Влияние теплового шока на клеточном уровне. Клонированный российскими учеными белок теплового шока позволит эффективно лечить любые виды и стадии рака А частный инвестор уже найден

Белки теплового шока (heat shok proteins HSPs) широко распространены в живой природе и являются одними из наиболее консервативных молекул биосферы. Основная функция HSPs - защита биологических систем от повреждающих стрессорных воздействий. В процессе эволюции эукариот некоторые HSPs приобрели функции, позволившие им интегрироваться в систему иммунитета.
Роль HSPs во взаимодействии механизмов врожденного и приобретенного иммунитета определяется способностью HSPs перехватывать антигенные пептиды и репрезентировать их с помощью ДК Т-лимфоцитам в контексте молекул МНС.

Белки теплового шока обеспечивают важные жизненные функции и представлены у всех живых организмов. Продукты генов, наименованные белками теплового шока или белками клеточного стресса, вырабатываемые в условиях гипертермии, изначально были идентифицированы как молекулы, вырабатываемые в ответ на присутствие в клетках белков с нарушенной конформацией. Затем было установлено, что HSPs играют роль шаперонов в нековалентной сборке и демонтаже других макромолекулярных структур, хотя сами не являются перманентными компонентами этих структур при выполнении своих биологических функций.

Реакция белков теплового шока зафиксирована не только в условиях гипертермии, но также при оксидативном стрессе, ацидозе, ишемии, гипоксии-гипероксии, энергетическом истощении клеток и т п. В этих условиях HSPs высвобождаются из некротизированных клеток при разрушении ткани или лизисе инфицированных клеток.

Благодаря особенности распознавания гидрофобных аминокислотных последовательностей на поверхности белков, как предупредительного сигнала о конформационной их нестабильности, HSPs способны осуществлять такие жизненно важные функции, как участие в обеспечении пространственной организации белковых молекул (фолдинге), их стабилизации, коррекции конформационных изменений (рефолдинге), транслокации белков через мембраны внутриклеточных органелл, предотвращении белковой агрегации и деградации нестабильных белков. Наряду с этим, HSPs проявляют антиапоптотическую активность. В совокупности, HSPs выполняют роль буферной системы, противодействующей стохастическим и потенциально дестабилизирующим факторам клеточного окружения.

HSPs играют важную роль в индукции иммуного ответа, в особенности врожденного иммунитета: усиливают активность NK-клеток, созревание АПК и продукцию цитокинов. Пептидные фрагменты расщепляющихся белковых молекул перехватываются HSPs и, в конечном итоге, претерпевая процессинг в АПК, индуцируют реакции адаптивного иммунитета. Таким образом, через активацию АПК и участие в процессинге антигена белки теплового шока интегрируют реакции врожденного и приобретенного (адаптивного) иммунитета.

Иммуностимулирующие свойства проявляют HSP про- и эукаритического происхождения. Способностью к индукции иммунного ответа обладают представители нескольких семейств HSP (кальретикулин, HSP10, HSP60, HSP70, HSP90, HSP100 и HSP170).

Шаперонная функция белков теплового шока осуществляется не только в процессе биогенеза других белков, но и при иммунном ответе на . Изменение окружающей среды при инфицировании создает стрессорную ситуацию как для вторгшегося патогена, так и для клеток хозяина, что проявляется в обоюдной интенсификации синтеза и функциональной активности белков теплового шока. Молекулярные шапероны бактерий выступают в роли лигандов для рецепторов на поверхности клеток хозяина.

HSPs могут быть распознаны TLR2, TLR4. Другие др96, HSP90 и HSP70, взаимодействуют с антигенпрезентирующими клетками через общий рецептор, CD91. HSP-шаперонные пептиды проникают в макрофаг/дендритные клетки через CD91, процессируются и презентируются вместе с молекулами МНС I и МНС II. Это вызывает активацию CD4 и CD8 Т-клеток. HSP-ДК взаимодействие через CD91 ведет к созреванию дендритных клеток и секреции ряда цитокинов.

В результате взаимодействия рекомбинантного HSP 70 М tuberculosis с TLR-2 и TLR-4 in vitro запускается сигнальный каскад с вовлечением адапторных белков MyD88, TIRAP, TRIF и TRAM в эндотелиоцитах человека и в макрофагах мышей происходит активация фактора транскрипции NF-кВ.

Представленный в эндоплазматическом ретикулуме эукариот, шаперон GRP94/gp96 через взаимодействие с TLR-2 и TLR-4 активирует дендритные клетки к инициации CD8" Т-лимфоцитарного ответа. При этом усиливается экспрессия MICA/B молекул, взаимодействующих с NKG2D рецептором, представленным на поверхности CD8, но не СD4*Т-клеток. При взаимодействии TLR7 с HSP70, активно секретируемым, так и освобождаемым при некротической гибели клеток млекопитающих, усиливается фагоцитарная функция макрофагов. Данный эффект проявляется за несколько минут и выражается не только в стимуляции фагоцитоза, но также и функции представления антигена Т-клеткам через сигнальные пути, опосредуемые фосфоинозитид 3-киназой и р38 МАР-киназой.

В осуществлении презентации антигена хелперным Т-клеткам принимают участие также зрелые В-лимфоциты, экспрессирующие TLR-2 и TLR-4. Они отвечают на LPS, пептидогликан, HSP60 повышением экспрессии МНС II и костимуляторных молекул. HSP 60 человека, но не GroEL E. coli или HSP65 М. tuberculosis индуцируют пролиферацию наивных В-клеток мышей и секрецию ими IL-6 и IL-10.

На сегодняшний день многие рецепторы , распознающие паттерны известных PAMPs прокариотов, грибков, вирусов, простейших патогенов остаются еще не охарактеризованными. Существует взаимосвязь между фагоцитозом и экспрессией TLRs, поскольку активация сигналов через TLR усиливает фагоцитарные процессы, а фагоцитоз модулирует последовательность активации TLR.

Является очевидным, что еще неопределенные молекулярные паттерны могут искажать или направлять адаптивный имунный ответ по Тh-2 типу Возможно, что отсутствие сигналов (например - PAMPs), подобно дефициту своих МНС I для NK-клеточной активации является стимулом для запуска иммунитета второго типа.

Индукция сигналов через Toll-подобные рецепторы может обеспечивать не только защиту организма от различных инфекций. Нарушение функции проводимости данных сигналов приводит к развитию целого ряда патологических процессов в организме. Например, чрезмерная продукция провоспалительных цитокинов эндогенными лигандами может стать причиной развития хронического воспаления, аутоиммунных заболеваний, таких как болезнь Крона, диабет типа 1, атеросклероз. Изменение баланса в сторону провоспалительных цитокинов, вероятно, обусловлено развитием локальных отеков и воспалительных реакций в ЦНС инициированных провоспалительными цитокинами (TNF-a или IL-1p). В формировании длительно сохраняющихся неврологических нарушений принимают участие несколько цитокинов, которые потенцируя продукцию и действие друг друга, дольше сохраняются в циркуляции.

В 1962 году в Италии молодой генетик Ферруччио Ритосса обнаружил набухание (puffing) некоторых участков хромосом дрозофилы при случайном повышении температуры в термостате. Это оказалось проявлением активации генов и получило название "ответа на тепловой шок" (heat shock response) (ссылка ), а индуцируемые белки были названы белками теплового шока, БТШ (heat shock proteins , HSP ). В дальнейшем этот класс белков был найден во всех клетках всех живых организмов - от бактерий до человека. Известно, что подобный ответ проявляется, кроме тепловых, при различных биологических (инфекция, воспаление), физических (радиация, гипоксия), химических (спирты, металлы) и других стрессорных воздействиях . Поэтому белки теплового шока называют также белками стресса . Повышенная экспрессия белков HSP защищает клетку, стабилизируя денатурированные или неправильно свернутые пептиды. Накапливаясь при различных вредных воздействиях, белки теплового шока помогают клетке поддерживать гомеостаз в условиях стресса (см). Белки HSP реагируют не только на внешние стрессовые ситуации, они проявляются при многих болезнях, как, например, нейродегенерация, метаболические нарушения, ишемические повреждения и рак, что определяет повышенный интерес к этим белкам и поиску терапевтичеких инструментов, регулирующих их реакции (2006 , 2007 , 2007а ).
Белки теплового шока служат биологическими маркерами неблагоприятного состояния организма .


Ответ клетки на стресс регулируется, прежде всего, на уровне транскрипции (ДНК в РНК) с помощью факторов теплового шока (heat shock factor, HSF ) (). Семейство HSF содержит 4 вида, из которых у млекопитающих и человека экспрессируются HSF1, HSF2 и HSF4, причем HSF1 является универсальным стресс-реагирующим активатором, в то время как HSF2 больше связан с процессами дифференцировки. В отсутствие стресса эти факторы находятся в ядре и цитоплазме в мономерной форме и не способны связываться с ДНК. В ответ на стресс HSF образуют тримеры (возможны гомотримеры HSF1 либо гетеротримеры HSF1-HSF2) (см .) и перемещаются в ядро, где они связываются с элементами теплового шока (HSE ) - специфическими последовательностями ДНК в промоторах генов теплового шока.


Последующее фосфорилирование тримеров HSF сопровождается активацией транскрипции генов теплового шока и повышением уровня HSP, приводя к образованию комплексов HSF-HSP . Когда стресс прекращается, тримерные формы HSF отделяются от ДНК, превращаясь опять в неактивные мономеры, а клетка возвращается к нормальному белковому синтезу (ссылка).
Предполагается, что белки теплового шока сами могут регулировать экспрессию своих генов через "петлю авторегуляции". Согласно этой гипотезе, увеличение концентрации неправильно свернутых белков, возникшее при стрессе, приводит к связыванию специфических HSP и активации HSF.

Белки теплового шока как молекулярные шапероны


Дальнейшее изучение класса HSP показало, что эти белки не только индуцируются при стрессе, но многие из них функционируют конститутивно как молекулярные шапероны , участвуя в стабилизации и перемещении незрелых пептидов при нормальном росте. Например, белки Hsp70, Hsp90 присутствуют в высоких концентрациях в не-стрессовых клетках, составляя 1-1,5% общего клеточного белка, что указывает на постоянную потребность клетки в поддержании конформационного гомеостаза ее белков . Эти белки находятся в цитозоле, митохондриях, эндоплазматическом ретикулуме и ядре. Молекулярные массы HSP лежат в пределах 15-110 кДа. Наиболее изученными у млекопитающих являются белки HSP 60, 70, 90 и 110 кДа, которые играют важную роль в фундаментальных внутриклеточных процессах - от антиапоптозного действия до разворачивания и внутриклеточного перемещения белков .
Функции БТШ как шаперонов можно свести к следующим:
1. Свертывание незрелых полипептидных цепей;
2. Облегчение перемещения белков через разные клеточные компартменты;
3. Модуляция белковой активности за счет стабилизации и/или созревания до функционально компетентной конформации;
4. Поддержка образования/расщепления мультибелковых комплексов ;
5. Исправление неправильно свернутых белков;
6. Защита белков от агрегации ;
7. Направление полностью поврежденных белков к расщеплению ;
8. Организация агрегатов из разрушенных белков;
9. Солюбилизация белковых агрегатов для дальнейшей деградации.


Ко-шапероны

Активность белков теплового шока регулируется другими белками - ко-шаперонами , которые способствуют выполнению основных функций HSP. Хотя многие ко-шапероны являются растворимыми цитозольными белками, некоторые из них локализованы во внутриклеточных мембранах или элементах цитоскелета. Эти специализированные ко-шапероны включают ауксилин, Tom70, UNC-45, гомологи Bag-1. Ко-шапероны могут участвовать в АТФ-зависимой активности HSP70 и HSP90, включая такие функции, как секреция, белковый транспорт и образование/расщепление белковых комплексов (ссылка).
Ко-шапероны Hip, Hop, Hup, CHIP модулируют нуклеотидный обмен и связывание субстратов белками HSP70, координируя свертывание новосинтезированных белков, исправляют неправильное свертывание поврежденных и денатурированных белков, направляют перенос белков через клеточные мембраны, ингибируют агрегацию белков и осуществляют деградацию по протеасомальному пути () .


Функции некоторых ко-шаперонов

Белки HSP70 вместе с ко-шарепонами осуществляют, по меньшей мере, 2 альтернативных вида активности : предотвращают агрегацию не-нативных белков при связывании с гидрофобными участками молекул субстратов, защищая их от межмолекулярных взаимодействий ("охранная", "holder" активность ), а также способствуют свертыванию не-нативных интермедиатов до нативного состояния ("свертывающая", "folder" активность ).

HSP и АТФ-азный цикл


Белки теплового шока у млекопитающих представлены 6 семействами в зависимости от молекулярной массы: Hsp100, Hsp90, Hsp70, Hsp60, Hsp40 и малые Hsps (15 to 30 kDa), включающие Hsp27. Высокомолекулярные HSP являются АТФ-зависимыми, а активность малых HSP не зависит от АТФ.
Генетические и биохимические данные показали, что гидролиз АТФ является существенным элементом активности шаперонов HSP70. Белки этого семейства связываются с промежуточными пептидами за счет циклов связывания и гидролиза АТФ, а последующий обмен АДФ/АТФ сопровождается освобождением пептидов. Молекулы HSP70 содержат две консервативных области - N-концевую АТФ-связывающую (45 кДа) и С-концевую (15 кДа), связывающую гидрофобные пептиды . Между ними находится более вариабельная область альфа-спиральной "крышки". АТФ-связанный HSP70 ("крышка" открыта) свободно взаимодействует с незрелыми или неправильно свернутыми пептидами, вызывая конформационные изменения, которые приводят к активации АТФ-азы и усиливают ассоциацию с ко-шапероном HSP40, что способствует переходу к АДФ-связанной ("крышка" закрыта) форме. Для эффективного сопряжения гидролиза АТФ со связыванием и последующим освобождением пептидных субстратов существенны ко-шапероны семейства JDP (J-domain proteins) ( ; ).

Белки теплового шока при ишемии


Цитопротекторные свойства белков класса HSP70 были показаны на различных моделях ишемических нарушений in vitro и in vivo ( , , , , , ). Вначале эта защита объяснялась действием HSP как шаперонов (поддержанием правильного свертывания белков и предотвращением их агрегации), но затем выяснилось, что HSP70 могут напрямую реагировать с путями клеточной смерти - апоптозом и некрозом .
Как видно из рисунка, церебральная ишемия индуцирует апоптоз разными способами, а HSP70 уменьшает действие их всех. "Внутренний" путь апоптоза состоит в выделении про-апоптозных митохондриальных веществ, открытии митохондриальной поры и активации каспаз (см .). Другой ("внешний") путь связан с активацией рецепторов плазматической мембраны (Fas и TNFR), индуцирующих апоптоз через каспазу-8, используя фактор TRAF. Кроме того, известны механизмы каспаз-независимого апоптоза (см .).
БелкиHSP70 могут ингибировать освобождение цитохрома с (cyt c) из митохондрий и транслокацию индуцирующего апоптоз фактора AIF в ядро, уменьшая ишемическое повреждение мозга (см .), а также ингибировать освобождение проапоптозного белка Smac/DIABLO из митохондрий миоцитов .
Экспрессия HSP72 в астроцитах приводит к снижению образования реактивных видов кислорода (ROS) и поддержанию мембранного потенциала митохондрий , а также уровня глутатиона и увеличению активности супероксиддисмутазы при ишемических нарушениях в кардиоцитах.
Повышенная экспрессия HSP72 способна уменьшать апоптоз прямо через увеличение уровня Bcl-2 и с помощью ингибирования транслокации проапоптозного фактора Bax.
Показано, что белки класса HSP70 ингибируют дефосфорилирование киназы JNK (c-Jun N-terminal kinase), которая играет существенную роль в нейрональном апоптозе и является одной из мишеней для терапии инсультов.
Кроме того, белки Hsp взаимодействуют с топоизомеразой 1 (регулятором апоптоза) и являются эффекторами важной антиапоптозной киназы Akt/PKB (см). Значительная активация белками теплового шока глутатион-пероксидазы и глутатионредуктазы является существенным элементом в механизме цитопротекторного действия HSP при ишемии ().

Противовоспалительный эффект белков теплового шока


Белки теплового шока оказывают выраженное противовоспалительное действие, предотвращая ответы клеток на такие воспалительные цитокины , как TNF и IL-1 .
Известно, что при воспалении образуются ROS за счет активации индуцируемой формы NO-синтазы (iNOS) и NADPH-оксидазы, причем iNOS возникает в ответ на выделение цитокинов. Синтезируемая iNOS закись азота (NO) реагирует с супероксидом, образуя высокотоксичный окислитель пероксинитрит: -O2− + -NO → ONOO−
а HSP72 ингибирует экспрессиюiNOS, уменьшая активацию NFkappaB (ссылка). Кроме того, белки теплового шока снижают активность NADPH-оксидазы в нейтрофилах и активируют супероксиддисмутазу в фагоцитах , а также регулируют активность матричных металлопротеиназ в астроцитах .
Значительная часть внутриклеточных эффектов белков HSP при воспалении связана с регуляцией ими пути ядерного фактора NFκB, так как факторы транскрипции этого семейства являются ключевыми участниками запуска воспалительной реакции. Транслокация димеров, составляющих NFkB, в ядро, где они индуцируют экспрессию многих воспалительных генов, ингибируется белками теплового шока за счет прямого взаимодействия либо через влияние на сигнальные пути NFkB.
Показано также, что Hsp72 взаимодействует с киназным комплексом IKK, необходимым для освобождения NFkB и перехода его в ядро .
Таким образом, белки класса HSP70 используют много путей для предотвращения воспалительных процессов в организме (обзор).

Внеклеточное действие белков теплового шока


Белки HSP долгое время считали цитоплазматическими, функции которых ограничены внутриклеточным компартментом. Однако в последнее время возрастает число наблюдений о том, что эти белки могут выделяться во внеклеточную среду и оказывать действие на другие клетки . Впервые это было показано на глиальных клетках гигантского аксона кальмара, освободившиеся из которых белки HSP70 переходили внутрь аксона . Работами нескольких лабораторий исследовано влияние выделенных из астроцитов или шванновских клеток HSP72 на соседние нейроны и аксоны. Внеклеточные эффекты HSP получены также на клетках эпителия , эмбриональных клетках крысы , В-лимфоцитах , дендритных и опухолевых клетках .
Показано, что внеклеточный HSP72 может индуцировать выделение цитокинов (TNF, IL-6, IL-1beta) из моноцитов, что обеспечивается рецепторами TLR2, TLR4 и активацией NFkB .
Внеклеточные HSP могут взаимодействовать с липидами клеточных мембран и встраиваться в мембраны, образуя АТФ-зависимые катионные каналы (см .). Кроме того, HSP72, взаимодействуя с фосфатидилсерином на поверхности апоптозных клеток, ускоряет гибель этих клеток .
Наблюдается значительная корреляция между повышенным уровнем сывороточного HSP70 и снижением развития атеросклероза, определяемого по толщине интимы сонной артерии ().
Терапевтическое значение может иметь также тот факт, что у больных с коронарной недостаточностью наблюдается обратная корреляция между уровнем HSP70 в сыворотке крови и степенью риска этого заболевания , показанной ангиограммой коронарной артерии (см .).

Роль белков теплового шока в иммунных реакциях

HSP и противораковая терапия

Белки теплового шока высоко экспрессируются при многих видах рака у человека и участвуют в пролиферации, дифференциации, метастазировании и узнавании опухолевых клеток иммунной системой. Они являются полезными биомаркерами канцерогенеза в некоторых тканях и сигнализируют о степени дифференциации и агрессивности некоторых видов рака . Кроме того, уровень циркулирующих HSP и анти-HSP антител может быть полезным для диагностики рака . Повышенная экспрессия HSP может также иногда предсказывать ответ на противораковое лечение . Например, HSP27 и HSP70 причастны к сопротивлению химиотерапии при раке груди, повышение уровня HSP27 предсказывает плохую реакцию на химиотерапию при лейкемии. В то же время экспрессия HSP70 предполагает хорошие химиотерапевтические эффекты при остеосаркомах (см. обзор ).
В развитии противораковой терапии с участием HSP сыграла роль их двойная функция в организме : с одной стороны - внутриклеточная цитозащитная/анти-апоптозная , а с другой - внеклеточная/иммуногенная .
Это позволило разработать 2 основные стратегии в противораковой терапии :
1) Фармакологическая модификация экспрессии HSP и их активности в качестве молекулярных шаперонов;
2) Применение HSP в противораковых вакцинах на основании их способности действовать в качестве иммунологических адъювантов .

Наиболее перспективным в качестве антиканцерной фармакологической мишени оказался белок HSP90. Его уровень составляет 1-2% от общего содержания белков в отсутствие стресса, а количество его белков-клиентов превышает 100, многие из которых связаны с онкогенезом. Повышенная экспрессия HSP90 обнаружена при опухолях груди, раке легких, лейкемиях, болезни Ходжкина, лимфомах и других онкологических заболеваниях . Поэтому ингибирование HSP90 может разрушать одновременно большое количество онкогеных сигнальных путей. Разработкой ингибиторов HSP90 занимается множество лабораторий ( , , 2007а , 2007b и др.).

Естественные ингибиторы HSP90 - гелданамицин (GA) и 17-аллиламино-17-деметоксигелданамицин (17-AAG) - взаимодействуют с АТФ-связывающим участком молекулы HSP90 с более высоким сродством, чем натуральные нуклеотиды, и препятствуют АТФ-АДФ переходам белка, нарушая активность HSP90 как шаперона, а его белки-клиенты деградируются протеасомой. Существенно, что ингибиторы HSP90, удаляя белки-клиенты в раковых клетках, не влияют на те же белки в нормальных тканях, так как их сродство к HSP90, выделенному из опухолей, в 20-200 раз выше (см .).
Подробно об естественных и искусственных ингибиторах белков теплового шока и механизмах их действия можно прочитать в обзорах , .


Способность белков теплового шока связывать пептиды-антигены легла в основу иммунотерапевтического подхода к лечению онкозаболеваний. Выделенные из опухолей онкологических больных пептидные комплексы Hsp70 и Grp96 используются в качестве антираковых вакцин для лечения и предупреждения рака. Белки теплового шока, кроме проявления шапероновой активности к опухолевым пептидным антигенам, облегчают вхождение в клетки HSP-пептидных комплексов за счет рецепторного эндоцитоза. Это позволило достаточно быстро перенести основанные на HSP вакцины от изучения на моделях животных к лечению раковых заболеваний в клинике. Улучшенные формы HSP-вакцин получаются при выделении HSP70-пептидных комплексов из дендритных клеток, слившихся с опухолевыми .

Прамод К. Сривастава (Pramod K. Srivastava, a professor of medicine and director of the Center for Immunotherapy of Cancer and Infectious Diseases at the University of Connecticut School of Medicine) - один из первых исследователей роли белков теплового шока в иммунной системе. С его участием создана компания Antigenics, успешно разрабатывающая противораковые вакцины на основе HSP, выделенных из индивидуальных опухолей пациентов .



Эти препараты, основанные на различных белках теплового шока, в настоящее время проходят клинические испытания.

Белки теплового шока при старении


По мере старения организмы утрачивают способность адекватно реагировать на внешние стрессы и поддерживать гомеостаз . Старые клетки более подвержены нарушениям и болезням, поэтому с возрастом растет восприимчивость к этим факторам.
В течение жизни стабильного белка в нем возникают различные посттрансляционные изменения. Стабильность белков нарушается за счет многочисленных вредных воздействий - окисления боковых цепей, гликации, дезаминирования аспарагиниловых и глутаминиловых остатков, что приводит к образованию изопептидных связей. Чувствительность к протеотоксичным повреждениям возрастает из-за ошибок в транскрипции и трансляции и проявляется дефектами свертывания белков . Для старения характерен рост модификаций белка, связанных с гомеостазом свертывания (см. ) . Функции шаперонов нарушаются, увеличивается потребность в деградации белков, но активность главного протеолитического аппарата, протеасомы, также снижается с возрастом , приводя к опасности гликации. Агрегация также сопровождается ингибированием протеасом и остановкой клеточного цикла. С возрастом нарушается и лизосомальная деградация белков (возможно, за счет подавления липофусцином). Накопление неправильно свернутых белков и ослабление защитных механизмов приводит к

«Белками теплового шока» (сокр. БТШ или HSP от англ. Heat shock proteins) называются особые соединения, которые клетки живых организмов продуцируют при резком повышении температуры или в результате других стрессовых нагрузок. Первые HSP впервые были обнаружены учеными еще в середине прошлого века. С тех пор роль белков теплового шока в организме растений, животных и человека активно изучалась.

Вначале считалось, что они выполняют исключительно защитную роль, предупреждая возникновение необратимых нарушений. Однако со временем выяснилось, что эти соединения могут принимать активное участие в регенерации поврежденных структур клетки, а также в работе иммунной системы.

В том числе, была выдвинута гипотеза, что HSP участвуют в связывании белковых фрагментов, появляющихся при разрушении клеток злокачественных опухолей. При этом образуются конгломераты, распознаваемые противораковым иммунитетом в качестве «агрессора», т.е. происходит так называемая «презентация антигена». Другими словами, иммунная система человека получает возможность «видеть рак», который в обычных условиях может достаточно успешно от нее маскироваться. В результате запускается естественный процесс уничтожения опухоли.

Подтверждение этой теории, а также доскональное изучение структуры белка теплового шока и его действия в опухолевых тканях на молекулярном уровне, стало возможным только после того, как это уникальное вещество попало на международную космическую станцию. Отправили его в космос российские специалисты НИИ Особо Чистых Биопрепаратов ФМБА, синтезировавшие БТШ с помощью эксклюзивных технологий генной инженерии.

Благодаря невесомости, из исходного материала, «упакованного» в тончайшие молекулярные трубочки, выросли идеально ровные кристаллы белка, пригодные для рентгеноструктурного анализа. Космический этап позволил успешно решить главную проблему, стоявшую перед учеными: в условиях земного притяжения белки росли неравномерно, и получить кристаллы с правильной геометрией на Земле было невозможно. Анализ выращенных в космосе кристаллических белков был проведен российскими и японскими учеными на современном сверхмощном оборудовании.

Полученные данные легли в основу создания уникального препарата, действие которого опробовали сначала в пробирках на клеточных культурах, а потом – на лабораторных животных. Лекарством на основе синтезированного БТШ были пролечены мыши с саркомой и меланомой, включая животных с четвертой (терминальной) стадией заболеваний.

Результаты оказались более чем впечатляющими:

  • абсолютное большинство мышей полностью выздоровело;
  • не было зарегистрировано ни одного побочного эффекта.

Как российские ученые получают белок теплового шока

HSP продуцируется клетками бактерий, в которые внедрен выделенный из клеток человека и клонированный ген. Этот ген отвечает за синтез белка теплового шока. В настоящее время его изготовление по данной технологии ведется на производственных участках НИИ ОЧБ.

Как «работает» лекарство, и какие виды рака можно будет лечить с его помощью

Применение биопрепарата направлено на повышение концентрации БТШ в опухолевых тканях онкобольных до значений, вызывающих терапевтический эффект. Такая потребность существует потому, что «показывающий рак иммунитету» белок теплового шока в организме человека:

  • вырабатывается в очень небольших количествах;
  • не может быть «собран» в здоровых клетках и «перенесен» в атипичные клетки раковой опухоли.

Разработчики утверждают, что разработанный ими метод универсален так же, как универсален сам белок, продуцируемый всеми тканями нашего организма. Поэтому если при дальнейших испытаниях лечебное действие лекарства подтвердится, а побочные не будут выявлены, его можно будет применять для терапии абсолютно всех форм рака.

Другие достоинства российской разработки:

  • Лечение эффективно на терминальных стадиях, т.е. именно тогда, когда справится с опухолью каким-либо другим способом чрезвычайно сложно, очень часто – невозможно.
  • Ученые рассматривают возможность целенаправленного действия препарата. До настоящего времени лекарство вводилось лабораторным животным внутривенно и распространялось с кровью по всему организму. На этапе клинических испытаний специалисты планируют параллельно с внутривенным введением опробовать методику адресной доставки белка теплового шока в клетки опухоли, рассчитывая еще более увеличить эффективность лечения и снизить риск побочных эффектов. Эта возможность принципиально отличает российскую технологию от метода «клеточной терапии CAR-T» , официальное внедрение которого в клиническую практику ожидается уже летом 2017 года.

Деньги на заключительный этап доклинических исследований нового средства (порядка 100 млн. рублей) уже найдены. Остается найти спонсора, который разделит с государством финансирование клинических испытаний. Пока приоритеты отдаются российскому бизнесу. Если же российских спонсоров найти не удастся, будут рассматриваться варианты партнерства с японскими предпринимателями или бизнес-структурами из других стран. На завершение процесса испытаний может понадобиться еще 3-4 года. При их положительном исходе онкологи смогут получить высокоэффективный инструмент в борьбе с раком.

Что может сдерживать инвесторов и снижать уровень оптимизма при прогнозах

Вложения в любые клинические испытания несут достаточно большие риски для бизнеса. Ведь даже при современном развитии науки нельзя со стопроцентной вероятностью предположить, как поведет себя новое лекарство, насколько эффективным и безопасным оно окажется не в пробирке и в организме лабораторной мыши, а на практике. Тем не менее, поиски инвестиций – всего лишь вопрос времени.

Насколько действенным будет новый метод, также покажет время. Например, нельзя исключить, что при ослабленном естественном иммунитете его возможностей для борьбы с опухолью может просто не хватить.

И, разумеется, только по истечении нескольких лет можно будет понять:

  • смогут ли раковые клетки мутировать в поисках защиты от «ударных доз» БТШ;
  • не вызовет ли действие препарата нежелательных последствий в отдаленном периоде.

Тепловой шок heat shock - тепловой шок.

Стрессовое состояние организма после воздействия повышенной температуры, в частности, Т.ш. применяется для индуцирования полиплоидии <induced polyploidy > в основном у размножающихся в воде животных (рыбы, моллюски): температуру воды повышают до 29-33 o С на 2-20 мин. (нормальная температура инкубации обычно 15-20 o С) через 3-10 мин. (индукция триплоидии) либо через 20-40 мин. (индукция тетраплоидии) после оплодотворения; также в состоянии Т.ш. анализируют активность специфических белков теплового шока <heat-shock proteins >, пуфовой активности <puffing > у дрозофил (в этом случае Т.ш. при 41-43 o С).

(Источник: «Англо-русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд-во ВНИРО, 1995 г.)


Смотреть что такое "тепловой шок" в других словарях:

    Тепловой шок - * цеплавы шок * heat shock стрессовое состояние организма вследствие воздействия повышенной температуры. Т. ш. применяется: а) для индуцирования полиплоидии (см.) у рыб, моллюсков инкубация особей после оплодотворения при tо = 29 33 °С (вместо… … Генетика. Энциклопедический словарь

    тепловой шок - Стрессовое состояние организма после воздействия повышенной температуры, в частности, Т.ш. применяется для индуцирования полиплоидии в основном у размножающихся в воде животных (рыбы, моллюски): температуру воды повышают до 29 33 oС на 2 20 мин.… … Справочник технического переводчика

    Шок тепловой - Син.: Истощение тепловое. Возникает при перегревании вследствие недостаточной ответной реакции сосудов сердца на экстремально высокую температуру, особенно часто развивается у пожилых людей, принимающих мочегонные препараты. Проявляется слабостью … Энциклопедический словарь по психологии и педагогике

    ПЕРЕГРЕВАНИЕ И ТЕПЛОВОЙ УДАР - мед. Перегревание (тепловой обморок, тепловая прострация, тепловой коллапс) и тепловой удар (гиперпирексия, солнечный удар, перегревание организма) патологические реакции организма на высокую температуру окружающей среды, связанные с… … Справочник по болезням

    - (англ. HSP, Heat shock proteins) это класс функционально сходных белков, экспрессия которых усиливается при повышении температуры или при других стрессирующих клетку условиях. Повышение экспрессии генов, кодирующих белки теплового… … Википедия

    Тетрамер, состоящий из четырёх идентичных молекул белка p53. Они связаны между собой доменами, отвечающими за олигомеризацию (см. в тексте). p53 (белок p53) это транскрипционный фактор, регулирующий клеточный цикл. В не мутировавшем состоянии… … Википедия

Все живые клетки отвечают на повышение температуры и некоторые другие стрессовые воздействия синтезом специфического набора белков, называемых белками теплового шока (БТШ, Hsp, heat shock protein, stress protein) . У ряда бактерий обнаружена универсальная адаптивная реакция в ответ на различные стрессовые воздействия (высокие и низкие температуры, резкий сдвиг рН и др.), проявляющаяся в интенсивном синтезе небольшой группы сходных белков. Такие белки получили название белков теплового шока, а само явление - синдром теплового шока. Стрессовое воздействие на бактериальную клетку вызывает ингибирование синтеза обычных белков, но индуцирует синтез небольшой группы белков, функция которых предположительно заключается в противодействии стрессовому воздействию путем защиты важнейших клеточных структур, в первую очередь нуклеоидов и мембран. Еще не ясны те регуляторные механизмы, которые запускаются в клетке при воздействиях, вызывающих синдром теплового шока, но очевидно, что это универсальный механизм неспецифических адаптивных модификаций.

Как уже было сказано, к БТШ относят белки, синтезируемые клетками в ответ на тепловой шок, когда подавлена экспрессия основного пула белков, участвующих в нормальном метаболизме. Семейство 70 кДа БТШ ( БТШ-70 эукариот и DnaK прокариот) объединяет белки теплового шока, играющие существенную роль как в обеспечении выживания клетки в стрессовых условиях, так и в нормальном метаболизме. Уровень гомологии между белками прокариот и эукариот превышает 50% при полной идентичности отдельных доменов. 70 кДа БТШ являются одной из самых консервативных групп белков в природе ( Lindquist Craig, 1988 ; Yura et al., 1993), что связано, вероятно, с шаперонными функциями , которые эти БТШ выполняют в клетках

Индукция генов белков теплового шока (HSP) у эукариот происходит под воздействием фактора теплового шока HSF . В клетках, не подвергшихся стрессу, HSF присутствует и в цитоплазме и в ядре в виде мономерной формы, связанной с Hsp70 , и не имеет ДНК-связывающей активности. В ответ на тепловой шок или другой стресс, Hsp70 отсоединяется от HSF и начинает укладывать денатурированные белки. HSF собирается в тримеры, у него появляется ДНК связывающая активность, он аккумулируется в ядре и связывается с промотором. При этом транскрипция шаперонов в клетке возрастает во много раз. После того, как стресс прошел, освободившийся Hsp70 опять присоединяется к HSF, который при этом теряет ДНК-связывающую активность и все возвращается в нормальное состояние [ Morimoto ea 1993 ].Белки теплового шока появляются на поверхности клеток синовиальной оболочки при бактериальных инфекциях .

Большинство этих белков теплового шока образуются в ответ и на другие повреждающие воздействия. Возможно именно они помогают клетке пережить стрессовые ситуации. Существует три основных семейства белков теплового шока - семейства белков с мол. массой 25, 70 и 90 кДа ( hsp25 , hsp70 и hsp90 . В нормальных клетках было обнаружено множество очень похожих между собой белков из каждого из этих семейств. Они помогают переводить в раствор и вновь сворачивать денатурированные или неправильно свернутые белки. Есть у них и другие функции.

Лучше всего изучены белки семейства hsp70 . Эти белки связываются с некоторыми другими белками, а также аномальными белковыми комплексами и агрегатами, от которых потом освобождаются, присоединяя AТР. Они помогают переводить в раствор и заново сворачивать агрегированные или неправильно свернутые белки путем нескольких циклов присоединения и гидролиза AТР. Аномальные белки имеются в любой клетке, но при некоторых воздействиях, например при тепловом шоке, их количество в клетке резко возрастает, и, соответственно, возникает необходимость в большом количестве белков теплового шока. Что обеспечивается активацией транскрипции определенных генов теплового шока .

Белки теплового шока, образуя комплекс с растущей полипептидной цепью, предотвращают ее неспецифическую агрегацию и деградацию от действия внутриклеточных протеиназ, способствуя правильному фолдингу блков, происходящему с участием других шаперонов. Hsp70 принимает участие в ATP-зависимом разворачивании полипептидных цепей, делая неполярные участки полипептидных цепей доступными действию протеолитических ферментов.

Белки теплового шока кодируются семейством эволюционно устойчивых генов, которые экспрессируются в ответ на разнообразные стрессовые воздействия и участвуют в механизмах адаптации. Впервые открытые при термическом шоке у дрозофиллы, стресс-белки участвуют в большинстве физиологических процессов всех живых организмов и являются компонентом единого сигнального механизма [ Ananthan J., Goldberg A.L. 1986 , Massa S.M., Swanson R.A. 1996 , Morimoto R., Tissieres A. 1994 , Ritossa F. 1962 ].

Активация транскрипционных факторов стресс-белков (HSF) происходит путем их фосфорилирования под влиянием увеличения внутриклеточной концентрации кальция, свободнорадикальных реакций перекисного окисления липидов и других процессов оксидантного стресса , активации протеазных ингибиторов и тирозинкиназ. Но основным триггером , запускающим синтез стресс-белков, является дефицит ATP , сопровождающий недостаточное поступление в ткань мозга кислорода и глюкозы [ Benjamin I. J., Hone S. 1992 , Bruce J.L., Price B.D. 1993 , Cajone F., Salina M. 1989 , Courgeon A.-M., Rollet E. 1988 , Freeman M.L., Borrelli M.J. 1995 , Kil H.Y., Zhang J. 1996 , Suga S., Novak T.S., Jr. 1998 , Price B.D., Calderwood S.K. 1991 , Zhou M., Wu X. 1996 ].

Существуют несколько классов транскрипционных факторов стресс- белков, среди которых белок HSF1 является медиатором ответа на стресс, a белок HSF2 - регулятором hsp-генов . В условиях церебральной ишемии HSF1 и HSF2 синергично активируют генную транскрипцию. Они образуют активированные тримеры, которые связываются с регуляторными последовательностями (HSE) в промоторных зонах стресс-генов, что приводит к синтезу мРНК. Накопление стресс-белков ведет к "включению" ауторегуляторной петли, прерывающей их дальнейшую экспрессию [ Baler R., Zou J. 1996 , Mestril R., Ch, S.-H. 1994 , Sistonen L, Sarge K.D. 1994 , Rabindran S.K., Haroun R.I. 1993 , Sarge K.D., Murphy S. 1993 , Sorger P.K., Pelham H.R.B. 1987 , Wu C., Wilson S. 1987 , Nakai A., Morimoto R. 1993 , Nowak T.S., Jacewicz M. 1994 , Scharf K.-D., Rose S. 1990 , Schuetz T.J., Gallo G.J. 1991 ].

В экспериментальных моделях с фокальной ишемией мозга установлено, что экспрессия гена основного стресс-белка - белка HSP72 - регистрируется в ограниченной области мозга с уровнем снижения мозгового кровотока ниже 50% от нормы и только в клетках, остающихся жизнеспособными. Соответственно в ядерной зоне ишемии экспрессия гена hsp72 отмечается преимущественно в клетках эндотелия сосудов, более резистентных к ишемии; в маргинальной области инфаркта - и в глиальных клетках, в зоне пенумбры - и в нейронах [