастает, и возникает кислородная задолженность. На практике анаэробный порог достигается, когда уровень молочной кислоты в крови превышает 4 ммоль/л. Анаэробный порог можно изучать по изменению параметров дыхания и с помощью электромиографического исследования, при этом нет необходимости брать образцы крови для анализа, причиняющие некоторую боль.

    4.2. Изменения дыхательного коэффициента (ДК) во время физической нагрузки

    Дыхательный коэффициент (ДК) представляет собой отношение объема произведенного С0 2 к объему 0 2 , потребленного в единицу времени. В состоянии покоя он может составлять, например, 0,8. Когда преобладает метаболизм глюкозы, он равен 1. У людей, находящихся в плохой физической форме, метаболизм глюкозы преобладает над метаболизмом жиров уже при низком уровне нагрузки. У тренированных, выносливых спортсменов способность использовать жирные кислоты для производства энергии сохраняется и при высоком уровне нагрузки. Во время физической нагрузки ДК повышается; его значение, возможно, даже достигает 1,5-2,0 из-за дополнительного С0 2 , образовавшегося при буферизации молочной кислоты во время активной физической нагрузки. Во время компенсации кислородной задолженности после физической нагрузки ДК падает до 0,5 или ниже.

    4.3. Контроль вентиляции во время физической нагрузки

    Вентиляция легких увеличивается с началом физической нагрузки, но не сразу достигает необходимого в данный момент уровня, процесс происходит постепенно. Неотложная потребность в энергии восполняется богатыми энергией фосфатами, а затем их ресинтезом с использованием кислорода, который содержится в тканевой жидкости или накоплен в переносящих кислород белках (рис. 5).

    В начале физической нагрузки происходит резкое увеличение вентиляции, а в конце ее - столь же резкое уменьшение. Это наводит на мысль об условном или приобретенном рефлексе. Во время физической нагрузки можно ожидать заметного уменьшения давления кислорода в артериальной крови и повышения давления С0 2 в венозной крови из-за возросшего метаболизма скелетных мышц. Однако оба они остаются почти в норме, демонстрируя чрезвычайно высокую способность дыхательной системы обеспечивать адекватную оксигенацию крови, даже при тяжелой нагрузке. Поэтому газам крови не нужно отклоняться от нормы, чтобы физическая нагрузка простимулировала дыхание.

    Так как РС0 2 в артериальной крови не меняется во время умеренной физической нагрузки, накопления избытка Н + в результате из накопления С0 2 не наблюдается. Но во время напряженной физической нагрузки наблюдается увеличение концентрации Н + в артериальной крови вследствие образования и поступления молочной кислоты из мышц в кровь. Это изменение концентрации Н + , возможно, отчасти является причиной гипервентиляции во время серьезной физической нагрузки.

    Дыхание во время физической нагрузки, скорее всего, стимулируется в основном ней-рогенными механизмами. Часть этой стимуляции является результатом непосредственного возбуждения дыхательного центра ответвлениями аксонов, спускающихся из мозга к мотонейронам, обслуживающим сокращающиеся мышцы. Считается, что существенную роль в стимуляции дыхания во время физической нагрузки играют также афферентные пути от рецепторов в суставах и мышцах.

    Кроме того, в результате повышенной физической активности часто возрастает температура тела, что способствует стимуляции альвеолярной вентиляции. Возможно, стимуляции вентиляции во время физической нагрузки способствует увеличение концентрации адреналина и норадреналина в плазме крови.

    4.4. Фактор, ограничивающий способность переносить физическую нагрузку

    Нри максимальной физической нагрузке фактическая вентиляция легких составляет всего 50% от максимального дыхательного объема. Кроме того, насыщение гемоглобина артериальной крови кислородом происходит даже во время самой тяжелой физической нагрузки. Поэтому дыхательная система не может быть фактором, ограничивающим способность здорового человека переносить физическую нагрузку. Однако для людей в плохой физической форме натренированность дыхательных мышц может стать проблемой. Фактором, ограничивающим способность переносить физическую нагрузку, является способность сердца накачивать кровь к мышцам, которая, в свою очередь, влияет на максимальную скорость переноса 0 2 Функциональное состояние сердечно-сосудистой системы является распространенной проблемой. Митохондрии в сокращающейся мышце - это конечные потребители кислорода и важнейший определяющий фактор выносливости.

    5. УТОМЛЕНИЕ

    Все испытывают мышечную усталость, но пока еще остаются некоторые аспекты, которые в этом явлении поняты не до конца.

    Усталость может иметь компонент, связанный с центральной нервной системой. Чтобы продолжить тренировку или участие в соревнованиях, нужна мотивация. Люди - это социальные животные, и общение является важным фактором в процессе тренировки. В принципе, важную роль в утомлении могут играть мотонейроны, управляющие двигательными единицами. Нейроны высвобождают ацетилхолин при каждом командном импульсе. Запасы аце-тилхолина ограничены, и его синтез требует как энергии, так и сырья, причем запасы холина гораздо меньше, чем запасы уксусной кислоты. Следующим этапом, который может участвовать в утомлении, является нервно-мышечный синапс, где ацетилхолин передает импульс мышечным волокнам, а затем расщепляется. Еще одним источником усталости может быть клеточная мембрана волокна и ее транспортеры ионов. Необходимые ионы и их баланс могут быть слабым местом. В мышечных волокнах высок уровень калия, но он высвобождается, когда потенциал действия распространяется по всей цитоплазматической мембране мышечного волокна, и он, таким образом, может диффундировать, если повторный захват происходит слишком медленно. Транспортеры ионов нуждаются в энергии, равно как и внутриклеточные транспортеры кальция в мембране саркоплазматического ретикулума. Возможно также, что меняются транспортеры ионов или их липидная среда в мембранах. Источником энергии служат цитоплаз-матический гликолиз и митохондриальное окисление энергетического топлива. Каталитические белки могут стать менее функциональными из-за изменений, которые они претерпевают во время своего действия. Одной из причин является накопление молочной кислоты и понижение уровня рН, если нагрузка была настолько высока, что гликолиз происходит слишком быстро по сравнению с митохондриальным окислением вследствие ограничения усвояемости кислорода. Даже если затем обеспечение кислородом происходит удовлетворительно, но уровень нагрузки высок (например, 75-80% максимального потребления кислорода у спортсмена), утомление номешает выполнению нагрузки из-за нехватки гликогена в мышечных волокнах, хотя уровень глюкозы крови остается нормальным. Это указывает на важность правильного питания перед тяжелой физической нагрузкой на выносливость. Однако не рекомендуется принимать пищу непосредственно неред физической нагрузкой, потому что в таком случае кровообращение направлено в брюшную область и недоступно для мышц. Запасы гликогена нужно пополнять заранее.

    Повышенное потребление кислорода и полученные из кислорода радикалы могут повредить всем функциям мышечных волокон, если системе антиоксидантной защиты не удается защитить ферменты, мембранные липиды и транспортеры ионов. Очевидно, что антиоксидантная защита -одно из слабых мест, так как эксперименты над крысами показали, что пониженный уровень глутатиона непосредственно зависит от времени испытания. Проникновение митохондриальных и цитоплазматических белков в плазму во время тяжелой физической нагрузки указывает на то, что митохондрии могут быть повреждены, равно как и цитоплазматическая мембрана мышечных волокон.

    6. ЗАКЛЮЧЕНИЕ

    Тренировка на выносливость может увеличить плотность капилляров в мышцах и даже размер коронарных артерий, обеспечивая повышение объема кровообращения. Она может также уменьшить как систолическое, так и диастолическое кровяное давление примерно на 1-1 ,3 кПа (8~10 мм рт. ст.) у людей с умеренной гипертонией. Физическая нагрузка оказывает благоприятное воздействие на уровень липидов в крови. Хотя уменьшение общего содержания холестерина и уровня холестерина липопротеинов низкой плотности при тренировках на выносливость относительно невелико, по всей видимости, наблюдается относительно большое повышение уровня холестерина липопротеинов высокой плотности и снижение уровня тригли-церидов. Физическая нагрузка также играет важную роль в контроле и снижении массы тела и при контроле диабета. Благодаря этому и многим другим благоприятным воздействиям, регулярная физическая нагрузка может не только уменьшить риск сердечных приступов и инсультов, но и повышает качество жизни с улучшением как физической формы, так и умственных способностей. Кроме того, она может также способствовать увеличению продолжительности здоровой жизни.

    За последние три десятилетия внимание исследователей, занимающихся различными аспектами физической нагрузки, переместилось с отдельных органов на внутриклеточный/молекулярный уровень. Поэтому в будущем исследования физической нагрузки, вероятно, и дальше будут испытывать влияние новых технологий (например, генные микрочипы) и других инструментов молекулярной биологии. Эти обстоятельства, возможно, приведут к появлению таких областей, как функциональная гено-мика (идентификация функций различных участков генома) и протеомика (исследование свойств белков) в связи с физической нагрузкой.

    ГЛОССАРИЙ

    АДФ ~ аденозиндифосфат, высокоэнергетическое фосфатное соединение, из которого образуется АТФ.

    Актин - тонкая нить белка, которая взаимодействует с нитями миозина, чтобы заставить мышцу сократиться.

    Анаэробный - в отсутствие кислорода.

    Атрофия - потеря размера или массы ткани тела, например, атрофия мышц при неподвижности.

    АТФ - аденозинтрифосфат, высокоэнергетическое фосфатное соединение, из которого организм получает энергию.

    Аэробный - в присутствии кислорода.

    Аэробный метаболизм - процесс, происходящий в митохондриях, в ходе которого кислород используется для производства энергии (АТФ); также известен как клеточное дыхание.

    БГ - быстрый гликолитический.

    Беговая дорожка - эргометр, в котором система, состоящая из мотора и шкива, приводит в движение широкое полотно, по которому человек может идти или бежать.

    БОГ - быстрый окислительно-гликолитиче-ский.

    Быстрое волокно - тип мышечных волокон, имеющий высокую миозин-АТФазную активность с низкой окислительной способностью; задействуется в основном при скоростной или силовой активности.

    Венозный возврат - объем крови, поступающий к сердцу в единицу времени.

    Выносливость - способность сопротивляться усталости; включает в себя мышечную выносливость и кардиореспираторную выносливость.

    Гематокрит - процентное содержание эритроцитов в общем объеме крови.

    Гидростатическое давление - давление, оказываемое жидкостью.

    Гипертрофия - увеличение размера мышц в результате регулярной краткосрочной физической нагрузки высокой интенсивности.

    Гликоген - углевод (сильно разветвлённый полисахарид, состоящий из субъединиц глюкозы), накапливающийся в теле; встречается в основном в мышцах и печени.

    Гликолиз - метаболический путь, который расщепляет глюкозу на две молекулы пи-ровиноградной кислоты (аэробно) или две молекулы молочной кислоты (анаэробно).

    Гликолитический иуть метаболизма ~ метаболический путь, при котором энергия производится с помощью гликолиза.

    Гликолитическое волокно - волокно скелетной мышцы, в котором наблюдается высокая концентрация гликолитических ферментов и большой запас гликогена.

    ДК - дыхательный коэффициент, представляющий собой отношение объема произведенного С0 2 к объему 0 2 , потребленного в единицу времени

    Закон Франка-Старлинга - в определенных пределах повышенный конечно-диастоли-ческий объем сердца (увеличение длины мышечных волокон) увеличивает силу его сокращения.

    Изнеможение - неспособность работать.

    К - креатин, вещество, содержащееся в скелетных мышцах, обычно в форме креатин-фосфата (КФ).

    Кардиоваскулярный сдвиг - увеличение частоты сердечных сокращений во время физической нагрузки для компенсации уменьшения ударного объема сердца. Эта компенсация помогает поддерживать постоянный минутный объем сердца.

    Кардиореснираторная выносливость - способность выдерживать длительную физическую нагрузку.

    Кислородная задолженность - повышенное потребление кислорода после физической нагрузки по сравнению с состоянием покоя.

    Конечно-диастолический объем - объем крови в левом желудочке в конце диастолы, непосредственно перед сокращением.

    КФ - креатинфосфат, энергоемкое соединение, играющее ведущую роль в снабжении энергией работающих мышц с помощью поддержания концентрации АТФ путем передачи фосфата и энергии в АДФ.

    Лактатный норог - точка, по достижении которой метаболические потребности нри физической нагрузке уже не могут больше поддерживаться доступными аэробными источниками и возрастает анаэробный метаболизм, что выражается в увеличении концентрации молочной кислоты в крови.

    Медленное волокно - тип мышечных волокон, обладающий высокой окислительной и низкой гликолитической сиособностью; задействуется при нагрузке на выносливость.

    Миоглобин - гемопротеин, подобный гемоглобину, но содержащийся в мышечной ткани, запасающий кислород.

    Миозин - сократительный белок, из которого состоят толстые нити в мышечных волокнах.

    Миозин-АТФаза - ферментативный участок на шаровидной головке миозина, который катализирует расщепление АТФ до АДФ и Ф|, высвобождая химическую энергию, используемую для сокращения мышц. Мнофибрилла _ толстая или тонкая сокращающаяся нить в цитоплазме поперечнополосатой мышцы; пучки миофибрилл имеют повторяющуюся саркомерную структуру вдоль продольной оси скелетной мышцы.

    МО - медленный окислительный. Молочная кислота _ молекула с тремя атомами углерода, образованная гликолити-ческим путем в отсутствие кислорода; она распадается, образуя ионы лактата и водорода.

    MO max ~ максимальный минутный объем сердца.

    ПЧД - произведение ЧСС на давление (ПЧД = ЧСС х систолическое кровяное давление, где ЧСС _ частота сердечных сокращений); используется для оценки нагрузки на сердце во время физической нагрузки. МПК _ максимальное потребление кислорода, максимальная способность тела потреблять кислород при максимальном напряжении. Также известно как аэробная способность и показатель кардиореспира-торной выносливости. МПК = МО тах х (а - в)0 2тах, где МО тах ~ максимальный минутный объем сердца; (а - в)0 2тах ~~ максимальная ар-териовенозная разница по кислороду. Мышечная выносливость - снособность

    мышц избегать усталости. Мышечное волокно - клетка мышцы. «Мышечный насос» скелетной мышцы - эффект «мышечного насоса», который сокращающиеся скелетные мышцы оказывают на ток крови в расположенных ниже кровеносных сосудах. Окислительное фосфорилирование - процесс, при котором энергия, полученная в ходе реакции водорода и кислорода с образованием воды, передается АТФ во время его образования. ОПСС - общее периферическое сопротивление сосудов. Поперечный мостик - выступ на миозине, тянущийся от толстой нити мышечного волокна и способный приложить силу к тонкой нити, заставляя нити скользить друг по другу.

    Саркомер - повторяющаяся структурная единица миофибриллы; состоит из толстых и тонких нитей; располагается между двумя смежными Z-линиями.

    Сахарный дпабет - болезнь, при которой контроль глюкозы в плазме нарушается из-за недостатка инсулина или снижения отклика клетки-мишени на инсулин.

    Сгущение крови - относительное (не абсолютное) увеличение массы эритроцитов на единицу объема крови в результате со-кращепия плазменного объема.

    Система АТФ-КФ - другое название ~ фос-фагенная система. Простая анаэробная энергетическая система, функционирующая для поддержания уровня АТФ. Расщепление креатинфосфата (КФ) высвобождает Ф, который объединяется с АДФ, чтобы образовать АТФ.

    Систолическое кровяпое давление - максимальное артериальное кровяное давление во время сердечного цикла, являющееся результатом систолы (фаза сокращения сердца).

    Скелетная мышца - поперечнополосатая мышца, прикрепленная к костям или коже и отвечающая за движения скелета и выражение лица; управляется соматической нервной системой.

    Сократительная способность - сила сердечного сокращения, не зависящая от длины волокна.

    Снецифика тренировки - физиологическая адаптация к физической нагрузке высоко специфична по отношению к характеру физической активности. Чтобы извлечь максимальную пользу, тренировка должна полностью соответствовать нотребностям спортсмена и роду его физической активности.

    Теория «скользящих нитей» - теория, объясняющая действие мышц. Миозин при помощи поперечных мостиков соединяется с нитью актина, создавая усилие, которое заставляет две нити скользить друг относительно друга.

    Титин - эластичный белок в саркомерах.

    Тканевая жидкость - внеклеточная жидкость, окружающая клетки ткани; в нее не входит плазма, которая окружает клетки крови наряду с внеклеточной жидкостью.

    Толстая нить - нить миозина 12-18 нм в мышечной клетке.

    Тонкая нить -нить 5-8 нм в мышечной клетке, состоящая из актина, тропонина и тропомиозина.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    ФГБОУВПО ВОЛГОГРАДСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ФИЗИЧЕСКОЙ КУЛЬТУРЫ

    СРС № 1 на тему:

    Регуляция деятельности сердца

    Выполнила:

    Студентк 204 группы

    Азимли Р.Ш.

    Волгоград 2015

    Список литературы

    1. Физиологические свойства сердечной мышцы и их отличия от скелетной

    кровоток сокращение сердечный спортсмен

    К физиологическим свойствам сердечной мышцы относятся возбудимость, сократимость, проводимость и автоматия.

    Возбудимость -- это способность кардиомиоцитов и всей сердечной мышцы возбуждается при действии на нее механических, химических, электрических и других раздражителей, что находит свое применение в случаях внезапной остановки сердца. Особенностью возбудимости сердечной мышцы является то, что она подчиняется закону "все -- или ничего”. Это значит, что на слабый, допороговой силы раздражитель сердечная мышца не отвечает, (т.е. не возбуждается и не сокращается) ("ничего”), а на раздражитель пороговой, достаточной для возбуждения силы сердечная мышца реагирует своим максимальным сокращением ("все”) и при дальнейшем увеличении силы раздражения ответная реакция со стороны сердца не изменяется. Это связано с особенностями строения миокарда и быстрым распространением по нему возбуждения через вставочные диски -- нексусы и анастомозы мышечных волокон. Таким образом, сила сердечных сокращений в отличие от скелетных мышц не зависит от силы раздражения. Однако этот закон, открытый Боудичем, в значительной степени условен, так как на проявление данного феномена влияют определенные условия -- температура, степень утомления, растяжимость мышц и ряд других факторов.

    Проводимость -- это способность сердца проводить возбуждение. Скорость проведения возбуждения в рабочем миокарде разных отделов сердца неодинакова. По миокарду предсердий возбуждение распространяется со скоростью 0,8-- 1 м/с, по миокарду желудочков-- 0,8 --0,9 м/с. В атриовентрикулярной области на участке длиной и шириной в 1 мм проведение возбуждения замедляется до 0,02-- 0,05 м/с, что почти в 20 --50 раз медленнее, чем в предсердиях. В результате этой задержки возбуждение желудочков начинается на 0,12--0,18 с позже начала возбуждения предсердий. Существует несколько гипотез, объясняющих механизм атриовентрикулярной задержки, но этот вопрос требует своего дальнейшего изучения. Однако эта задержка имеет большой биологический смысл -- она обеспечивает согласованную работу предсердий и желудочков.

    Сократимость. Сократимость сердечной мышцы имеет свои особенности. Сила сердечных сокращений зависит от исходной длины мышечных волокон (закон Франка-Старлинга). Чем больше притекает к сердцу крови, тем более будут растянуты его волокна и тем большая будет сила сердечных сокращений. Это имеет большое приспособительное значение, обеспечивающее более полное опорожнение полостей сердца от крови, что поддерживает равновесие количества притекающей к сердцу, и оттекающей от него крови. Здоровое сердце уже при небольшом растяжении отвечает усиленным сокращением, в то время как слабое сердце даже при значительном растяжении лишь немного увеличивает силу своего сокращения, а отток крови осуществляется за счет учащения ритма сокращений сердца. Кроме того, если по каким-либо причинам произошло чрезмерное сверх физиолочески допустимых границ растяжение сердечных волокон, то сила последующих сокращений уже не увеличивается, а ослабляется.

    Автоматия - свойство, которым не обладают скелетные мышцы. Это свойство подразумевает возможность сердца ритмически возбуждаться без раздражителя из внешней среды.

    2. Частота сердечных сокращений и сердечный цикл в покое и при мышечной работе

    ЧСС (пульс) - толчкообразные колебания стенок артерий, связанные с сердечными циклами. В более широком смысле под пульсом понимают любые изменения в сосудистой системе, связанные с деятельностью сердца, поэтому в клинике различаютартериальный, венозный и капиллярный пульс.

    Частота сердечных сокращений зависит от многих факторов, включая возраст, пол, положение тела, условия окружающей среды. Она выше в вертикальном положении по сравнению с горизонтальном, уменьшается с возрастом. ЧСС покоя лежа-60 ударов в минуту; стоя-65. По сравнению с положением лежа в положении сидя ЧСС увеличивается на 10%, стоя на 20-30%. В среднем ЧСС составляет около 65 в минуту, однако наблюдается ее значительны колебания. У женщин этот показатель на 7-8 выше.

    ЧСС подвержена суточным колебаниям. Во время сна она снижена на 2-7, в течение 3 часов после приема пищи - возрастает, особенно, если пища богата белками, что связано с поступлением крови к органам брюшной полости. Температура окружающей среды оказывает влияние на ЧСС, которая увеличивается в линейной зависимости от эффективной температуры.

    У тренированных лиц ЧСС в покое ниже, чем у нетренированных и составляет около 50-55 ударов в минуту.

    Физические нагрузки приводят к увеличению ЧСС, необходимого для обеспечения возрастания минутного объема сердца, причем существует ряд закономерностей позволяющих использовать этот показатель как один из важнейших при проведении нагрузочных тестов.

    Отмечается линейная зависимость между ЧСС и интенсивностью работы в пределах 80-90% максимальной предельности нагрузок.

    При легкой физической нагрузке первоначально ЧСС значительно увеличивается, однако постепенно снижается до уровня, который сохраняется в течение всего периода стабильной нагрузки. При более интенсивных нагрузках имеется тенденция к увеличению ЧСС, причем при максимальной работе она нарастает до предельно достижимой. Эта величина зависит от тренированности, возраста, пола и других факторов. У тренированных людей частота сердечных сокращений достигает 180 уд/мин. При работе переменной мощности можно говорить о диапазоне частоты сокращений 130-180 уд/мин, в зависимости от изменения мощности.

    Оптимальная частота 180 уд/мин при различной нагрузке. Следует отметить, что работа сердца при очень большой частоте сокращений (200 и более) становится менее эффективнее, так как значительно сокращается время наполнения желудочков и уменьшается ударный объем сердца, что может привести к патологии (В.Л. Карпман, 1964; Е.Б. Сологуб, 2000).

    Тесты с возрастанием нагрузок до достижения максимальной ЧСС используется лишь в спортивной медицине, и нагрузка считается допустимой, если ЧСС достигает 170 в минуту. Этот предел обычно используется при определении переносимости физической нагрузки и функционального состояния сердечнососудистой и дыхательной систем.

    3. Систолический и минутный объем кровотока в покое и при мышечной работе у тренированных и нетренированных спортсменов

    Систолический (ударный) объем крови - это количество крови, которое сердце выбрасывает в соответствующие сосуды при каждом сокращении желудочка.

    Наибольший систолический объем наблюдается при частоте сердечных сокращений от 130 до 180 удар/мин. При частоте сердечных сокращений выше 180 удар/мин систолический объем начинает сильно снижаться.

    При ритме сердеч-ных сокращений 70 - 75 в минуту систолический объем равен 65 - 70 мл крови. У человека при горизонтальном положении тела в условиях покоя систолический объем составляет от 70 до 100 мл.

    В покое объем крови, выбрасываемый из желудочка, составляет в норме от трети до половины общего количества крови, содержащейся в этой камере сердца к концу диастолы. Оставшийся в сердце после систолы резервный объем крови является своеобразным депо, обеспечивающим увеличение сердечного выброса при ситуациях, в которых требуется быстрая интенсификация гемодинамики (например, при физической нагрузке, эмоциональном стрессе и др.).

    Минутный объем крови (МОК) - количество крови, перекачиваемой сердцем в аорту и легочный ствол за 1 мин.

    Для условий физического покоя и горизонтального положения тела испытуемого нормальные величины МОК соответствуют диапазону 4-6 л/мин (чаще приводятся величины 5-5.5 л/мин). Средние величины сердечного индекса колеблются от 2 до 4 л/(мин. м2) - чаще приводятся величины порядка 3-3.5 л/(мин. м2).

    Поскольку объем крови у человека составляет только 5-6 л, полный кругооборот всего объема крови происходит примерно за 1 мин. В период тяжелой работы МОК у здорового человека может увеличиться до 25-30 л/мин, а у спортсменов - до 35-40 л/мин.

    В системе транспорта кислорода аппарат кровообращения является лимитирующим звеном, поэтому соотношение максимальной величины МОК, проявляющейся при максимально напряженной мышечной работе, с его значением в условиях основного обмена дает представление о функциональном резерве всей сердечно-сосудистой системы. Это же соотношение отражает и функциональный резерв самого сердца по его гемодинамической функции. Гемодинамический функциональный резерв сердца у здоровых людей составляет 300-400 %. Это означает, что МОК покоя может быть увеличен в 3-4 раза. У физически тренированных лиц функциональный резерв выше - он достигает 500-700 %.

    Факторы, влияющие на систолический объём и минутный объём:

    1. масса тела, которой пропорциональна масса сердца. При массе тела 50 - 70 кг - объём сердца 70 - 120 мл;

    2. количество крови, поступающей к сердцу (венозный возврат крови) - чем больше венозный возврат, тем больше систолический объём и минутный объём;

    3. сила сердечных сокращений влияет на систолический объём, а частота - на минутный объём.

    4. Электрические явления в сердце

    Электрокардиография -- методика регистрации и исследования электрических полей, образующихся при работе сердца. Электрокардиография представляет собой относительно недорогой, но ценный метод электрофизиологическойинструментальной диагностики в кардиологии.

    Прямым результатом электрокардиографии является получение электрокардиограммы (ЭКГ) -- графического представления разности потенциалов возникающих в результате работы сердца и проводящихся на поверхность тела. На ЭКГ отражается усреднение всех векторов потенциалов действия, возникающих в определённый момент работы сердца.

    Список литературы

    1. А.С.Солодков, Е.Б.Сологуб…Физиология человека. Общая. Спортивная. Возрастная: Учебник. Изд. 2-е.

    Размещено на Allbest.ru

    ...

    Подобные документы

      Порядок распределения сердечного выброса в покое и при мышечной работе. Объем крови, его перераспределение и изменение при мышечной работе. Артериальное давление и его регуляция при мышечной работе. Кровообращение в зонах относительной мощности.

      курсовая работа , добавлен 07.12.2010

      Исследование адаптационных изменений сердечной деятельности и внешнего дыхания у спортсменов при нагрузке большой интенсивности в работах разных авторов. Анализ частоты пульса и дыхания у девушек до и после выполнения бега на короткие и длинные дистанции.

      курсовая работа , добавлен 11.05.2014

      Влияние двигательной активности на здоровье, механизмы адаптации организма к мышечной деятельности. Определение показателей артериального давления и частоты сердечных сокращений. Тренированность как специфическая форма адаптации к мышечной деятельности.

      дипломная работа , добавлен 10.09.2010

      Анализ кардиоритмограмм пловцов, гребцов и велосипедистов. Оценка вариабельности сердечного ритма спортсменов. Выявление общей картины динамики изменения частоты сердечных сокращений в зависимости от вида спорта и продолжительности спортивной карьеры.

      курсовая работа , добавлен 18.07.2014

      Основные показатели сердечно-сосудистой системы. Режимы и цикличность спортивных тренировок. Изменение артериального давления, частоты сердечных сокращений, ударного объема крови у спортсменов в недельном и месячном циклах тренировочного процесса.

      курсовая работа , добавлен 15.11.2014

      Особенности спортивного ориентирования, как отдельного цикличного вида спорта. Физическая и тактическая подготовка юных спортсменов-ориентировщиков. Тренировка мышечной массы, силовой выносливости, аэробной производительности организма юных спортсменов.

      курсовая работа , добавлен 06.12.2012

      Основные функции крови и её форменные элементы (эритроциты, лейкоциты и тромбоциты). Система крови под влиянием физической нагрузки. Порядок проведения и результаты исследования изменения показателей крови у спортсменов-лыжников при мышечной нагрузке.

      курсовая работа , добавлен 22.10.2014

      Значение биохимических исследований в подготовке спортсменов. Уровень гормонов и клинико-биохимических показателей в крови спортсменов до и после максимальной и стандартной физической нагрузки. Биоэнергетика мышечной деятельности: результаты исследований.

      отчет по практике , добавлен 10.09.2009

      Возрастные особенности в строении организма. Развитие систем энергетического обеспечения мышечной деятельности. Формирование двигательных качеств у детей. Методы и критерии оценки развития физической подготовленности и ориентации юных спортсменов.

      курсовая работа , добавлен 10.12.2012

      Поиск и разработка новых методик, способствующих повышению работоспособности и мышечной деятельности у спортсменов. Критерии оценивания данных методик и их значение в повышении эффективности тренировочного процесса. Особенности проведения степ-теста.


    Биохимические процессы

    Во время мышечной деятельности происходит усиление и учащение сердечных сокращений, что требует большего количества энергии по сравнению с состоянием покоя. Однако энергообеспечение сердечной мышцы осуществляется главным образом за счет аэробного ресинтеза АТФ. Анаэробные пути ресинтеза АТФ включаются лишь при очень интенсивной работе.

    Большие возможности аэробного энергообеспечения в миокарде обусловлены особенностью строения этой мышцы. В отличие от скелетных мышц в сердечной имеется более развитая, густая сеть капилляров, что позволяет извлекать из протекающей крови больше кислорода и субстратов окисления. Кроме того, в клетках миокарда имеется больше митохондрий, содержащих ферменты тканевого дыхания. В качестве источников энергии миокард использует различные вещества, доставляемые кровью: глюкозу, жирные кислоты, кетоновые тела, глицерин. Собственные запасы гликогена практически не используются; они необходимы для энергообеспечения миокарда при истощающих нагрузках.

    Во время интенсивной работы, сопровождающейся увеличением концентрации лактата в крови, миокард извлекает из крови лактат и окисляет его до углекислого газа и воды. При окислении одной молекулы молочной кислоты синтезируется до 18 молекул АТФ. Способность миокарда окислять лактат имеет большое биологическое значение. Использование лактата в качестве источника энергии позволяет дольше поддерживать в крови необходимую концентрацию глюкозы, что очень существенно для биоэнергетики нервных клеток, для которых глюкоза является почти единственным субстратом окисления. Окисление лактата в сердечной мышце также способствует нормализации кислотно-щелочного баланса, так как при этом в крови снижается концентрация этой кислоты.

    Снижение периферического сопротивления

    Существенным изменением в сердечно-сосудистой системе при динамической нагрузке в то же время является значительное снижение общего периферического сопротивления, вызванного накоплением метаболических вазодилататоров и снижением сосудистого сопротивления в активно работающей скелетной мускулатуре. Снижение общего периферического сопротивления представляет собой фактор, снижающий давление, который стимулирует увеличение симпатической активности посредством артериального барорецепторного рефлекса.

    Хотя среднее артериальное давление во время физической нагрузки выше нормы, однако снижение общего периферического сопротивления приводит к его падению ниже этого повышенного уровня, на котором оно должно было бы регулироваться в результате только воздействий на сосудодвигательный центр, направленных на подъем установочной точки. Артериальная барорецепторная дуга реагирует на данное обстоятельство увеличением симпатической активности. Таким образом, артериальный барорецепторный рефлекс в значительной степени обусловливает увеличение симпатической активности при физической нагрузке, несмотря на казалось бы противоречащий этому факт повышения уровня артериального давления по сравнению с нормой. Фактически, если бы не артериальный барорецепторный рефлекс, то снижение общего периферического сопротивления, происходящее во время физической нагрузки, вызвало бы падение среднего артериального давления существенно ниже нормы.

    Кровоток в коже может увеличиться при нагрузке, несмотря на общее увеличение тонуса симпатических сосудосуживающих нервов, поскольку термические рефлексы могут подавлять прессорные рефлексы при регуляции кровотока в коже в определенных условиях. Температурные рефлексы обычно, конечно, активируются во время усиленной физической нагрузки, чтобы устранить избыток тепла, который возникает во время активной работы скелетной мускулатуры. Часто кровоток в коже снижается в начале нагрузки (как часть общего увеличения тонуса артериол в результате увеличения активности симпатических сосудосуживающих нервов), а затем возрастает при ее продолжении по мере того, как нарастает теплопродукция и температура тела.

    Помимо увеличения кровотока в скелетной мускулатуре и коже, при тяжелой физической нагрузке также существенно возрастает коронарный кровоток. Это прежде всего обусловлено локальной метаболической вазодилатацией коронарных артериол, вследствие усиления работы сердца и увеличения потребления кислорода миокардом.

    Существуют два важных механизма, участвующих в реакции сердечно-сосудистой системы на динамическую физическую нагрузку. Первый - это насос скелетной мускулатуры, который мы обсуждали в связи с вертикальным положением тела. Насос скелетной мускулатуры является очень важным фактором усиления венозного возврата при физической нагрузке и таким образом предупреждает чрезмерное снижение центрального венозного давления вследствие увеличения частоты сердечных сокращений и сократительной способности миокарда. Второй фактор - это дыхательный насос, который также способствует венозному возврату при физической нагрузке. Усиление дыхательных движений во время физической нагрузки ведет к увеличению эффективности деятельности дыхательного насоса и, тем самым, способствует повышению венозного возврата и наполнения сердца.

    Средняя величина центрального венозного давления при значительной динамической физической нагрузке изменяется несущественно, или вообще не меняется. Это происходит, потому что обе кривые минутного объема и венозного возврата сдвигаются кверху при физической нагрузке. Таким образом, минутный объем и венозный возврат увеличиваются без значительных изменений центрального венозного давления.

    В целом, значительные адаптационные изменения деятельности сердечно-сосудистой системы при динамической физической нагрузке, происходят автоматически, вследствие работы нормальных механизмов регуляции! деятельности сердечно-сосудистой системы. Колоссальное увеличение кровотока в скелетной мускулатуре осуществляется преимущественно за счет увеличения минутного объема сердца, но частично это также осуществляется за счет уменьшения кровотока в почках и органах брюшной полости.

    При статической (т.е. изометрической) физической нагрузке в сердечно-сосудистой системе возникают изменения, отличные от изменений при динамической нагрузке. Как обсуждалось в предыдущем разделе, динамическая нагрузка приводит к существенному уменьшению общего периферического сопротивления, вследствие локальной метаболической вазодилатации в работающих мышцах. Статическое напряжение, даже умеренной интенсивности, вызывают сдавление сосудов в сокращающихся мышцах и снижение объемного кровотока в них. Таким образом, общее периферическое сопротивление обычно не снижается при статической физической нагрузке и может даже существенно увеличиться, если в работу вовлечены некоторые крупные мышцы. Первичные изменения в деятельности сердечно-сосудистой системы во время статической нагрузки представляют собой повышающие установочную точку потоки импульсов в сосудодвигательный центр продолговатого мозга из коры головного мозга (центральная команда) и от хеморецепторов в сокращающихся мышцах.

    Воздействие на сердечно-сосудистую систему статической нагрузки приводит к увеличению частоты сердечных сокращений, минутного объема и артериального давления - все это является результатом усиления активности симпатических центров. Статическая нагрузка в то же время приводят к меньшему увеличению частоты сердечных сокращений и минутного объема и большему увеличению диастолического, систолического и среднего артериального давления, чем это происходит при динамической физической нагрузке.