Методы исследования желез внутренней секреции - реферат. Методы исследования желез внутренней секреции - реферат Сущность явления парабиоза

Экспериментальные факты, составляющие основу учения о парабиозе, Н.В. Введенский (1901) изложил в своем классическом труде «Возбуждение, торможение и наркоз».

При изучении парабиоза, так же как и при исследовании лабильности, опыты проводились на нервно-мышечном препарате.

Н. Е. Введенский обнаружил, что если участок нерва подвергнуть альтерации (т. е. воздействию повреждающего агента) посредством, например, отравления или повреждения, то лабильность такого участка резко снижается. Восстановление исходного состояния нервного волокна после каждого потенциала действия в поврежденном участке происходит медленно. При действии на этот участок частых раздражителей он не в состоянии воспроизвести заданный ритм раздражения, и поэтому проведение импульсов блокируется.

Нервно-мышечный препарат помещался во влажную камеру, а на его нерв накладывались три пары электродов для нанесения раздражений и отведения биопотенциалов. Кроме этого, в опытах регистрировались сокращение мышцы и потенциала нерва между интактным и альтерированным участками. Если же участок между раздражающими электродами и мышцей подвергнуть действию наркотических веществ и продолжать раздражать нерв, то ответ на раздражение через некоторое время внезапно исчезает. Н.Е. Введенский, исследуя в подобных условиях действие наркотиков и прослушивая с помощью телефона биотоки нерва ниже наркотизированного участка, заметил, что ритм раздражения начинает трансформироваться за некоторое время до того, как полностью исчезнет ответ мышцы на раздражение. Такое состояние пониженной лабильности было названо Н. Е. Введенским парабиозом. В развитии состояния парабиоза можно отметить три, последовательно сменяющих друг друга, фазы:

Уравнительную,

Парадоксальную и

Тормозную,

которые характеризуются разной степенью возбудимости и проводимости при нанесении на нерв слабых (редких), умеренных и сильных (частых) раздражений.

Если наркотическое вещество продолжает действовать после развития тормозной фазы, то в нерве могут произойти необратимые изменения, и он погибает.

Если же действие наркотика прекратить, то нерв медленно восстанавливает свою исходную возбудимость и проводимость, а процесс восстановления проходит через развитие парадоксальной фазы

В состоянии парабиоза происходит снижение возбудимости и лабильности.

Учение Н.Е.Введенского о парабиозе носит универсальный характер, т.к. закономерности реагирования, выявленные при исследовании нервно-мышечного препарата, присущи целому организму. Парабиоз есть форма приспособительных реакций живых образований на разнообразные воздействия и учение о парабиозе широко используется для объяснения различных механизмов реагирования не только клеток, тканей, органов, но и целого организма.

Дополнительно: Парабиоз - означает "около жизни". Он возникает при действии на нервы парабиотических раздражителей (аммиак, кислота, жирорастворители, КCl и т.д.), этот раздражитель меняет лабильность, снижает ее. Причем снижает ее фазно, постепенно.

Фазы парабиоза:

1. Сначала наблюдается уравнительная фаза парабиоза. Обычно сильный раздражитель дает сильный ответ, а меньший - меньший. Здесь наблюдаются одинаково слабые ответы на различные по силе раздражители(Демонстрация графика).

2. Вторая фаза - парадоксальная фаза парабиоза. Сильный раздражитель дает слабый ответ, слабый - сильный ответ.

3. Третья фаза - тормозная фаза парабиоза. И на слабый и на сильный раздражитель ответа нет. Это связано с изменением лабильности.

Первая и вторая фаза - обратимые, т.е. при прекращении действия парабиотического агента ткань восстанавливается до нормального состояния, до исходного уровня.

Третья фаза - не обратимая, тормозная фаза через короткий промежуток времени переходит в гибель ткани.

Механизмы возникновения парабиотических фаз

1. Развитие парабиоза обусловлено тем, что под действием повреждающего фактора происходит снижение лабильности, функциональной подвижности. Это лежит в основе ответов, которые называют фазы парабиоза.

2. В нормальном состоянии ткань подчиняется закону силы раздражения. Чем больше сила раздражения, тем больше ответ. Существует раздражитель, который вызывает максимальный ответ. И эту величину обозначают как оптимум частоты и силы раздражения.

Если эту частоту или силу раздражителя превысить, то ответная реакция снижается. Это явление - пессимум частоты или силы раздражения.

3. Величина оптимума совпадает с величиной лабильности. Т.к. лабильность - это максимальная способность ткани, максимально большой ответ ткани. Если лабильность меняется, то величины, на которых вместо оптимума развивается пессимум, сдвигаются. Если изменить лабильность ткани, то та частота, которая вызывала оптимум ответа, теперь будет вызывать пессимум.

Биологическое значение парабиоза

Открытие Введенским парабиоза на нервно-мышечном препарате в лабораторных условиях имело колоссальные последствия для медицины:

1. Показал, что явление смерти не мгновенно, существует переходный период между жизнью и смертью.

2. Этот переход осуществляется пофазно.

3. Первая и вторая фазы обратимы, а третья не обратимая.

Эти открытия привели в медицине к понятиям - клиническая смерть, биологическая смерть.

Клиническая смерть - это обратимое состояние.

Биологическая смерть - необратимое состояние.

Как только сформировалось понятие "клиническая смерть", то появилась новая наука - реаниматология ("ре" - возвратный предлог, "анима" - жизнь).

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

Эта тема принадлежит разделу:

Физиология

Общая физиология. Физиологические основы поведения. Высшая нервная деятельность. Физиологические основы психических функций человека. Физиология целенаправленной деятельности. Приспособление организма к различным условиям существования. Физиологическая кибернетика. Частная физиология. Кровь, лимфа, тканевая жидкость. Кровообращение. Дыхание. Пищеварение. Обмен веществ и энергии. Питание. Центральная нервная система. Методы исследования физиологических функций. Физиология и биофизика возбудимых тканей.

К данному материалу относятся разделы:

Роль физиологии в диалектико-материалистическом понимании сущности жизни. Связь физиологии с другими науками

Основные этапы развития физиологии

Аналитический и системный подход к изучению функций организма

Роль И.М.Сеченова и И.П.Павлова в создании материалистических основ физиологии

Защитные системы организма, обеспечивающие целостность его клеток и тканей

Общие свойства возбудимых тканей

Современные представления о строении и функции мембран. Активный и пассивный транспорт веществ через мембраны

Электрические явления в возбудимых тканях. История их открытия

Потенциал действия и его фазы. Изменение проницаемости калиевых, натриевых и кальциевых каналов в процессе формирования потенциала действия

Мембранный потенциал, его происхождение

Соотношение фаз возбудимости с фазами потенциала действия и одиночного сокращения

Законы раздражения возбудимых тканей

Действие постоянного тока на живые ткани

Физиологические свойства скелетной мышцы

Виды и режимы сокращения скелетных мышц. Одиночное мышечное сокращение и его фазы

Тетанус и его виды. Оптимум и пессимум раздражения

Лабильность, парабиоз и его фазы (Н.Е.Введенский)

Сила и работа мышц. Динамометрия. Эргография. Закон средних нагрузок

Распространение возбуждения по безмякотным нервным волокнам

Строение, классификация и функциональные свойства синапсов. Особенности передачи возбуждения в них

Функциональные свойства железистых клеток

Основные формы интеграции и регуляции физиологических функций (механическая, гуморальная, нервная)

Системная организация функций. И.П.Павлов - основоположник системного подхода в понимании функций организма

Учение П.К.Анохина о функциональных системах и саморегуляции функций. Узловые механизмы функциональной системы

Понятие о гомеостазе и гомеокинезе. Саморегуляторные принципы поддержания постоянства внутренней среды организма

Рефлекторный принцип регуляции (Р.Декарт, Г.Прохазка), его развитие в трудах И.М.Сеченова, И.П.Павлова, П.К.Анохина

Основные принципы и особенности распространения возбуждения в ЦНС

Торможение в ЦНС (И.М.Сеченов), его виды и роль. Современное представление о механизмах центрального торможения

Принципы координационной деятельности центральной нервной системы. Общие принципы координационной деятельности ЦНС

Автономная и соматическая нервная системы, их анатомо-фуцнкциональные различия

Сравнительная характеристика симпатического и парасимпатического отделов вегетативной нервной системы

Врожденная форма поведения (безусловные рефлексы и инстинкты), их значение для приспособительной деятельности

Условный рефлекс как форма приспособления животных и человека к изменяющимся условиям существования. Закономерности образования и проявления условных рефлексов; классификация условных рефлексов

Физиологические механизмы образования рефлексов. Их структурно-функциональная основа. Развитие представлений И.П.Павлова о механизмах формирования временных связей

Явление торможения в ВНД. Виды торможения. Современное представление о механизмах торможения

Аналитико-синтетическая деятельность коры больших полушарий

Архитектура целостного поведенческого акта с точки зрения теории функциональной системы П.К.Анохина

Мотивации. Классификация мотиваций, механизм их возникновения

Память, ее значение в формировании целостных приспособительных реакций

Учение И.П.Павлова о типах ВНД, их классификация и характеристика

Биологическая роль эмоций. Теории эмоций. Вегетативные и соматические компоненты эмоций

Физиологические механизмы сна. Фазы сна. Теории сна

Учение И.П.Павлова о I и II сигнальных системах

Роль эмоций в целенаправленной деятельности человека. Эмоциональное напряжение (эмоциональный стресс) и его роль в формировании психосоматических заболеваний организма

Роль социальных и биологических мотиваций в формировании целенаправленной деятельности человека

Особенности изменения вегетативных и соматических функций в организме, связанных с физическим трудом и спортивной деятельностью. Физическая тренировка, ее влияние на работоспособность человека

Особенности трудовой деятельности человека в условиях современного производства. Физиологическая характеристика труда с нервно-эмоциональным и умственным напряжением

Адаптация организма к физическим, биологическим и социальным факторам. Виды адаптации. Особенности адаптации человека к действию экстремальных факторов

Физиологическая кибернетика. Основные задачи моделирования физиологических функций. Кибернетическое изучение физиологических функций

Понятие о крови ее свойствах и функциях

Электролитный состав плазмы крови. Осмотическое давление крови. Функциональная система, обеспечивающая постоянство осмотического давления крови

Функциональная система, поддерживающая постоянство кислотно-щелочного равновесия

Характеристика форменных элементов крови (эритроциты, лейкоциты, тромбоциты), их роль в организме

Гуморальная и нервная регуляция эритро- и лейкопоэза

Понятие о гемостазе. Процесс свертывания крови и его фазы. Факторы, ускоряющие и замедляющие свертывание крови

Группы крови. Резус-фактор. Переливание крови

Тканевая жидкость, ликвор, лимфа, их состав, количество. Функциональное значение

Значение кровообращения для организма. Кровообращение как компонент различных функциональных систем, определяющих гомеостаз

Сердце, его гемодинамическая функция. Изменение давления и объема крови в полостях сердца в различные фазы кардиоцикла. Систолический и минутный объем крови

Физиологические свойства и особенности сердечной мышечной ткани. Современное представление о субстрате, природе и градиенте автоматии сердца

Тоны сердца и их происхождение

Саморегуляция деятельности сердца. Закон сердца (Старлинг Э.Х.) и современные дополнения к нему

Гуморальная регуляция деятельности сердца

Рефлекторная регуляция деятельности сердца. Характеристика влияния парасимпатических и симпатических нервных волокон и их медиаторов на деятельность сердца. Рефлексогенные поля и их значение в регуляции деятельности сердца

Кровяное давление, факторы, обусловливающие величину артериального и венозного кровяного давления

Артериальный и венный пульс, их происхождение. Анализ сфигмограммы и флебограммы

Капиллярный кровоток и его особенности. Микроциркуляция и ее роль в механизме обмена жидкости и различных веществ между кровью и тканями

Лимфатическая система. Лимфообразование, его механизмы. Функция лимфы и особенности регуляции лимфообразования и лимфотока

Функциональные особенности структуры, функции и регуляции сосудов легких, сердца и других органов

Рефлекторная регуляция тонуса сосудов. Сосудодвигательный центр, его эфферентные влияния. Афферентные влияния на сосудодвигательный центр

Гуморальные влияния на сосудистый тонус

Кровяное давление - как одна из физиологических констант организма. Анализ периферических и центральных компонентов функциональной системы саморегуляции кровяного давления

Дыхание, его основные этапы. Механизм внешнего дыхания. Биомеханизм вдоха и выдоха

Газообмен в легких. Парциальное давление газов (О2, СО2) в альвеолярном воздухе и напряжение газов в крови

Транспорт кислорода кровью. Кривая диссоциации оксигемоглобина, ее характеристика. Кислородная емкость крови

Дыхательный центр (Н.А.Миславский). Современное представление о его структуре и локализации. Автоматия дыхательного центра

Рефлекторная саморегуляция дыхания. Механизм смены дыхательных фаз

Гуморальная регуляция дыхания. Роль углекислоты. Механизм первого вдоха новорожденного ребенка

Дыхание в условиях повышенного и пониженного барометрического давления и при изменении газовой среды

Функциональная система, обеспечивающая постоянство газовой константы крови. Анализ ее центральных и периферических компонентов

Пищевая мотивация. Физиологические основы голода и насыщения

Пищеварение, его значение. Функции пищеварительного тракта. Типы пищеварения в зависимости от происхождения и локализации гидролиза

Принципы регуляции деятельности пищеварительной системы. Роль рефлекторных, гуморальных и местных механизмов регуляции. Гормоны желудочно-кишечного тракта, их классификация

Пищеварение в полости рта. Саморегуляция жевательного акта. Состав и физиологическая роль слюны. Слюноотделение, его регуляция

Пищеварение в желудке. Состав и свойства желудочного сока. Регуляция желудочной секреции. Фазы отделения желудочного сока

Виды сокращения желудка. Нейрогуморальная регуляция движений желудка

Пищеварение в 12-перстной кишке. Внешнесекреторная деятельность поджелудочной железы. Состав и свойства сока поджелудочной железы. Регуляция и приспособительный характер панкреатической секреции к видам пищи и пищевым рационам

Роль печени в пищеварении. Регуляция образования желчи, выделения ее в 12-перстную кишку

Состав и свойства кишечного сока. Регуляция секреции кишечного сока

Полостной и мембранный гидролиз пищевых веществ в различных отделах тонкой кишки. Моторная деятельность тонкой кишки и ее регуляция

Особенности пищеварения в толстой кишке

Всасывание веществ в различных отделах пищеварительного тракта. Виды и механизм всасывания веществ через биологические мембраны

Пластическая и энергетическая роль углеводов, жиров и белков…

Основной обмен, значение его определения для клиники

Энергетический баланс организма. Рабочий обмен. Энергетические затраты организма при различных видах труда

Физиологические нормы питания в зависимости от возраста, вида труда и состояния организма

Постоянство температуры внутренней среды организма как необходимое условие нормального протекания метаболических процессов. Функциональная система, обеспечивающая поддержание постоянства температуры внутренней среды организма

Температура тела человека и ее суточные колебания. Температура различных участков кожных покровов и внутренних органов

Теплоотдача. Способы отдачи тепла и их регуляция

Выделение как один из компонентов сложных функциональных систем, обеспечивающих постоянство внутренней среды организма. Органы выделения, их участие в поддержании важнейших параметров внутренней среды

Почка. Образование первичной мочи. Фильтр, ее количество и состав

Образование конечной мочи, ее состав и свойства. Характеристика процесса реабсорбции различных веществ в канальцах и петле. Процессы секреции и экскреции в почечных канальцах

Регуляция деятельности почек. Роль нервных и гуморальных факторов

Процесс мочеиспускания, его регуляция. Выведение мочи

Выделительная функция кожи, легких и желудочно-кишечного тракта

Образование и секреция гормонов, их транспорт кровью, действие на клетки и ткани, метаболизм и экскреция. Саморегуляторные механизмы нейрогуморальных отношений и гормонообразовательной функции в организме

Гормоны гипофиза, его функциональные связи с гипоталамусом и участие в регуляции деятельности эндокринных органов

Физиология щитовидной и околощитовидной желез

Эндокринная функция поджелудочной железы и роль ее в регуляции обмена веществ

Физиология надпочечников. Роль гормонов коры и мозгового вещества в регуляции функций организма

Половые железы. Мужские и женские половые гормоны и их физиологическая роль в формировании пола и регуляции процессов размножения. Эндокринная функция плаценты

Роль спинного мозга в процессах регуляции деятельности опорно-двигательного аппарата и вегетативных функций организма. Характеристика спинальных животных. Принципы работы спинного мозга. Клинически важные спинальные рефлексы

Рис.37- ПарабиозА-Схема опыта Н. Е. Введенского по изучению парабиоза .А - электроды для раздражения нормального (неповрежденного) участка нерва; Б - электроды для раздражения "парабиотического участка нерва"; В - отводящие электроды; Г - телефон; К 1 , К 2 , К 3 - телеграфные ключи; S 1 , S 2 и Р 1 , Р 2 - первичные и вторичные обмотки индукционных катушек; М - мышца

Б-Парадоксальная стадия парабиоза . Нервно-мышечный препарат лягушки при развивающемся парабиозе через 43 мин после смазывания участка нерва кокаином. Сильные раздражения (при 23 и 20 см расстоянии между катушками) дают быстро проходящие сокращения, тогда как слабые раздражения (при 28, 29 и 30 см) продолжают вызывать длительные тетанусы (по Н. Е. Введенскому)

1. Отступите от электродов на 1 см в сторону ахиллово сухожилие и наложите на нерв кусочек ваты, смоченный эфиром. Через 8-10 минут нерв повторно раздражайте слабым, средним и сильным током. Несмотря на увеличение силы раздражения, высота сокращений мышцы остается одинаковой (уравнительная фаза парабиоза).

2. При дальнейшем действии эфира, понижается возбудимость и проводимость нерва, на слабое раздражение мышца отвечает большим сокращением, а на сильное – слабым (парадоксальная фаза парабиоза).

3. Наконец, наступает полная потеря возбудимости и проводимости нерва и мышца не реагирует на раздражитель любой силы (тормозная фаза парабиоза). Чтобы действие эфира не прекращалось через каждые 2-3 минуты, глазной пипеткой наносите на вату 1-2 капли эфира.

4. После третьей фазы парабиоза снимите с нерва вату с эфиром. Промойте его 0,6 %-ным раствором хлористого натрия. Раздражайте нерв и вы обнаружите восстановление функций, причем фазы парабиоза пройдут в обратном направлении. Объясните механизм парабиоза и сделайте выводы:



Контрольные вопросы

1. Что такое проводимость и возбудимость нерва?

2. Свойства нервных волокон.

3. Что такое синапс?

4. Передача возбуждения через синапс.

5. Законы проведения возбуждения.

6. Парабиоз Н.Е.Веденского, его фазы.

7. Биоэлектрические явления в организме.

8. Токи покоя и токи действия.

З А Н Я Т И Е № 13

ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА,

АНАЛИЗ РЕФЛЕКТОРНОЙ ДУГИ, ИРРАДИАЦИЯ, СУММАЦИЯ, ВОЗБУЖДЕНИЕ, ТОРМОЖЕНИЕ

Нервная система регулирует деятельность всех органов и систем, обусловливая их функциональное единство, и обеспечивает связь организма как целого с внешней средой. Структурной единицей нервной системы является нервная клетка с отростками - нейрон. Вся нервная система представляет собой совокупность нейронов, которые контактируют друг с другом при помощи специальных аппаратов - синапсов. По структуре и функции различают три типа нейронов 1. рецепторные,или чувствительные 2. вставочные, замыкательные кондукторные 3. эффекторные, двигательные нейроны, от которых импульс направляется к рабочим органам мышцам, железам.

Центральная нервная система состоит из головного и спинного мозга, которые, в свою очередь, образованы множеством нейронов. Наиболее заметная часть головного мозга - большие полушария, представляющие собой центр высшей нервной деятельности. Поверхность их гладкая, без борозд и извилин, свойственных многим млекопитающим. Внутри больших полушарий размещены центры координации инстинктивных форм активности. Мозжечок, находится непосредственно позади больших полушарий и покрыт бороздами и извилинами. Его сложное строение и крупные размеры соответствуют непростым задачам, связанным с сохранением равновесия в воздухе и координацией множества необходимых для осуществления полета и движений.

Ответная реакция организма на раздражение из внешней или внутренней среды, осуществляющаяся при участии центральной нервной системы, называется рефлексом. Путь, по которому проходит нервный импульс от рецептора до эффектора, действующий орган, называется рефлекторной дугой. Рефлекс как приспособительная реакция организма обеспечивает тонкое, точное и совершенное уравновешивание организма с окружающей средой, а также контроль и регуляцию функций внутри организма. В этом его биологическое значение. Рефлекс является функциональной единицей нервной деятельности.

Цель занятия: исследовать состав рефлекторной дуги, роль каждой составной части в осуществлении рефлекса, зависимость времени рефлекса от силы раздражителя.Ознакомиться с иррадиацией, суммацией, доминантой возбуждения, сеченовским торможением.

Материалы и оборудование: лягушки, препаровальные наборы, вата, марля, индукционный аппарат, метроном, штативы, 0.1%; 0,5%; 0,3% и 1%-ный раствор серной кислоты, 1%-ный раствор новокаина, физиологический раствор.

4. Лабильность - функциональная подвижность, скорость протекания элементарных циклов возбуждения в нервной и мышечной тканях. Понятие "Л." введено русским физиологом Н. Е. Введенским (1886), который считал мерой Л. наибольшую частоту раздражения ткани, воспроизводимую ею без преобразования ритма. Л. отражает время, в течение которого ткань восстанавливает работоспособность после очередного цикла возбуждения. Наибольшей Л. отличаются отростки нервных клеток - аксоны, способные воспроизводить до 500-1000 импульсов в 1 сек; менее лабильны центральные и периферические места контакта - синапсы (например, двигательное нервное окончание может передать на скелетную мышцу не более 100-150 возбуждений в 1 сек). Угнетение жизнедеятельности тканей и клеток (например, холодом, наркотиками) уменьшает Л., т. к. при этом замедляются процессы восстановления и удлиняется рефрактерный период.

Парабиоз - состояние, пограничное между жизнью и смертью клетки.

Причины парабиоза – самые разные повреждающие воздействия на возбудимую ткань или клетку, не приводящие к грубым структурным изменениям, но в той или иной мере нарушающее ее функциональное состояние. Такими причинами могут быть механические, термические, химические и другие раздражители.

Сущность парабиоза . Как считал сам Введенский, в основе парабиоза лежит снижение возбудимости и проводимости, связанное с натриевой инактивацией. Советский цитофизиолог Н.А. Петрошин полагал, что в основе парабиоза лежат обратимые изменения белков протоплазмы. Под действием повреждающего агента клетка (ткань), не теряя структурной целостности, полностью прекращает функционировать. Это состояние развивается фазно, по мере действия повреждающего фактора (то есть зависит от продолжительности и силы действующего раздражителя). Если повреждающий агент вовремя не убрать, то наступает биологическая смерть клетки (ткани). Если же этот агент убрать вовремя, то ткань так же фазно возвращается в нормальное состояние.

Эксперименты Н.Е. Введенского .

Введенский проводил опыты на нервно-мышечном препарате лягушки. На седалищный нерв нервно-мышечного препарата последовательно наносились тестирующие раздражители разной силы. Один раздражитель был слабый (пороговой силы), то есть вызывал минимальное по величине сокращение икроножной мышцы. Другой раздражитель был сильный (максимальный), то есть наименьший из тех, которые вызывают максимальное сокращение икроножной мышцы. Затем в какой-либо точке на нерв наносился повреждающий агент и каждые несколько минут нервно-мышечного препарат подвергался тестированию: поочередно слабыми и сильными раздражителями. При этом последовательно развивались следующие стадии:



1. Уравнительная , когда в ответ на слабый раздражитель величина сокращения мышцы не изменялась, а в ответ на сильный амплитуда сокращения мышцы резко уменьшалась и становилась такой же, как при ответе на слабый раздражитель;

2. Парадоксальная , когда в ответ на слабый раздражитель величина сокращения мышцы оставалась прежней, а в ответ на сильный раздражитель величина амплитуды сокращения становилась меньше, чем в ответ на слабый раздражитель, или мышца вообще не сокращалась;

3. Тормозная , когда и на сильный и на слабый раздражители мышца не отвечала сокращением. Именно это состояние ткани и обозначается как парабиоз .

ФИЗИОЛОГИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

1. Нейрон как структурная и функциональная единица ЦНС. Его физиологические свойства. Строение и классификация нейронов .

Нейроны – это основная структурно-функциональная единица нервной системы, обладающая специфическими проявлениями возбудимости. Нейрон способен принимать сигналы, перерабатывать их в нервные импульсы и проводить к нервным окончаниям, контактирующим с другим нейроном или рефлекторными органами (мышца или железа).

Виды нейронов:

1. Униполярные (имеют один отросток – аксон; характерны для ганглиев беспозвоночных);

2. Псевдоуниполярные (один отросток, делящийся на две ветви; характерно для ганглиев высших позвоночных).

3. Биполярные (есть аксон и дендрит, характерно для периферических и чувствительных нервов);

4. Мультиполярные (аксон и несколько дендритов – характерно для мозга позвоночных);

5. Изополярные (трудно дифференцировать отростки би- и мультиполярных нейронов);

6. Гетерополярные (легко дифференцировать отростки би- и мультиполярных нейронов)



Функциональная классификация:

1.Афферентные (чувствительные, сенсорные – воспринимают сигналы из внешней или внутренней среды);

2.Вставочные связывающие нейроны друг с другом (обеспечивают передачу информации внутри ЦНС: с афферентных нейронов на эфферентные).

3. Эфферентные (двигательные, мотонейроны – передают первые импульсы от нейрона к исполнительным органам).

Главная структурная особенность нейрона – наличие отростков (дендритов и аксонов).

1 – дендриты;

2 – тело клетки;

3 – аксонный холмик;

4 – аксон;

5 –Швановская клетка;

6 – перехват Ранвье;

7 – эфферентные нервные окончания.

Последовательное синоптическое объединение всех 3х нейронов образует рефлекторную дугу .

Возбуждение , возникшее в виде нервного импульса на каком-либо участке мембраны нейрона, пробегает по всей его мембране и по всем его отросткам: как по аксону, так и по дендритам.Передаётся возбуждение от одной нервной клетки к другойтолько в одном направлении - с аксонапередающего нейрона навоспринимающий нейрон черезсинапсы , находящиеся на его дендритах, теле или аксоне.

Одностороннюю передачу возбуждения обеспечивают синапсы . Нервное волокно (отросток нейрона) может передавать нервные импульсыв обоих направлениях , а односторонняя передача возбуждения появляется тольков нервных цепях , состоящих из нескольких нейронов, соединённых синапсами.Именно синапсы обеспечивают одностороннюю передачу возбуждения.

Нервные клетки воспринимают и перерабатывают поступающую к ним информацию. Эта информация приходит к ним в виде управляющих химических веществ:нейротрансмиттеров . Она может быть в видевозбуждающих илитормозных химических сигналов, а также в видемодулирующих сигналов, т.е. таких, которые изменяют состояние или работу нейрона, но не передают на него возбуждение.

Нервная система играет исключительную интегрирующую роль в жизнедеятельности организма, так как объединяет (интегрирует) его в единое целое и интегрирует его в окружающую среду. Она обеспечивает согласованную работу отдельных частей организма (координацию ), поддержание равновесного состояния в организме (гомеостаз ) и приспособление организма к изменениям внешней или внутренней среды (адаптивное состояние и/илиадаптивное поведение ).

Нейрон - это нервная клетка с отростками, являющаяся основной структурной и функциональной единицей нервной системы. Она имеет строение, сходное с другими клетками: оболочка, протоплазма, ядро, митохондрии, рибосомы и другие органоиды.

В нейроне различают три части: тело клетки - сома, длинный отросток - аксон и множество коротких разветвленных отростков - дендритов. Сома выполняет обменные функции, дендриты специализируются на приеме сигналов из внешней среды или от других нервных клеток, аксон на проведении и передаче возбуждения в область, удаленную от зоны дендритов. Аксон оканчивается группой концевых разветвлений для передачи сигналов другим нейронам или органам-исполнителям. Наряду с общим сходством в строении нейронов наблюдается большое разнообразие, обусловленное их функциональными различиями (рис. 1).

Нервные волокна обладают лабильностью - способностью воспроизводить определенное количество циклов возбуждения в единицу времени в соответствии с ритмом действующих раздражителей. Мерой лабильности является максимальное количество циклов возбуждения, которое способно воспроизвести нервное волокно в единицу времени без трансформации ритма раздражения. Лабильность определяется длительностью пика потенциала действия, т. е. фазой абсолютной рефрактерности. Так как длительность абсолютной рефрактерности у спайкового потенциала нервного волокна самая короткая, то лабильность его самая высокая. Нервное волокно способно воспроизвести до 1000импульсов в секунду.

Явление парабиоза открыто русским физиологом Н.Е.Введенским в 1901 г. при изучении возбудимости нервно-мышечного препарата. Состояние парабиоза могут вызвать различные воздействия – сверхчастые, сверхсильные стимулы, яды, лекарства и другие воздействия как в норме, так и при патологии. Н. Е. Введенский обнаружил, что если участок нерва подвергнуть альтерации (т. е. воздействию повреждающего агента), то лабильность такого участка резко снижается. Восстановление исходного состояния нервного волокна после каждого потенциала действия в поврежденном участке происходит медленно. При действии на этот участок частых раздражителей он не в состоянии воспроизвести заданный ритм раздражения, и поэтому проведение импульсов блокируется. Такое состояние пониженной лабильности и было названо Н. Е. Введенским парабиозом. Состояние парабиоза возбудимой ткани возникает под влиянием сильных раздражителей и характеризуется фазными нарушениями проводимости и возбудимости. Выделяют 3 фазы: первичную, фазу наибольшей активности (оптимум) и фазу сниженной активности (пессимум). Третья фаза объединяет 3 последовательно сменяющие друг друга стадии: уравнительную (провизорная, трансформирующая – по Н.Е.Введенскому), парадоксальную и тормозную.

Первая фаза (примум) характеризуется снижением возбудимости и повышением лабильности. Во вторую фазу (оптимум) возбудимость достигает максимума, лабильность начинает снижаться. В третью фазу (пессимум) возбудимость и лабильность снижаются параллельно и развивается 3 стадии парабиоза. Первая стадия - уравнительная по И.П.Павлову - характеризуется выравниванием ответов на сильные, частые и умеренные раздражения. В уравнительную фазу происходит уравнивание величины ответной реакции на частые и редкие раздражители. В нормальных условиях функционирования нервного волокна величина ответной реакции иннервируемых им мышечных волокон подчиняется закону силы: на редкие раздражители ответная реакция меньше, а на частые раздражители-больше. При действии парабиотического агента и при редком ритме раздражении (например, 25 Гц) все импульсы возбуждения проводятся через парабиотический участок, так как возбудимость после предыдущего импульса успевает восстановиться. При высоком ритме раздражении (100Гц) последующие импульсы могут поступать в тот момент, когда нервное волокно еще находится в состоянии относительной рефрактерности, вызванной предыдущим потенциалом действия. Поэтому часть импульсов не проводится. Если проводится только каждое четвертое возбуждение (т.е. 25 импульсов из 100) ,то амплитуда ответной реакции становится такой же, как на редкие раздражители (25Гц)-происходит уравнивание ответной реакции.

Вторая стадия характеризуется извращенным реагированием – сильные раздражения вызывают меньший ответ, чем умеренные. В эту - парадоксальную фазу происходит дальнейшее снижение лабильности. При этом на редкие и частые раздражители ответная реакция возникает, но на частые раздражители она значительно меньше, т. к. частые раздражители еще больше снижают лабильность, удлиняя фазу абсолютной рефрактерности. Следовательно, наблюдается парадокс- на редкие раздражители ответная реакция больше, чем на частые.

В тормозную фазу лабильность снижается до такой степени, что и редкие, и частые раздражители не вызывают ответной реакции. При этом мембрана нервного волокна деполяризована и не переходит в стадию реполяризации, т. е. не восстанавливается ее исходное состояние. Ни сильные, ни умеренные раздражения не вызывают видимой реакции, в ткани развивается торможение. Парабиоз- явление обратимое. Если парабиотическое вещество действует недолго, то после прекращения его действия нерв выходит из состояния парабиоза через те же фазы, но в обратной последовательности. Однако, при действии сильных раздражителей за тормозной стадией может наступить полная потеря возбудимости и проводимости, а в дальнейшем – гибель ткани.

Работы Н.Е.Введенского по парабиозу сыграли важную роль в развитии нейрофизиологии и клинической медицины, показав единство процессов возбуждения, торможения и покоя, изменили господствовавший в физиологии закон силовых отношений, согласно которому реакция тем больше, чем сильнее действующий раздражитель.

Явление парабиоза лежит в основе медикаментозного локального обезболивания. Влияние анестезирующих веществ вязано с понижением лабильности и нарушением механизма проведения возбуждения по нервным волокнам.

Парабиоз (в пер.: “para” - около, “bio” - жизнь) – это состояние на грани жизни и гибли ткани, возникающее при воздействии на нее токсических веществ таких как наркотиков, фенола, формалина, различных спиртов, щелочей и других, а также длительного действия электрического тока. Учение о парабиозе связано с выяснением механизмов торможения, которое лежит в основе жизнедеятельности организма

Как известно, ткани могут находиться в двух функциональных состояниях - торможения и возбуждения. Возбуждение это активное состояние ткани, сопровождающееся деятельностью какого-либо органа или системы. Торможение - это также активное состояние ткани, но характеризующееся угнетением деятельности какого-либо органа или системы организма. По мнению Введенского, в организме имеет место один биологический процесс, который имеет две стороны - торможение и возбуждение, что доказывает учение о парабиозе.

Классические опыты Введенского при изучении парабиоза проводились на нервно-мышечном препарате. При этом использовалась пара электродов, наложенных на нерв, между которыми помещалась ватка, смоченная KCl (калийный парабиоз). При развитии парабиоза выявлялись четыре его фазы.

1. Фаза кратковременного повышения возбудимости. Редко улавливается и заключается в том, что под действием подпорогового раздражителя мышца сокращается.

2. Фаза уравнительная (трансформации). Проявляется в том, что на частые и редкие стимулы мышца отвечает одинаковым по величине сокращением. Выравнивание силы мышечных эффектов происходит, по данным Введенского, за счет парабиотического участка, в котором снижается лабильность под влиянием KСl. Так, если лабильность в парабиотическом участке снизилась до 50 им/с, то такую частоту он пропускает, в то время, как более частые сигналы задерживаются в парабиотическом участке, т. к. часть из них попадает в период рефрактерности, который создается предыдущим импульсом и в связи с этим не проявляет своего действия.

3. Парадоксальная фаза. Характеризуется тем, что при действии частых стимулов наблюдается слабый сократительный эффект мышцы или вообще его не наблюдается. В то же самое время, на действия редких импульсов имеет место несколько большее по величине сокращение мышцы, чем на более частые. Парадоксальная реакция мышцы связана с еще большим уменьшением лабильности в парабиотическом участке, который практически теряет свойство проводить частые импульсы.

4. Тормозная фаза. В этот период состояния ткани через парабиотический участок не проходят ни частые, ни редкие импульсы, в результате чего мышца н сокращается. Может быть в парабиотическом участке ткань погибла? Если прекратить действовать KСl, то нервно-мышечный препарат постепенно восстанавливает свою функцию, проходя стадии парабиоза в обратном порядке, или действовать на него одиночными электрическими стимулами, на которые мышца слегка сокращается.

По мнению Введенского, в парабиотическом участке во время фазы торможения развивается стационарное возбуждение, блокирующее проведение возбуждения к мышце. Оно является результатом суммации возбуждения, создаваемого раздражением KСl и приходящими от места электрической стимуляции импульсами. По данным Введенского, парабиотический участок обладает всеми признаками возбуждения, кроме одного - способности распространяться. Как следует, тормозная фаза парабиоза выявляет единство процессов возбуждения и торможения.

По современным данным, снижение лабильности в парабиотическом участке, по-видимому, связано с постепенным развитием натриевой инактивации и закрытием натриевых каналов. Причем, чем чаще к нему поступают импульсы, тем она проявляется в большей степени. Парабиотическое торможение носит распространенный характер и встречается при многих как физиологических, так особенно патологических состояниях, в том числе при применении различных наркотических веществ.