Для чего используют дефибриллятор. Электрическая дефибрилляция сердца и ее особенности. Какой дефибриллятор лучше

ВНУТРИБОЛЬНИЧНАЯ ОСТАНОВКА СЕРДЦА, ВЫЗВАННАЯ ФИБРИЛЛЯЦИЕЙ ЖЕЛУДОЧКОВ: ЭФФЕКТИВНОСТЬ ДЕФИБРИЛЛЯЦИИ ИМПУЛЬСОМ ТОКА БИПОЛЯРНОЙ СИНУСОИДАЛЬНОЙ ФОРМЫ

В. А. Востриков, П. В. Холин, К. В. Разумов ,
Московская медицинская академия им. И. М. Сеченова,
ГКБ №1 и №81, Москва

Одной из наиболее частых причин внезапной сердечной смерти, особенно у больных с ишемической болезнью сердца (ИБС), является фибрилляция желудочков (ФЖ) [ 1, 2 ] . Единственным способом устранения последней является электрическая дефибрилляция (ДФ), эффективность которой зависит от целого ряда кардиальных и экстракардиальных факторов. Среди экстракардиальных факторов важное место занимает форма электрического импульса [ 3, 4, 5 ] . В настоящее время для проведения наружной дефибрилляции в мировой кардиореанимационной практике в основном применяются дефибрилляторы, генерирующие критически демпфированные синусоидальные монополярные импульсы типа волны Edmark [ 2 ] . При этом в зависимости от модели аппарата и сопротивления грудной клетки максимальная энергия, выделяемая на пациента, находится в диапазоне от 300 до 400 Дж. В то же время в России уже в течение 30 лет наряду с монополярными (МП) импульсами используются низкоэнергетические импульсы квазисинусоидальной биполярной (БП) формы (рис. 1). Впервые биполярная форма была предложена в нашей стране Н. Л. Гурвичем и соавт. [ 3 ] , которая нашла свое техническое воплощение в семействе отечественных дефибрилляторов, выделяющих на пациента максимально от 140 до 200 Дж [ 6 ]. (Дефибриллятор ДКИ-Н-04 (ЗАО АКСИОН-МЕДТЕХНИКА, г. Ижевск) генерирует биполярный трапецеидальный импульс, существенно отличающийся по своим параметрам от синусоидального импульса. (рис.1) )

Рис. 1. Наиболее распространенные формы импульсов, используемые в нашей стране для электрической
дефибрилляции сердца.

1 – монополярный критический демпфированный синусоидальный импульс (импульс Эдмарка);

2 – биполярный асимметричный квазисинусоидный импульс Гурвича–Венина;

3 – биполярный асимметричный трапецеидальный импульс

Несмотря на широкое применение в нашей стране дефибрилляторов с импульсами биполярной синусоидальной формы, их эффективность остается пока недостаточно изученной [ 7, 8 ] . В последние годы в США были опубликованы результаты первых мультицентровых исследований по сравнительной эффективности: монополярного синусоидального (200–360 Дж) с биполярными синусоидальным ( 200 Дж) и квазипрямоугольно-трапециидальным (120–180 Дж) импульсами при проведении наружной дефибрилляции желудочков в условиях электрофизиологических лабораторий [ 5, 9 ] . Наряду с этим была исследована эффективность биполярного трапецеидального импульса (130–180 Дж) во время устранении ФЖ на догоспитальном этапе [ 10 ] .

Цель данной работы заключалась в оценке эффективности биполярного квазисинусоидального импульса (в диапазоне от 65 до 195 Дж), используемого для устранения вызванной и спонтанной ФЖ у больных с ИБС в условиях многопрофильной больницы. Одновременно мы исследовали связи эффективных значений дефибриллирующей энергии с размером электродов и продолжительностью ФЖ.

Материал и методы

В основное исследование было включено 76 больных с ИБС (28 женщин и 48 мужчин, возраст от 36 до 86 лет) (табл. 1). Вызванная (ятрогенная) ФЖ (1-я группа, n =21) развивалась во время электрической кардиоверсии фибрилляции/трепетания предсердий, желудочковой тахикардии (n=19) или катетеризации сердца (n=2). У 16 пациентов с клиническими признаками нарастающей сердечной недостаточности проводили экстренную или неотложную кардиоверсию и у 3 – плановую.

Cпонтанная первичная и вторичная ФЖ (55 больных).

Определения: первичная ФЖ - фибрилляция, развивающаяся у больных без клинических признаков сердечной недостаточности или с ее минимальными проявлениями, вторичная ФЖ - фибрилляция, развивающаяся на фоне выраженной сердечной недостаточности или кардиогенного шока [ 11–15 ] . У 82% (45/55) больных спонтанная ФЖ развивалась в острой/подострой стадиях инфаркта миокарда (ИМ); из них: у 21 – ИМ передней стенки левого желудочка (ЛЖ); у 18 – ИМ задней стенки ЛЖ; у 4 – циркулярный ИМ и у 2 - ИМ другой локализации. У остальных 10 больных ФЖ развивалась на фоне нестабильной стенокардии (n =6), тромбоэмболии легочной артерии, ИБС и хронической пневмонии в стадии обострения. Во 2-ю группу (первичная ФЖ) был включен 21 больной в возрасте 43–68 лет; у 17 (81%) ФЖ развивалась в острой стадии ИМ; у 6 (29%) отмечалось рецидивирующее течение ФЖ (от 2 до 9 эпизодов, n=42). В 3-ю группу (вторичная ФЖ) были включены 34 больных в возрасте 48–86 лет; у 28 ФЖ развивалась в острой/подострой стадиях ИМ; у 64% (18/28) это был повторный ИМ; у 47% (16/34) отмечалось рецидивирующее течение ФЖ (от 2 до 12 эпизодов; в статистический анализ включено 88).

ФЖ верифицировали по монитору и ретроспективно, используя записи ЭКГ (регистратор Lifepak-7, фирма Physio-Control, США). Кроме больных с ФЖ, в данное исследование были включены пациенты с гемодинамически нестабильной пароксизмальной мономорфной и полиморфной желудочковой тахикардией (ЖТ), которым проводили экстренную кардиоверсию (4-я группа, 9 женщин и 15 мужчин, возраст от 41 до 76 лет). У 11 больных ЖТ развивалась в острой стадии ИМ, у остальных – после перенесенного ИМ.

Разряд дефибриллятора расценивали как эффективный при конверсии ФЖ в любой другой ритм или асистолию, если ее продолжительность между эпизодами непрерывно рецидивирующей ФЖ была не менее 5 с.

Табл 1. Распределение больных в зависимости от вида
фибрилляции желудочков


группы
Вид ФЖ

Количество
больных

Количество
эпизодов

Вызванная (ятрогенная)
Спонтанная первичная

Спонтанная вторичная

Желудочковая тахикардия

При длительной остановке сердца (поздняя дефибрилляция; рефрактерная или непрерывно рецидивирующая ФЖ) проводили сердечно-легочную реанимацию [ 2 ] . Для прекращения ФЖ применяли 4 модели дефибрилляторов, которые генерируют БП импульсы со 2-й фазой, составляющей 43–60% от первой. Длительность 1-й фазы составляла 4,2–5,3 мс 2-й - 6,5–8 мс. Длительность фаз указана для сопротивления грудной клетки от 25 до 150 Ом. Использовались дефибрилляторы: ДКИ-С-05, ДКИ-С-06, ДКИ-Н-02 (НПП РЭМА, г. Львов) и ВДС-5011Р (Польша). С помощью измерительной аппаратуры регистрировали основные параметры импульса: амплитуду пикового тока (I, A), сопротивление грудной клетки (СГК,Ом), величины набираемой (E H , Дж) и выделяемой на пациента энергии (Е В, Дж). Электроды дефибриллятора размещали в переднебоковой позиции. Диаметр электродов 12/12 см (у 6 пациентов 3-й группы – 8,5/8,5 см).

При устранении внутрибольничной ФЖ суммарная эффективность монофазных разр я дов (E H 200 Дж) составляет, по данным литературы, 80% (от 70 до 95%) [ 2, 5, 9, 11–15 ] . Учитывая результаты экспериментальных исследований [ 4 ] , у первых 10 больных с вызва н ной и первичной ФЖ начальную дозу E H устанавливали в диапазоне от 55 до 85 Дж и у пе р вых 5 больных со вторичной ФЖ – от 90 до 115 Дж. По мере накопления результатов, свид е тельствующих о высокой эффективности БП- импульса, величину первого разряда уменьш а ли в р я де случаев до 15–40 Дж (при длительности ФЖ не более 15–30 с).

Результаты обработаны статистически с использованием критерия t Стьюдента, точного метода Фишера и корреляционного анализа.

Результаты и их обсуждение

Продолжительность вызванной ФЖ находилась в диапазоне от 20 до 120 с, величина эффективных разрядов (E H) – от 15 до 100 Дж. У 67% больных ФЖ была устранена разрядами тока, близкими к пороговым значениям. Между длительностью вызванной ФЖ и величиной эффективных разрядов не было выявлено достоверной связи.

Суммарная эффективность E H 40 – 65 Дж достигала 90% (19/21), E H 90 – 100 Дж – 100%. При этом энергия, выделяемая на пациента во время разряда, не превышала 85 Дж. По данным литературы [ 5, 9, 16 ] , эффективность первого разряда МП-формы (E H 200 Дж, E B 167 – 219 Дж) составляла во время устранения вызванной ФЖ 79 – 93%. Усредненные значения эффективных параметров БП-импульса для всех видов ФЖ представлены в табл. 2.

Эффективность дефибрилляции спонтанной ФЖ низкоэнергетическими разрядами БП-формы зависела от ее вида. Так, у больных с первичной ФЖ эффективность первого разряда (E H 65 Дж) во время устранения первого эпизода ФЖ (длительность от 30 с до 2 – 8 мин) достигала 62% (13/21) и всех эпизодов – 79% (33/42). Только у 1 больного для прекращения ФЖ потребовалось 2 разряда 90 Дж (E B 83 Дж). Суммарная эффективность разрядов БП-формы (E H 90 Дж) во время устранения всех эпизодов первичной ФЖ составила 100%. До настоящего времени опубликована только 1 работа [ 11 ] , в которой был исследован успех дефибрилляции первичной ФЖ импульсом МП-формы (E H 100 Дж, E B 85 Дж 1 – 2 разряда) у больных с ИМ; эффективность дефибрилляции составила 79% (41/52), что на 21% (р=0,005) меньше по сравнению с данными для БП-импульса, полученные нами во 2-й группе больных. Столь высокая эффективность МП-разрядов (E H 100 Дж) могла быть связана с длительностью импульса (дефибриллятор Belfast), которая превышала стандартную примерно в 2 раза (зависимость «сила – время»). По данным литературы, эффективность дефибрилляции желудочков стандартными импульсами МП-формы (Edmark и Lown) при энергии разрядов 150 – 200 Дж составляет в среднем 75% (от 60 до 95%) [ 12 – 18 ] .

Вторичная ФЖ (3-я группа больных).

Во время устранения первого эпизода ФЖ (длительность от 30 с до 2–8 мин) эффективность первого разряда (E H 65 Дж) достигала 68% (23/34) всех эпизодов – 52% (46/88). Разряды 115 Дж применялись у 5 больных в 15 эпизодах ФЖ. Суб- и максимальные разряды (E H 165–193 Дж) потребовались 7 больным для устранения 14 эпизодов ФЖ. Только у 2 пациентов в 2 эпизодах рефрактерной ФЖ необходимо было нанести 4 разряда 165 Дж и 5 разрядов 193 Дж. Суммарная эффективность низкоэнергетических разрядов БП-формы (E H 65–193 Дж) во время устранения всех эпизодов вторичной ФЖ достигала 100%. При этом максимальная энергия (E H 193 Дж, E B 185–197Дж) была необходима только 15% (5/34) больных. По данным J. Gascho и соавт. [ 12 ] , у 3 из 18 пациентов вторичную ФЖ, развивающуюся в острой фазе ИМ, не могли устранить повторными максимальными разрядами МП-формы (E H 360, E B 332–372 Дж, эффективность ДФ 83%). По данным этих же авторов, минимальная энергия МП-импульса (Е В), устранявшая первый эпизод вторичной рецидивирующей ФЖ-составила 92 Дж, в нашем исследовании ее величина оказалась в 2–4 раза меньше (E B 24-40 Дж). Близкие результаты для МП-импульса (Lown) были получены во время устранения вызванной и спонтанной ФЖ [ 18 ] .

Табл. 2. Эффективные значения параметров биполярного импульса во время устранения желудочковой тахикардии, вызванной и спонтанной фибрилляции желудочков (M ± m и диапазон колебаний)

Примечания:

* У больных с часто рецидивирующей ФЖ/ЖТ для статистического анализа взяты только те эпизоды, которые отличались от предыдущих величиной тока;

** у больных с длительной остановкой сердца указана суммарная продолжительность эпизодов непрерывнорецидивирующей ФЖ, включая короткие интервалы ( 5-30 с) брадиасистолии;

***- достоверность различий между вторичной и вызванной, первичной ФЖ (p <0,001);

*** – между ЖТ и вызванной, первичной ФЖ (p <0,05)

Следует отметить, что суммарный успех дефибрилляции желудочков импульсами МП-формы Pantridge, Edmark и Lown (E H 400 Дж) находится в диапазоне от 71 до 98% [ 5, 11–19 ] . На рис. 2 представлены усредненные значения эффективной энергии (E B) для БП-импульса и для импульса МП-формы (Lown), опубликованные R. Kerber и соавт. [ 17, 18 ]

Рис. 2. Усредненные минимальные и максимальные значения эффективной энергии, выделяемой на больного во время наружной дефибрилляции желудочков сердца импульсами монополярной и биполярной форм

Анализ результатов дефибрилляции сердца импульсом БП формы в 1–3-й группах больных (151 эпизод ФЖ) выявил очень высокую эффективность (92%) разрядов небольшой энергии: E H 115 Дж. Наряду с этим была установлена связь между видом ФЖ и значениями основных параметров дефибриллирующего импульса. Как следует из полученных результатов, только у 19% больных энергия (E H), необходимая для устранения вызванной и первич­ной ФЖ, составляла 85–100 Дж (E B 69–85 Дж), а величина тока, проходящего через область сердца, – 18–21 А. В то же время для устранения вторичной ФЖ у 18% больных потребовалось в 2 раза больше энергии (E H 165–193 Дж, E B 155–197 Дж). При этом в ряде случаев максимальная сила тока до­стигала 35–41 А. Необходимо также отметить, что у 92% (22/24) больных с ЖТ (4-я группа) величина эффективного разряда (Е Н) составляла 10–65 Дж и только у двух – 85–90 Дж.

Таким образом, у 15% (10/66) больных максимальная энергия БП-импульса (E H), необходимая для устранения одного эпизода ЖТ, вызванной и первичной ФЖ, составляла 85–100 Дж (1–2 разряда), в то время как у 18% (6/34) больных со вторичной ФЖ – 165–193 Дж (до 4–5 разрядов при её рефрактерном течении). ФЖ и ЖТ были устранены во всех эпизодах (успех ДФ 100%). В табл. 3 представлена эффективность БП-импульса в зависимости от дозы Е Н и количества разрядов для всех эпизодов первичной и вторичной ФЖ.

Учитывая полученные результаты, представляло интерес изучение связи между продолжительностью ФЖ и эффективными значениями разрядов БП формы. Как показал корреляционный анализ, связь между длительностью ФЖ до нанесения первого разряда (0,5 – 8-я мин) и эффективными значениями энергии от 90 до 193 Дж оказалась слабой и не значимой (r =0,30, p >0,05). Вместе с тем было выявлено снижение эффективности для разрядов существенно меньшей энергии (E H 65 Дж) при сопоставлении 30-секундных эпизодов ФЖ с эпизодами длительностью от 1 до 5 мин (успех ДФ 100 и 52% соответственно, p=0,035). Только у 2 больных с непрерывно рецидивирующей вторичной ФЖ эффективные значения энергии прогрессивно увеличивались (с 2 – 3 до 10 – 15 мин ФЖ от 40 – 55 до 140 – 165 Дж, r=0,86, p <0,01). По данным N. Campbell и соавт. [ 11 ] , эффективность одиночного разряда МП-формы (E H 100 Дж, E B 85 Дж) достигала 74% при длительности первого эпизода ФЖ 2 мин и 50%, когда ее продолжительность превышала 2 мин. В нашем исследовании эффективность разрядов БП-формы (E B 85 Дж) при указанных временных интервалах составляла 91 и 76% соответственно (р=0,065 по сравнению с МП-импульсом).

Данные литературы, посвященные влиянию длительности ФЖ на эффективность МП-разрядов от 200 до 360 Дж, носят противоречивый характер. Так, в исследовании R. Kerber и соавт. [ 15 ] между силой тока (E H 200 Дж) и длительностью ФЖ была выявлена средняя степень корреляции (r=0,45, p<0,05). В то же время, по данным J. Gascho и соавт. [ 12 ] и R. Сramton и соавт. [ 19,20 ] , продолжительность ФЖ до первого разряда не определяла успех дефибрилляции, которую проводили по стандартному протоколу: 200, 300 и 360 Дж; не было выявлено достоверной связи и с успехом одиночного разряда МП-формы 200 Дж .

Таблица 3. Наружная дефибрилляция сердца: суммарная эффективность (%) биполярного синусоидального импульса в зависимости от дозы набираемой энергии у больных с первичной и вторичной фибрилляцией желудочков
(130 эпизодов)

Однако у больных ИБС при длительности ФЖ 15 – 30 с успешная дефибрилляция разрядами МП-формы (E B 200 ± 15 Дж) отмечалась достоверно чаще, чем в эпизодах большей продолжительности [ 19 ] . Отсутствие в общем случае корреляции между изучаемыми показателями может быть связано по крайней мере с разным временем проведения дефибрилляции, большим разбросом исходных значений эффективной энергии и нанесением первого разряда, существенно превышающего пороговую величину [ 4 ] . Вместе с тем достоверная корреляция выявляется в сравниваемых группах больных в тех случаях, когда первый разряд был относительно небольшой энергии (65 Дж у БП-импульса и 200 Дж у МП-импульса). При длительной ФЖ на эффективность дефибрилляции могут оказывать влияние такие факторы, как дозы вводимого адреналина, антиаритмическая терапия, скорость нарастания и глубина миокардиального ацидоза и т.д. [ 1, 2, 20, 21 ] . Оказалось также, что в стандартных условиях эксперимента с увеличением длительности ФЖ (от 15 с до 5 мин) пороговая энергия БП-импульса возрастает на существенно меньшую величину, чем у МП-импульса [ 22 ] .

Изучение влияния размера электродов (диаметр 8,5 и 12 см) на эффективные значения БП-импульса при устранении вторичной ФЖ выявило существенные различия. Так, у 3 (50%) из 6 больных ФЖ купировали через электроды диаметром 8,5 см только суб- или максимальным разрядами (E H 165–193 Дж). В то же время при использовании больших электродов суб- и максимальная энергия потребовалась 11% (3/28) больных (p=0,049). Следует отметить, что плотность тока под электродом диаметром 8,5 см оказалась в 2 раза выше, чем под электродом большего размера (0,40 и 0,20 А/см 2 соответственно, p<0,002). По данным экспериментального исследования [ 23 ] , трансторакальный разряд БП-формы со средней плотностью тока 0,38 А/см 2 приводит к развитию обратимой асистолии желудочков; однако ее продолжительность при сравнении с результатами для МП-импульса (Edmark) была существенно меньше: 1,5–3,0 и 3–12 с соответственно.

Один из очень важных и пока еще не решенных вопросов кардиореаниматологии - это влияние формы импульса на успех реанимации больных с первичной и вторичной ФЖ. С этой целью мы провели сравнение полученных нами результатов (БП-импульс) с данными литературы, посвященными эффективности МП-импульса в условиях многопрофильных больниц США и Великобритании (табл. 4,5). Успех оживления больных с применением БП-импульса ( 90 Дж) для устранения первичной ФЖ (длительность 2–14 мин) составил по нашим данным 82%. При использовании импульса МП формы ( 200–360 Дж) эффективность реанимации оказалась такой же или достоверно не различалась - 69–86% [ 12, 14, 15, 18 ] . Однако при сравнении результатов оживления больных с вторичной ФЖ были получены существенные различия. Так, в нашем исследовании успех реанимации с применением БП-импульса ( 193 Дж) достигал 68%. В то же время, по данным литературы [ 12, 14, 15, 17, 18 ] , успех оживления с применением МП-импульса был значительно ниже: 36% (от 22 до 50%) (p <0,05). Принципиальным отличием устранения вторичной ФЖ импульсом МП-формы являлось нанесение повторных высокоэнергетических разрядов ( 360 Дж).

Таблица 4. Влияние вида фибрилляции желудочков на успех реанимации (в %) с использованием разрядов монополярной формы
(данные литературы с 1977 по 1991 г.г.)

Примечания:

(1) * - острый ИМ; у 63% больных длительность ФЖ от 2 с до 2 мин; (2) – не указано количество больных с ИМ; больные со 2-й ФЖ были очень тяжелые; (3) – у 7 из 10 больных острый или недавно перенесенный ИМ; (4) - у 74% больных острый ИМ, из них у 40% - повторный

Таблица 5. Влияние вида фибрилляции, формы импульса, дозы и количества наносимых разрядов на успех сердечно-легочной реанимации

Примечания:

* - данные G. Dalzell и соавт., 1991 г.; ** - указано количество больных, у которых длительность ФЖ была? 2 мин; *** - указано суммарное количество разрядов во время устранения непрерывно рецидивирующей ФЖ

Отрицательное влияние высокоэнергетических МП-разрядов на раннюю выживаемость больных, перенесших остановку сердца, обнаружили H. Dunn и соавт. [ 24 ] . Специальные исследования, проведенные в США, показали, что в лучшем случае лишь 30–50% больных, у которых внезапная остановка сердца произошла вне госпиталя, поступают в больницу живыми и лишь 50% из них доживают до выписки из стационара. Причины высокой больничной летальности, как указывает автор, «в основном заключаются в значительном ухудшении сократительной функции сердца в результате наличия ИМ либо многократных дефибрилляций» [ 25 ] . Гистологические исследования подтвердили, что у больных, которые получали во время оживления многочисленные разряды большой энергии, определяется некроз миокарда [ 26 ] . По данным J . Gascho и соавт. [ 12 ] , эффективность дефибрилляции существенно снижалась, когда Е В повторных разрядов МП-формы начинала превышать 240 Дж (E H 300–400 Дж). Расчет энергии на килограмм массы тела показал, что с увеличением Е В от 2,9 до 6 Дж/кг успех дефибрилляции (реанимации) снижался соответственно с 77 до 23%. В нашем исследовании величина энергии, выделяемая на 1 кг массы тела, не превышала 2,3–2,8 Дж.

Наиболее драматические результаты были опубликованы G. Dalzell и соавт. [ 14 ] (табл. 5). По их данным, 78% (14/18) больных с вторичной ФЖ, которым через электрод диаметром 7,5 см (площадь 40 см!), расположенный в области верхушки сердца, наносили 4–5 разрядов 360 Дж, не удалось оживить. Вместе с тем летальность больных, получавших разряды МП-формы 200 Дж, составила 31%. Мы рассчитали максимальную плотность энергии под электродом. Она составила 9,5 Дж/см 2 . Это в 5 раз больше, чем при нанесении через электроды диаметром 12 см максимальных разрядов БП-формы (195 Дж). Следует также отметить еще одну важную методическую особенность проведения дефибрилляции МП-импульсом через электроды небольшого диаметра, которая наряду с другими факторами могла приводить к столь низкой эффективности СЛР у больных со вторичной ФЖ - очень высокое СГК у части больных (93,0 ± 2,6 Ом, диапазон 38–137 Ом). При этом оказалось, что 6 из 12 больных, у которых СГК было > 115 Ом, умерли во время реанимации и только один выжил. Следует также отметить, что при СГК 100 Ом значительно ( в 2 раза) увеличивается длительность МП-импульса. Суммарное действие указанных выше факторов могло приводить к более выраженному функциональному и морфологическому повреждению сердца и, как следствие, к дополнительному снижению успеха оживления больных со вторичной ФЖ. С другой стороны, при очень высоком СГК и малом диаметре электрода величина трансторакального тока могла в ряде случаев оказаться ниже пороговой или его сердечная фракция не охватывала критическую массу миокарда, необходимую для успешной дефибрилляции.

Суммируя данные литературы, можно сделать следующие выводы: 50–78% больных ИБС, которым для устранения вторичной ФЖ наносили повторные разряды МП-формы ( 360 Дж; 3-6 Дж/кг), умирали во время реанимации. Наиболее высокая летальность отмечалась среди тех больных, которым наносили 4–5 разрядов 360 Дж; в подавляющем большинстве случаев это больные, у которых вторичная ФЖ развивалась в острой/подострой стадиях ИМ либо после недавно перенесенного ИМ.

В связи с актуальностью данной проблемы остановимся более подробно на результатах экспериментального исследования . Авторами показано, что после устранения у свиней 9-минутной ФЖ разрядами БП-формы (2,5-4,5 Дж/кг) спонтанное кровообращение восстанавливалось значительно чаще, чем при воздействии МП-импульсом (соответственно в 41 и 6% случаев, р=0,02). После разрядов БП-формы регистрировали менее частое появление асистолии и электромеханической диссоциации, а выживаемость через 1 ч составляла соответственно 29% (5/17) и 6% (1/17) (р=0,17). На модели пролонгированной ФЖ было показано, что в раннем постреанимационном периоде тяжесть нарушений сократимости и расслабления миокарда ЛЖ, степень снижения сердечного выброса, а также продолжительность жизни были связаны с величиной МП-разряда .

По данным R . McGrath и соавт. , успех сердечно-легочной реанимации, проводимой в больнице, составляет в среднем 39% (от 13 до 59%). При этом » 60% оживленных умирают в течение первых 24 ч. Клинические и экспериментальные исследования позволили сформулировать гипотезу о том, что смертельные исходы после успешно проведенной реанимации в значительной степени являются результатом постреанимационной дисфункции миокарда . Ее тяжесть связывают с длительностью и глубиной тотальной ишемии миокарда, развивающейся во время остановки сердца. Немаловажную роль играют реперфузионные повреждения сердца, связанные с восстановлением спонтанного кровообращения , а также нарушения сократимости и расслабления миокарда, вызываемые высокоэнергетическими разрядами МП-формы .

Анализ литературы не позволил найти убедительных данных для схемы применения МП-разрядов: 200–200 (300)–360 Дж. Отсутствуют также данные литературы о полезности применения высокоэнергетических разрядов. Имеется только одно рандомизированное исследование, доказывающее, что разряды 175 Дж также эффективны, как и 320 Дж, но отличаются меньшими постдефибрилляционными нарушениями атриовентрикулярной проводимости [ 36 ] . R . Reddy и соавт. [ 37 ] показали, что у больных с ИБС разряды 200 Дж так же хорошо устраняют вызванную ФЖ, как и разряды 360 Дж, но с менее выраженной преходящей депрессией сегмента ST на ЭКГ. По мнению авторов, изменения сегмента ST могут отражать повреждение кардиомиоцитов. Как было показано в экспериментальных исследованиях, электрические импульсы вызывают появление микроповреждений в мембранах кардиомиоцитов (поры диаметром 45–60 ангстрем - синдром «малых ран»), через которые ионы K + и Ca 2+ входят в клетку . Это может приводить к появлению фокусов спонтанной электрической активности (по механизму ранней постдеполяризации). Наряду с этим одновременная пролонгация и укорочение длительности потенциала действия в участках миокарда, в которых во время разряда регистрируется высокое напряжение, может создавать значительную дисперсию реполяризации. Указанные механизмы приводят к неэффективной дефибрилляции или рефибрилляции. В случае воздействия БП-импульса с оптимальным диапазоном соотношения 1-й и 2-й фаз отмечаются существенно меньшие (по сравнению с МП-разрядом) микроповреждения мембран. Кроме того, БП импульс (за счет эффекта асимметричной фазовой реверсии гиперполяризации мембраны) минимизирует или вообще не формирует постимпульсную дисперсию реполяризации - проаритмогенный субстрат для ФЖ [ 39–43 ].

Наряду с этим антиаритмические препараты, используемые для профилактики и лечения ФЖ, меньше влияют на эффективные значения БП-импульса. Так, по данным экспериментальных исследований, пиромекаин в нарастающих дозах (2+4+6 мг/кг) увеличивал порог дефибрилляции у МП-импульса, в среднем в 2 раза большее, чем у биполярного [ 44 ] . Близкие результаты были получены и для амиодарона [ 45, 46 ] . Эти наблюдения позволяют сделать вывод о том, что у больных с рефрактерной/рецидивирующей ФЖ, требующей назначения антиаритмических препаратов, большего успеха в ее устранении можно добиться, используя импульс БП-формы. Кроме того, у больных с имплантированным кардиостимулятором МП импульс может приводить к его временному отказу (от 1–2 до 10 мин), преимущественно из-за увеличения порога стимуляции [ 47, 48 ] . В то же время импульс БП-формы изменяет его значительно меньше [ 49 ].

Перед заключением хотелось бы остановиться на результатах экспериментальных работ по сравнительной эффективности трех БП-импульсов. Авторами было установлено, что БП квазисинусоидальный импульс более эффективен, чем трапецеидальный и прямоугольно-трапецеидеальный импульсы [ 22, 50 ].

Заключение

Полученные результаты свидетельствуют о высокой эффективности низкоэнергетического (65–195 Дж) биполярного квазисинусоидального импульса во время устранения ФЖ и ЖТ у больных с инфарктом миокарда и другими клиническими формами ИБС. Ретроспективный анализ данных литературы и собственные результаты позволяют сделать вывод о том, что применение у больных с вторичной ФЖ низкоэнергетического биполярного импульса, по сравнению с высокоэнергетическим монополярным, увеличивает не только эффективность дефибрилляции, но и приводит к более успешной реанимации. Все это свидетельствует о необходимости пересмотра протокола по купированию рефрактерной ФЖ с помощью импульса монополярной формы.

Список литературы

  1. Bossaert L.L. Fibrillation and defibrillation of the heart. Brit. J. Anaesthesia. 1997: 79; 203 – 213.
  2. Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care - An International Consensus on Science. Resuscitation. 2000; 46: 108 – 178
  3. Гурвич Н.Л., Табак В.Я., Богушевич М.С. и др. Дефибрилляция сердца двухфазным импульсом в эксперименте и клинике. // Кардиология.1971; 8: 126 – 130.
  4. Востриков В.А., Богушевич М.С., Холин П.В. Трансторакальная дефибрил-ляция желудочков сердца: эффективность и безопасность моно- и биполярного импульсов. // Анестезиол. и реаниматол.1994; 5: 9 – 11.
  5. Greene L., DiMarco J., Kudenchuk P et al. Comparison of monophasic and biphasic pulse waveform for transthoracic cardioversion. // Am. J. Cardiol. 1995; 75: 1135 – 1139.
  6. Венин И.В., Гурвич Н.Л., Олифер Б.М. и др. Дефибриллятор. А. с. 258526 от 23 сентября 1969 г. СССР.
  7. Vostrikov V.A., Holin P.V., Razumov K.V. Efficiency of biphasic waveforms in transthoracic ventri cular defib­ ril­ lation of man. // Аmer. Heart J.1994; 128 (3): 638.
  8. Востриков В.А., Холин П.В., Разумов К.В. Трансторакальная дефибрилляция желудочков сердца: эффективность биполярного синусоидального импульса. // Анестезиология и реаниматология. 1999; 1; 44 – 47.
  9. Mittal S., Ayaty S., Stein K et al. Comparison of a novel rectiliniear biphasic waveform with a damped sine wave monophasic waveform for transthoracic ventricular defibrillation. // J. Am. Coll. Cardiol. 1999; 34: 1595 – 601.
  10. Poole J., White R., Kanz K-G et al. Low-energy impedance-compensating biphasic waveforms terminate venricular fibrillation at high rates in victims of out-of-hospital cardiac arrest. // J. Cardiovasc. Electrophysiol. 1997; 8: 1373 – 1385.
  11. Campbell N., Webb S., Adgey J. et al. Transthoracic ventricular defibrillation in adults. // Brit. Med. J. 1977; 2: 1379 – 1381.
  12. Gascho J., Crampton R., Cherwek M. et al. Determinants of ventricular defibrillation in adults. // Circulation. 1979; 60: 231 – 237.
  13. Dalzell G., Cunningham S., Adgey A. et al. Electrode pad size, transthoracic impedans and success of external ventricular defibrillation. // Am. J. Cardiol. 1989; 64: 741 – 744.
  14. Dalzell G., Adgey A. Determinants of successful transthoracic defibrillation and outcome in ventricular fibrillation. // Br. Heart J. 1991; 65: 311 – 316.
  15. Kerber R, Jensen S., Gascho J. еt al. Determinants of defibrillation a prospective analysis of 183 patients. // Am. J. Cardiol. 1983; 52: 739 – 745.
  16. Gust B., Marchlinski F., Sharma A et al. Multicenter comparison of truncated biphasic shocks and standard damped sine wave monophasic shocks for transthoracic ventricular defibrillation. // Circulation. 1996; 94: 10: 2507 – 2514.
  17. Kerber R.E., Kienzle M.G., Olshansky B. et al. Ventricular tachycardia rate and morphology determine energy and current requirements for transthoracic cardioversion. // Circulation. 1992; 85: 158 – 163.
  18. Kerber R., Martins J., Kienzle M. et al. Energy, current, and success in defibrillation and cardioversion: clinical studies using an automated impedance-based method of energy adjustment. // Circulation. 1988; 77: 1038 – 1046.
  19. Crampton R., Gascho J., Cherwek M. Low-energy and fast serial dc shock ventricular defibrillation in man. // Medical Instrumentation. 1978; 12 (1): P53 (A).
  20. Crampton R. Controversial and speculative aspects of ventricular defibrillation. // Progress in Cardiovascular Diseases. 1980; 23: 167 – 186.
  21. Tang W., Weil M.H., Maldonado F.A. et al. Hypercarbia decreases effectiveness of electrical defibrillation during CPR. // Critical Care Med. 1992; 20 (suppl): S 24.
  22. Walcott G.P., Melnik S., Chapman F. et al. Relative efficacy monophasic and biphasic waveform for transthoracic defibrillation after short and long duration of ventricular fibrillation. // Circulation. 1998; 98 (20): 2210 – 2215.
  23. Востриков В.А. Функциональное повреждение сердца монополярным и биполярным импульсами тока дефибриллятора. // Бюл. эксперим. биологии и медицины. 1993; 116 (12): 654 – 655.
  24. Dunn H., Mc Comb J., McKensy G., Adgey J. A survival to leave hospital from ventricular fibrillation. // Am. Heart J. 1986; 112: 745 – 751.
  25. Di Marco J., D. Haines. Sudden cardiac death. // Curr. Probl. Cardiol. 1990; 15 (4): 183 – 232.
  26. Karch S. Resuscitation-induced myocardial necrosis. // Am. J. Forensic Med. Pathol. 1987; 8: 3 – 8.
  27. Scheatzle M.D., Menegazzi J.J., Allen T.L., Durham S.B. The evaluation of biphasic transthoracic defibrillation in an animal model of prolonged ventricular fibrillation. // J. Prehospital Emergency Care. 1998; 2 (3): 252 (A).
  28. Xie J., Weil M.X., Sun S. et al. High-Energy defibrillation increases the severity of postresuscitation myocardial dysfunction. // Circulation. 1997; 96: 683 – 688
  29. McGrath R. In-house cardiopulmonary resuscitation after a quarter of a century. // Ann. Emerg. Med. 1987; 16: 1365 – 1368.
  30. Brown C.G., Dzwonozyk R., Werman H., Hamin R. Estimating the duration of ventricular fibrillation. // Ann. Emerg. Med. 1989; 18: 1181 – 1185.
  31. Stiell I., Hebert P., Weitzman B. et al. High dose epinephrine in adult cardiac arrest. // N. Engl. J. Med. 1992; 327: 1045 – 1050.
  32. Tang W., Weil M., Sun S. et al. Progressive myocardial dysfunction after cardiac resuscitation. // Crit. Care Med. 1993; 21: 1046 – 1050.
  33. Gazmuri R., Weil M., Bisera J. et al. Myocardial disfunction after suc-cessful resuscitation from cardiac arrest. // Crit. Care Med. 1996; 24: 992 – 1000.
  34. Kern K., K. Rhee, T. Raya et al. Global myocardial stunning following successful resuscitation from cardiac arrest. // Circulation. 1994; 90 (suppl. I): I-5.
  35. 36 Tang W., Weil M., Sun S. et al. The effect of biphasic and conventional monophasic defibrillation on postresuscitation myocardial function. // J. Am. Coll. Cardiol. 1999; 34: 815 – 822.
  36. Weaver W.D., Cobb L.A.,. Coppas M.K et al. Ventricular defibrillation - a comparative trial using 175-J and 320-J shocks. // N. Engl. J. Med. 1982; 307: 1101 – 1106.
  37. Reddy R.K., Gleva M.J., Gliner B.E. et al. Biphasic transthoracic defibrillation causses fewer ECG ST-segment changes after shock. // Ann. Emerg. Med. 1997; 30: 127 – 134.
  38. Jones J.L., Jones R.E., Balasky G. Microlesion formation in myocardium cells by high-intencity electric field stimulation. // Am. J. Physiol. 1987; 253: H486 – H486
  39. Yabe S., Smith W., Daubert J. et al. Conduction disturbances caused by high current density electric fields. // Circ. Res. 1990; 66: 1190 – 1203.
  40. Tovar O., Jones J. Cellular basis of type B defibrillation occurring at high shock intensity. // Circulation. 1996; 94: 131.
  41. Efimov I.R., Cheng Y., Wagoner D.R. et al. Virtual electrode – induced phase singularity. A basic mechanism of defibrillation failure. // Circulation Research. 1998; 82: 918 –9 92
  42. Jones J.L., Jones R.E. Decreased defibrillator-induced dysfunction with biphasic rectangular waveform. // Am. J. Physiol. 1984; 247: H792 – H796.
  43. J. Jones, R. Jones, G. Blasky. Improved cardiac cell excitation with symmetrical biphasic defibrillator waveforms. // Am. J. Physiol. 1987; 253 (6): Pt2: 1418 – 1424.
  44. Востриков В.А., Богушевич М.С., Михайлов И.В. Влияние пиромекаина и новокаинамида на эффективность наружной дефибрилляции желудочков сердца. // Кардиология. 1999; 39 (12): 40 – 45.
  45. Востриков В.А., Богушевич М.С. Влияние амиодарона на эффективность дефибрилляции желудочков сердца импульсами тока монополярной и биполярной синусоидальной форм. // Анестезиология и реаниматология. 2000; 6: 51 – 54.
  46. Kopp D., Kall J., Kinder C. et al. Effect of amiodarone and left ventricular mass on defibrillation energy requirements: monophasic vs biphasic shocks. // PACE. 1995; 18 (4), Part II: 872 (A).
  47. Yee R., Jones D., Jarvis E. at al. Changes in pacing threshold and R-wave amplitude after transvenous catheter countershock. // J. Am.Coll Cardiol. 1984; 4: 543 – 549
  48. Altamura G., Bianconi L., Bianco F. et al. Transthoracic DC shock may represent a serious hazard in pacemaker dependent patients. // PACE. 1995; 4: 543 – 549.
  49. Kudenchuk P., Bardy G., Poole J. et al. Biphasic shock from an implanted defibrillator does not acutely alter ventricular pacing thresholds. // Circulation. 1995; 92 S (suppl I): I-340.
  50. Qu F., Nikolski V.P., Wollenzier B.R., Efimov I.R. Comparison of three biphasic waveforms: Gurvich waveform is more efficient Proc. of the Second Joint EMBS/BMES Conference, Hоuston, TX, USA, October 23-26, 2002, p. 1439-1440.

Дефибрилляция является общим видом лечения при угрожающей жизни сердечной аритмии, фибрилляции желудочков, и медленной желудочковой тахикардии. Дефибрилляция представляет собой доставку терапевтических доз электрической энергии в сердце пострадавшего с помощью устройства под названием дефибриллятор . Этот процесс деполяризирует критическую массу сердечной мышцы, снимает аритмию, а также позволяет естественным клеткам синусового узла восстановить нормальный синусовый ритм сердца. Дефибрилляторы могут быть внешнего типа, трансвенозные, или имплантированные в зависимости от типа используемого устройства или необходимости. Автоматические внешние дефибрилляторы (АВД) самостоятельно распознают нарушения ритма, что предполагает возможность их использования спасателями или просто свидетелями, которые могут с успехом применять их в случае необходимости, не имея специальной подготовки.

... первая помощь») - это однодневный курс, охватывающий усложненную первую помощь, использование кислорода и автоматических наружных дефибрилляторов и документации. Подходит для тех, кто оказывает первую доврачебную помощь на рабочем месте, и тех, кто управляет средствами...

История дефибриллятора

Дефибрилляторы впервые были продемонстрированы в 1899 году Жаном-Луи Прево и Фредериком Бателли, двумя физиологами из Женевского Университета в Швейцарии. Они обнаружили, что электрическим током небольшой силы можно вызвать состояние фибрилляции желудочков у собак, в то время как более сильные разряды дают обратный эффект.

В 1933 году доктор Альберт Хайман, специалист по хирургии сердца больницы Бет Дэвис г. Нью-Йорка, и С. Генри Хайман, инженер-электрик, ища альтернативу инъекционным сильнодействующим препаратам, вводимым напрямую в сердце, спроектировали устройство, в котором использовали электрический удар малой силы вместо инъекции наркотиков. Это изобретение было названо Hyman Otor ,в котором полая игла использовалась для подачи изолированного провода в область сердца, обеспечивающего доступ электрическому току. Полая стальная игла выступала в качестве одного электрода, а конец изолированного провода - в качестве другого. Имело ли успех применение Hyman Otor , неизвестно.

Первое испытание дефибриллятора на сердце человека произошло в 1947 году, Клодом Беком, профессором хирургии Университета Кейс Вестерн Резерв (Case Western Reserve University). Теория Бека состояла в том, что фибрилляция желудочков часто происходила у людей, чьи сердечные мышцы, в основном, были здоровы; как он выражался: «Эти сердца слишком хороши, чтобы умереть», и говорил, что должен быть способ их сохранения. Бек впервые успешно использовал свой метод на 14-летнем мальчике, которого оперировали в связи с врожденным дефектом грудной клетки. Грудь мальчика была вскрыта хирургическим путем, и до прибытия дефибриллятора, в течение 45 минут ему проводился ручной массаж сердца. Бек разместил электроды внутри грудной клетки по обе стороны от сердца, одновременно введя прокаинамид, антиаритмический препарат, и добился восстановления нормального синусового ритма сердца.

Первые модели дефибрилляторов, подобные описанным выше, были основаны на использовании переменного тока от розетки, преобразовывая 110-240 вольт, доступных в линии, в 300-1000 вольт, а электроды лопастного типа помещались на открытое сердце. Техника дефибрилляции часто была неэффективна для нормализации желудочковой тахикардии/фибрилляци, поскольку морфологические исследования показывали повреждение клеток сердечной мышцы после смерти. В реальности аппараты переменного тока с громоздким трансформатором было трудно транспортировать, и они имели вид больших сооружений на колесах.

Дефибрилляция при закрытой грудной клетке

До начала 1950-х годов дефибрилляция сердца была возможна только тогда, когда грудная полость была открыта во время операции. При такой технике использовался переменный ток напряжением от 300 V и выше, подаваемый к сердцу через дефибрилляторы с электродами «лопастного» типа, каждый из которых представлял собой плоскую, или слегка вогнутую, металлическую пластину примерно 40 мм в диаметре. Дефибрилляция закрытой грудной клетки, при которой применялся переменный ток более 1000 V, доставляемый извне с помощью электродов сквозь грудную клетку в сердце, была впервые проведена доктором В. Эскин при содействии А. Климова в г. Фрунзе, СССР (сегодня известен как Бишкек, Кыргызстан) в середине 1950-х годов.

Переход к постоянному току

В 1959 году Бернард Лаун начал исследования в своей лаборатории на животных. Он сотрудничал с инженером Баро Берковиц, используя альтернативную технику, которая задействовала заряд банки конденсатора приблизительно в 1000 V с энергетической емкостью 100-200 Дж, доставляемый к сердцу через индукционную катушку, роль которой была в выравнивании синусоидальных волн конечной длительности (около 5 миллисекунд), путем присоединения электродов. Эти исследования дали дальнейшее развитие пониманию оптимальных сроков применения электрошока для выравнивания сердечного цикла, что открыло возможность использования прибора при аритмии, и таких ее видах, как фибрилляция предсердий, трепетание предсердий, наджелудочковая тахикардия , в технике, известной как «кардиоверсия».

Для того чтобы автоматизированные дефибрилляторы, предназначенные для общественного использования, были хорошо заметны производители часто делают их окрашенными в яркие цвета и обычно устанавливают в защитных корпусах недалеко от входа в здание. В случаях вскрытия защитных приспособлений и извлечения дефибриллятора из корпуса, иногда возможно звучание зуммера, предназначенного оповещать персонал о случившемся и давать им информацию, что нет необходимости вызывать экстренные службы. Все сотрудники, обученные использованию AВД, также должны знать телефон скорой помощи, собираясь применить АВД, поскольку пациент, будучи без сознания, всегда требует участия работников скорой помощи.

Имплантируемый кардиовертер-дефибриллятор (ИКД)

Также известен, как автоматический внутренний сердечный дефибриллятор (АИКД). Эти устройства являются имплантатами, похожими на кардиостимуляторы (а многие также могут выполнять функции поддержания сердечного ритма). Они постоянно контролируют ритм сердца пациента, и автоматически создают разряды для различных угрожающих жизни аритмий, в соответствии с установленной в устройстве программой. Многие современные устройства могут распознавать фибрилляцию желудочков, желудочковую тахикардию и более легкие формы аритмии, такие как наджелудочковая тахикардия и фибрилляция предсердий. Некоторые устройства могут осуществлять попытки искусственно ускорять сердечный ритм до синхронизированной кардиоверсии. При угрожающей жизни аритмии, представленной фибрилляцией желудочков, устройство запрограммировано немедленно приступить к выполнению несинхронизированных разрядов.

Бывают случаи, когда внутренний сердечный дефибриллятор пациента может срабатывать постоянно или не по назначению. При таких случаях требуется срочная медицинская помощь, так как это истощает батареи устройства, вызывает значительный дискомфорт и беспокойство пациента, а в некоторых случаях может фактически вызвать угрожающую жизни аритмию. В некоторых службах скорой медицинской помощи персонал стали оснащать магнитным кольцом, которое можно поместить над устройством ИКД, для эффективного отключения автоматической функции подачи разрядов, позволяя кардиостимулятору продолжать работать (если в программу устройства заложена такая возможность). Если имплантируемый дефибриллятор создает разряды часто, но надлежащим образом, персонал скорой помощи может седативными препаратами успокоить сердечный ритм.

Переносные сердечные дефибрилляторы

Развитие АИКД привело к появлению портативных наружных дефибрилляторов, которые пациенты могут носить как жилет. Устройство отслеживает пациентов 24 часа в сутки и автоматически вырабатывает двухфазный электрически разряд, если возникает необходимость. Такие модели в основном, прописываются пациентам, ожидающим установки имплантируемого дефибриллятора. В настоящее время только одна компания производит переносные дефибрилляторы, поэтому могут возникнуть трудности с приобретением устройства данного вида.

Моделирование дефибрилляции

Эффективность сердечных дефибрилляторов во многом зависит от расположения их электродов. Большинство внутренних дефибрилляторов имплантируются детям в возрасте восьми лет, но некоторые дети младшего возраста также нуждаются в дефибрилляторах. Имплантация дефибриллятора детям является особенно сложным процессом, потому что маленькие дети растут с течением времени, и их сердечная анатомия отличается от строения сердца взрослого человека. Недавно исследователи смогли создать систему моделирования программного обеспечения, способного отображать на грудной клетке и определять оптимальное положение для внешнего или внутреннего сердечного дефибриллятора.

С помощью уже существующих приложений хирургического планирования, программное обеспечение использует перепады напряжения миокарда, чтобы предсказать вероятность успешной дефибрилляции. Согласно гипотезе о критической массе, дефибрилляция эффективна, только если она производится при пороговой величине скачка напряжения в большую часть сердечной мышцы. Как правило, необходим перепад от трех до пяти вольт на сантиметр на площадь равную 95% сердца. Скачок напряжения более 60 V/см может привести к повреждению тканей. Моделирующее программное обеспечение, стремится получить перепад напряжения, превышающий порог дефибрилляции в безопасных пределах.

Ранние версии моделирования с использованием программного обеспечения позволяли предполагать, что небольшие изменения в расположении электродов могут иметь большие последствия для дефибрилляции, и, несмотря на технические препятствия, которые пока не удалось преодолеть, система моделирования обещает помочь решить проблему с установкой имплантируемых дефибрилляторов детям и взрослым.

Последние математические модели дефибрилляторов основаны на бидоменной модели сердечной ткани . Расчеты с использованием реалистичной формы сердца и геометрии волокна должны определить, как сердечная ткань реагирует на сильное поражение электрическим током.

Подсоединение к пациенту

Дефибриллятор подключен к пациенту с помощью пары электродов, каждый из которых снабжен гелем, проводящим электричество , для того, чтобы обеспечить хорошую проводимость и свести к минимуму электрическое сопротивление , также называемое импеданс или полное сопротивление грудной клетки, которое может обжечь пациента. Гель бывает двух видов: жидкий (аналогичный по консистенции хирургической смазке) и твердый (похож на жевательные конфеты). Твердый гель является более удобным, потому что при работе с ним не будет возникать необходимость счищать использованный гель с кожи пациента после дефибрилляции (твердый гель легко снимается). Тем не менее, использование твердого геля несет в себе более высокий риск ожогов во время дефибрилляции, так как электроды с жидким гелем более равномерно проводят электричество в тело . Лопастные электроды, которыми были оснащены первые дефибрилляторы, не предусматривали подачу геля, и соответственно его наложение должно было выполняться как отдельный этап процедуры. Самоклеящиеся электроды поставляются с встроенным дозатором геля. Мнения разделяются в вопросе о том, какой тип электродов предпочтительнее использовать в условиях стационара. Американская Ассоциация Сердца не отдает предпочтение ни тем, ни другим электродам. Все современные конструкции дефибрилляторов, используемых в больницах, позволяют быстро переключаться между самоклеящимися подушечками и традиционными лопастями. Каждый тип электродов имеет свои достоинства и недостатки, как описано ниже.

Лопастные электроды

Самым известным типом электрода, широко представленным в кино и на телевидении, является традиционная металлическая лопасть с изоляцией (обычно пластик) ручек. Этот тип дефибриллятора необходимо удерживать в нужном месте на коже пациента с силой примерно 25 фунтов, на протяжении всего времени, пока разряд или серия разрядов будет выполняться. Лопасти имеют несколько преимуществ по сравнению с самоклеящимися электродами. Многие больницы в Соединенных Штатах продолжают использовать лопастные дефибрилляторы с одноразовыми салфетками, пропитанными гелем, которые прилагаются к устройству в большинстве случаев, из-за скорости, с которой эти электроды могут быть размещены и приведены в действие. Это очень важно при остановке сердца, так как каждая секунда, когда тело не снабжается кровью, означает потерю ткани. Современные лопасти позволяют проводить мониторинг (электрокардиографию), хотя в условиях больниц, мониторинг часто осуществляется специальными приборами.

Лопасти являются многоразовыми, очищаются после использования и хранятся до следующего случая возникновения необходимости воспользоваться ими. Поскольку, гель не подается автоматически, лопасти должны быть смазаны им перед размещением на груди пациента. Лопасти, как правило, применяются только на ручных внешних дефибрилляторах. Требуется приложить примерно 25 фунтов силы, надавливая на лопасти, во время подачи дефибриллятором разряда.

Самоклеящиеся электроды

Новый тип реанимационных электродов дефибрилляторов представлен в виде пластыря, который включает в себя твердый или жидкий гель. От электродов отделяется подкладка, и они наклеиваются на грудь пациента, когда возникает необходимость, по такому же принципу, как и любые другие наклейки. Электроды такого типа подключаются к дефибриллятору, так же как лопасти. В момент, когда требуется дефибрилляция, если аппарат заряжен, разряд можно произвести без выполнения каких-либо дополнительных действий, нет необходимости наносить гель или размещать и прижимать лопасти. Большая часть самоклеящихся электродов предназначена для использования не только при дефибрилляции, но также для чрескожной стимуляции и синхронизированной электрической кардиоверсии. Эти пластыри применяются на полностью автоматизированных и полуавтоматических устройствах и чаще всего используются вместо лопастных электродов вне стационара. В больнице, в случаях, когда врачи предполагают, что остановка сердца, вероятно, произойдет, самоклеящиеся прокладки могут быть размещены на груди пациента в профилактических целях.

Самоклеящиеся подушечки также имеют преимущества в применении для неопытных пользователей, и медиков, работающих в не вполне удобных условиях выездов. Липкие электроды не требует дополнительных проводов для крепления к контролирующему устройству, и при работе с ними не нужно прикладывать больших усилий в момент выработки дефибриллятором разряда. Таким образом, самоклеящиеся прокладки сводят к минимуму риск физического (и, соответственно, электрического) контакта оператора с больным, в момент выхода разряда из дефибриллятора, оператор может находиться на расстоянии до нескольких метров. Риск поражения электрическим током других присутствующих при дефибрилляции остается неизменным, так как разряд может произойти в связи с ошибкой оператора. Самоклеящиеся электроды предназначены только для одноразового применения. Они могут быть использованы для нескольких разрядов в процессе одной дефибрилляции, кроме случаев, когда они были перемещены, при восстановлении сердечного ритма пациента, а потом снова произошла остановка сердца и требуется повторный разряд.

Размещение электродов при дефибрилляции

Реанимационные электроды располагаются по одной из двух схем. Схема «перед-зад» является предпочтительной для долгосрочного размещения электродов. Один электрод помещается на левой прекардиальной части (низ грудной клетки, над сердцем). Другой электрод помещается на спине, позади сердца в области между лопатками. Данное размещение является предпочтительным, поскольку оно способствует лучшему эффекту при неинвазивной стимуляции.

Схема «перед-верх» может быть использована, если схема «перед-зад» неудобна или не является необходимой. При данном виде размещения, передний электрод устанавливается справа под ключицей. Верхний электрод располагается на левом боку пациента, чуть ниже и левее грудных мышц. Эта схема хорошо работает для дефибрилляции и кардиоверсии, а также для мониторинга ЭКГ.

Дефибрилляторы в средствах массовой информации

Дефибрилляторы часто изображают в кино, телевизионных передачах, видео-играх и других художественных жанрах СМИ в качестве устройств, которые могут быстро создавать значительные улучшения в состоянии здоровья пациента. Их функциональные возможности, однако, часто преувеличиваются, показывая, что дефибрилляторы вызывают внезапные, насильственные рывки или судороги у пациента. В действительности, мышцы могут сокращаться под воздействием электрического шока, но такие явные проявления воздействия разряда на пациента достаточно редки. Кроме того, медицинские работники часто изображаются проводящими дефибрилляцию больным с «прямой линией» ЭКГ-ритма (также известным как асистолия); это невозможно сделать в реальной жизни, так как сердце не может начать снова работать от разряда дефибриллятора. Дефибрилляцию, как правило, производят только при отклонениях ритмов сердца: фибрилляции желудочков и желудочковой тахикардии. Это связано с тем, что смысл этой процедуры – произвести электрический разряд в сердце пациента, вызвав состояние асистолии и затем позволить ему снова биться в нормальном ритме. Тому, чье сердце уже находится в состоянии асистолии нельзя помочь электрическими средствами реанимации, и, как правило, в таких случаях необходима срочная сердечно-легочная реанимация и введение внутривенных препаратов. Есть также несколько сердечных ритмов, которые имеет смысл «шокировать», если у пациента не остановилось сердце, например, суправентрикулярная тахикардия и желудочковая тахикардия, при которых продолжается биение сердца – это более сложная процедура, известная как кардиоверсия, а не дефибрилляция.

В Австралии вплоть до 1990-х годов для экипажей скорой медицинской помощи было довольно редким опытом применять дефибрилляторы. Ситуация изменилась в 1990 году после того, как у австралийского медиамагната Керри Пакера произошел сердечный приступ, и, совершенно случайно, в машине скорой помощи, которая была направлена на вызов, оказался дефибриллятор. Восстановившись после инфаркта, Керри Пакер пожертвовал крупную сумму на оборудование всех машин скорой помощи штата Новый Южный Уэльс личными дефибрилляторами, поэтому дефибрилляторы в Австралии в разговорах иногда упоминают как «Ударники Пакера».

Чем отличаются дефибрилляторы различных производителей?
Электрическая дефибрилляция — метод лечения жизнеугрожающих аритмий сердца, таких как фибрилляция желудочков либо беспульсовая желудочковая тахикардия. Аппарат, благодаря которому производится дефибрилляция, носит название дефибриллятор .
Основная задача, которую призваны решать дефибрилляторы — это восстановление обычного ритма сердца. Различные производители предлагают различные подходы и философии дефибрилляции. Но при выборе дефибриллятора имеет суть обратить внимание на такие показатели как эффективность первого и последующих разрядов, возможность применения дефибриллятора к различным возрастным категориям (применение в педиатрической практике), соответствие прибора интернациональным и местным стандартам/рекомендациям. Ключевую роль кроме этого играются степень эргономичности прибора, удобство его применения, надежность.


Чем отличаются бифазные (биполярные) дефибрилляторы от монофазных (монополярных)?
В монофазных дефибрилляторах дефибрилляционный импульс передается от одного электрода к другому, наряду с этим доктор неизменно должен четко выполнять размещение стернального и апекального электродов.
В бифазных дефибрилляторах полярность электродов не имеет значения, наряду с этим электрический импульс однократно меняет свое направление, так два раза проходя через сердечную мышцу.
Установлено, что разряды бифазных дефибрилляторов являются более действенными, возможность повреждения тканей при действии бифазного импульса меньше, чем при действии монофазного импульса той же энергии. Бифазный импульс, кроме возбуждения, ещё и реполяризует сердечную мышцу, тем самым значительно уменьшается возможность появления повторной ФЖ.

Каков принцип действия дефибриллятора?
Использование дефибриллятора продемонстрировано при желудочковой фибрилляции и желудочковой тахикардии. Развитие этих аритмий ведет к тому, что сердце не имеет возможности делать свою обычную функцию по перекачке крови. Наиболее действенным методом восстановления обычного ритма сердца есть электрическая дефибрилляция. Замечательный короткий электрический импульс дефибриллятора проходя через сердечную мышцу способен вернуть обычную работу сердца.

Из-за чего бифазные дефибрилляторы LIFEPAK снабжают энергию до 360 Дж?
Изучения, проводившиеся с целью выяснения роли разрядов высокой энергии подтверждают тот факт, что во многих случаях больным требуется проведние разрядов большей мощности: те больные, у которых сердечный ритм не был преобразован в обычный при применении разряда 200 Дж, довольно часто поддаются конвертации при применении разряда 360 Дж.
Все дефибрилляторы LIFEPAK предоставляют возможность докторам увеличивать энергию дефибрилляции до 360 Дж в случае, в то время, когда это нужно.
Мы полагаем, что именно доктор, а не производитель должен решать какая как раз большая энергия разряда требуется конкретному больному.

Может ли разряд энергией 360 Дж повредить миокард?
На сегодня не существует ни одного клинически доказанного случая повреждения миокарда бифазным разрядом 360 Дж. Экспериментальные свидетельства показывают на величину электрического тока — а не энергию разряда — как вероятный фактор повреждения миокарда. При применении бифазного дефибриллятора LIFEPAK величина тока приблизительно на 40% ниже величины тока монофазного дефибриллятора при подаче разряда однообразной энергии. Так, применение бифазных дефибрилляторов оказывает более щадящее действие на миокард.

Какой прибор серии LIFEPAK более предпочтителен для применения в поликлинике?
Вы имеете возможность выбрать любой из дефибрилляторов LIFEPAK 15, LIFEPAK 20 либо LIFEPAK 1000 в зависимости от задач, каковые должен решать прибор (работать как монитор/снабжать определнный комплект функций). Все указанные выше модели смогут употребляться в условиях стационара.

Какой прибор серии LIFEPAK более предпочтителен для применения на скорой помощи?
Для применения на догоспитальном этапе больше подойдут ударопрочные, защищенные от действий окружающей среды дефибрилляторы LIFEPAK 12, LIFEPAK 15 либо LIFEPAK 1000. Для профильных кардиологических и реанимационных бригад LIFEPAK 12 и LIFEPAK 15 будут совершенным выбором. LIFEPAK 1000 может употребляться непрофильными врачебными бригадами.

В чем отличие разных моделей дефибрилляторов/мониторов LIFEPAK?
Подробное описание всех дефибрилляторов находится в разделе «Продукция». Если вы сомневаетесь, какая модель подойдет больше, напишите письмо с вопросом либо позвоните к нам в офис (см. раздел «О компании — Контакты»), мы попытаемся оказать помощь Вам с выбором.

Как возможно взять дефибриллятор LIFEPAK на апробацию?
Чтобы получить прибор на апробацию нужно послать нам краткое описание Вашего проекта — мы свяжемся с Вами при первой возможности.

Возможно ли стать дистрибьютором продукции Physio-Control?
Мы рады новому сотрудничеству и готовы обсудить Ваши предложения.

Как заказать дефибриллятор LIFEPAK?
Дефибриллятор возможно заказать, обратившись к нашим дистрибьюторам. Уточнить контактную данные компаний-дистрибьюторов Вы имеете возможность в нашем офисе.

какое количество стоит дефибриллятор LIFEPAK?
Цена на прибор зависит от модели и комплектации дефибриллятора. Коммерческое предложение на все оборудование возможно взять у наших дистрибьюторов.

Кто осуществляет сервисное обслуживание дефибрилляторов LIFEPAK?
Сервисное обслуживание устройств реализовывают дистрибьюторы.

Как узнать ответ на интересующий меня вопрос?
Чтобы получить ответ на интересующий Вас вопрос, пожалуйста, зайдите в раздел «О компании-Контакты» и напишите нам, или позвоните нам в офис.

Вам это понравится:

Нарушения в работе сердца, особенно сбои ритма, могут привести к полной его остановке (асистолии). Отсутствие сокращений сердечной мышцы в течение 5 минут становится причиной биологической смерти. Дефибрилляция сердца является методом восстановления ритма путем воздействия на него электрическим током. Данная процедура выполняется с помощью специального прибора – дефибриллятора, в тяжелых случаях, когда требуются реанимационные действия.

Дефибрилляция – это направление мощного разряда электрического тока для нормализации деятельности сердца. Это необходимо в тех случаях, когда медикаментозная терапия не дает необходимого результата, а пациент находится на грани смерти. Зависимо от того, как подается ток, различают два вида процедуры:

  1. (электроимпульсная терапия). Данная методика заключается в воздействии постоянного тока, который синхронизируется с периодом возбуждения желудочков. В ином случае такая процедура может привести к фибрилляции.
  2. Дефибриляция. Прямое воздействие током без синхронизации с периодами работы сердца, когда в поступлении постоянного тока нет необходимости либо сделать это невозможно.

Главное отличие процедуры дефибрилляции от кардиоверсии в том, что в первом варианте электрический ток подается независимо от сердечного цикла. Манипуляция проводится, если пациент находится без сознания. Начальный разряд составляет около 200 Дж, далее его увеличивают до 360 Дж.

При кардиоверсии токовые импульсы проходят в самый неуязвимый период сердечной деятельности. Для выявления момента возбуждения желудочков процедуру проводят под контролем ЭКГ. Такая процедура может проводиться планово с согласия пациента.

В большинстве случаев дефибрилляция необходима при желудочковой тахикардии, развитии фибрилляции. Кардиоверсия выполняется при аритмии и тахикардии, развившейся в предсердиях. Методику электрического воздействия на главный орган в каждом конкретном случае должен выбирать врач, основываясь на жизненных показателях пациента и медицинских показаниях.

Показания к дефибрилляции

При серьезных проблемах с сердцем жизнь человека может исчисляться минутами либо даже секундами. Поэтому зачастую проведение дефибрилляции просто необходимо. Ее выполняют в неотложном порядке, но иногда проведение подобной процедуры может быть плановым.

Экстренная дефибрилляция необходима, если регистрируются острые нарушения сердечного ритма. Они провоцируют резкое прекращение нормального кровообращения и ярко выраженную недостаточность в работе сердца:

  • желудочковая тахикардия;
  • высокочастотное ;
  • трепетание желудочков.

Пациентам, страдающим нарушениями ритма, следует обязательно знать, что такое фибрилляция. Это опасное состояние, сопровождающееся хаотическим появлением электрических импульсов с частотой 300-700 ударов в минуту. При остром развитии заболевания риск смертельного исхода очень велик. Именно в таких случаях требуется экстренная дефибрилляция. При хроническом течении патологии риск летального исхода увеличивается в 2 раза и требуется специальный курс лечения.

Относительно-неотложная дефибрилляция требуется при заболеваниях, которые не вызывают острую недостаточность, но и не корректируются медикаментозно. К этой группе патологий относят:

  • наджелудочковая пароксизмальная тахикардия (возвратная);
  • пароксизмальное трепетание предсердий;
  • тахикардия желудочковая;
  • фибрилляция предсердий.

Запланированная электрическая дефибрилляция выполняется при терапии хронических патологий с сердечным ритмом, которые длительное время не поддаются медикаментозному лечению. Чаще всего это необходимо при фибрилляции либо трепетании предсердий.

Противопоказания

Поскольку в большинстве случаев электроимпульсная дефибрилляция выполняется экстренно, то возможные противопоказания не учитываются, поскольку на первый план ставится здоровье и жизнь пациента. Единственным абсолютным противопоказанием является полная остановка сердечной деятельности. Дефибрилляция при асистолии либо электрической активности без регистрации пульса не проводится. Если такое произошло, рекомендуется выполнение непрямого массажа сердца, а уже после этого воздействие на орган токовыми импульсами.

Плановую кардиоверсию не проводят, если:

  1. Пациенту назначены сердечные гликозиды. На фоне приема данных препаратов возможна фибрилляция желудочков.
  2. Диагностировано острое инфекционное заболевание.
  3. Имеются противопоказания для проведения наркоза.
  4. Обнаружены нарушения в электролитном составе крови.
  5. Выявлен тромбоз предсердий.
  6. Зарегистрирована хроническая недостаточность сердечной деятельности.
  7. Диагностирована либо разрастание желудочков.

Виды дефибрилляторов и принцип их действия

Медицинский аппарат, генерирующий высоковольтные электрические импульсы, называют дефибриллятором. Он состоит из нескольких основных частей:

  • зарядное устройство;
  • конденсатор;
  • разрядная цепь.

Помимо этого, современные модели оснащены монитором и электрокардиографом. Это необходимо для оценки эффективности проведенных мероприятий. Новейшие дефибрилляторы делят на несколько видов в зависимости от принципа действия:


Методика проведения

Необходимо, чтобы экстренную дефибрилляцию выполняли врачи кардиологической группы неотложной помощи. В крайнем случае проведение данной процедуры возлагается на специально обученных специалистов полиции, пожарной охраны при наличии автоматического дефибриллятора. При этом нужно следовать утвержденному алгоритму:


Если четыре попытки нормализовать сердечный ритм оказались безрезультатны, то фиксируют невозможность спасти жизнь пациента.

Особенности дефибрилляции в детском возрасте

Восстановление ритма под действием электрических импульсов применяется также в педиатрии. Для малышей, у которых масса тела не превышает 10 кг, используются специальные маленькие электроды. Во всех других случаях процедура проводится стандартным оборудованием. У детей от рождения до 8 лет (либо массой тела менее 25 кг) рекомендуется дефибрилляция с использованием ручного оборудования. В более поздние периоды разрешено использовать автоматический дефибриллятор.

Необходимость в педиатрии дефибрилляции определяется следующими показаниями: полная остановка кровообращения из-за фибрилляции желудочков, желудочковая тахикардия при нерегистрируемом пульсе. Укладка электродов при этом стандартная.


Возможные осложнения

Дефибрилляция сердца может сопровождаться осложнениями. Наиболее часто процедура связана с появлением ожогов из-за прохождения через кожу токовых импульсов высокой мощности. Лечение в таком случае симптоматическое. Иногда после процедуры регистрируется тромбоэмболия артерий, терапия которой достаточно сложная. Пациенту назначают антикоагулянты, тромболитики, в редких случаях требуется хирургическое вмешательство.

Однако, в данной ситуации цель оправдывает средства, ведь результат – спасение человеческой жизни. При выборе плановой кардиоверсии негативные последствия оценивают намного тщательней. Возможны:


Химическая дефибрилляция

Восстановить нормальную сердечную деятельность можно и при помощи специальных лекарственных препаратов. Медикаментозный метод дефибрилляции менее эффективен, чем аппаратный, но все же периодически применяется.

Проводить химическую дефибрилляцию может только опытный врач. Лекарство вводят напрямую в артерию либо внутрисердно. Восстановить сердечный ритм и нормализовать работу камер сердца в данном случае поможет раствор хлорида калия (7,5%). Его берут из расчета 1 мг на килограмм массы тела. Также потребуется введение 10 мг новокаина (1%) и раствор хлорида кальция (10%).

Если зарегистрирован положительный результат от медикаментозной терапии, то для предотвращения повторного нарушения ритма пациенту вводят атропин (0,1%) и 7 мг новокаина (1%) внутривенно.

Частые ошибки

На результат проводимой дефибрилляции влияет много факторов. Важна правильность проведения процедуры, выполнения прочих действий реанимационного характера. При восстановлении нормальных функций сердца током возможны следующие неверные шаги:


Все перечисленные ошибки возникают в большей степени в результате неопытности специалиста. Однако, на эффективность процедуры могут влиять индивидуальные особенности организма пациента, наличие хронических заболеваний, а также плохой анамнез. Правильно проведенная дефибрилляция по статистике результативна более чем в 80% случаев. Однако, по факту в стационарных условиях спасти удается лишь 70% пациентов, а вот за пределами лечебного учреждения всего 15%. Эффективность запланированной кардиоверсии достигает 95%.

Благодаря имплантированным приборам удается значительно увеличить продолжительность жизни пациентов с нарушениями сердечного ритма. Данные устройства практически моментально снимают аритмию и уменьшают риск скорого смертельного исхода.

Остались вопросы? Задавайте их в комментариях! На них ответит врач-кардиолог .

Фибрилляция – вид аритмии, угрожающей человеку смертью. Для этого состояния характерны беспорядочные сокращения (мерцания) предсердий или желудочков. Скорость хаотичных подергиваний мышечных волокон достигает предельных цифр. Кровообращение резко нарушается, потому что сердце не может полноценно осуществлять свои насосные функции. Развивается клиническая смерть. Для спасения жизни и предотвращения подобных ситуаций существуют разные методы. Самым эффективным на сегодняшний день признана электроимпульсная терапия, или дефибрилляция сердца.

Дефибрилляция сердца – это проведение электрического разряда через его камеры с целью восстановить нормальный ритм работы органа. Для осуществления манипуляций используют специальный прибор – дефибриллятор. Терапия такого рода может проводиться планово или экстренно, в зависимости от ситуации. Выполнение электроимпульсного лечения входит в компетенцию кардиолога, врача бригады скорой помощи или реаниматолога. Эти специалисты должны обладать навыками техники проведения процедуры.

Что такое дефибриллятор? Устройство для подачи электроимпульсов может быть переносным и стационарным. Оно оснащено тремя блоками: в одном из них накапливается и преобразовывается электричество, другой представляет собой один или два электрода, третий элемент – это дефибриллятор-монитор. Различают монофазный и бифазный элетростимуляторы. Первый пускает ток в одном направлении. Принцип действия второго прибора: он использует электроэнергию переменного тока, движущегося от электрода к электроду и обратно.

Существуют автоматические устройства, которые, в отличие от ручных, способны выявить разные нарушения ритма. Также они сами подбирают необходимую мощность разряда для каждого случая. Иногда помощь приходится оказывать вдали от больничных стен. Простота эксплуатации делает прибор доступным даже для использования людьми, не прошедшими лицензирование, то есть без специальной медицинской подготовки.

У многих возникает закономерный вопрос: можно ли дефибриллятором запустить сердце? Лечение электричеством допускается лишь в том случае, если сохраняется хотя бы какое-то подобие сократительной деятельности. Таким образом, дефибриллятор при остановке сердца использовать не имеет смысла.

В случае асистолии (отсутствии сокращений) необходимо приступить к проведению процедуры искусственного дыхания, чередуемой с непрямым массажем сердца. Когда самый важный орган подаст признаки жизни, можно проводить электроимпульсную терапию. Она существует в двух разновидностях: собственно дефибрилляция как мера неотложной помощи, и кардиоверсия.

Зачем нужен электрический дефибриллятор в экстренных ситуациях? Его используют для устранения желудочковой аритмии (самое тяжелое нарушение). Такой способ сердечной стимуляции всегда предполагает неотложное проведение, потому что в этом случае возникает реальная угроза жизни. Человек во время подачи тока находится в бессознательном состоянии.

Что такое электрическая дефибрилляция сердца, именуемая кардиоверсией? Термин тоже подразумевает нанесение разрядов тока, но их надо синхронизировать с желудочковым комплексом (QRS). Для этого во время процедуры необходимо параллельное проведение ЭКГ. Применение такого типа лечения актуально при наличии предсердного нарушения ритма. Возможны как плановые манипуляции, так и экстренные. Первый вариант проводится при обдуманном согласии пациента и под наркозом.

Электрические импульсы наносят двумя электродами дефибриллятора, расположенными специальным образом на грудной клетке больного. При этом производится особая обработка кожных покровов и самих приспособлений.

Есть и другой вид возвращения нормальной сократительной деятельности сердца. В грудную клетку вживляется приспособление, которое задает нужный ритм. При необходимости дефибриллятор-кардиовертер распознает и купирует приступ опасной для жизни мерцательной аритмии.

Когда проводят дефибрилляцию

Показания к применению электрической экстренной дефибрилляции – тяжелые желудочковые аритмии:

  • Фибрилляция (беспорядочный ускоренный ритм).
  • Трепетания (ритм ускорен, но упорядочен).
  • Тахикардия, которая не лечится консервативно.

При этом состояние может осложняться острой сердечной недостаточностью, резкой гипотонией.

Отличительные признаки:

  • Сердце сокращается часто, хаотично. Проверять сердцебиения надо в области грудины, пульс, скорее всего, не будет прощупываться.
  • Человек находится без сознания. Происходит регистрация клинической смерти.

Цель процедуры – спасти человеку жизнь, восстановить адекватную деятельность сердца, не допустить его полную остановку. Меры относятся к реанимационным, манипуляцию надо проводить как можно быстрее. С каждой минутой промедления риск биологической смерти повышается.

Когда выбирают кардиоверсию?

Для лечения предсердных аритмий, которые не поддаются воздействию медикаментами:

  • пароксизмы наджелудочковой тахикардии;
  • мерцания и трепетания предсердий.

Плановые процедуры проводятся при частых и затяжных приступах мерцательной аритмии, а также в случае неэффективности медикаментозного лечения. Иногда практикуется чередование двух методов одновременно: лекарственной и электроимпульсной терапии.

Экстренная кардиоверсия необходима, когда аритмия грозит перейти в фибрилляцию желудочков, сопровождается симптомами прединфарктного состояния, падения артериального давления, недостаточности сердца в острой форме.

Целью процедуры является устранение тяжелых симптомов, повышение эффективности лечения, улучшения качества жизни пациента, неотложная помощь при развитии угрожающих состояний.

Противопоказания

Для проведения экстренных мероприятий пользоваться дефибриллятором можно в любой ситуации. Основное противопоказание – воздействие на нормально работающее сердце (или с незначительными, физиологическими сбоями). Главное назначение процедуры – не допустить смерти пациента. Также нецелесообразным будет воздействие током на сердце, которое уже не работает, ввиду полного отсутствия эффективности такой манипуляции.

Осуществление кардиоверсии (плановой) имеет несколько ограничений. Не рекомендуется делать процедуру в следующих ситуациях:

  • наличие тромбов в зоне предсердий;
  • есть противопоказания для погружения в наркоз;
  • употребление сердечных гликозидов;
  • атриовентрикулярная тахикардия;

  • учащенный синусовый ритм;
  • хроническая сердечная недостаточность;
  • лихорадочное состояние инфекционной этиологии;
  • хроническая мерцательная аритмия (стаж более двух лет);
  • дистрофия или гипертрофия желудочков.

Дефибрилляция сердца: меры предосторожности

Процедура связана с использованием электрического тока, который требует осторожного обращения. Чтобы не навредить себе или пациенту, люди, проводящие дефибрилляцию, должны соблюдать ряд строгих рекомендаций:

  1. В момент подачи разряда нельзя дотрагиваться до больного или до поверхности, на которую его уложили. Запрещено касаться металлических деталей на электродах.
  2. Если в это время подавался кислород, этот процесс надо прервать. Электрический разряд может спровоцировать возгорание.
  3. Возле больного недопустимо большое скопление посторонних лиц. Обслуживанием приборов должны заниматься не более двух человек.
  4. После проведения дефибрилляции следует сразу же разрядить конденсатор.
  5. Нельзя допускать соприкосновения двух электродов между собой. Особенно при наличии на их поверхности специального электропроводного геля. Несоблюдение этого правила может привести к короткому замыканию.
  6. Для предотвращения ожогового ранения кожных покровов грудной клетки надо применять значительное механическое воздействие (до 8-10 кг) на установленные электроды. Это также позволит снизить сопротивление и уменьшить силу тока.
  7. Дефибриллятор не располагают на область молочной железы женщины. Запрещено устанавливать электроды также в зону имплантированного кардиостимулятора.
  8. Нельзя применять процедуру при наличии нормальной электрической активности сердца. В обратном случае могут возникнуть серьезные нарушения сократительной деятельности, вплоть до асистолии.

Дефибрилляция сердца: показания и методика проведения

Экстренная электростимуляция применяется, когда человек лишился сознания, и если обнаружено серьезное нарушение сердечного ритма. Алгоритм проведения:

  1. Уложить человека на ровную, горизонтально расположенную поверхность.
  2. Открыть доступ к грудной клетке, убрав лишнюю одежду.
  3. Электроды обрабатывают гелем, обладающим свойством проводить ток.
  4. Вместо геля допускается слой марли, который пропитан в растворе хлорида натрия (7-10%).
  5. Выбирается нужный уровень мощности. Производят зарядку электродов.
  6. Устанавливают их правильным образом: правый в подключичной области рядом с грудной клеткой, левый – выше верхушки сердца. Возможно иное расположение: левый электрод в пятом межреберном промежутке возле груди, правый в зоне спины под лопаткой на одном уровне с первым электродом.
  7. При наличии кардиостимулятора постановка левого электрода должна быть на расстоянии большем, чем 8 см от внутреннего устройства.
  8. Процедуру при необходимости чередуют с искусственным дыханием и непрямым массажем сердечной мышцы.
  9. После установки и заряда электродов происходит запуск тока. Проверяется результат (отображаются изменения ЭКГ или обнаруживается пульс).
  10. Отсутствие эффекта допускает нанесение повторного разряда, его мощность увеличивают.
  11. Разрешается 4-х кратно пропускать электричество, с постепенным возрастанием силы разряда. Между манипуляциями проводят медикаментозное лечение, искусственную вентиляцию легких и массаж сердца.

Как проводится плановая кардиоверсия

К этому типу электроимпульсной терапии пациента готовят. Схема подготовки:

  1. Записывают ЭКГ.
  2. Проводят чреспищеводное обследование (ЭхоКГ) на предмет обнаружения тромбов в сердечных камерах.
  3. Назначают лабораторное исследование крови на содержание калия.
  4. Больной должен сам принять решение и дать согласие.
  5. Когда до предполагаемой даты проведения процедуры остается 3-4 дня, отменяются сердечные гликозиды.
  6. Перед кардиоверсией надо выдержать 4-часовой перерыв без еды и питья.

Методика проведения плановой электростимуляции включает в себя:

  1. Преоксигенацию (насыщение организма чистым кислородом).
  2. Погружение пациента в неглубокий общий наркоз.
  3. Подготовку и установку оборудования, как и при дефибрилляции.
  4. Контроль ЭКГ, артериального давления.
  5. Подачу разрядов, которые надо кардиосинхронизировать, то есть совместить с QRS-комплексом или с R-зубцом (сделать это необходимо, чтобы не вызвать аритмию желудочков).

Возможные осложнения и риски

При проведении плановой кардиоверсии необходимо оценить степень риска и принять правильное решение, потому что процедура чревата осложнениями.

  • Развитие мерцаний желудочков при ошибках в процессе проведения электротерапии.
  • Резкая гипотония.
  • Возникновение экстрасистол, желудочковых или предсердных.
  • Через некоторое время после кардиоверсии, увенчавшейся успехом, может развиться отек легких. Такое явление наблюдается при лечении хронических нарушений ритма.

Дефибрилляция тоже представляет определенную опасность для пациента. Но риски не идут в расчет, когда сердце может остановиться в любой момент.

Возможные последствия процедуры:

  • Тромбоэмболия сосудов, в том числе и легочных.
  • Ожог кожной поверхности грудной клетки.

Эти же проблемы могут возникнуть и при кардиоверсии.

Уровень эффективности и дальнейший прогноз

Самый высокий уровень эффективности экстренной электростимуляции отмечается в первые три минуты развития угрожающих жизни мерцаний. Каждая последующая минута промедления будет понижать этот уровень на 15%. Критическим сроком считается 10-я минута, в это время шансы пациента на выживание почти равны нулю.

Если быстро и грамотно были проведены все манипуляции, процент успеха при дефибрилляции довольно высок (не ниже 85%). Такое возможно в идеале, но это большая редкость. Более реальны следующие цифры: до 15% людей получается спасти вне стен больницы, около 60% возвращают к жизни, когда приступ возник в медицинском учреждении.

Кардиоверсия отличается большей результативностью. Успех ожидает пациентов, согласившихся на лечение током, в 95 случаях из ста.

Прибор, внедренный в грудную клетку в качестве искусственного водителя ритма, дает самый высокий эффект. Аритмия устраняется в кратчайшие сроки и без последствий в 99% всех инцидентов.

Каков прогноз для пациентов, которые перенесли острый приступ мерцательной аритмии желудочков? Чаще всего не слишком благоприятный. Все потому, что такая патология не существует сама по себе, она всегда является следствием тяжело протекающих сердечно-сосудистых болезней: недостаточности сердца в острой форме, инфаркта миокарда с обширной зоной поражения, комбинированных пороков. Пережив успешно одну клиническую смерть при тяжелой фибрилляции желудочков, выкарабкаться также благополучно из аналогичной ситуации во второй или третий раз, возможно, уже не получится.

Изобретение метода электрической стимуляции сердца дало шанс победить смерть многим людям. Дефибрилляция может спасти не только взрослого, но и ребенка. Кардиоверсия считается самым лучшим способом устранения тяжелой аритмии. Благодаря грамотному воздействию током происходит «перезагрузка» сердца, после чего деятельность мышечных волокон нормализуется, устанавливается правильный естественный ритм сокращений, а человек переживает ощущение второго рождения.