Особенности ээг у детей норма и нарушения. Возрастные особенности ээг здоровых детей - клиническая электроэнцефалография. Наиболее распространение диагнозы на основе ЭЭГ

Страница 48 из 59

Видео: Магнитоэнцефалография (МЭГ) - Строгонова Татьяна

11
ЭЛЕКТРОЭНЦЕФАЛОГРАММЫ ДЕТЕЙ В НОРМЕ И ПАТОЛОГИИ
ВОЗРАСТНЫЕ ОСОБЕННОСТИ ЭЭГ ЗДОРОВЫХ ДЕТЕЙ
ЭЭГ ребенка в значительной степени отличается от ЭЭГ взрослого человека. В процессе индивидуального развития электрическая активность различных областей коры претерпевает ряд существенных изменений, обусловленных гетерохронностью созревания коры и подкорковых образований и различной степенью участия этих структур мозга в формировании ЭЭГ.
Среди многочисленных исследований в этом направлении наиболее фундаментальными являются работы Lindsley (1936), F. Gibbs и Е. Gibbs (1950), G. Walter (1959), Lesny (1962), Л. А. Новиковой
, Н. Н. Зислиной (1968), Д. А. Фарбер (1969), В. В. Алферовой (1967) и др.
Отличительной чертой ЭЭГ детей младшего возраста является наличие во всех отделах полушарий медленных форм активности и слабая выраженность регулярных ритмических колебаний, которые занимают основное место на ЭЭГ взрослого человека.
ЭЭГ бодрствования новорожденных детей характеризуется присутствием во всех областях коры низкоамплитудных колебаний различной частоты.
На рис. 121, А представлена ЭЭГ ребенка, записанная на 6-й день после рождения. Во всех отделах полушарий доминирующий ритм отсутствует. Регистрируются низкоамплитудные асинхронные дельта-волны и единичные тета-колебания с сохраненными на их фоне низковольтными бета-колебаниями. В период новорожденности при переходе ко сну наблюдается увеличение амплитуды биопотенциалов и появление групп ритмических синхронизированных волн частотой 4-6 Гц.
С возрастом ритмическая активность занимает все большее место на ЭЭГ и более устойчиво проявляется в затылочных областях коры. К 1 году средняя частота ритмических колебаний в этих отделах полушарий составляет от 3 до 6 Гц, а амплитуда достигает 50 мкВ. В возрасте от 1 года до 3 лет на ЭЭГ ребенка отмечается дальнейшее увеличение частоты ритмических колебаний. В затылочных областях преобладают колебания частотой 5-7 Гц, тогда как число колебаний частотой 3-4 Гц уменьшается. Медленная активность (2-3 Гц) устойчиво проявляется в передних отделах полушарий. В этом возрасте на ЭЭГ наблюдается наличие частых колебаний (16-24 Гц) и синусоидальных ритмических колебаний частотой 8 Гц.

Рис. 121. ЭЭГ детей младшего возраста (по Dumermulh et а)., 1965).
А - ЭЭГ ребенка в возрасте 6 дней- во всех областях коры регистрируются низкоамплитудные асинхронные дельта-волны и единичные тета-колебания- Б - ЭЭГ ребенка 3 лет- в задних отделах полушарий регистрируется ритмическая активность частотой 7 Гц- полиморфные дельта-волны выражены диффузно- в передних отделах проявляются частые бета-колебания.
На рис. 121, Б приведена ЭЭГ ребенка 3 лет. Как видно на рисунке, в задних отделах полушарий регистрируется устойчивая ритмическая активность с частотой 7 Гц. Полиморфные дельта-волны различного периода выражены диффузно. В лобно-центральных областях постоянно регистрируются низковольтные бета-колебания, синхронизированные в бета-ритм.
В 4 года в затылочных областях коры более постоянный характер приобретают колебания частотой 8 Гц. Однако в центральных областях доминируют тета-волны (5-7 колебаний в секунду). В передних отделах устойчиво проявляются дельта-волны.
Впервые четко выраженный альфа-ритм частотой в 8-10 Гц появляется на ЭЭГ детей в возрасте от 4 до 6 лет. У 50% детей этого возраста альфа-ритм устойчиво регистрируется в затылочных областях коры. ЭЭГ передних отделов носит полиморфный характер. В лобных областях отмечается большое число высокоамплитудных медленных волн. На ЭЭГ этой возрастной группы наиболее часто встречаются колебания частотой 4-7 Гц.


Рис. 122. ЭЭГ ребенка 12 лет. Альфа-ритм регистрируется регулярно (по Dumermuth et al., 1965).
В ряде случаев электрическая активность детей 4-6 лет носит полиморфный характер. Интересно отметить, что на ЭЭГ детей этого возраста могут регистрироваться группы тета-колебаний, иногда генерализованные но всем отделам полушарий.
К 7-9 годам происходит уменьшение числа тета-волн и увеличение количества альфа-колебаний. У 80% детей этого возраста альфа-ритм устойчиво доминирует в задних отделах полушарий. В центральной области альфа-ритм составляет 60% всех колебаний. В передних областях регистрируется низковольтная полиритмическая активность. На ЭЭГ некоторых детей в этих областях преимущественно выражены высокоамплитудные билатеральные разряды тета-волн, периодически синхронизированные но всем отделам полушарии. Преобладание тета-волн в теменно-центральных областях наряду с наличием пароксизмальных билатеральных вспышек тета-активности у детей в возрасте от 5 до 9 лет расценивается рядом авторов (Д. А. Фарбер, 1969- В. В. Алферова, 1967- Н. Н. Зислина, 1968- С. С. Мнухнн и А. И. Степанов, 1969, и др.) как показатель повышенной активности диэнцефальных структур мозга на этом этапе онтогенеза.
Изучение электрической активности мозга детей 10-12 лет показало, что альфа-ритм в этом возрасте становится доминирующей формой активности не только в каудальных, но и в ростральных отделах мозга. Частота его увеличивается до 9-12 Гц. Одновременно с этим отмечается значительное уменьшение тета-колебаний, по они все еще регистрируются в передних отделах полушарий, чаще в виде единичных тета-волн.
На рис. 122 представлена ЭЭГ ребенка А. 12 лет. Можно отметить, что альфа-ритм регистрируется регулярно и проявляется с градиентом от затылочных областей к лобным. В ряду альфа-ритма наблюдаются отдельные заостренные альфа-колебания. В лобно-центральных отведениях регистрируются единичные тета-волны. Дельта-активность выражена диффузно и негрубо.
В 13-18 лет на ЭЭГ во всех отделах полушарий проявляется единый доминирующий альфа-ритм. Медленная активность почти отсутствует- характерной особенностью ЭЭГ является увеличение числа быстрых колебаний в центральных областях коры.
Сопоставление выраженности различных ритмов ЭЭГ у детей и подростков разных возрастных групп показало, что наиболее общей тенденцией развития электрической активности мозга с возрастом является уменьшение, вплоть до полного исчезновения, неритмических медленных колебаний, доминирующих на ЭЭГ детей младших возрастных групп, и замена этой формы активности регулярно выраженным альфа-ритмом, являющимся в 70% случаев основной формой активности ЭЭГ взрослого здорового человека.

Видео: Всеукраинская ассоциация по неврологии и рефлексотерапии


Известно, что у здорового человека картина биоэлектрической активности головного мозга, отражающей его морфо-функциональное состояние, непосредственно определяется возрастным периодом и, следовательно, в каждый из них имеет свои особенности. Наиболее интенсивные процессы, связанные с развитием структуры и функциональным совершенствованием головного мозга, происходят в детском возрасте, что и выражается в наиболее существенных изменениях качественных и количественных показателей электроэнцефалограммы в этот период онтогенеза.

2.1. Особенности детской ЭЭГ в состоянии спокойного бодрствования

Электроэнцефалограмма новорожденного доношенного ребенка в состоянии бодрствования полиморфна с отсутствием организованной ритмической активности и представлена генерализованными нерегулярными низкоамплитудными (до 20 мкВ) медленными волнами преимущественно дельта-диапазона частотой 1–3 кол./с. без регионарных различий и четкой симметричности [Фарбер Д. А., 1969, Зенков Л. Р., 1996]. Возможна наибольшая амплитуда паттернов в центральных [Посикера И. Н., Строганова Т. А., 1982] или в теменно-затылочных отделах коры, могут наблюдаться эпизодические серии нерегулярных альфа-колебаний амплитудой до 50–70 мкВ (рис. 2.1).

К 1-2,5 месяцам у детей увеличивается амплитуда биопотенциалов до 50 мкВ, может отмечаться ритмическая активность частотой 4-6 кол./с в затылочных и центральных областях. Преобладающие дельта-волны приобретают билатерально-синхронную организацию (рис. 2.2).

С 3 -месячного возраста в центарльных отделах может определяться мю-ритм c частотой, варьирующей в диапазоне 6–10 кол./с (частотная мода мю-ритма составляет 6,5 кол/с), амплитудой до 20–50 мкВ иногда с умеренной межполушарной асимметрией .

С 3-4 месяцев в затылочных областях регистрируется ритм частотой около 4 кол./с, реагирующий на открывание глаз. В целом ЭЭГ продолжает оставаться нестабильной с присутствием колебаний разной частоты (рис. 2.3).

К 4 месяцам у детей отмечается диффузная дельта- и тета-активность, в затылочных и центральных областях может быть представлена ритмическая активность частотой 6–8 кол./с.

С 6-го месяца на ЭЭГ доминирует ритм 5–6 кол./с [Благосклонова Н. К., Новикова Л. А., 1994] (рис. 2.4).

По данным Т.А. Строгановой с соавторами (2005) средняя пиковая частота альфа-активности в 8-месячном возрасте составляет 6,24 кол./с, а в 11-месячном - 6,78 кол./с. Частотная мода мю-ритма в период с 5–6 месяцев до 10–12 месяцев составляет 7 кол./с и 8 кол./с - после 10-12 месяцев.

Электроэнцефалограмма ребенка в возрасте 1 года характеризуется выраженными во всех регистрируемых областях синусоидальными колебаниями альфа-подобной активности (альфа-активности - онтогенетического варианта альфа-ритма) с частотой от 5 до 7, реже 8–8,5 кол/сек, перемежающимися отдельными волнами наибольшей частоты и диффузными дельта-волнами [Фарбер Д.А., Алферова В.В., 1972; Зенков Л.Р., 1996]. Альфа-активность отличается нестабильностью и, несмотря на широкую региональную представленность, как правило, не превышает 17–20 % от общего времени записи. Основная доля принадлежит тета-ритму - 22–38 %, а также дельта-ритму - 45–61 %, на который могут накладываться альфа- и тета-колебания. Амплитудные значения основных ритмов у детей вплоть до 7 лет варьируют в следующих приделах: амплитуда альфа-активности - от 50 мкВ до 125 мкВ, тета-рита - от 50 мкВ до 110 мкВ, дельта-ритма - от 60 мкВ до 100 мкВ [Королева Н.В., Колесников С.И., 2005] (рис. 2.5).

В возрасте 2 лет альфа-активность также представлена во всех областях, хотя ее выраженность уменьшается к передним отделам коры больших полушарий. Альфа-колебания имеют частоту 6–8 кол/сек и перемежаются группами высокоамплитудных колебаний с частотой 2,5–4 кол/сек. Во всех регистрируемых областях может отмечаться наличие бета-волн частотой 18–25 кол/сек [Фарбер Д. А., Алферова В. В., 1972; Благосклонова Н. К., Новикова Л. А., 1994; Королева Н. В., Колесников С. И., 2005]. Величины индексов основных ритмов в этом возрасте близки таковым у годовалых детей (рис. 2.6). Начиная с 2 лет у детей на ЭЭГ в ряду альфа-активности, чаще в теменно-затылочной области могут выявляться полифазные потенциалы, представляющие собой сочетание альфа-волны с предшествующей или следующей за ней медленной волной. Полифазные потенциалы могут быть билатерально-синхронными, несколько асимметричными или преобладать попеременно в одном из полушарий [Благосклонова Н. К., Новикова Л. А., 1994].

На электроэнцефалограмме 3–4-летнего ребенка доминируют колебания тета-диапазона. Вместе с тем, преобладающая в затылочных отведениях альфа-активность продолжает сочетаться со значительным числом высокоамплитудных медленных волн частотой 2–3 кол/сек и 4–6 кол/сек [Зислина Н. Н., Тюков В. Л., 1968]. Индекс альфа-активности в этом возрасте колеблется в пределах 22–33 %, индекс тета-ритма составляет 23–34 %, а представленность дельта-ритма снижается до 30–45 %. Частота альфа-активности в среднем составляет 7,5–8,4 кол/сек, варьируя от 7 до 9 кол/сек. То есть в этот возрастной период происходит появление фокуса альфа-активности с частотой 8 кол/сек. Параллельно возрастает и частота колебаний спектра тета [Фарбер Д. А., Алферова В. В, 1972; Королева Н. В., Колесников С. И, 2005 Normal..., 2006]. Альфа-активность имеет наибольшую амплитуды в теменно-затылочных областях и может приобретать заостренную форму (рис. 2.7). У детей вплоть до 10-12-летнего возраста в электроэнцефалограмме на фоне основной активности могут выявляться высокоамплитудные билатерально-синхронные вспышки колебаний частотой 2–3 и 4–7 кол/сек, преимущественно выраженных в лобно-центральных, центрально-теменных или теменно-затылочных областях коры мозга , либо имеющие генерализованный характер без выраженного акцента. На практике, приведенные пароксизмы, расцениваются как признаки гиперактивности стволовых структур мозга. Отмеченные пароксизмы наиболее часто встречаются при гипервентиляции (рис. 2.22 , рис. 2.23 , рис. 2.24 , рис. 2.25).

В 5-6-летнем возрасте на электроэнцефалограмме повышается организация основного ритма и устанавливается активность с частотой альфа-ритма свойственной взрослым. Индекс альфа-активности составляет более 27 %, показатели тета-индекса - 20–35 %, дельта-индекса - 24–37 %. Медленные ритмы имеют диффузное распределение и не превышают по амплитуде альфа-активность, которая по амплитуде и индексу преобладает в теменно-затылочных областях. Частота альфа-активности в пределах одной записи может варьировать от 7,5 до 10,2 кол/сек, но ее средняя частота составляет 8 и более кол/сек (рис. 2.8).

В электроэнцефалограммах 7-9-летних детей альфа-ритм представлен во всех областях, но его наибольшая выраженность характерна для теменно-затылочных областей. В записи преобладают альфа- и тета-риты, индекс более медленной активность не превышает 35 %. Показатели альфа-индекса варьируют в пределах 35–55 %, а тета-индекса - в пределах 15–45 %. Бета-ритм выражен в виде групп волн и регистрируется диффузно или с акцентом в лобно-височных областях, частотой 15–35 кол/сек, амплитудой до 15–20 мкВ. Среди медленных ритмов преобладают колебания с частотой 2–3 и 5–7 кол/сек. Преобладающая частота альфа-ритма в этом возрасте составляет 9–10 кол/сек и имеет наибольшие свои значения в затылочных областях. Амплитуда альфа-ритма у разных индивидуумов варьирует в пределах 70–110 мкВ, медленные волны могут иметь наибольшую амплитуду в теменно-задневисочно-затылочных областях, которая всегда ниже амплитуды альфа-ритма. Ближе к 9-летнему возрасту в затылочных областях могут появляться не четко выраженные модуляции альфа-ритма (рис. 2.9).

В электроэнцефалограммах детей 10–12 лет созревание альфа-ритма в основном завершается. В записи регистрируется организованный хорошо выраженный альфа-ритм, доминирующий по времени регистрации над остальными основными ритмами и по индексу составляющий 45–60 %. По амплитуде альфа-ритм преобладает в теменно-затылочных или задневисочно-теменно-затылочных отделах, где также альфа-колебания могут группироваться в пока еще не четко выраженные отдельные модуляции. Частота альфа-ритма варьирует в пределах 9–11 кол/сек и чаще колеблется около 10 кол/сек. В передних отделах альфа-ритма менее организован и равномерен, а также заметно ниже по амплитуде. На фоне доминирующего альфа-ритма выявляются единичные тета-волны с частотой 5–7 кол/сек и по амплитуде не превышающей другие компоненты ЭЭГ. Также с 10 лет отмечается усиление бета-активности в лобных отведениях. Билатеральные генерализованные вспышки пароксизмальной активности с этого этапа онтогенеза у подростков в норме уже не регистрируются [Благосклонова Н. К., Новикова Л. А., 1994; Соколовская И.Э., 2001] (рис. 2.10).

ЭЭГ подростков в возрасте 13–16 лет характеризуется продолжающимися процессами формирования биоэлектрической активности мозга. Альфа-ритм становится доминирующей формой активности и преобладает во всех областях коры, средняя частота альфа-ритма равняется 10–10,5 кол/сек [Соколовская И. Э., 2001]. В некоторых случаях, наряду с достаточно выраженным в затылочных отделах альфа-ритмом, может отмечаться меньшая его стабильность в теменных, центральных и лобных областях коры и сочетание его с низкоамплитудными медленными волнами. В этот возрастной период устанавливается наибольшая степень сходства альфа-ритма затылочно-теменных и центрально-лобных областей коры, отражая увеличение сонастройки различных областей коры в процессе онтогенеза. Также снижаются амплитуды основных ритмов, приближаясь к таковым у взрослых, наблюдается уменьшение резкости регионарных различий основного ритма в сравнение с детьми младшего возраста (рис. 2.11). После 15 лет у подростков постепенно исчезают на ЭЭГ полифазные потенциалы, изредка встречаясь в виде единичных колебаний; перестают регистрироваться синусоидальные ритмические медленные волны частотой 2,5–4,5 кол/сек; уменьшается степень выраженности низкоамплитудных медленных колебаний в центральных областях коры.

ЭЭГ достигает полной степени зрелости, характерной для взрослых людей к 18–22 годам [Благосклонова Н. К., Новикова Л. А., 1994].

2.2. Изменение детской ЭЭГ при функциональных нагрузках

При анализе функционального состояния головного мозга важно оценивать характер его биоэлектрической активности не только в состоянии спокойного бодрствования, но и ее изменения при функциональных нагрузках. Наиболее распространенными из них являются: проба с открыванием-закрыванием глаз, проба с ритмической фотостимуляцией, гипервентиляцией, депривацией сна.

Проба с открыванием-закрыванием глаз необходима для оценки реактивности биоэлектрической активности головного мозга. При открывании глаз отмечается генерализованное подавление и снижение амплитуды альфа-активности и медленноволновой активности представляющее собой реакцию активации. Во время реакции активации в центральных областях билатерально может сохраняться мю-ритм с частотой 8-10 кол/сек и по амплитуде не превышающий альфа-активность. При закрывании глаз альфа-активность усиливается.

Реакция активации осуществляется за счет активирующего влияния ретикулярной формации среднего мозга и зависит от зрелости и сохранности нейронного аппарата коры больших полушарий.

Уже в период новорожденности в ответ на вспышку света отмечается уплощение ЭЭГ [Фарбер Д.А., 1969; Бетелева Т.Г и др., 1977; Westmoreland B. Stockard J., 1977; Coen R.W., Tharp B.R., 1985]. Однако у маленьких детей реакция активации выражена плохо и с возрастом ее выраженность улучшается (рис. 2.12).

В состоянии спокойного бодрствования реакция активации отчетливее начинает проявляться с 2-3-месячного возраста [Фарбер Д.А., 1969] (рис. 2.13).

Дети в возрасте 1–2 лет имеют слабо выраженную (75-95 % сохранения амплитудного уровня фона) реакцию активации (рис. 2.14).

В период 3–6 лет нарастает частота встречаемости достаточно выраженной (50–70 % сохранения амплитудного уровня фона) реакция активации и увеличивается ее индекс, а с 7 лет у всех детей регистрируется реакция активации, составляющая 70 % и менее сохранения амплитудного уровня фона ЭЭГ (рис. 2.15).

К 13 годам реакция активации стабилизируется и приближается к характерному для взрослых типу, выраженному в виде десинхронизации корковой ритмики [Фарбер Д.А., Алферова В.В., 1972] (рис. 2.16).

Проба с ритмической фотостимуляцией применяется для оценки характера реагирования головного мозга на внешние воздействия. Также ритмическая фотостимуляция часто используется для провокации патологической ЭЭГ-активности.

Типичным ответом на ритмическую фотостимуляцию в норме является реакция усвоения (навязывания, следования) ритма - способность колебаний ЭЭГ повторять ритм световых мельканий c частотой равного частоте световых мельканий (рис. 2.17) в гармонике (при трансформации ритмов в сторону высоких частот, кратных частоте световых вспышек) или субгармонике (при трансформация ритмов в сторону низких частот, кратных частоте световых вспышек) (рис. 2.18). У здоровых обследуемых реакция усвоения ритма наиболее отчетливо выражена при частотах, близких к частотам альфа-активности, максимально и симметрично проявляется в затылочных отделах полушарий [Благосклонова Н.К., Новикова Л.А., 1994; Зенков Л.Р., 1996], хотя у детей возможна и более генерализованная ее выраженность (рис. 2.19). В норме реакция усвоения ритма прекращается не позднее, чем через 0,2–0,5 с после окончания фотостимуляции [Зенков Л.Р., Ронкин М.А., 1991].

Реакция усвоения ритма, также как и реакция активации, зависит от зрелости и сохранности нейронов коры и интенсивности воздействия неспецифических структур мозга мезодиэнцефального уровня на кору головного мозга.

Реакция усвоения ритма начинает регистрироваться с периода новорожденности и преимущественно представлена в диапазоне частот от 2 до 5 кол./с [Благосклонова Н.К., Новикова Л.А., 1994]. Диапазон усваиваемых частот коррелирует с изменяющейся с возрастом частотой альфа-активности .

У детей 1–2 лет диапазон усваиваемых частот составляет 4–8 кол/сек. В дошкольном возрасте усвоение ритма световых мельканий наблюдается в диапазоне тета-частот и альфа-частот, с 7–9 у детей оптимум усвоения ритма перемещается в диапазон альфа-ритма [Зислина Н.Н., 1955; Новикова Л.А., 1961], а у детей старшего возраста - в диапазон альфа и бета-ритмов.

Проба с гипервентиляцией как и проба с ритмической фотостимуляцией, может усиливать или провоцировать патологическую активность мозга. Изменения ЭЭГ во время гипервентиляции обусловлены церебральной гипоксией, вызванной рефлекторным спазмом артериол и уменьшением мозгового кровотока в ответ на снижение в крови концентрации углекислого газа . В связи с тем, что реактивность церебральных сосудов снижается с возрастом, падение уровня насыщения кислородом во время гипервентиляции более выражено в возрасте до 35 лет. Это обусловливает значительные изменения ЭЭГ во время гипервентиляции в молодом возрасте [Благосклонова Н.К., Новикова Л.А., 1994].

Так у детей дошкольного и младшего школьного возраста при гипервентиляции могут значительно увеличиваться амплитуда и индекс медленной активности с возможным полным замещением альфа-активность (рис. 2.20 , рис. 2.21).

Кроме того, в этом возрасте при гипервентиляции могут появляться билатерально-синхронные вспышки и периоды высокоамплитудных колебаний частотой 2–3 и 4–7 кол/сек, преимущественно выраженные в центрально-теменных, теменно-затылочных или центрально-лобных областях коры мозга [Благосклонова Н.К., Новикова Л.А., 1994; Blume W.T., 1982; Соколовская И.Э., 2001] (рис. 2.22 , рис. 2.23) либо имеющие генерализованный характер без выраженного акцента и обусловленные повышенной активностью срединно-стволовых структур (рис. 2.24 , рис. 2.25).

После 12–13 лет реакция на гипервентиляцию постепенно становится менее выраженной, может отмечаться небольшое снижение стабильности, организации и частоты альфа-ритма, незначительное увеличение амплитуды альфа-ритма и индекса медленных ритмов (рис. 2.26).

Билатеральные генерализованные вспышки пароксизмальной активности с этого этапа онтогенеза как правило в норме уже не регистрируются.

Изменения ЭЭГ после гипервентиляции в норме, как правило, сохраняются не более 1 минуты [Благосклонова Н.К., Новикова Л.А., 1994].

Проба с депривацией сна заключается в уменьшении времени продолжительности сна по сравнению с физиологической и способствует снижению уровня активации коры больших полушарий со стороны неспецифических активирующих систем ствола головного мозга. Снижение уровня активации и повышение возбудимости коры головного мозга у больных эпилепсией способствует проявлению эпилептиформной активности, преимущественно при идиопатических генерализованных формах эпилепсии (рис. 2.27а , рис. 2.27б)

Наиболее мощным способом активации эпилептиформных изменений является регистрация ЭЭГ сна после предварительной его депривации [Благосклонова Н.К., Новикова Л.А., 1994; Chlorpromazine..., 1994; Foldvary-Schaefer N., Grigg-Damberger M., 2006].

2.3.Особенности детской ЭЭГ во время сна

Сон давно считается мощным активатором эпилептиформной активности . Известно, что эпилептиформная активность отмечается преимущественно в I и II стадиях медленного сна . Рядом авторов отмечено, что медленноволновой сон избирательно облегчает возникновение генерализованных пароксизмов, а быстрый сон - локальных и особенно височного генеза .

Как известно, медленная и быстрая фазы сна соотносятся с деятельностью различных физиологических механизмов, а между регистрируемыми во время этих фаз сна электроэнцефалографическими феноменами и активностью коры и подкорковых образований мозга существует связь. Главной синхронизирующей системой, ответственной за фазу медленного сна, является таламо-кортикальная система. В организации быстрого сна, характеризующегося десинхронизирующими процессами, участвуют структуры ствола головного мозга, в основном варолиевого моста.

Кроме того, у детей раннего возраста целесообразнее осуществлять оценку биоэлектрической активности в состоянии сна, не только потому, что в этот возрастной период запись во время бодрствования искажена двигательными и мышечными артефактами, но и в связи с ее недостаточной информативностью вследствие не сформированности основного коркового ритма. В то время как, возрастная динамика биоэлектрической активности в состоянии сна идет значительно интенсивнее и уже в первые месяцы жизнии у ребенка на электроэнцефалограмме сна наблюдаются все основные ритмы, свойственные в этом состоянии взрослому.

Необходимо отметить, что для идентификации фаз и стадий сна одновременно с ЭЭГ осуществляется регистрация электроокулограммы и электромиограммы.

Нормальный сон человека cocтoит из чередования серии циклов фаз медленного сна (non-REM-сон) и быстрого сна (REM-сон). Хотя у новорожденного доношенного ребенка можно идентифицировать и недифференцированный сон, когда невозможно четко отграничить фазы быстрого и медленного сна .

В фазу быстрого сна часто наблюдаются сосательные движения, отмечаются практически непрекращающиеся движения тела, улыбки, гримасы, легкий тремор, вокализация. Одновременно с фазовыми движениями глазных яблок отмечаются вспышки мышечных движений и нерегулярное дыхание. Фаза медленного сна характеризуется минимальной двигательной активностью .

Начало сна новорожденных детей знаменуется наступлением фазы быстрого сна, которая на ЭЭГ характеризуется низкоамплитудными колебаниями различной частоты, а иногда и невысокой синхронизированной тета-активностью [Благосклонова Н.К., Новикова Л.А., 1994; Строганова Т.А. и др., 2005] (рис. 2.28).

В начале фазы медленного сна на ЭЭГ могут появляться синусоидальные колебания тета-диапазона частотой 4–6 кол./с амплитуды до 50 мкВ более выраженные в затылочных отведениях и(или) генерализованные вспышки высокоамплитудной медленной активности. Последние могут сохраняться до 2-х летнего возраста [Фарбер Д.А., Алферова В.В., 1972] (рис. 2.29).

По мере углубления сна у новорожденных ЭЭГ приобретает альтернирующий характер - возникают высокоамплитудные (от 50 до 200 мкВ) вспышки дельта-колебаний частотой 1–4 кол./с, сочетающиеся с ритмическими низкоамплитудные тета-волнами с частотой 5–6 кол./с, чередующиеся с периодами супрессии биоэлектрической активности, представленной непрерывной низкоамплитудной (от 20 до 40 мкВ) активностью. Данные вспышки длительностью 2–4 с возникают каждые 4–5 с [Благосклонова Н.К., Новикова Л.А., 1994; Строганова Т.А. и др., 2005] (рис. 2.30).

В период новорожденности в фазу медленного сна также могут регистрироваться фронтальные острые волны, вспышки мультифокальных острых волн и бета-дельта-комплексы («дельта-бета-щетки»«.

Фронтальнын острые волны представляют собой бифазные острые волны с первичным позитивным компонентом, за которым следует негативный компонент амплитудой 50–150 мкВ (иногда до 250 мкВ) и часто ассоциируются с фронтальной дельта-активностью [Строганова Т. А. и др., 2005] (рис. 2.31).

Бета-дельта-комплексы - графоэлементы состоящие из дельта-волн с частотой 0,3–1,5 кол./с, амплитудой до 50–250 мкВ, сочетающихся с быстрой активностью частото 8–12, 16–22 кол/с амплитудой до 75 мкВ. Бате-дельта-комплексы возникают в центральных и(или) височно-затылочных областях и, как правило, билатерально-асинхронны и асимметричны (рис. 2.32).

К месячному возрасту на ЭЭГ медленного сна альтернация исчезает, дельта-активность носит непрерывный характер и в начале фазы медленного сна может сочетаться с более быстрыми колебаниями (рис. 2.33). На фоне представленной активности могут встречаться периоды билатерально-синхронной тета-активности частотой 4–6 кол/с, амплитудой до 50–60 мкВ (рис. 2.34).

При углублении сна дельта-активность нарастает по амплитуде и индексу и представлена в виде высокоамплитудных колебаний до 100–250 мкВ, с частотой 1,5–3 кол./с, тета-активность, как правило, низкого индекса и выражена в виде диффузных колебаниями; медленноволновая активность обычно доминирует в задних отделах полушарий (рис. 2.35).

Начиная с 1,5–2 месяцев жизни на ЭЭГ медленного сна в центральных отделах полушарий появляются билатерально-синхронные и(или) выраженные асимметрично «веретена сна» (сигма-ритм), представляющие собой периодически возникающие веретенообразно нарастающие и снижающиеся по амплитуде ритмические группы колебаний частотой 11–16 кол./с, амплитудой до 20 мкВ [Фанталова В.Л. и др., 1976]. «Сонные веретена» в этом возрасте еще редки и кратковременны по продолжительности, однако к 3-месячному возрасту они увеличиваются по амплитуде (до 30-50 мкВ) и продолжительности.

Следует отметить, что до 5-месячного возраста «сонные веретена» могут не иметь веретенообразной формы и проявляться в виде непрерывной активности длительностью до 10 с и более. Возможна амплитудная асимметрия «сонных веретен» более 50 % [Строганова Т.А. и др., 2005].

«Сонные веретена» сочетаются с полиморфной биоэлектрической активностью, иногда им предшествуют К-комплексы или вертекс-потенциалы (рис. 2.36)

К-комплекы представляют собой билатерально-синхронные преимущественно выраженные в центральной области двухфазные острые волны, в которых негативный острый потенциал сопровождается медленным позитивным отклонением. К-комплексы могут быть индуцированы на ЭЭГ при предъявлении звукового раздражителя, не пробуждая обследуемого. К-комплексы имеют амплитуду не менее 75 мкВ, и, также как вертекс-потенциалы, у детей раннего возраста могут быть не всегда отчетливыми (рис. 2.37).

Вертекс-потенциалы (V -волна) является одно- или двухфазными острыми волнами часто сопровождающимися медленной волной с противоположной полярностью, то есть начальная фаза паттерна имеет негативное отклонение, затем следует низкоамплитудная позитивная фаза, а далее медленная волна с негативным отклонением. Вертекс-потенциалы имеют максимальную амплитуду (обычно не более 200 мкВ) в центральных отведениях, могут иметь амплитудную асимметрию до 20 % при сохранении их билатеральной синхронизации (рис. 2.38).

При неглубоком медленном сне могут регистрироваться вспышки генерализованных билатерально-синхронных полифазных медленных волн (рис. 2.39).

С углублением медленного сна «сонные веретена» становятся реже (рис. 2.40) и в глубоком медленном сне, характеризующимся высокоамплитудной медленной активностью, обычно исчезают (рис. 2.41).

С 3 месяцев жизни сон ребенка всегда начинается с фазы медленного сна [Строганова Т.А. и др., 2005]. На ЭЭГ детей 3–4 месяцев часто при наступлении медленного сна отмечается регулярная тета-активность частотой 4–5 кол./с, амплитудой до 50–70 мкВ, проявляющаяся преимущественно в центрально-теменных отделах.

С 5-месячного возраста на ЭЭГ начинает дифференцироваться I стадия сна (дремота), характеризующаяся «ритмом засыпания», выраженным в виде генерализованной высокоамплитудной гиперсинхронной медленной активности с частотой 2–6 кол./с, амплитудой от 100 до 250 мкВ . Этот ритм проявляется стойко на протяжении 1–2-го года жизни (рис. 2.42).

При переходе к неглубокому сну отмечается редукция «ритма засыпания» и амплитуда фоновой биоэлектрической активности снижается. У детей 1–2 лет в это время также могут наблюдаться группы бета-ритма амплитудой до 30 мкВ частотой 18–22 кол./с, чаще доминирующие в задних отделах полушарий.

По данным С. Guilleminault (1987) фазу медленного сна можно подразделять на четыре стадии, на которые подразделяется медленный сон у взрослых, уже в возрасте 8–12 недель жизни. Однако наиболее сходная со взрослыми картина сна все же отмечается в более старшем возрасте.

У детей старшего возраста и взрослых начало сна знаменуется наступлением фазы медленного сна, в котором, как отмечено выше, выделяют четыре стадии.

I стадия сна (дремота) характеризуется полиморфной не высокой амплитуды кривой с диффузными тета- дельта-колебаниями и низкоамплитудной высокочастотной активностью. Активность альфа-диапазона может быть представлена в виде одиночных волн (рис. 2.43а , рис. 2.43б) Предъявление внешних стимулов может вызвать появление вспышек высокоамплитудной альфа-активности [Зенков Л.Р., 1996] (рис. 2.44) В этой стадии также отмечается появление вертекс-потенциалов, максимально выраженных в центральных отделах, которые могут встречаться во II и III стадиях сна (рис. 2.45) Может отмечаться периодическая ритмическая высокоамплитудная медленная активность частотой 4–6 Гц в лобных отведениях.

У детей в этой стадии возможно появление генерализованных билатерально-синхронных вспышек тета-волн (рис. 2.46), билатерально-синхронных с наибольшей выраженностью в лобных отведениях вспышек медленных волн с частотой 2–4 Гц, амплитудой от 100 до 350 мкВ. В их структуре можно отметить спайкоподобный компонент .

В I-II стадиях могут возникать вспышки аркообразных электропозитивных спайков или острых волн с частотой 14 и(или) 6-7 кол./с продолжительностью от 0,5 до 1 сек. монолатерально или билатерально-асиннхронно с наибольшей выраженностью в задневисочных отведениях (рис. 2.47).

Также в I-II стадиях сна возможно возникновение преходящих позитивных острые волны в затылочных отведениях (POSTs) - периодов высокоамплитудных билатерально-синхронных (часто с выраженной (до 60 %) асимметрия паттернов) моно- или дифазных волн с частотой 4-5 кол./с, представленных позитивной начальной фазой паттерна с последующим возможным сопровождением низкоамплитудной негативной волной в затылочных отделах. При переходе к III стадии «позитивные затылочные острые волны» замедляются до 3 кол./с и ниже (рис. 2.48).

Первая стадия сна характеризуется медленным движением глаз.

II стадия сна идентифицируется по появлению на ЭЭГ генерализованных с преобладанием в центральных отделах «сонных веретен» (сигма-ритма) и К-комплексов. У детей старшего возраста и взрослых амплитуда «сонных веретен» составляет 50 мкВ, а длительность колеблется от 0,5 до 2 сек. Частота «сонных веретен» в центральных областях 12–16 кол./с, а в лобных - 10–12 кол./с .

В этой стадии эпизодически отмечаются вспышки полифазных высокоамплитудных медленных волн [Зенков Л.Р., 1996] (рис. 2.49).

III стадия сна характеризуется нарастанием амплитуды ЭЭГ (более 75 мкВ) и количества медленных волн, преимущественно дельта-диапазона. Регистрируются К-комплексы и «сонные веретена». Дельта волны частотой не выше 2 кол./с на эпохе анализа ЭЭГ занимают от 20 до 50 % записи [Вейн А.М., Хехт К, 1989]. Отмечается снижение индекса бета-активности (рис. 2.50).

IV стадия сна характеризуется исчезновением «сонных веретен» и К-комплексов, появлением высокоамплитудных (более 75 мкВ) дельта волн частотой 2 кол./с и менее, которые на эпохе анализа ЭЭГ составляют более 50 % записи [Вейн А.М., Хехт К, 1989]. III и IV стадии сна являются наиболее глубоким сном и объединены под общим названием «дельта сон» («медленноволновой сон») (рис. 2.51).

Фаза быстрого сна характеризуется появлением на ЭЭГ десинхронизации в виде нерегулярной активности с одиночными низкоамплитудными тета-волнами, редкими группами замедленного альфа-ритма и «пилообразной активностью», представляющей собой вспышки медленных острых волн частотой 2–3 кол./с на восходящий фронт которых накладывается дополнительная заостренная волна, придавая им двузубый характер [Зенков Л.Р., 1996]. Фаза быстрого сна сопровождается быстрыми движениями глазных яблок и диффузным снижением мышечного тонуса. Именно в эту фазу сна у здоровых людей происходят сновидения (рис. 2.52).

В период пробуждения у детей на ЭЭГ может возникать «лобный ритм пробуждения», представленный в виде ритмичной пароксизмальной островолновой активности частотой 7–10 кол./с, длительностью до 20 сек в лобных отведениях .

Фазы медленного и быстрого сна чередуются на протяжении вceгo времени сна, однако общая продолжительность циклов сна отличается в разные возрастные периоды: у детей до 2–3 лет она составляет около 45–60 минут, к 4–5 годам возрастает до 60–90 минут, у детей старшего возраста - 75–100 минут. У взрослых сонный цикл длится 90–120 минут и за ночь проходит от 4 до 6 циклов сна .

Длительность фаз сна также имеет возрастную зависимость: у детей грудного возраста фаза быстрого сна может занимать до 60 % времени цикла сна, а у взрослых - до 20–25 % [Гехт К., 2003]. Другие авторы отмечаются, что у доношенных новорожденных детей быстрый сон занимает не менее 55 % времени цикла сна, у детей месячного возраста - до 35 %, в 6-месячном возрасте - до 30 %, а к 1 году - до 25 % времени цикла сна [Строганова Т.А. и др., 2005], В целом, у детей старшего возраста и у взрослых I стадия сна длится от 30 сек. до 10–15 минут, II стадия - oт 30 дo 60 минут, III и IV стадии - 15–30 минут, фаза быстрого сна - 15–30 минут.

До 5 лет периоды фаз быстрого сна во время сна характеризуются равной продолжительностью. В последующем однородность эпизодов фаз быстрого сна в течение ночи исчезает: первый эпизод фазы быстрого сна становится коротким, тогда как последующие нарастают по продолжительности по мере приближения к ранним yтpенним часам. К 5 годам достигается соотношение между процентом времени, приходящимся на фазу медленного сна и на фазу быстрого сна, практически характерное для взрослых и в первую половину ночи наиболее отчетливо выражен медленный сон, а во второй наиболее продолжительными становятся эпизоды фаз быстрого сна .

2.4. Неэпилептиформные пароксизмы детской ЭЭГ

Вопрос определения неэпилептиформных пароксизмов на ЭЭГ является одним из ключевых в дифференциальной диагностике эпилептических и неэпилептических состояний, особенно в детском возрасте, когда частота различных ЭЭГ-пароксизмов значительно высока.

Исходя из известного определения, пароксизм - это группа колебаний, резко отличающихся по структуре, частоте, амплитуде от фоновой активности, внезапно возникающая и исчезающая. К пароксизмам относят вспышки и разряды - пароксизмы неэпилептиформной и эпилептиформной активности, соответственно.

К неэпилептиформной пароксизмальной активности у детей относят следующие паттерны:

  1. Генерализованные билатерально-синхронные (возможно с умеренной асинхронией и асимметрией) вспышки высокоамплитудных тета-, дельта- волн, преимущественно выраженные в центрально-теменных, теменно-затылочных или центрально-лобных областях коры мозга [Благосклонова Н.К., Новикова Л.А., 1994; Blume W.T., 1982; Соколовская И.Э., 2001; Архипова Н.А., 2001] (рис. 2.22 , рис. 2.23), либо имеющие генерализованный характер без выраженного акцента, регистрируемые в состоянии бодрствования, чаще при гипервентиляции (рис. 2.24 , рис. 2.25).
  2. Низкоамплитудные билатерально-синхронные вспышки тета-волн (возможно с некоторой асимметрией) частотой 6-7 кол./с, в лобных отведениях [Вlume W.T., Kaibara M., 1999], регистрируемые в состоянии бодрствования.
  3. Высокоамплитудные билатерально-синхронные (с возможным попеременным преобладанием в одном из полушарий, иногда асимметричные) вспышки полифазных потенциалов, представлющих собой сочетание альфа-волны с предшествующим или следующим за ней медленным колебанием, преобладающих в теменно-затылочных отделах, регистрируемых в состоянии спокойного бодрствования и подавлющихся при открывании глаз (рис. 2.53).
  4. Высокоамплитудные билатеральные вспышки мономорфных тета-волн частотой 4–6 кол./с в лобных отведениях при дремоте.
  5. Билатерально-синхронных с наибольшей выраженностью в лобных отведениях вспышек медленных волн с частотой 2–4 Гц, амплитудой от 100 до 350 мкВ, в стуктуре которых можно отметить спайкоподобный компонент, регистрирующиеся при дремоте .
  6. Вспышки аркообразных электропозитивных спайков или острых волн с частотой 14 и(или) 6–7 кол./с продолжительностью от 0,5 до 1 сек. монолатерально или билатерально-асиннхронно с наибольшей выраженностью в задневисочных отведениях , регистрирующихся в I–II стадиях сна (рис. 2.47).
  7. Периоды высокоамплитудных билатерально-синхронных (часто с выраженной (до 60 %) асимметрией) моно- или дифазных волн с частотой 4–5 кол./с, представленных позитивной начальной фазой паттерна с последующим возможным сопровождением низкоамплитудной негативной волной в затылочных отделах, регистрирующихся в I–II стадиях сна и при переходе к III стадии замедляющихся до 3 кол./с и ниже (рис. 2.48).

Среди неэпилептиформной пароксизмальной активности также выделяют «условноэпилептиформную» активность, имеющей диагностическое значение только при наличии соответствующей клинической картины.

К «условноэпилептиформной» пароксизмальной активности относят:

  1. Высокоамплитудные билатерально-синхронные вспышки с крутым фронтом нарастания заостренных альфа-, бета-, тета- и дельта-волн, внезапно возникающие и также внезапно исчезающие, которые могут иметь слабую реактивность на открывание глаз и распространяться за приделы их типичной топографии (рис. 2.54 , рис. 2.55).
  2. Вспышки и периоды (продолжительностью 4-20 с) синусоидальной аркообразной активности частотой 5–7 кол./с (центральный тета-ритм Циганека), регистрирующиеся в состоянии спокойного бодрствования и дремоте в cредне-височных, центральных отведениях билатерально или независимо в обоих гемисферах (рис. 2.56).
  3. Периоды билатеральной медленной активности частотой 3–4 кол./с, 4–7 кол./с, регистрирующиеся в лобных, затылочных или теменно-центральных отделах в состоянии спокойного бодрствования и блокирующейся при открывании глаз.

Электроэнцефалография - один из распространенных методов диагностики состояния головного мозга ребенка, который, наравне с КТ и МРТ , считается достаточно эффективным и точным. О том, что показывает такая диагностика, как расшифровать данные и каковы причины отклонений от нормы, вы узнаете из этой статьи.

Что такое ЭЭГ и что она показывает?

Аббревиатура ЭЭГ расшифровывается как «электроэнцефалография». Она представляет собой метод регистрации малейших электрических активных импульсов коры головного мозга. Эта диагностика очень чувствительна, она позволяет зафиксировать признаки активности даже не в секунду, а в миллисекунду. Ни одно другое исследование функций головного мозга не дает столь точной информации в определенный отрезок времени.

Чтобы установить морфологические изменения, наличие кист и опухолей, особенности развития тела мозга и мозговой ткани, применяются другие средства видеомониторинга, например, нейросонография для малышей до 1,5-2 лет, МРТ, КТ для детей старше. А вот ответить на вопрос, как работает мозг, как он реагирует на внешние и внутренние раздражители, на изменение обстановки, может только электроэнцефалограмма головы.

Электрические процессы в нейронах в целом и в головном мозге в частности начали изучаться в конце XIX века. Этим занимались ученые в различных странах мира, но наибольший вклад сделал русский физиолог И. Сеченов. Первую запись ЭЭГ удалось получить в Германии в 1928 году.

Сегодня ЭЭГ - процедура довольно рутинная, применяемая даже в небольших клиниках и поликлиниках для диагностики и лечения. Проводится она на специальном оборудовании, которое называется электроэнцефалографом. Аппарат соединяется с пациентом посредством электродов. Записываться результаты могут как на бумажную ленту, так и на компьютер автоматически. Процедура безболезненна и безвредна. В то же время она очень информативна: потенциалы электрической активности мозга неизменно меняются при наличии той или иной патологии.

При помощи ЭЭГ можно диагностировать различные травмы, психические заболевания, широкое распространение метод получил в мониторинге ночного сна.

Показания для проведения

ЭЭГ не входит в перечень обязательных скрининговых исследований для детей в любом возрасте. Это означает, что проводить такую диагностику принято только по определенным медицинским показаниям при наличии определенных жалоб пациентов. Метод назначается в следующих случаях:

  • при частых приступах головной боли, головокружениях;
  • при наличии случаев потери сознания;
  • при наличии у ребенка судорог в анамнезе;
  • при подозрении на травму черепа и мозга;
  • при подозрении на детский церебральный паралич или для отслеживания динамики состояния при диагностированном ранее ДЦП;
  • при нарушении рефлексов, других неврологических состояниях, которые сохраняются длительное время и терапии поддаются плохо;
  • при нарушениях сна у ребенка;
  • при подозрении на наличие психического расстройства;
  • в качестве подготовительной диагностики перед операциями на головном мозге;
  • при задержке речевого, психического, эмоционального и физического развитий.

В детском возрасте ЭЭГ проводят для оценки степени незрелости головного мозга. ЭЭГ проводят для того, чтобы определить степень действия наркоза при серьезных и длительных хирургических вмешательствах.

Некоторые особенности поведения детей первого года жизни также могут быть основанием для назначения ЭЭГ.

Регулярный и продолжительный плач, нарушения сна - очень веские причины для диагностики потенциалов электроимпульсов нейронов, особенно если нейросонография или МРТ не показывают отклонений в развитии мозга как такового.

Противопоказания

Противопоказаний к такой диагностике очень мало. Ее не проводят только в том случае, если на голове маленького пациента есть свежие раны, если наложены хирургические швы. Иногда в диагностике отказывают по причине сильного насморка или изнуряющего частого кашля.

Во всех остальных случаях ЭЭГ проводить можно, если на этом настаивает лечащий врач.

Маленьким детям стараются проводить диагностическую процедуру в состоянии сна, когда они наиболее спокойны.

Вредно ли обследование?

Этот вопрос является одним из самых насущных для родителей. Поскольку сама суть метода понятна далеко не всем мамам, то ЭЭГ как явление обрастает слухами и домыслами на просторах женских форумов. Двух вариантов ответа на вопрос о вредности исследования не существует - ЭЭГ совершенно безвредна, поскольку на мозг никакого стимулирующего действия электроды и аппарат не оказывают: они лишь фиксируют импульсы.

Делать ЭЭГ ребенку можно в любом возрасте, в любом состоянии и столько раз, сколько потребуется. Многоразовая диагностика не запрещается, никаких ограничений нет.

Другой вопрос, что для обеспечения возможности некоторое время сидеть в неподвижности маленьким и очень подвижным детям могут назначать седативные препараты. Тут решение принимает врач, который точно знает, как рассчитать необходимую дозировку, чтобы вашему ребенку не причинить вреда.

Подготовка ребенка

Если ребенку назначено проведение электроэнцефалографии, обязательно нужно правильно подготовить его к обследованию.

Лучше приходить на обследование с чистой головой, поскольку датчики будут устанавливаться именно на коже головы. Для этого накануне достаточно провести обычные гигиенические процедуры и вымыть волосы ребенку детским шампунем.

Грудничка следует покормить непосредственно перед установкой электродов за 15-20 минут. Лучше всего добиться естественного засыпания: сытый малыш будет спать спокойнее и дольше, доктор получит возможность зарегистрировать все необходимые показатели. Поэтому для малышей возьмите с собой в медицинское учреждение бутылочку со смесью или сцеженным грудным молоком.

Лучше всего запланировать вместе с лечащим врачом обследование на то время, которое по личному распорядку дня малыша приходится на дневной сон.

Детям старшего года ЭЭГ проводят в состоянии бодрствования. Для получения точных результатов ребенок должен вести себя спокойно, выполнять все просьбы врача. Чтобы достичь такого спокойствия, родителям нужно провести предварительную психологическую подготовку заблаговременно. Если заранее рассказать, какая интересная игра предстоит, то ребенок будет более сосредоточенным. Можно пообещать чаду, что он на несколько минут станет настоящим космическим путешественником или супергероем.

Понятно, что слишком долго концентрировать свое внимание на происходящем ребенок не сможет, особенно если ему 2-3 года. Поэтому с собой в клинику следует взять книжку, игрушку, то, что ребенку интересно и может хотя бы ненадолго захватить его внимание.

Чтобы ребенок не испугался с первых же минут, нужно подготовить его к тому, что будет происходить. Выберите дома любую старую шапочку и поиграйте с чадом в «космонавта». Шапочку наденьте на голову, изобразите шум рации в шлеме, пошипите и дайте своему космогерою команды, которые будет давать в реальности доктор на ЭЭГ: открыть и закрыть глаза, проделать то же самое, только в замедленном темпе, глубоко и мелко подышать и т. д. Подробнее об этапах обследования мы расскажем ниже.

Если ваш малыш регулярно по назначению лечащего врача принимает какие-либо медикаменты, отменять их прием перед электроэнцефалографией не нужно. Но обязательно сообщите врачу перед диагностикой, какие лекарства и в какой дозировке были приняты ребенком за последние двое суток.

Перед входом в кабинет снимите с ребенка головной убор. С девочек обязательно нужно снять заколки, резинки, ободки и вынуть серьги из ушей, если они имеются. Лучше всего все эти предметы для красоты и привлекательности изначально оставить дома, отправляясь на ЭЭГ, чтобы не потерять что-то ценное в процессе обследования.

Как проводится процедура: основные этапы

Процедуру ЭЭГ делают в несколько этапов, о которых и родителям, и маленькому пациенту нужно узнать заранее, чтобы правильно подготовиться. Начнем с того, что кабинет для проведения электроэнцефалографии совсем не похож на обычный медицинский кабинет. Это звукоизолированное и затемненное помещение. Сама комната обычно имеет небольшие размеры.

В ней установлена кушетка, на которой предложат разместиться ребенку. Грудничка размещают на пеленальном столике, который также имеется в кабинете.

На голову предлагается надеть специальный «шлем» – тканевая или резиновая шапочка с закрепленными электродами. На некоторые шапочки доктор устанавливает необходимые электроды в требуемом количестве вручную. С электроэнцефалографом электроды соединяются посредством мягких тонких трубочек-проводников.

Электроды смачивают физраствором или специальным гелем. Это необходимо для лучшего прилегания электрода к голове малыша, чтобы не образовывалось воздушного пространства между кожей и принимающим сигналы датчиком. Оборудование в обязательном порядке заземляется. На уши ребенка в районе мочек крепят клипсы, не проводящие ток.

Продолжительность исследования в среднем составляет 15-20 минут. Все это время ребенок должен быть максимально спокоен.

Какие тесты предстоят, зависит от возраста маленького пациента. Чем старше ребенок, тем сложнее будут задания. Стандартная рутинная процедура подразумевает несколько вариантов фиксации электрических потенциалов.

  • Сначала записывают фоновую кривую - эта линия на полученном графике будет отображать импульсы нейронов головного мозга в состоянии покоя.

  • Затем проверяют реакцию головного мозга на переход от отдыха к активности и рабочей готовности. Для этого ребенка просят открыть и закрывать глаза в разном темпе, который задает врач своими командами.

  • Третий этап - проверка работы головного мозга в состоянии так называемой гипервентиляции. Для этого ребенка просят делать глубокие вдохи и выдохи с заданной доктором частотой. По команде «вдох» делается вдох, по команде «выдох» ребенок выдыхает. Этот этап позволяет выявить признаки эпилепсии, новообразований, которые привели к нарушениям функциональных возможностей мозга.

  • Четвертый этап подразумевает применение фотостимуляции. Потенциалы продолжают регистрироваться, но доктор включает и выключает специальную лампочку с определенной частотой перед закрытыми глазами пациента. Такой тест позволяет установить некоторые особенности как психического, так и речевого развития, а также склонность к эпилепсии и судорожным синдромам.
  • Дополнительные этапы применяются в основном для детей более старшего возраста. Они включают в себя различные команды врача - от сжимания и разжимания пальцев рук в кулаки до ответа на вопросы психологических тестов, если ребенок находится в таком возрасте, в котором ответы и понимание в принципе возможны.

Родители могут не переживать - больше, чем ребенок может и умеет, от него не потребуют. Если он с чем-то не справится, ему просто дадут другое задание.

Нормы и расшифровка результатов

Электроэнцефалограмма, которая получается в результате автоматической регистрации потенциалов, представляет собой загадочное скопление кривых, волн, синусоидов и ломаных линий, разобраться в которых самостоятельно, не будучи специалистом, совершенно невозможно. Даже врачи других специальностей, например, хирург или ЛОР, ни за что не поймут, что изображено на графиках. Обработка результатов занимает от нескольких часов до нескольких дней. Обычно - около суток.

Само понятие «нормы» в отношении ЭЭГ не совсем корректно. Дело в том, что вариантов норм бывает великое множество. Тут важна каждая деталь - частота повторения аномалии, ее связь с раздражителями, динамика. У двух здоровых детей, не имеющих проблем с работой центральной нервной системы и патологий мозга, получившиеся графики будет выглядеть по-разному.

Показатели классифицируют по типу волн, отдельно оценивают биоэлектрическую активность и другие параметры. У родителей нет необходимости что-либо трактовать, поскольку в заключении предоставляется описание результатов исследования и даются определенные рекомендации. Давайте рассмотрим несколько вариантов заключений более подробно.

На что указывает эпилептиформная активность?

Если в заключении стоит столь сложный для понимания термин, это означает, что в электроэнцефалограмме преобладают острые пики, которые существенно отличаются от фонового ритма, который регистрируется в положении покоя. Чаще всего такой вид имеют результаты у ребенка с эпилепсией. Но наличие острых пиков и ЭФА в заключении не всегда признак эпилепсии. Иногда речь идет об эпиактивности без приступов, а потому родители могут немало удивиться, ведь судорог и припадков у ребенка могло ни разу не происходить.

Врачи склонны полагать, что ЭЭГ отражает паттерны, которые проявляются даже в том случае, если у ребенка просто есть генетическая предрасположенность к эпилепсии. Обнаружение эпилептиформной активности не означает, что ребенку обязательно установят соответствующий диагноз. Но на необходимость повторного исследования этот факт обязательно указывает. Диагноз может не подтвердиться, а может и получить подтверждение.

Дети с эпилепсией требуют особого подхода, соответствующего и своевременного лечения у невролога, а потому игнорировать появление ЭФА в заключении не стоит.

Виды и нормы ритмов

Для расшифровки результатов особое значение имеют ритмы. Их всего четыре:

  • альфа;
  • бета:
  • дельта;
  • тета.

Каждый из этих ритмов имеет свои нормы и возможные колебания нормативных значений. Чтобы родители лучше ориентировались в полученной на руки энцефалограмме головного мозга, постараемся максимально просто рассказать о сложном.

Альфа-ритмом называют базовый, фоновый ритм, который регистрируется в состоянии покоя и отдыха. Наличие такого вида ритма свойственно всем здоровым людям. Если его нет, говорят об асимметричности полушарий, что легко диагностируется при помощи УЗИ или МРТ. Этот ритм доминирует тогда, когда ребенок находится в темноте, в тишине. Если в этот момент включить раздражитель, подать свет, звук, альфа-ритм может уменьшиться или исчезнуть. В состоянии покоя он снова возвращается. Таковы нормальные значения. При эпилепсии, к примеру, на ЭЭГ могут регистрироваться спонтанные эпизоды всплеска альфа-ритма.

Если в заключении указывается частота альфа 8-14 Гц (25-95 мкВ), можно не волноваться: ребенок здоров. Отклонения альфа-ритма могут наблюдаться в том случае, если они фиксируются в лобной доле, если есть существенный частотный разброс. Слишком высокая частота, превышающая 14 Гц, может быть признаком сосудистых нарушений в головном мозге, перенесенных травм черепа и мозга. Заниженные показатели могут говорить об отставании в психическом развитии. Если у малыша слабоумие, ритм может не регистрироваться вообще.

Ритм бета регистрируется и меняется в периоды активности мозга. У здорового малыша в заключении будут указаны значения амплитуды 2-5 мкВ, фиксироваться такой тип волн будет в лобной доле головного мозга. Если значения выше нормы, доктор может заподозрить сотрясение или ушиб головного мозга, а при патологическом снижении - воспалительный процесс мозговых оболочек или тканей, например, менингит или энцефалит. Бета-волны в амплитуде 40-50 мкВ в детском возрасте могут говорить о заметном отставании в развитии ребенка.

Ритм типа дельта дает о себе знать в период глубокого сна, а также у пациентов, которые находятся в коме. Обнаружение такого ритма в период бодрствования может говорить о факте развития опухоли.

Тета-ритм также свойственен спящим людям. Если он выявляется в амплитуде свыше 45 мкВ в разных долях мозга, речь идет о серьезных нарушениях работы центральной нервной системы. В определенных вариантах такой ритм может быть у малышей до 8 лет, но у детей более старшего возраста он зачастую является признаком неразвитости, слабоумия. Синхронное повышение дельты и теты могут говорить о нарушении мозгового кровообращения.

Все типы волн ложатся в основу фиксации биоэлектрической активности мозга. Если указывается, что БЭА ритмичная, то причин для волнений нет. Относительно ритмичная БЭА говорит о наличии частых головных болей.

Диффузная активность не говорит о патологии, если нет иных отклонений. А вот при депрессивных состояниях у ребенка может обнаружиться сниженная БЭА.

Частые нарушения и возможные диагнозы

На основании одной только ЭЭГ ставить диагнозы ребенку никто не станет. Данные исследования могут потребовать подтверждения или опровержения при помощи других методов, в том числе МРТ, КТ, УЗИ. Результаты электроэнцефалографии лишь могут предположить наличие у ребенка порэнцефалической кисты, эпилептической активности без приступов, пароксизмальной активности, опухолей, психических отклонений.

Рассмотрим, что могут иметь в виду доктора, указывая определенные патологии в заключении ЭЭГ.

  • Если указано, что обнаружена дисфункция средних отделов мозга, стоит предположить, что у ребенка просто был стресс, что он не выспался, часто нервничает, а потому ему будет достаточно занятий с психологом, создания благоприятной обстановки в семье, уменьшения психологической нагрузки и легких седативных препаратов растительного происхождения. Заболеванием это не считается.
  • Если в электроэнцефалограмме будет написано, что обнаружена межполушарная асимметрия, это не всегда является признаком патологии в детском возрасте. Ребенку будет рекомендовано динамическое наблюдение у невролога.
  • Диффузные изменения альфа-ритма в заключении также могут быть вариантом нормы. Ребенку назначают дополнительные исследования.
  • Более опасно обнаружение очага патологической активности, которое в большинстве случаев свидетельствует о развитии эпилепсии или повышенной склонности к судорогам.
  • Формулировка «ирритация мозговых структур» говорит о нарушении кровообращения мозга, о наличии травматических поражений после ударов, падений, а также о высоком внутричерепном давлении.
  • Обнаружение пароксизмов может быть признаком эпилепсии в начальной стадии, но это далеко не всегда так. Чаще обнаружение пароксизмов говорит о склонности, возможно, наследственной, к эпилептическим припадкам. Повышенный тонус синхронизирующих структур патологией вообще считать нельзя. Но по сложившейся практике ребенка все равно направляют наблюдаться к неврологу.

Наличие активных разрядов является тревожным признаком. Ребенку нужно пройти обследование на предмет опухолей и новообразований.

Только врач может дать точный ответ на вопрос, все ли в порядке с малышом. Попытки сделать выводы самостоятельно могут завести родителей в такие дебри, из которых очень сложно найти разумный и логичный выход.

Когда отдают заключение?

Получить заключение на руки с описанием результатов родители могут примерно через сутки. В некоторых случаях время может быть увеличено - это зависит от занятости врача и очередности в конкретном медицинском учреждении.

Главная особенность ЭЭГ, делающая ее незаменимым инструментом возрастной психофизиологии, – спонтанный, автономный характер. Регулярная электрическая активность мозга может быть зафиксирована уже у плода, и прекращается только с наступлением смерти. При этом возрастные изменения биоэлектрической активности мозга охватывают весь период онтогенеза от момента ее возникновения на определенном (и пока точно не установленном) этапе внутриутробного развития головного мозга и вплоть до смерти человека. Другое важное обстоятельство, позволяющее продуктивно использовать ЭЭГ при изучении онтогенеза мозга, – возможность количественной оценки происходящих изменений.

Исследования онтогенетических преобразований ЭЭГ весьма многочисленны. Возрастную динамику ЭЭГ изучают в состоянии покоя, в других функциональных состояниях (сон, активное бодрствование и др.), а также при действии разных стимулов (зрительных, слуховых, тактильных). На основании многих наблюдений выделены показатели, по которым судят о возрастных преобразованиях на протяжении всего онтогенеза, как в процессе созревания (см. главу 12.1.1.), так и при старении. В первую очередь это особенности частотно-амплитудного спектра локальной ЭЭГ, т.е. активности, регистрируемой в отдельных точках коры мозга. С целью изучения взаимосвязи биоэлектрической активности, регистрируемой из разных точек коры, используется спектрально-корреляционный анализ (см. главу 2.1.1) с оценкой функций когерентности отдельных ритмических составляющих.



Возрастные изменения ритмического состава ЭЭГ. Наиболее изучены в этом плане возрастные изменения частотно-амплитудного спектра ЭЭГ в разных областях коры мозга. Визуальный анализ ЭЭГ показывает, что у бодрствующих новорожденных в ЭЭГ преобладают медленные нерегулярные колебания частотой 1 – 3 Гц амплитудой по 20 мкВ. В спектре частот ЭЭГ у них, однако, присутствуют частоты в диапазоне от 0,5 до 15 Гц. Первые проявления ритмической упорядоченности появляются в центральных зонах, начиная с третьего месяца жизни. В течение первого года жизни наблюдается нарастание частоты и стабилизации основного ритма электроэнцефалограммы ребенка. Тенденция к нарастанию доминирующей частоты сохраняется и на дальнейших стадиях развития. К 3 годам это уже ритм с частотой 7 – 8 Гц, к 6 годам – 9 – 10 Гц (Фарбер, Алферова, 1972).

Одним из наиболее дискуссионных является вопрос о том, как квалифицировать ритмические составляющие ЭЭГ детей раннего возраста, т.е. как соотносить принятую для взрослых классификацию ритмов по частотным диапазонам (см. главу 2.1.1) с теми ритмическими компонентами, которые присутствуют в ЭЭГ детей первых лет жизни. Существуют два альтернативных подхода к решению этого вопроса.

Первый исходит из того, что дельта-, тета-, альфа- и бета-частотные диапазоны имеют разное происхождение и функциональное значение. В младенчестве более мощной оказывается медленная активность, а в дальнейшем онтогенезе происходит смена доминирования активности от медленных к быстрым частотным ритмическим составляющим. Другими словами, каждая частотная полоса ЭЭГ доминирует в онтогенезе последовательно одна за другой (Garshe, 1954). По этой логике было выделено 4 периода в формировании биоэлектрической активности мозга: 1 период (до 18 мес.) – доминирование дельта-активности, преимущественно в центрально-теменных отведениях; 2 период (1,5 года – 5лет) – доминирование тета-активности; 3 период (6 – 10 лет) – доминирование альфа-активности (лабильная фаза); 4 период (после 10 лет жизни) доминирование альфа-активности (стабильная фаза). В двух последних периодах максимум активности приходится на затылочные области. Исходя из этого, было предложено рассматривать отношение альфа- к тета-активности как показатель (индекс) зрелости мозга (Matousek, Petersen, 1973).

Другой подход рассматривает основной, т.е. доминирующий в электроэнцефалограмме ритм, независимо от его частотных параметров, как онтогенетический аналог альфа-ритма. Основания для такого толкования содержатся в функциональных особенностях доминирующего в ЭЭГ ритма. Они нашли свое выражение в «принципе функциональной топографии» (Kuhlman, 1980). В соответствии с этим принципом идентификация частотного компонента (ритма) осуществляется на основании трех критериев: 1) частоты ритмического компонента; 2) пространственного расположения его максимума в определенных зонах коры мозга; 3) реактивности ЭЭГ к функциональным нагрузкам.

Применяя этот принцип к анализу ЭЭГ младенцев, Т.А.Строганова, показала, что частотный компонент 6 – 7 Гц, регистрируемый в затылочной области, можно рассматривать как функциональный аналог альфа-ритма или как собственно альфа-ритм. Поскольку этот частотный компонент имеет небольшую спектральную плотность в состоянии зрительного внимания, но становится доминирующим при однородном темном поле зрения, что, как известно, характеризует альфа-ритм взрослого человека (Строганова с соавт., 1999).

Изложенная позиция представляется убедительно аргументированной. Тем не менее проблема в целом остается нерешенной, потому что невыяснено функциональное значение остальных ритмических компонентов ЭЭГ младенцев и их соотношение с ритмами ЭЭГ взрослого человека: дельта-, тета- и бета-.

Из вышесказанного становится ясным, почему проблема соотношения тета- и альфа-ритмов в онтогенезе является предметом дискуссий. Тета-ритм по-прежнему нередко рассматривается как функциональный предшественник альфа-, и таким образом признается, что в ЭЭГ детей младшего возраста альфа-ритм фактически отсутствует. Придерживающиеся такой позиции исследователи не считают возможным рассматривать доминирующую в ЭЭГ детей раннего возраста ритмическую активность как альфа-ритм (Шеповальников с соавт., 1979).

Однако независимо от того, как интерпретируются эти частотные составляющие ЭЭГ, возрастная динамика, свидетельствующая о постепенном сдвиге частоты доминирующего ритма в сторону более высоких значений в диапазоне от тета-ритма к высокочастотному альфа-, является неоспоримым фактом (например, рис. 13.1).

Гетерогенность альфа-ритма. Установлено, что альфа-диапазон неоднороден, и в нем в зависимости от частоты можно выделить ряд субкомпонентов, имеющих, по-видимому, разное функциональное значение. Существенным аргументом в пользу выделения узкополосных поддиапазонов альфа служит онтогенетическая динамика их созревания. Три поддиапазона включают: альфа-1 – 7,7 – 8,9 Гц; альфа-2 – 9,3 – 10,5 Гц; альфа-3 – 10,9 – 12,5 Гц (Алферова, Фарбер, 1990). От 4-х до 8 лет доминирует альфа-1, после 10 лет – альфа-2, ив 16 – 17 годам в спектре преобладает альфа-3.

Составляющие альфа-ритма имеют и разную топографию: ритм альфа-1 более выражен задних отделах коры, преимущественно в теменных. Он считается локальным в отличие от альфа-2, который широко распространен в коре, имея максимум в затылочной области. Третий компонент альфа, так называемый мюритм, имеет фокус активности в передних отделах: сенсомоторных зонах коры. Он также имеет локальный характер, поскольку его мощность резко убывает по мере удаления от центральных зон.

Общая тенденция изменений основных ритмических составляющих проявляется в снижении с возрастом выраженности медленной составляющей альфа-1. Этот компонент альфа-ритма ведет себя как тета- и дельта-диапазоны, мощность которых снижается с возрастом, а мощность компонентов альфа-2 и альфа-3, как и бета-диапазона возрастает. Однако бета-активность у нормальных здоровых детей низка по амплитуде и мощности, и в некоторых исследованиях этот частотный диапазон даже не подвергается обработке из-за его относительно редкой встречаемости в нормальной выборке.

Особенности ЭЭГ в пубертате. Прогрессивная динамика частотных характеристик ЭЭГ в подростковом возрасте исчезает. На начальных стадиях полового созревания, когда увеличивается активность гипоталамо-гипофизарной области в глубоких структурах мозга, существенно изменяется биоэлектрическая активность коры больших полушарий. В ЭЭГ возрастает мощность медленно-волновых составляющих, в том числе альфа-1, и уменьшается мощность альфа-2 и альфа-3.

В период пубертата заметно выступают различия в биологическом возрасте, особенно между полами. Например, у девочек 12 – 13 лет (переживающих II и III стадии полового созревания) ЭЭГ характеризуется большей по сравнению с мальчиками выраженностью мощности тета-ритма и альфа-1 компонента. В 14 – 15 лет наблюдается противоположная картина. У девочек проходят завершающие (ТУ и У) стадии пубертата, когда снижается активность гипоталамо-гипофизарной области, и постепенно исчезают отрицательные тенденции в ЭЭГ. У мальчиков в этом возрасте преобладают II и III стадии полового созревания и наблюдаются перечисленные выше признаки регресса.

К 16 годам указанные различия между полами практически исчезают, поскольку большинство подростков входят в завершающую стадию полового созревания. Восстанавливается прогрессивная направленность развития. Частота основного ритма ЭЭГ вновь возрастает и приобретает значения, близкие к взрослому типу.

Особенности ЭЭГ при старении. В процессе старения происходят существенные изменения в характере электрической активности мозга. Установлено, что после 60 лет наблюдается замедление частоты основных ритмов ЭЭГ, в первую очередь в диапазоне альфа-ритма. У лиц в возрасте 17 – 19 лет и 40 – 59 лет частота альфа-ритма одинакова и составляет приблизительно 10 Гц. К 90 годам она снижается до 8,6 Гц. Замедление частоты альфа-ритма называют наиболее стабильным «ЭЭГ-симптомом» старения мозга (Фролькис, 1991). Наряду с этим возрастает медленная активность (дельта- и тета-ритмы), и количество тета-волн больше у лиц с риском развития сосудистой психологии.

Наряду с этим у лиц старше 100 лет – долгожителей с удовлетворительным состоянием здоровья и сохранными психическими функциями – доминантный ритм в затылочной области находится в пределах 8 – 12 Гц.

Региональная динамика созревания. До сих пор, обсуждая возрастную динамику ЭЭГ, мы специально не анализировали проблему региональных различий, т.е. различий, существующих между показателями ЭЭГ разных зон коры в том и другом полушарии. Между тем такие различия существуют, и можно выделить определенную последовательность созревания отдельных зон коры по показателям ЭЭГ.

Об этом, например, говорят данные американских физиологов Хадспета и Прибрама, которые прослеживали траектории созревания (от 1 до 21 года) частотного спектра ЭЭГ разных областей мозга человека. По показателям ЭЭГ они выделили несколько стадий созревания. Так, например, первая охватывает период от 1 года до 6 лет, характеризуется быстрым и синхронным темпом созревания всех зон коры. Вторая стадия длится от 6 до 10,5 лет, причем пик созревания достигается в задних отделах коры в 7,5 лет, после этого ускоренно начинают развиваться передние отделы коры, которые связаны с реализацией произвольной регуляции и контроля поведения.

После 10,5 лет синхронность созревания нарушается, и выделяются 4 независимые траектории созревания. По показателям ЭЭГ центральные области коры мозга – это онтогенетически наиболее рано созревающая зона, а левая лобная, наоборот, созревает позднее всего, с ее созреванием связано становление ведущей роли передних отделов левого полушария в организации процессов переработки информации (Hudspeth, Pribram, 1992). Сравнительно поздние сроки созревания левой фронтальной зоны коры отмечались также неоднократно и в работах Д. А.Фарбер с сотрудниками.

Актуальность исследования. 4

Общая характеристика работы. 5

Глава 1. Обзор литературы:

1. Функциональная роль ритмов ЭЭГ и ЭКГ. 10

1.1. Электрокардиография и общая активность нервной системы. 10

1.2. Электроэнцефалография и методы анализа ЭЭГ. 13

1.3. Общие проблемы сопоставления изменений на ЭЭГ и

ССП и психических процессов и пути их решения. 17

1.4 Традиционные взгляды на функциональную роль ЭЭГ- ритмов. 24

2. Мышление, его структура и успешность решения интеллектуальных задач. 31

2.1. Природа мышления и его структура. 31

2.2. Проблемы выделения компонентов интеллекта и диагностики его уровня. 36

3. Функциональная асимметрия мозга и ее связь с особенностями мышления. 40

3.1. Исследования связи между когнитивными процессами и областями мозга. 40

3.2. Особенности арифметических операций, их нарушения и локализация этих функций в коре полушарий. 46

4. Возрастные и половые различия в когнитивных процессах и организации головного мозга. 52

4.1. Общая картина формирования познавательной сферы детей. 52

4.2. Половые различия в способностях. 59

4.3. Особенности генетической детерминации половых различий. 65

5. Возрастные и половые особенности ритмов ЭЭГ. 68

5.1. Общая картина формирования ЭЭГ детей в возрасте до 11 лет. 68

5.2. Особенности систематизации возрастных тенденций изменения ЭЭГ. 73

5.3. Половые особенности в организации ЭЭГ-активности. 74

6. Способы интерпретации связи между показателями ЭЭГ и характеристиками психических процессов. 79

6.1. Анализ изменений на ЭЭГ при осуществлении математических операций. 79

6.2. ЭЭГ как индикатор уровня стресса и продуктивности работы мозга. 87

6.3. Новые взгляды на особенности ЭЭГ у детей с трудностями обучения и интеллектуальной одаренностью. 91 Глава 2. Методы исследования и обработки результатов.

1.1. Испытуемые. 96

1.2. Методы исследования. 97 Глава 3. Результаты исследования.

A. Экспериментальные изменения по ЭКГ. 102 Б. Возрастные различия по ЭЭГ. 108

B. Экспериментальные изменения по ЭЭГ. 110 Глава 4. Обсуждение результатов исследования.

A. Возрастные изменения "фоновых" параметров ЭЭГ у мальчиков и девочек. 122

Б. Возрастные и половые особенности ЭЭГ-реакции на счет. 125

B. Взаимосвязь между показателями частотно-специфической

ЭЭГ и функциональной активностью мозга при счете. 128

Г. Соотношения активности частотных генераторов по показателям ЭЭГ при счете. 131

ЗАКЛЮЧЕНИЕ. 134

ВЫВОДЫ. 140

Список литературы. 141

Приложение: таблицы 1-19, 155 рисунки 1-16 198 з

ВВЕДЕНИЕ Актуальность исследования.

Изучение особенностей развития психики в онтогенезе является весьма важной задачей как для общей, возрастной и педагогической психологии, так и для практической работы школьных психологов. Поскольку в основе психических явлений лежат нейрофизиологические и биохимические процессы, а формирование психики зависит от созревания структур головного мозга, решение указанной глобальной задачи связано с исследованием возрастных тенденций изменения психофизиологических показателей.

Не менее важной задачей, по крайней мере для нейро- и патопсихологии, а также для определения готовности детей к обучению в том или ином классе, является поиск надежных, независимых от социокультурных различий и степени открытости испытуемых перед экспертами критериев нормального психофизиологического развития детей. Электрофизиологические показатели в значительной степени соответствуют указанным требованиям, особенно если они анализируются в комплексе.

Любая квалифицированная психологическая помощь должна начинаться с надежной и точной диагностики индивидных свойств с учетом половых, возрастных и иных существенных факторов различий. Поскольку у детей 7-11 лет психофизиологические свойства находятся еще в стадии формирования и созревания и весьма неустойчивы, требуется значительное сужение исследуемых диапазонов возраста и видов деятельности (в момент регистрации показателей).

К настоящему времени опубликовано достаточно большое количество работ, авторы которых нашли статистически значимые корреляции между показателями умственного развития детей, с одной стороны, нейропсихологическими параметрами, с другой, возрастом и полом, с третьей, и электрофизиологическими показателями, с четвертой. ЭЭГ-параметры считаются весьма информативными, особенно это относится к амплитуде и спектральной плотности в узких поддиапазонах частот (0,5- 1,5 Гц) (Д.А. Фарбер, 1972, 1995, Н.В. Дубровинская, 2000, H.H. Данилова, 1985, 1998, Н.Л. Горбачевская и Л.П. Якупова, 1991, 1999, 2002, Т.А. Строганова и М.М. Цетлин, 2001).

Поэтому мы считаем, что с помощью анализа узких спектральных составляющих и использования адекватных способов сравнения показателей, полученных в разных сериях эксперимента и для разных возрастных групп, можно получить достаточно точную и надежную информацию о психофизиологическом развитии испытуемых.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Объект, предмет, цель и задачи исследования.

Объектом нашего исследования стали возрастные и половые особенности ЭЭГ и ЭКГ у младших школьников в возрасте 7-11 лет.

Предметом явилось изучение тенденций изменения указанных параметров с возрастом в "фоне", а также в процессе умственной активности.

Цель - исследование возрастной динамики активности нейрофизиологических структур, реализующих процессы мышления вообще и арифметического счета в частности.

В соответствии с этим были поставлены следующие задачи:

1. Сравнить показатели ЭЭГ в различных половозрастных группах испытуемых в "фоне".

2. Проанализировать динамику показателей ЭЭГ и ЭКГ в процессе решения арифметических задач этими группами испытуемых.

Гипотезы исследования.

1. Процесс формирования мозга детей сопровождается перераспределением между низко- и высокочастотными ритмами ЭЭГ: в тета- и альфа- диапазонах повышается удельный вес более высокочастотных компонентов (соответственно, 6-7 и 10-12 Гц). Вместе с тем изменения этих ритмов между 7-8 и 9 годами отражают большие трансформации активности мозга у мальчиков, чем у девочек.

2. Умственная активность при счете приводит к десинхронизации ЭЭГ-составляющих в среднечастотном диапазоне, специфическому перераспределению между низко- и высоко-частотными составляющими ритмов (больше подавляется компонент 6-8 Гц), а также к сдвигу функциональной межполушарной асимметрии в сторону повышения удельного веса левого полушария.

Научная новизна.

Представленная работа является одним из вариантов психофизиологических исследований нового типа, сочетающим современные возможности дифференцированной обработки ЭЭГ в узких поддиапазонах частот (1-2 Гц) тета- и альфа- составляющих со сравнением как возрастных и половых особенностей младших школьников, так и с анализом экспериментальных изменений. Проанализированы возрастные особенности ЭЭГ у детей в возрасте 7-11 лет, при этом сделан упор не на самих средних значениях, которые в большой степени зависят от особенностей аппаратуры и методов исследования, а на выявлении специфических паттернов соотношений между амплитудными характеристиками в узких поддиапазонах частот.

В том числе исследованы коэффициенты отношений между частотными составляющими тета- (6-7 Гц к 4-5) и альфа- (10-12 Гц к 7-8) диапазонов. Это позволило нам получить интересные факты зависимости, частотных паттернов ЭЭГ от возраста, пола и наличия умственной активности детей 7-11 лет. Эти факты частью подтверждают уже известные теории, частью являются новыми и требуют объяснения. Например, такое явление: при арифметическом счете у младших школьников происходит специфическое перераспределение между низко- и высоко-частотными составляющими ЭЭГ-ритмов: в тета-диапазоне - повышение удельного веса низкочастотного, а в альфа-диапазоне - наоборот, высокочастотного компонентов. Это было бы значительно труднее обнаружить обычными средствами анализа ЭЭГ, без ее обработки в узких поддиапазонах частот (1-2 Гц) и вычисления соотношений тета- и альфа- составляющих.

Теоретическая и практическая значимость.

Уточнены тенденции изменения биоэлектрической активности мозга у мальчиков и девочек, что позволяет сделать предположения о факторах, приводящих к своеобразной динамике психофизиологических показателей в первые годы обучения в школе и процессе адаптации к школьной жизни.

Сопоставлены особенности ЭЭГ-реакции на счет у мальчиков и девочек. Это позволило констатировать существование достаточно глубоких половых различий как в процессах арифметического счета и операций с числами, так и адаптации к учебной деятельности.

Важным практическим итогом работы явилось начало создания нормативной базы данных ЭЭГ- и ЭКГ- показателей детей в условиях лабораторного эксперимента. Имеющиеся среднегрупповые значения и стандартные отклонения могут быть основой для суждения о соответствии «фоновых» показателей и величин реакции типичным для соответствующих возраста и пола.

Результаты работы могут косвенно помочь при выборе того или иного критерия успешности обучения, диагностики наличия информационных стрессов и других явлений, ведущих к школьной дезадаптации и последующим затруднениям в социализации.

Положения, выносимые на защиту.

1. Тенденции изменения биоэлектрической активности мозга у мальчиков и девочек являются весьма надежными и объективными показателями формирования нейрофизиологических механизмов мышления и других познавательных процессов. Возрастная динамика ЭЭГ-составляющих - повышение доминирующей частоты - коррелирует с общей тенденцией уменьшения пластичности нервной системы с возрастом, что, в свою очередь, может быть связано с уменьшением объективной необходимости в адаптации к окружающим условиям.

2. Но в возрасте 8-9 лет указанная тенденция на время может меняться на противоположную. У мальчиков 8-9 лет это выражается в подавлении мощности большинства частотных поддиапазонов, а у девочек изменяются выборочно более высокочастотные составляющие. Спектр последних смещается в сторону понижения доминирующей частоты.

3. При арифметическом счете у младших школьников происходит специфическое перераспределение между низко- и высоко-частотными составляющими ЭЭГ-ритмов: в тета-диапазоне - повышение удельного веса низкочастотного (4-5 Гц), а в альфа-диапазоне - наоборот, высокочастотного (10-12 Гц) компонентов. Увеличение удельного веса компонентов 4-5 Гц и 10-12 Гц демонстрирует реципрокность активности генераторов этих ритмов по отношению к таковым у ритма 6-8 Гц.

4. Полученные результаты демонстрируют преимущества метода анализа ЭЭГ в узких поддиапазонах частот (шириной 1-1,5 Гц) и вычисления соотношений коэффициентов тета- и альфа- составляющих перед обычными методами обработки. Эти преимущества заметнее проявляются при условии использования адекватных критериев математической статистики.

Апробация работы Материалы диссертации отражены в докладах на международной конференции «Конфликт и личность в изменяющемся мире» (Ижевск, октябрь 2000 г.), на Пятой Российской университетско-академической конференции

Ижевск, апрель 2001), на Второй конференции «Агрессивность и деструктивность личности» (Воткинск, ноябрь 2002), на международной конференции к 90-летию А.Б. Когана (Ростов-на-Дону, сентябрь 2002), в стендовом докладе на Второй международной конференции «А.Р.Лурия и психология 21 века» (Москва, 24-27 сентября 2002 г.).

Научные публикации.

По материалам диссертационного исследования опубликовано 7 работ, в том числе тезисы к международным конференциям в Москве, Ростове-на-Дону, Ижевске, и одна статья (в журнале УдГУ). Вторая статья принята в печать в "Психологический журнал".

Структура и объем диссертации.

Работа изложена на 154 страницах, состоит из введения, обзора литературы, описания испытуемых, методов исследования и обработки результатов, описания результатов, их обсуждения и выводов, списка цитируемой литературы. Приложение включает 19 таблиц (в т. ч. 10 "вторичных интегральных") и 16 рисунков. Описание результатов иллюстрировано 8-ю "третичными интегральными" таблицами (4-11) и 11-ю рисунками.

Похожие диссертационные работы по специальности «Психофизиология», 19.00.02 шифр ВАК

  • Функциональная организация коры головного мозга при дивергентном и конвергентном мышлении: Роль фактора пола и личностных характеристик 2003 год, доктор биологических наук Разумникова, Ольга Михайловна

  • Индивидуальные характеристики альфа-активности и сенсомоторная интеграция 2009 год, доктор биологических наук Базанова, Ольга Михайловна

  • Специфика сенсомоторной интеграции у детей и взрослых в норме и при интеллектуальных расстройствах 2004 год, кандидат психологических наук Быкова, Нелли Борисовна

  • Полушарная организация процессов внимания в модифицированной модели Струпа: роль фактора пола 2008 год, кандидат биологических наук Брызгалов, Аркадий Олегович

  • Взаимосвязь системы торможения поведения с частотно-мощностными характеристиками ЭЭГ человека 2008 год, кандидат биологических наук Левин, Евгений Андреевич

Заключение диссертации по теме «Психофизиология», Фефилов, Антон Валерьевич

1. Частотный поддиапазон 8-9 Гц (и в меньшей степени 9-10 Гц) доминирует во многих областях мозга (кроме лобных) у большинства проанализированных испытуемых.

2. Общая тенденция изменений - повышение доминирующей частоты с возрастом, и от передних отделов мозга к задним, что выражается в перераспределении между низко- и высокочастотными ритмами ЭЭГ: в тета- и альфа- диапазонах повышается удельный вес более высокочастотных компонентов (соответственно, 6-7 и 10-12 Гц).

3. Но в возрасте 8-9 лет указанная тенденция на время может меняться на противоположную. У мальчиков 8-9 лет это выражается в подавлении амплитуды и мощности почти в равной мере всех проанализированных частотных поддиапазонов, а у девочек изменяются выборочно более высокочастотные составляющие. Соотношение частотных поддиапазонов у последних смещается в сторону понижения доминирующей частоты, в то время как величина общей десинхронизации меньше, чем у мальчиков.

4. Умственная активность при счете приводит к десинхронизации ЭЭГ-составляющих в диапазоне от 5 до 11-12 Гц в теменных и затылочных и от 6 до 12 Гц в височных и лобных областях, а также к разнонаправленным сдвигам функциональной межполушарной асимметрии.

5. При счете происходит специфическое перераспределение между низко- и высоко-частотными составляющими ритмов: в тета-диапазоне - повышение удельного веса низкочастотного (4-5 Гц), а в альфа-диапазоне -наоборот, высокочастотного (10-12 Гц) компонентов. Генерализованное увеличение удельного веса компонентов 4-5 Гц и 10-12 Гц демонстрирует реципрокность активности генераторов этих ритмов по отношению к таковым у ритма 6-8 Гц.

ЗАКЛЮЧЕНИЕ.

ЭЭГ как один из объективных методов исследования "динамики процесса мышления" и уровня развития различных компонентов интеллекта. Рассмотрев различные определения общего и некоторых специальных видов интеллекта (поскольку именно интеллектуальные способности в большой степени и влияют на изменения активности мозга, и зависят от нее), подобно М.А. Холодной , мы приходим к выводу, что многие из популярных дефиниций не удовлетворяют требованиям выделения существенных особенностей процесса мышления. Как уже упоминалось в литературном обзоре, некоторые из определений ставят на первое место связь между "уровнем интеллекта" и способностью индивида к приспособлению к требованиям действительности. Нам кажется, что это весьма "узкое" видение когнитивных функций, если понимать "требования действительности" в обычном ключе. Поэтому мы взяли на себя смелость предложить еще один вариант количественного определения "уровня интеллекта", который, возможно на первый взгляд, звучит несколько "абстрактно-кибернетически". Следует оговориться, что даже эта дефиниция не в полной мере учитывает психофизиологические аспекты диагностики способностей, которые нас интересовали в ходе настоящего исследования, например, уровень напряжения систем мозга и количество энергозатрат при реализации мышления.

Тем не менее, "уровень интеллекта" -это выраженная в объективной (возможно, числовой) форме характеристика (уровень) способности индивида за минимально возможное время находить такое решение, которое удовлетворяет максимально возможному количеству требований или условий задачи, с учетом их важности и очередности. То есть, говоря языком математики, способность к достаточно быстрому и "правильному" решению такой системы уравнений, в которой в отношении некоторых из переменных может быть заранее неизвестное и даже непостоянное количество правильных ответов.

Отсюда следует, во-первых, что "правильных" решений может быть несколько. Они могут в различной степени, "градуированно" удовлетворять условиям задачи. Кроме того, такое определение учитывает возможность проявления как репродуктивного, так и творческого мышления, и их соотношение. В любом случае, это значит, что существующие в настоящее время тестовые задания имеют крупный недостаток -только один ответ, "правильный" с точки зрения автора теста. Мы пришли к такому выводу, проверяя ответы взрослых испытуемых по ключам к тестам Айзенка и Амтхауэра (и даже ответы детей при диагностике выраженности ММД). Ведь по сути в этом случае диагносцируется способность испытуемого воспроизводить стиль мышления автора теста, а это хорошо только в случае определения математических способностей и проверки точных знаний, например, на экзаменах.

Поэтому мы считаем, что большинство используемых ныне тестов мало пригодно для диагностики нематематических специальных видов интеллекта и, тем более, они не подходят для выявления уровня "general intellect". Это относится к тестам, проводящимся за ограниченное время и имеющим "нормы" -таблицы для перевода "сырых баллов" в стандартизированные. Если же задания не имеют указанного, то они не более чем полуфабрикат для лабораторного исследования (кстати, тоже несовершенный), или, в качестве самостоятельного инструмента, -жалкая пародия на "объективный интеллектуальный тест".

Другие недостатки существующих способов определения способностей будут видны, когда мы зададимся вопросом: "от чего могут зависеть успешность решения интеллектуальных задач и уровень "общего интеллекта"?

С точки зрения "когнитивной психологии" и психофизиологии, в первую очередь, от скорости переработки информации (параметров стимулов) в психике и нервной системе (исследования уровня интеллекта и его возрастной динамики Г.Айзенка).

Кроме того, в процесс поиска правильного решения задачи у человека, как и у всякого существа, обладающего психикой, включены чувства и эмоции. O.K. Тихомиров отмечает, что "состояния эмоциональной активности включены в самый процесс поиска принципа решения, подготавливают нахождение еще "невербализованного" правильного ответа. Эмоциональная активность является необходимой для продуктивной деятельности". В этом, собственно, и состоит "эвристическая" функция эмоций.

Еще нам известно, что эффективность мышления, как и всякой другой деятельности, зависит от взаимосвязи уровней эмоций и мотивации и сложности задачи (эксперименты Р. Йеркса и А. Додсона). В исследованиях И.М. Палея была получена криволинейная (колоколообразная) зависимость между уровнем активации, тревожности, нейротизма и продуктивностью мышления по тесту Кэттелла.

После более обстоятельного размышления видно, что эффективность интеллектуальных действий зависит также от точности процессов различения и сравнения параметров стимулов при их идентификации (исследования ориентировочного рефлекса E.H. Соколова, H.H. Даниловой, Р.Наатанена и др.) и от упорядоченности (организованности в блоки, наличия многомерных классификаций) информации в долговременной и оперативной памяти.

Если проанализировать причины изменения эффективности решения интеллектуальных задач, то следует выделить следующие факторы, от которых будет зависеть возможность достижения успеха в умственной деятельности: a. Уровень развития мышления, или "коэффициент интеллекта", который может быть косвенно определен с помощью выполнения комплекса разнотипных тестовых задач за ограниченное время (например, уже упоминавшиеся методики ТСИ Амтхауэра, КОТ Вандерлика, разные субтесты Айзенка). b. Наличие и доступность знаний и умений для использования, зависящая от их упорядоченности в памяти, соответствие видов информации тем, которые требуются для решения задачи. с. Количество времени, имеющееся для решения задачи в реальной ситуации. Чем больше время, тем больше вариантов решения может перебрать и проанализировать субъект мышления.

1. Соответствие ситуативного уровня мотивации (и эмоциональной активации) уровню, оптимальному для решения задачи (законы оптимума мотивации). е. Благоприятность для деятельности ситуативного психофизического состояния. Могут иметь место временные усталость, "замутнение или спутанность сознания", а также другие измененные состояния сознания или психики в целом. Наличие резервов "ментальной энергии" помогает индивиду быстрее сосредоточиться и продуктивнее решить задачу. Наличие или отсутствие внешних помех, препятствий или подсказок, благоприятность для концентрации внимания на сути задачи. g. Наличие опыта решения сложных или незнакомых задач, знание определенных алгоритмов решения, умение освобождать от стереотипов и ограничений течение мысли.

Ь. Наличие умений и навыков продуктивного, творческого мышления, опыта активации творческого вдохновения, анализа "подсказок интуиции".

1. Везение -невезение в конкретной ситуации, влияющее на "удачность выбора" стратегии или последовательности перебора субъектом мышления разных путей и методов решения задачи.

Что еще более важно, все выше перечисленные факторы в разной степени могут опосредовать связь (быть "промежуточными переменными" в терминологии Э. Толмена) между выполнением арифметических операций и особенностями активности областей мозга, отражающимися в спектре электроэнцефалограмм (ЭЭГ) или параметрах вызванных потенциалов (ВП). Подобный вопрос с некоторым пессимизмом обсуждают Т.АШэоп, С.С.\¥оос1,

О.МсСайЬу . Им "кажется маловероятным, что мы когда-либо узнаем точно, какая именно пропорция нервных импульсов и активности, влияющих на данный психологический процесс, может регистрироваться через поверхностные электрические потенциалы".

Выход из этой ситуации, как нам представляется, может находиться прежде всего в том, что при проведении лабораторного эксперимента нужно контролировать большинство психологических факторов или хотя бы точно учитывать возрастные, половые и "образовательные" особенности испытуемых. При правильном построении плана эксперимента и адекватных критериях анализа результатов, как мы считаем, более объективные по сути ЭЭГ-показатели способны в большей степени представлять "динамику процесса мышления" и "энергетическую составляющую" разных компонентов интеллекта испытуемых, чем существующие на сегодняшний день критерии оценки по психологическим тестам. По крайней мере, исследователь будет знать, насколько трудным по комплексу показателей для испытуемого является решение той или иной интеллектуальной задачи. А с помощью этого уже намного уместнее будет выйти на суждение о структуре интеллекта, когнитивных способностей, вероятных профессиональных предпочтениях и достижениях.

Преимущества анализа ЭЭГ в узких поддиапазонах частот перед обычным методом обработки можно сравнить с достоинствами использования комплекса психологических тестов, определяющих уровень различных специальных знаний, умений и способностей, перед тестами, определяющими менее дифференцированные «общие способности». Следует вспомнить, что и отдельные нейроны-детекторы, и комплексы нейронов в мозге человека обладают очень высокой специфичностью , отвечая только на узко заданный набор параметров стимула, что повышает точность и надежность определения стимула. Подобно этому и перспективы развития видео- и аудио-техники (извините за такое «бытовое» сравнение) связаны с развитием цифровых УКВ-систем с высокой точностью настройки на заданные частотные каналы, способных обеспечить более чистый и надежный прием и передачу информации. Поэтому мы считаем, что будущее методов электроэнцефалографии и его аналогов связано с анализом спектральной мощности комплекса узкочастотных составляющих с последующим вычислением коэффициентов их соотношения и дифференцированным их сравнением. А будущее диагностики способностей, как нам представляется, -за методами исследования уровней развития совокупности специальных умений и навыков и анализа их соотношения.

Именно эти практические и теоретические преимущества указанных методов обработки и анализа результатов мы хотели бы использовать для реализации нашей программы научных исследований.

Список литературы диссертационного исследования кандидат психологических наук Фефилов, Антон Валерьевич, 2003 год

1. Айрапетянц В. А. Сравнительная оценка функционального состояния высших отделов систем детей 5, 6 и 7 лет (ЭЭГ исследования). В кн.: Гигиенические вопросы начального обучения в школе (сборник трудов), М., 1978, в. 5, с. 51-60.

2. Анохин П.К. Биология и нейрофизиология условного рефлекса. М., 1968. С. 547.

3. Аракелов Г.Г. Стресс и его механизмы. Вестник МГУ. Серия 14, "Психология", т. 23, 1995, №4, с.45-54.

4. Аракелов Г.Г., Лысенко Н.Е., Шотт Е.К. Психофизиологический метод оценки тревожности. Психологический журнал. Т. 18, 1997, № 2, С. 102-103.

5. Аракелов Г.Г., Шотт Е.К., Лысенко Н.Е. ЭЭГ в стрессе у правшей и левшей. Вестник МГУ, сер. "Психология", в печати (2003).

6. Бадалян Л. О., Журба Л. Т., Мастюкова Е. М. Минимальная мозговая дисфункция у детей. Журн. невропатологии и психиатрии им. Корсакова, 1978, № 10, с. 1441-1449.

7. Баевский P.M. Прогнозирование состояний на грани нормы и патологии. М.: Медицина, 1979.

8. Балунова A.A. ЭЭГ в детском возрасте: Обзор литературы. Вопр. Охраны материнства, 1964, т. 9, №11, с. 68-73.

9. Батуев A.C. Высшие интегративные системы мозга. Л.: Наука, 1981.-255 с.

10. Белый Б. И., Фрид Г. М. Анализ функциональной зрелости мозга детей по данным ЭЭГ и методике Роршаха. В кн.: Новые исследования по возрастной физиологии, М., 1981, №2, с.3-6.

11. Бияшева 3. Г., Швецова Е. В. Информационный анализ электроэнцефалограмм детей в возрасте 10-11 лет при решенииарифметических задач. В кн.: Возрастные особенности физиологических систем детей и подростков. М., 1981, с18.

12. Бодалев A.A., Столин В.В. Общая психодиагностика. С.-Петерб.,2000.

13. Борбели А. Тайна сна. М., "Знание", 1989, стр. 22-24, 68-70, 143177.

14. Брагина H.H., Доброхотова Т.А. Функциональная асимметрия человека. М.,1981.

15. Варшавская Л.В. Биоэлектрическая активность мозга человека в динамике непрерывной, длительной и напряжённой умственной деятельности. Автореф. дисс. канд. биол. наук. Ростов-на-Дону, 1996.

16. Вильдавский В.Ю. Спектральные компоненты ЭЭГ и их функциональная роль в системной организации пространственно-гностической деятельности детей школьного возраста. Автореф. дисс. канд. биол. наук. М., 1996.

17. Власкин Л.А., Думбай В.Н., Медведев С.Д., Фельдман Г.Л. Изменения альфа-активности при снижении работоспособности человека-оператора// Физиология человека. 1980.- Т.6, №4.- С.672-673.

18. Галажинский Э. В. Психическая ригидность как индивидуально-психологический фактор школьной дезадаптации. Автореф. дисс. канд. психол. наук. Томск, 1996.

19. Гальперин П.Я. Введение в психологию. М.: Кн. Дом «Ун-т», Юрайт, 2000.

20. Глумов А.Г. Особенности ЭЭГ-активности испытуемых с разным латеральным профилем функциональной межполушарной ассиметрией мозга в фоне и при умственной нагрузке. Автореф. дисс. канд. биол. наук. Ростов-на-Дону, 1998.

21. Голубева Э.А. Индивидуальный уровень активации-инактивации и успешной деятельности. Функциональные состояния: Материалы международного симпозиума, 25-28 окт. 1976.- М.: МГУ, 1978.- С. 12.

22. Горбачевская Н. JI. Сравнительный анализ ЭЭГ у детей младшего школьного возраста в норме и при различных вариантах задержки психического развития. Автореф. дисс. канд. биол. наук. М.,1982.

23. Горбачевская H.JL, Якупова Л.П., Кожушко Л.Ф., Симерницкая Э.Г. Нейробиологические причины школьной дезадаптации. Физиология человека, т. 17, 1991, №5, с. 72.

24. Горбачевская Н.Л., Якупова Л.П., Кожушко Л.Ф. Формирование корковой ритмики у детей 3-10 лет (по данным ЭЭГ-картирования). В сб.: Ритмы, синхронизация и хаос в ЭЭГ. М., 1992, с. 19.

25. Горбачевская Н.Л., Якупова Л.П., Кожушко Л.Ф. Электроэнцефалографическое исследование детской гиперактивности. Физиология человека, 1996, т. 22, № 5, с. 49.

26. Горбачевская Н.Л., Якупова Л.П. Особенности картины ЭЭГ у детей с разными типами аутистических расстройств. В. кн.: Аутизм в детстве. БашинаВ. М., М., 1999, с. 131-170.

27. Горбачевская Н.Л., Давыдова Е.Ю., Изнак А.Ф. Особенности спектральных характеристик ЭЭГ и нейропсихологических показателей памяти у детей с признаками интеллектуальной одаренности. Физиология человека, в печати (2002).

28. Гриндель О.М. Оптимальный уровень когерентности ЭЭГ и его значение в оценке функционального состояния мозга человека. Журн. высш. нерв, деят.- 1980,- Т.30, №1.- С.62-70.

29. Гриндель О.М., Вакар Е.М. Анализ спектров ЭЭГ человека в состоянии относительного и "оперативного покоя" по A.A. Ухтомскому. Журн. высш. нерв, деят.- 1980,- Т.30, №6.- С.1221-1229.

30. Гусельников В.И. Электрофизиология головного мозга. М.: Высшая школа, 1976. -423 стр.

31. Данилова H.H. Функциональные состояния: механизмы и диагностика. М.: Изд-во МГУ, 1985. -287 стр.

32. Данилова H.H., Крылова А.Л., Физиология высшей нервной деятельности. М.: Изд-во МГУ, 1989. -398 стр.

33. Данилова H.H. Психофизиологическая диагностика функциональных состояний. М.: Изд-во МГУ, 1992. -191 стр.

34. Данилова H.H. Психофизиология. М.: "Аспект Пресс", 1998, 1999. -373 стр.

35. Дубровинская Н. В., Фарбер Д. А., Безруких М.М. Психофизиология ребенка. М.: "Владос", 2000.

36. Еремеева В.Д., Хризман Т.П. Мальчики и девочки - два разных мира. М.: "Линка-Пресс", 1998, стр. 69-76.

37. Ефремов К. Д. Сравнительные электрофизиологические особенности олигофренов 6-7 лет и здоровых детей того же возраста. В кн.: Алкогольные и экзогенные органические психозы, Л., 1978, с. 241-245.

38. Жеребцова В.А. Исследование функциональной межполушарной асимметрии мозга детей при сенсорной депривации (при нарушениях слуха). Автореф. дисс. канд. биол. наук. Ростов-на-Дону, 1998.

39. Жирмунская Е.К., Лосев B.C., Маслов В.К. Математический анализ типа ЭЭГ и межполушарной асимметрии ЭЭГ. Физиология человека.- 1978.- Т. №5.- С.791-799.

40. Жирмунская Е.А., Лосев B.C. Системы описания и классификация электроэнцефалограмм человека. М.: Наука, 1984. 81 с.

41. Журба Л. Т., Мастюкова Е. М. Клинико-электрофизиологические сопоставления минимальной дисфункции у детей школьного возраста. -Журн. невропатологии и психиатрии им. Корсакова, 1977, т. 77, №10, с. 1494-1497.

42. Журба Л. Т., Мастюкова Е. М. Минимальная мозговая дисфункция у детей: Научный обзор. М., 1978. - с.50.

43. Зак А.З. Различия в мышлении детей. М., 1992.

44. Зислина Н. Н. Особенности электрической активности мозга у детей с задержкой развития и церебрастеническим синдромом. В кн.: Дети с временными задержками развития. М., 1971, см. 109-121.

45. Зислина Н. Н., Ополинский Э. С., Рейдибойм М. Г. Исследование функционального состояния мозга по данным электроэнцефалографии у детей с задержкой развития. Дефектология, 1972, №3, с. 9-15.

46. Зыбковец Л.Я., Соловьёва В.П. Влияние напряжённой умственной работы на основные ритмы ЭЭГ (дельта, тета, альфа, бета-1 и бета-2 ритмы). Физиологическая характеристика умственного и творческого труда (материалы симпозиума).- М., 1969.- С.58-59.

47. Иваницкий A.M., Подклетнова И.М., Таратынов Г.В. Исследование динамики внутрикоркового взаимодействия в процессе мыслительной деятельности. Журн.высш.нерв.деят.- 1990.- Т.40,№2.- С.230-237.

48. Иванов Э.В., Малофеева С.Н., Пашковская З.В. ЭЭГ при умственной деятельности. XIII съезд всесоюзного физиологического общества им. И.П.Павлова.- Л., 1979,- Вып.2.- С.310-311.

49. Измайлов Ч.А., Соколов E.H., Черноризов A.M. Психофизиология цветового зрения. М., Изд. МГУ, 1989, 206 стр.

50. Ильин Е.П. Дифференциальная психофизиология. С.-Петерб., "Питер", 2001, стр. 327-392.

51. Казин Э.М., Блинова Н.Г., Литвинова H.A. Основы индивидуального здоровья человека. М., 2000.

52. Кайгородова Н.З. ЭЭГ исследование умственной работоспособности в условиях дефицита времени: Автореф.дисс. канд.биол.наук. Л., 1984.

53. Каминская Г.Т. Основы элекроэнцефалографии. М.: Изд-во МГУ, 1984.-87с.

54. Кирой В.Н. О некоторых нейрофизиологических проявлениях процесса решения человеком мыслительных задач. Автореф.дис. . канд.биол.наук. Ростов-на-Дону, 1979.- С. 26.

55. Кирой В.Н. Пространственно-временная организация электрической активности мозга человека в состоянии спокойного бодрствования и при решении мыслительных задач. ЖВНД.- 1987.- Т.37, №6.- С. 1025-1033.

56. Кирой В.Н. Функциональное состояние мозга человека в динамике интеллектуальной деятельности.- Автореф. дисс. докт.биол.наук. Ростов-на-Дону, 1990.-С. 381

57. Кирой В.Н., Ермаков П.Н., Белова Е.И., Самойлина Т.Г. Спектральные характеристики ЭЭГ детей младшего школьного возраста с трудностями обучения. Физиология человека, том 28, 2002, № 2, стр.20-30.

58. Китаев-Смык JI.A. Психология стресса. М.: Наука, 1983. 368 с.

59. Князев Г.Г., Слободская Е.Р., Афтанас Л.И., Савина H.H. ЭЭГ-корреляты эмоциональных расстройств и отклонений в поведении у школьников. Физиология человека, том 28, 2002, № 3, стр.20.

60. Колесов Д.В. Биология и психология пола. М., 2000.

61. Костандов Э.А., Иващенко О.И., Важнова Т.Н. О полушарной латерализации зрительно-пространственной функции у человека. ЖВНД.-1985.- Т. 35, №6.- С.1030.

62. Лазарев В.В., Свидерская Н.Е., Хомская Е.Д. Изменения пространственной синхронизации биопотенциалов при разных видах интеллектуальной деятельности. Физиология человека.- 1977.- Т.З, №2.- С. 92-109.

63. Лазарев В.В. Информативность разных подходов к картированию ЭЭГ при исследовании психической деятельности. Физиология человека.-1992.- Т. 18, №6.- С. 49-57.

64. Лазарус Р. Теория стресса и психофизиологические исследования. В кн.: Эмоциональный стресс. Л.: Медицина, 1970.

65. Либин A.B. Дифференциальная психология: на пересечении европейских, российских и американских традиций. М., "Смысл", 1999,2000, стр. 277-285.

66. Ливанов М.Н., Хризман Т.П. Пространственно-временная организация биопотенциалов мозга у человека. Естественные основы психологии.- М., 1978.- С. 206-233.

67. Ливанов М.Н., Свидерская Н.Е. Психологические аспекты феномена пространственной синхронизации потенциалов. Психологический журнал.- 1984.- Т. 5, №5.- С. 71-83.

68. Лурия А.Р., Цветкова Л.С. Нейропсихологический анализ решения задач. М.: Просвещение, 1966. 291 с.

69. Лурия А.Р. Основы нейропсихологии. М.: Изд-во МГУ, 1973. 374с.

70. Мачинская Р.И., Дубровинская Н.В. Онтогенетические особенности функциональной организации полушарий мозга при направленном внимании: ожидание перцептивной задачи. ЖВНД.- 1994- Т. 44, №3.-С. 448-456.

71. Микадзе Ю.В. Особенности нарушения вербальной памяти при локальных поражениях правого и левого полушарий мозга. Журнал невропатологии и психиатрии.- 1981.- Т.81, №12.- С. 1847-1850.

72. Московичюте Л.И., Орк Э.Г., Смирнова H.A. Нарушение счёта в клинике очаговых поражений мозга. Журнал невропатологии и психиатрии.-1981.-Т. 81, №4.-С. 585-597.

73. Мухина B.C. Возрастная психология. М., Академия 2000.

74. Наенко Н.И. Психическая напряженность. М.: Изд-во MTV, 1976. -112 с.

75. Немчин Т.А. Состояние нервно-психического напряжения. JL: Изд-во ЛГУ, 1983.-167с.

76. Нечаев A.B. Электроэнцефалографические проявления функциональных состояний человека при информационных нагрузках монотонного типа. Диагностика здоровья.- Воронеж, 1990.- С. 99-107.

77. Новикова Л.А. ЭЭГ и ее использование для изучения функционального состояния мозга. В кн.: Естественнонаучные основы психологии. М.: Педагогика, 1978. 368 с.

78. Обухова Л.Ф. Детская возрастная психология. М., 1999.

79. Общая психология. Под ред. Петровского A.B. М., Просвещение,1986.

80. Панюшкина С.В., Курова Н.С., Коган Б.М., Даровская Н.Д. Холинолитическое и холиномиметическое воздействие на некоторые нейро-, психофизиологические и биохимические показатели. Российский психиатрический журнал, 1998, №3, стр. 42.

81. Погосян А. А. О становлении пространственной организованности биопотенциального поля мозга у детей по мере возрастного развития. Автореф. Дисс. канд. биол. наук. С.-Петербург, 1995.

82. Полянская Е.А. Возрастные особенности функциональной межполушарной асимметрии в динамике психомоторной активности. Автореф. дисс. канд. биол. наук. Ростов-на-Дону, 1998.

83. Пратусевич Ю.М. Определение работоспособности учащихся. М.: Медицина, 1985.-127 с.

84. Психология. Словарь. Под ред. А.В.Петровского и М.Г.Ярошевского. М., Политиздат. 1990, 494 стр.

85. Рождественская В.И. Индивидуальные различия работоспособности. М.: Педагогика, 1980. 151 стр.

86. Ротенберг В. Парадоксы творчества. Интернет, сайт http:// www, phi ogiston.ru

87. Руденко З.Я. Нарушение числа и счета при очаговых повреждениях мозга (акалькулия). М., 1967.

88. Русалов В.М., Кошман С.А. Дифференциально-психофизиологический анализ интеллектуального поведения человека в вероятностной среде. Психофизиологические исследования интеллектуальной саморегуляции и активности.- М.:Наука,1980.- С.7-56.

89. Русалов В.М., Русалова М.Н., Калашникова И.Г. и др. Биоэлектрическая активность мозга человека у представителей различных типов темперамента. ЖВНД,- 1993.- Т. 43, №3.- С. 530.

90. Русинов B.C., Гриндель О.М., Болдырева Г.Н., Вакар Е.М. Биопотенциалы мозга человека. Математический анализ.- М.: Медицина, 1987.- С. 256.

91. Сандомирский М.Е., Белогородский JI.C., Еникеев Д.А. Периодизация психического развития с точки зрения онтогенеза функциональной асимметрии полушарий. Интернет, сайт http://www.psvchologv.ru/Librarv

92. Свидерская Н.Е., Королькова Т.А., Николаева Н.О. Пространственно-частотная структура электрических корковых процессов при различных интеллектуальных действиях человека. Физиология человека,- 1990.- Т. 16, №5,- С. 5-12.

93. Селье Г. Стресс без дистресса. М.: Прогресс, 1982. 124 с.

94. Сидоренко Е.В. Методы математической обработки в психологии. СПб., "Речь", 2000, стр. 34-94.

95. Симонов П.В. Эмоциональный мозг. М.: Наука, 1981. 215 с.

96. Славуцкая М.В., Киренская А.Б. Электрофизиологические корреляты функционального состояния нервной системы при монотонной работе. Физиология человека.- 1981, №1.- С.55-60.

97. Соколов А.Н., Щебланова Е.И. Изменение в суммарной энергии ритмов ЭЭГ при некоторых видах умственной деятельности. Новые исследования в психологии.- М.: Педагогика, 1974.- Т.З.- С. 52.

98. Соколов Е.И. Эмоциональное напряжение и реакции сердечнососудистой системы. М.: Наука, 1975. 240 с.

99. Соколов E.H. Теоретическая психофизиология. М., 1985.

100. Способности. К 100-летию со дня рожд. Б.М.Теплова. Ред. Э.А.Голубева. Дубна, 1997.

101. Спрингер С., Дейч Г. Левый мозг, правый мозг. М.,1983. ЮЗ.Стреляу Я. Роль темперамента в психическом развитии. М.,1. Прогресс", 1982.

102. Структурно-функциональная организация развивающегося мозга. Л.: Наука, 1990. 197 с.

103. Суворова В.В. Психофизиология стресса. М.: Педагогика, 1975.208 с.

104. Юб.Сухо дольский Г.В. Основы математической статистики для психологов. Л.: Изд-во ЛГУ, 1972. 429 с.

105. Тихомиров O.K. Структура мыслительной деятельности человека. МГУ, 1969.

106. Тихомирова Л.Ф. Развитие интеллектуальных способностей школьников. Ярославль, Академия развития. 1996 г.

107. Фарбер Д.А., Алферова В.В. Электроэнцефалограмма детей и подростков. М.: Педагогика, 1972. 215 с.

108. ПО.Фарбер Д.А. Психофизиологические основы дифференциальной диагностики и коррекционного обучения детей с нарушениями познавательной деятельности. М., 1995.

109. Ш.Фарбер Д.А., Бетелева Т.Г., Дубровинская Н.В., Мачинская Р.Н. Нейрофизиологические основы динамической локализации функций в онтогенезе. Первая международная конференция памяти А.Р. Лурии. Сб. докладов. М., 1998.

110. Фельдштейн Д.И. Психология развития личности в онтогенезе. М. Педагогика, 1989.

111. ПЗ.Фефилов A.B., Емельянова О.С. Психофизиологические особенности младших школьников и их изменение при арифметической деятельности. Сборник "Cogito", выпуск 4. Ижевск, Издат. УдГУ, 2001. Стр. 158-171.

112. Хананашвили М.М. Информационные неврозы. JL: Медицина, 1978.- 143 с.11 б.Холодная М.А. Психология интеллекта. Парадоксы исследования. С.-Петерб.: "Питер", 2002, 272 стр.

113. Хомская Е.Д. Общие и локальные изменения биоэлектрической активности мозга во время психической деятельности. Физиология человека.- 1976.- Т. 2,№3.- С.372-384.

114. Хомская Е.Д. Нейропсихология. М.: Изд-во МГУ, 1987. 288 с.

115. Хомская Е.Д. Мозг и эмоции: Нейропсихологические исследования. М.: Изд-во МГУ, 1992. 179 с.

116. Хрестоматия по общей психологии: Психология мышления. Под ред. Ю.Б. Гиппенрейтер, В.В.Петухова. М., МГУ, 1981.

117. Хризман Т.П., Еремеева В.Д., Лоскутова Т.Д. Эмоции, речь и активность мозга ребёнка. М.: Педагогика, 1991.

118. Цветкова Л.С. Нарушение и восстановление счета при локальных поражениях мозга. М.: Изд-во МГУ, 1972. 88 с.

119. Цветкова Л.С. Нейропсихология счета, письма и чтения: нарушение и восстановление. М.: Московский ПСИ, 2000. 304 с.

120. Шеповальников А.Н., Цицерошин М.Н., Апанасионок B.C. Формирование биопотенциального поля мозга человека. Д.: Наука, 1979. -163 с.

121. Шеповальников А.Н., Цицерошин М.Н., Левинченко Н.В. "Возрастная минимизация" областей мозга, участвующих в системном обеспечении психических функций: аргументы за и против. Физиология человека,- 1991.- Т. 17, №5. С.28-49.

122. Шурдукалов В.Н. Оценка продуктивности психометрического и качественно-уровневого подходов в психодиагностике нарушений развития у младших школьников. Автореф. дисс. . канд. психол. наук. Иркутск, 1998.

123. Ясюкова Л.А. Оптимизация обучения и развития детей с ММД. СПб, "ИМАТОН", 1997, стр. 18-34, 74-75.

124. Adey W.R, Kado R.T. and Walter D.O. Computer analysis of EEG data from Gemini Flight GT-7. Aerospace Medicine. 1967. Vol. 38. P. 345- 359.

125. Andersen P, Andersson S.A. Physiological basis of the alpha rhythm. N. Y„ 1968.

126. Armington J.C. and Mitnick L.L. Electroencephalogram and sleep deprivation. J. Of Applied Psychol. 1959. Vol. 14. P. 247-250.

127. Chabot R, Serfontein G. Quantitative electroencephalographic profiles of chidren with attention deficit disorder // Biol. Psychiatry.-1996.-Vol. 40.- P. 951-963.

128. Dolce G., Waldeier H. Spectral and multivariate analysis of EEG changes during mental activity in man // EEG and Clin. Neurophysiol. 1974. Vol. 36. P. 577.

129. Farah M.J. the neural basis of mental image // Trends in Neuroscience. 1989. Vol. 12. P. 395-399.

130. Fernandes T., Harmony T., Rodrigues M. et al. EEG activation patternsduring the performance of tasks involving different components of mental calculation // EEG and Clin. Neurophysiol. 1995. Vol. 94. № 3 P. 175.

131. Giannitrapani D. Electroencephalographic differences between resting and mental multiplication // Percept. And Motor Skill. 1966. Vol. 7. № 3. P. 480.

132. Harmony T., Hinojosa G., Marosi E. et al. Correlation between EEG spectral parameters and an educational evaluation // Int. J. Neurosci. 1990. Vol. 54. № 1-2. P. 147.

133. Hughes J. A review of the usefulness of the standart EEG in psychiatry // Clin. Electroencephalography.-1996.-Vol. 27,-P. 35-39.

134. Lynn R. Attention, Arousal and the orientation reaction // International series of monographs in Experimental Psychology / Ed. H.J. Eysenk. Oxford: Pergamon Press Ltd. 1966. Vol. 3.

135. Kosslyn S.M., Berndt R.S., Doyle T.J. Imagery and language processing: A Neurophysiological approach / Eds. M.I. Posner, O.S.M. Marin. Attention and Performance XI, Hillsdale. N.J., 1985. P. 319-334.

136. Niedermeyr E., Naidu S. Attention-dificit hyperactivity disorder (ADHD) and frontal-motor cortex disconnection // Clinicial electroencephalography.-1997.-Vol. 28.-P. 130-134.

137. Niedermeyr E., Lopes de Silva F. Electroencephalography: basic principles, clonical applications, and related fields.-4th ed.-Baltimore, Maryland, USA, 1998.-1258 p.

138. Niedermeyer E. Alpha rhythms as physiological and abnormal phenomena. International Journal of Psychophysiology. 1997, vol.26, p.31-49.

139. Posner M.I., Petersen S.E., Fox P.T., Raichle M.E. Localization of cognitive operations in the human brain // Science. 1988. Vol. 240. P. 1627- 1631.

140. Porges S.W. Vagal mediation of respiratory sinus arrhythmia. From Temporal control of drug delivery, volume 618 of the Annals of the New York Academy of Sciences. The USA, 1991, p. 57-65.

141. Pribram K.H., MeGuinness D. Arousal, activation and effort in the control of attention // Psychological Review. 1975. Vol. 82. P. 116-149.

142. Spear L.P. The adolescent brain and age-related behavioral manifestations. Neuroscience and Biobehavioral Reviews, 2000, v.24, p.417-463.

143. Мальчики Лобные области. Возрастной диапазон:

144. К.С.Тета Фон 89,5 91,4 88,4 90,019 92,9 92,2 91,7 92,7

145. К.С.Альфа 65,1 73,3 74,7 92,619 68,9 74,9 76,2 90,4

146. К.С.Тета Арифм. Счет 84,9 84,8 82,8 89,221 88,6 80,8 82,2 87,7

147. К.С.Альфа 74,4 77,7 76,3 97,621 78,5 76,3 78,6 91,7

148. Мальчики Височные области. Возрастной диапазон:

149. К.С.Тета Фон 84,8 88,4 88,9 102,319 89,8 94,4 88,5 99,6

150. К.С.Альфа 85,3 82,2 77,3 92,419 82,9 81,6 81,8 99,3

151. К.С.Тета Арифм. Счет 81,0 79,7 89,6 94,621 85,4 88,3 86,8 93,1

152. К.С.Альфа 91,0 80,7 81,0 89,421 96,4 85,0 88,5 101,0