Какое давление в плевральной полости? Что такое пневмоторакс? Участие в дыхании

2538 0

Основные сведения

Плевральный выпот часто представляет собой сложную диагностическую проблему для клинициста.

Аргументированный дифференциальный диагноз может быть построен на основе клинической картины и результатов исследования плевральной жидкости.

Для того чтобы максимально использовать данные, полученные при исследовании плевральной жидкости, клиницист должен хорошо представлять себе физиологические основы образования плеврального выпота.

Умение анализировать результаты исследования клеточного и химического состава выпота вместе с данными анамнеза, физикального обследования и дополнительных лабораторных методов исследования позволяет поставить предварительный или окончательный диагноз у 90% больных с плевральным выпотом.

Тем не менее следует отметить, что, как и всякий лабораторный метод, исследование плевральной жидкости чаще позволяет подтвердить предварительный диагноз, нежели выступает в качестве основного метода диагностики.

Окончательный диагноз, основанный на результатах этого метода исследования, можно поставить лишь при обнаружении в плевральной жидкости опухолевых клеток, микроорганизмов или LE-клетки.

Анатомия плевральной полости

Плевра покрывает легкие и выстилает внутреннюю поверхность грудной клетки . Она состоит из рыхлой соединительной ткани, покрыта одним слоем мезотелиальных клеток и разделяется на легочную (висцеральную) плевру и пристеночную (париетальную) плевру.

Легочная плевра покрывает поверхность обоих легких, а пристеночная плевра выстилает внутреннюю поверхность грудной стенки, верхнюю поверхность диафрагмы и средостение. Легочная и пристеночная плевра соединяются в области корня легкого (рис. 136).


Рис. 136. Схема анатомического строения легкого и плевральной полости.
Висцеральная плевра покрывает легкое; париетальная плевра выстилает грудную стенку, диафрагму и средостение. Они соединяются в области корня легкого.


Несмотря на сходное гистологическое строение, легочная н пристеночная плевра имеют два важных отличительных признака. Во-первых, пристеночная плевра снабжена чувствительными нервными рецепторами, которых нет в легочной плевре, во-вторых, пристеночная плевра легко отделяется от грудной стенки, а легочная плевра плотно спаяна с легким.

Между легочной и пристеночной плеврой имеется замкнутое пространство - плевральная полость. В норме во время вдоха в результате разнонаправленного действия эластической тяги легких и эластической тяги грудной клетки в плевральной полости создается давление ниже атмосферного.

Обычно в плевральной полости содержится от 3 до 5 мл жидкости, которая выполняет роль смазочного вещества во время вдоха и выдоха. При различных заболеваниях в плевральной полости может скапливаться несколько литров жидкости или воздуха.

Физиологические основы образования плевральной жидкости

Патологическое скопление плевральной жидкости является результатом нарушения перемещения плевральной жидкости. Перемещение плевральной жидкости в плевральную полость и из нее регулируется по принципу Старлинга.

Этот принцип описывает следующее уравнение:

ПЖ = К[(ГДкап- ГДпл) - (КОДкап - КОДпл)],
где ПЖ - перемещение жидкости, К - фильтрационный коэффициент для плевральной жидкости, ГДкап - гидростатическое капиллярное давление, ГДПЛ - гидростатическое давление плевральной жидкости, КОДкап - капиллярное онкотическое давление, КОДпл - онкотическое давление плевральной жидкости.

Поскольку пристеночная плевра снабжается веточками, отходящими от межреберных артерий, а венозный отток крови в правое предсердие осуществляется через систему непарной вены, гидростатическое давление в сосудах пристеночной плевры равно системному.

Гидростатическое давление в сосудах легочной плевры равно давлению в сосудах легких, так как она снабжается кровью от ветвей легочной артерии; венозный отток крови в левое предсердие осуществляется через систему легочных вен. Коллоидно-осмотическое давление в сосудах обоих плевральных листков связано с сывороточной концентрацией белка.

Кроме того, в норме небольшое количество белка, выходящего из капилляров плевры, захватывается расположенной в ней лимфатической системой. Проницаемость плевральных капилляров регулируется фильтрационным коэффициентом (К). При увеличении проницаемости содержание белка в плевральной жидкости увеличивается.

Из уравнения Старлинга следует, что перемещение жидкости в плевральную полость и из нее регулируется непосредственно гидростатическим и онкотическим давлениями. Плевральная жидкость по градиенту давления перемещается из системных сосудов пристеночной плевры, а затем реабсорбируется расположенными в легочной плевре сосудами малого круга кровообращения (рис. 137).



Рис. 137. Схема перемещения плевральной жидкости из париетальных капилляров в висцеральные капилляры в норме.
Абсорбции плевральной жидкости способствуют результирующие силы» обусловленные давлениями в висцеральной (10 см Н2О) и в париетальной плевре (9 см Н2О). Давление перемещающейся жидкости = К[(ГДкап-ГДплевр) - (КОДкап-КОДплевр)], где К - коэффициент фильтрации.


Подсчитано, что за 24 ч через плевральную полость проходит от 5 до 10 л плевральной жидкости.

Знание нормальной физиологии перемещения плевральной жидкости дает возможность объяснить некоторые положения, связанные с образованием плеврального выпота. Поскольку в нормальных условиях ежедневно образуется и реабсорбируется большое количество плевральной жидкости, при любом нарушении равновесия в системе вероятность образования патологического выпота возрастает.

Известно два механизма, приводящих к патологическому скоплению плевральной жидкости: нарушение давления, т.е. изменение гидростатического и (или) онкотического давления (застойная сердечная недостаточность, тяжелая гипопротеинемия) и заболевания, поражающие поверхность плевры и приводящие к нарушению капиллярной проницаемости (пневмония, опухоли) или нарушающие реабсорбцию белков лимфатическими сосудами (карциноматоз средостения).

Основываясь на данных патофизиологических механизмах, плевральный выпот можно подразделить на транссудат (возникает в результате изменения давления) и экссудат (возникает в результате нарушения капиллярной проницаемости).

Тейлор Р.Б.

2

1 Федеральное государственное бюджетное образовательное учреждение высшего образования «Омский государственный медицинский университет» Министерства здравоохранения Российской Федерации

2 Федеральное государственное бюджетное образовательное учреждение высшего образования «Омский государственный аграрный университет имени П.А. Столыпина»

Адекватное дренирование плевральной полости, без сомнения, является обязательным, а зачастую и основным компонентом лечения большинства хирургических заболеваний органов грудной полости, а его эффективность зависит от множества физических параметров как легкого, так и плевры. Важным в патофизиологии плевральной биомеханики является формулировка двух различных, но не взаимоисключающих понятий: нерасправляемое легкое (unexpandable lung) и «утечка» или «сброс воздуха» (air-leak). Нерасправляемое легкое не может занять весь объем плевральной полости даже после дренирования жидкости и воздуха из плевральной полости. Неверно подобранный способ удаления патологического содержимого может не только не принести пользы, но даже усугубить патологическое состояние организма. При этом после и во время дренирования плевральной полости возможно развитие состояния pneumothorax ex vacuo, что представляет собой персистирующий пневмоторакс без фистулы. Важными параметрами, характеризующими описанные процессы в плевральной полости, являются также внутриплевральное давление (Ppl), эластичность плевральной полости. В норме на пике вдоха Ppl составляет до -80 cм вод. ст., а конце выдоха: -50 cм вод. cт. Падение давления плевральной полости ниже -40 cм вод. ст. при удалении патологического содержимого из плевральной полости (пункции плевральной полости) без применения дополнительного разрежения является признаком нерасправляемости легкого. На настоящий момент можно твердо считать необходимым наблюдение за изменениями внутриплеврального давления при лечебно-диагностическом торакоцентезе, дренировании плевральной полости в послеоперационном периоде и любых инвазивных закрытых вмешательствах в закрытой полости плевры на всём протяжении нахождения дренажа или иглы в плевральной полости.

дренирование

манометрия

панцирное легкое

1. Physiology of breathlessness associated with pleural effusions / T. Rajesh // Pulmonary Medicine. - 2015. - Vol. 21, № 4. - P. 338-345.

2. Huggins J.T. Pleural manometry / J.T. Huggins, P. Doelken // Clinics in Chest Medicine. - 2006. - Vol. 27, Issue 2. - P. 229-240.

3. Characteristics of Trapped Lung. Pleural Fluid Analysis, Manometry, and Air-Contrast Chest CT / J.T. Huggins // Chest. – 2007. – Vol. 131, Issue 1. – P. 206-213.

4. Pereyra M.F. Unexpandable Lung / M.F. Pereyra, L. Ferreiro, L. Valdes // Arch. Bronconeumol. - 2013. - Vol. 49, № 2. – P. 63-69.

5. Pleural manometry: technique and clinical implications / J.T. Huggins // Chest. - 2004. - Vol. 126, № 6. - P. 1764–1769.

6. Diagnosis and management bronchopleural fistula / P. Sarkar // The Indian Journal of Chest Diseases & Allied Sciences. – 2010. – Vol. 52, № 2. – P. 97-104.

7. Staes W. "Ex Vacuo" pneumothorax / W. Staes, B. Funaki // Seminars in interventional Radiology. – 2009. – Vol. 26, № 1. – P. 82-85.

8. Comparison of pleural pressure measuring instruments / H.J. Lee // Chest. - 2014. - Vol. 146, № 4. - P. 1007-1012.

9. Elastance of the pleural space: a predictor for the outcome of pleurodesis in patients with malignant pleural effusion / R.S. Lan // Ann. Intern. Med. – 1997. – Vol. 126, № 10. – P. 768-774.

10. Интенсивная терапия: руководство для врачей / В.Д. Малышев, С.В. Свиридов, И.В. Веденина и др.; под ред. В.Д. Малышева, С.В. Свиридова. - 2-е изд., перераб. и доп. - М.: ООО «Медицинское информационное агентство», 2009. - 712 с.

11. A Pleural Manometry Catheter: pat. US 2016/0263296A1 USA: PCT/GB2014/052871 / Roe E.R. ; applicant and patentee Rocket Medical Plc. – US 15/028, 691; stated 22.09.2014; published 15.09.2016.

12. Chest drainage systems and methods US: pat. 8992493 B2 USA: US 13/634,116 / James Croteau ; applicant and patentee Atrium Medical Corporation. – PCT/US2011/022985; stated 28.01.2011; published 31.03.2015.

13. Fessler H.E. Are esophageal pressure measurements important in clinical decision-making? / H.E. Fessler, D.S. Talmor // Respiratory Care. – 2010. – Vol. 55, № 2. – P. 162–174.

14. Noninvasive method for measuring and monitoring intrapleural pressure in newborns: pat. US 4860766 A USA: A 61 B, 5/00 / Sackner M.A.; applicant and patentee Respitrace Corp. – US 07/008, 062; stated 27.04.1987; published 29.08.1989.

15. Maldonado F. Counterpoint: should pleural manometry be performed routinely during thoracentesis? No. / F. Maldonado, J. Mullon // Chest. - 2012. - Vol. 141, № 4. - P. 846–848.

Адекватное дренирование плевральной полости, без сомнения, является обязательным, а зачастую и основным компонентом лечения большинства хирургических заболеваний органов грудной полости. В современной торакальной хирургии известно множество способов дренирования плевральной полости, различающихся по локализации установки дренажа, положению дренажной трубки в плевральной полости, способу удаления и возможности контроля патологического содержимого плевральной полости, величине давления в плевральной полости и множеству других параметров. Цель дренирования плевральной полости - удаление из нее содержимого для расправления легкого на весь объем плевральной полости, восстановления жизненной емкости легкого, уменьшения болевого синдрома и предупреждения генерализации инфекционного процесса. Эффективность достижения цели непосредственно зависит от явлений, происходящих собственно в плевральной полости, биомеханики полости и ее содержимого.

Неверно подобранный способ удаления патологического содержимого может не только не принести пользы, но даже усугубить патологическое состояние организма. Осложнениями после торакоцентеза и дренирования плевральной полости могут быть повреждения диафрагмы, органов брюшной полости, сердца, органов средостения, структур корня легкого. В данном обзоре отечественной и, по большей части, зарубежной литературы мы постараемся шире раскрыть проблему зависимости изменения давления в плевральной полости при дренировании от некоторых физических параметров грудной стенки и плевральной полости.

Респираторная механика плевральной полости весьма сложна и зависит от многих факторов, включающих в себя положение тела пациента, наличие сообщения ее с окружающей средой через дыхательные пути или грудную стенку, характер патологического содержимого, тягу, создаваемую работой дыхательных мышц, целостность костного каркаса грудной стенки, эластичность самой плевры .

Патологическое содержимое плевральной полости может появляться по разным причинам. Однако с точки зрения механического удаления жидкости или воздуха из плевральной полости важнее состава патологического содержимого является состояние легкого и плевры, что определяет в дальнейшем как ответит плевральная полость на медицинское вмешательство.

Важным в патофизиологии плевральной биомеханики является формулировка двух различных, но не взаимоисключающих понятий: нерасправляемое легкое (unexpandable lung) и «утечка» или «сброс воздуха» (air-leak). Эти осложнения возникают не внезапно, однако значительно усложняют лечение, а их неправильная диагностика часто приводит к ошибкам во врачебной тактике.

Нерасправляемым называют легкое, неспособное занять весь объем плевральной полости при удалении патологического содержимого. При этом в плевральной полости создается отрицательное давление. К этому могут привести следующие патологические механизмы: эндобронхиальная обструкция, тяжелые фиброзные изменения легочной ткани и рестрикция висцеральной плевры. При этом такая рестрикция подразделяется на две категории: Trapped Lung и Lung Entrapment . Первая категория аналогична тому, что в отечественной литературе обозначают термином «панцирное легкое».

Термин «Lung Entrapment» включает в себя нерасправляющееся легкое, обусловленное активным воспалительным или опухолевым процессом в плевре, и представляет собой фибринозное воспаление плевры и часто предшествует собственно «панцирному легкому» (в зарубежной литературе используется термин Trapped Lung). Нерасправляемость легкого в таком состоянии вторична по отношению к воспалительному процессу и может быть выявлена зачастую лишь при удалении воздуха или жидкости из плевральной полости . С течением времени и отсутствием возможности создания условий для расправления легкого оно сохраняет измененную форму, то есть становится ригидным. Это происходит за счет активации не только соединительно-тканного компонента в строме легкого ввиду хронической гипоксии и воспаления, но и развития собственно фиброза в висцеральной плевре . К этому приводит длительно персистирующие в плевральной полости воздух и жидкость, а также присоединение инфекционного процесса. При их удалении при помощи аспирации при отсутствии легочной фистулы в плевральной полости сохраняется отрицательное давление без расправления легкого с показателями давления ниже, чем в норме. Это будет способствовать возрастанию градиента давления между таковыми внутри трахеобронхиального дерева и плевральной полостью, что приведет впоследствии к баротравме - повреждению давлением.

«Панцирное легкое» представляет собой измененный орган, который даже при удалении содержимого плевральной полости не может расправиться, то есть полностью занять весь гемиторакс ввиду фиброзных изменений висцеральной плевры, формирования грубых плевральных сращений между париетальной и висцеральной плеврой вследствие хронического воспалительного процесса в легком и плевре и бессимптомного плеврального выпота . Удаление экссудата и воздуха из плевральной полости посредством пункций или при помощи установки дренажной трубки не позволит улучшить дыхательную функцию легкого.

При наличии (бронхоплевральной или альвеолярноплевральной) фистулы легкое также не расправляется, но за счет того что в плевральной полости постоянно персистирует атмосферный воздух и сохраняется атмосферное давление, а при некоторых видах искусственной вентиляции и более высокое. Данное осложнение значительно ухудшает прогноз, летальность у такой категории пациентов составляет до 9,5%. Без дренажа плевральной полости достоверно диагностировать данное состояние нельзя . Дренажная система, по сути, под воздействием отрицательного давления высасывает воздух из самой фистулы, то есть фактически из атмосферного воздуха, что также является фактором дополнительного инфицирования за счет попадания микроорганизмов из атмосферного воздуха в дыхательные пути. Клинически это проявляется активным сбросом воздуха по дренажной трубке на выдохе или при вакуумной аспирации. Вторично может развиваться фиброз висцеральной плевры, что даже при устранении фистулы не будет давать легкому расправиться на всю плевральную полость.

Важно также оттенить особый термин, характеризующий нерасправляемое легкое, pneumothorax ex vacuo - персистирующий пневмоторакс без фистулы и травмы полых органов грудной полости. Не только пневмоторакс может вызвать ателектаз, но также и сам ателектаз может стать условием для развития пневмоторакса при удалении экссудата. Такой пневмоторакс возникает на фоне резкого увеличения отрицательного давления в плевральной полости в сочетании с обструкцией бронхов 1-2 порядка и ниже и не связан с повреждением легкого или висцеральной плевры. При этом в плевральной полости как такового атмосферного воздуха может и не быть, или он персистирует в небольшом количестве. Это состояние может возникать как на спонтанном дыхании, так и у пациентов с ИВЛ, что связано с обструкцией дыхательных путей одной из долей легкого. Такой «пневмоторакс» на фоне основного заболевания может не иметь собственных клинических признаков и не ассоциироваться с ухудшением состояния, а рентгенологически представлен разобщением листков плевры на ограниченном пространстве в проекции верхней или нижней долей (рис. 1). Важнейшим в лечении данного осложнения у пациентов является не установка плеврального дренажа, а устранение вероятной причины обструкции, после которого пневмоторакс разрешается, как правило, самостоятельно . Если же данных за обструкцию бронхиального дерева нет и отсутствует легочная фистула, то причиной такому состоянию будет «панцирное легкое».

Рис. 1. Pneumothorax ex vacuo у пациента с нерасправляемым легким на обзорной рентгенограмме органов грудной клетки

Таким образом, можно сказать, что при нерасправляемом легком при торакоцентезе и установке плеврального дренажа вероятность осложнений значительно увеличивается, поэтому так важно ориентироваться не только на показатели радиологической и ультразвуковой диагностики, но и наблюдать за барическими процессами в плевральной полости, не видимыми на рентгеновской плёнке и при осмотре пациента. При этом некоторыми авторами отмечается, что торакоцентез при нерасправляемом легком значительно болезненнее из-за раздражения плевры отрицательным давлением (менее -20 мм вод. ст.) . Помимо дренирования плевральной полости при нерасправляемом легком, невозможным становится также и химический плевродез ввиду стойкого расхождения листков париетальной и висцеральной плевры.

Важными параметрами, характеризующими описанные процессы в плевральной полости, являются также внутриплевральное давление (Ppl), эластичность плевральной полости (Epl) . В норме на пике вдоха Ppl составляет до -80 cм вод. ст., а конце выдоха: -20 cм вод. cт. Падение усредненного показателя давления плевральной полости ниже -40 cм вод. ст. при удалении патологического содержимого из плевральной полости (пункции плевральной полости) без применения дополнительного разрежения является признаком нерасправляемости легкого. Эластичность плевры подразумевает под собой отношение разности изменения давления до и после удаления определенного объема патологического содержимого (Pliq1 - Pliq2) по отношению к этому самому объему, что можно представить формулой: см вод. ст./л. При нормальном расправлении легкого и наличии в плевральной полости экссудата любой плотности эластичность плевральной полости будет составлять около 5,0 см вод. ст./л, величина показателя больше 14,5 см вод. ст./л говорит о нерасправляемости легкого и формировании «панцирного легкого». Из вышесказанного следует, что количественное измерение давления в плевральной полости является важным диагностическим и прогностическим тестом.

Какими способами можно измерить внутриплевральное давление?

Существуют прямые и непрямые методы измерения этого важного параметра респираторной механики. Прямым является измерение давления непосредственно при торакоцентезе или длительном дренировании плевральной полости через катетер или дренаж, находящийся в ней. Обязательным условием является установка катетера или дренажа в самой низкой позиции имеющегося содержимого плевральной полости. Самым простым вариантом в таком случае является использование водяного столба, для чего может использоваться трубка от внутривенной системы или стерильный столбик из стеклянной трубки, обязательно перед процедурой предварительно из системы выводится воздух. Давление при наличии жидкого содержимого в таком случае определяется за счет высоты столба в трубке относительно места вкола иглы или установленного дренажа, что примерно соответствует общеизвестной методике измерения центрального венозного давления при помощи аппарата Вальдмана . Недостатком данного метода является громоздкость и сложность создания устойчивой конструкции для проведения таких измерений, а также невозможность измерить давление в «сухой» полости.

Также используются и цифровые приборы для определения и регистрации внутриплеврального давления.

Портативный цифровой манометр Compass (Mirador Biomedical, США) используется для измерения давления в полостях организма. Положительной стороной этого портативного манометра является его точность (доказана высокая корреляция с данными при измерении при помощи измерения давления по U-катетеру) и простота в использовании . Недостатками его являются возможность его использования лишь один раз и невозможность записи данных на цифровой носитель, а также стоит отметить высокую стоимость такого манометра (около 40 $ за одно устройство).

Электронный плевральный манометр обычно состоит из катетера плевральной полости, разветвителя или разобщителя, одна магистраль которого идёт к системе удаления экссудата, другая к датчику давления и аналого-цифровому преобразователю, который в свою очередь позволяет выводить изображение на экран или производить запись на цифровой носитель (рис. 2) . В исследованиях J.T.Huggins et al. используются наборы для инвазивного мониторинга артериального давления (фирма Argon, США), аналого-цифровой преобразователь CD19A (фирма Validyne Engineering, США), для регистрации данных на персональном компьютере используется пакет программ Biobench 1.0 (фирма National Instruments, США). Разобщителем может, к примеру, являться устройство, описанное Roe . Преимущество этой системы перед ранее названным портативным датчиком, несомненно, состоит в возможности записи данных на цифровой носитель, а также точности получаемых данных и многоразовом использовании. Недостатком данного метода является сложность организации рабочего места для проведения манометрии. Помимо самого оператора, который производит манипуляцию, необходим дополнительный персонал для включения и записи данных. Также разобщитель магистралей в данном комплексе должен соответствовать требованиям асептики и антисептики и, в идеале, быть одноразовым .

Рис. 2. Схема электронного манометра для измерения внутриплеврального давления

Недостатками такого метода являются выраженная зависимость получаемых данных от чувствительности датчика, состояния переходника-трубки (возможная окклюзия её твердым содержимым, попадание воздуха), особенностей мембраны датчика.

Определение давления такими методами происходит опосредованно через трубку-дренаж, так как сам датчик в плевральной полости не находится. Определение показателей давления как на проксимальном конце дренажа, так и в самой магистрали может иметь высокую диагностическую ценность. В патенте J. Croteau описывается аспирационный аппарат для дренирования плевральной полости с двумя заранее настраиваемыми уровнями разрежения. Первый режим - терапевтический, зависит от клинической ситуации. Второй режим, с более высоким уровнем разрежения, включается при изменении давления между дистальным и проксимальным участком дренажной трубки, в которой соответственно установлены два датчика давления, например, более чем на 20 мм вод. ст. (данный параметр является настраиваемым). Это способствует устранению обструкции дренажа и сохранению его работоспособности. Также в описанном аспираторе предусмотрен подсчёт частоты дыхательных движений и подача сигнала (в т.ч. звукового) при ее изменениях. Таким образом, принцип выбора разрежения основан на измерении давления в дренаже. Недостатком является отсутствие ассоциации переключения уровней разрежения с физиологическими колебаниями давления в плевральной полости. Изменение давления при этом способе служит для устранения обструкции дренажной трубки . Такой мониторинг может предсказать закупоривание и дислокацию дренажа, что важно для профилактики осложнений и принятия быстрого решения о дальнейшей лечебной тактике.

Непрямым методом является чреспищеводная манометрия в грудном отделе пищевода на точке 40 см от резцов или ноздри у взрослого человека. Определение внутрипищеводного давления (Pes) ограниченно используется для определения оптимального положительного давления в конце выдоха (PEEP - positive expiration end pressure) у пациентов с искусственной вентиляцией легких и дыхательного объема вентиляции при невозможности измерить внутриплевральное давление прямым методом. Внутрипищеводное давление представляет собой усредненное значение давления в плевральных полостях без вовлечения плевры в патологический процесс и позволяет рассчитать транспульмональный градиент давления (Pl = Palv - Ppl, где Palv - давление в альвеолах), но не даёт информативности об определении Ppl в определенной полости, тем более при нерасправляемом легком . Недостатками данного метода являются неспецифичность измерения по отношению к пораженной стороне, а также недостоверность данных при наличии патологического процесса в средостении любого рода и зависимость от положения тела пациента (в горизонтальном положении давление выше). Могут отмечаться значительные погрешности при высоком внутрибрюшном давлении, ожирении.

У новорожденных описана возможность измерения внутриплеврального давления непрямым методом за счет определения движения костей свода черепа относительно друг друга и давления в дыхательных путях . Данный метод автор предлагает для дифференциальной диагностики апноэ новорождённых центрального генеза и обструктивного характера. Основным недостатком данного метода является отсутствие возможности мониторинга ввиду того что для измерения давления необходимо сделать манёвр Вальсальвы, а именно перекрыть канюлей ноздри (новорождённые, как известно, дышат только через ноздри) при выдохе через закрытые канюлей с датчиком давления ноздри. Также данный метод не позволяет количественно определить внутриплевральное давление, а лишь используется для определения изменения давления при вдохе и выдохе для диагностики обструкции дыхательных путей.

Методы плевральной манометрии, которые чаще используются на практике, связаны с созданием сообщения плевральной полости с окружающей средой посредством пункционной иглы, катетера или уже имеющегося дренажа плевральной полости. Определяющим в получении достоверных данных при измерении давления является создание условий для манометрии. Так, при лечебно-диагностической пункции плевральной полости без использования активной аспирации показатель давления будет меняться по мере удаления жидкости под действием гравитации. При этом можно вычислить эластичность плевральной полости и диагностировать «нерасправляемое легкое» (рис. 3). При использовании активной аспирации по дренажу или катетеру мониторирование внутриплеврального давления не будет иметь диагностической ценности, так как на показатель давления в магистрали будут влиять внешние силы, помимо гравитации. Измерение давления в течение небольшого промежутка времени без удаления содержимого с целью оценки состояния плевральной полости также приемлемо, однако несёт меньшую информативность ввиду невозможности вычисления эластичности плевры.

Рис. 3. График измерения внутриплеврального давления при терапевтическом торакоцентезе (удалении экссудата)

Всё-таки стоит отметить, что в настоящее время даже в ведущих медицинских центрах мира рутинное использование плевральной манометрии не получило широкого распространения. Причиной этому являются необходимость развертывания дополнительного оборудования при проведении плевральной пункции (подключение и проверка работоспособности манометра, соединение его с иглой или катетером, который вводится в плевральную полость) и затрачиваемое на это время, потребность в дополнительном обучении медицинского персонала для работы с манометром . F. Maldonado исходя из анализа исследований по измерению внутриплеврального давления при нерасправляемом легком утверждает, что на настоящий момент нельзя лишь на основании данных о внутриплевральном давлении считать легкое нерасправляемым и выставлять показания к прекращению или продолжению удаления патологического отделяемого из плевральной полости. По его мнению, стоит обратить внимание не только на эластичность плевры, но и на то, где появляется «точка воздействия» на кривой внутриплеврального давления (график), после которой легкое становится нерасправляемым и процедуру торакоцентеза стоит прекращать. Однако на данный момент исследований, где такая «точка воздействия» рассматривалась как предиктор, нет.

Так как изменения показаний респираторной механики плевральной полости являются предиктором множества осложнений и исходов, то их мониторинг не только позволит избежать многих осложнений, но также и выбрать действительно подходящий способ лечения для пациентов с таким патологическим состоянием. Таким образом, важнейшим в ведении пациентов с такими патологическими состояниями, как нерасправляемое легкое и длительный сброс воздуха, является определение внутриплеврального давления и его эластичности для подбора адекватного режима аспирации и других особенностей дренирования плевральной полости как до радикального оперативного лечения, так и при невозможности проведения такового. Мониторинг давления и других параметров должен осуществляться постоянно при нахождении дренажной трубки в плевральной полости, а также при проведении терапевтического и диагностического торакоцентеза. С этим согласны такие авторы, посвятившие не одно крупное клиническое исследование по изучению внутриплеврального давления, как J.T. Huggins, M.F. Pereyra и др. Но, к сожалению, простых и доступных средств для проведения таких исследований мало, что подтверждает необходимость изучения вопросов внутриплеврального давления для повышения диагностической ценности, таких как колебания давления на разных фазах дыхания в физиологии и при патологических состояниях, связи функциональных проб в диагностике заболеваний органов дыхания с респираторной механикой плевральной полости.

Библиографическая ссылка

Хасанов А.Р., Коржук М.С., Ельцова А.А. К ВОПРОСУ О ДРЕНИРОВАНИИ ПЛЕВРАЛЬНОЙ ПОЛОСТИ И ИЗМЕРЕНИИ ВНУТРИПЛЕВРАЛЬНОГО ДАВЛЕНИЯ. ПРОБЛЕМЫ И РЕШЕНИЯ // Современные проблемы науки и образования. – 2017. – № 5.;
URL: http://science-education.ru/ru/article/view?id=26840 (дата обращения: 12.12.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
При рождении ребенка легкие еще не содержат воздуха и их собственный объем совпадает с объемом грудной полости. При первом вдохе сокращаются скелетные мышцы вдоха, объем грудной полости увеличивается.

Давление на легкие снаружи со стороны ірудной клетки уменьшается по сравнению с атмосферным. В силу этой разницы воздух свободно входит в легкие, растягивая их и прижимая наружную поверхность легких к внутренней поверхности грудной клетки и к диафрагме. При этом растянутыс легкие, обладая эластичностью, противодействуют растяжению. В результате на высоте вдоха легкие оказывают на грудную клетку изнутри уже не атмосферное давление, а меньшее на величину эластической тяги легких.
После рождения ребенка грудная клетка растет быстрее, чем ткань легкого. Так как
легкие оказываются под действием тех же сил, которые растягивали их при первом вдохе, они полностью заполняют грудную клетку как во время вдоха, так и во время выдоха, находясь постоянно в растянутом состоянии. В результате, давление легких на внутреннюю поверхность грудной клетки всегда меньше, чем давление воздуха в легких (на величину эластической тяги легких). При остановке дыхания в любой момент вдоха или выдоха в легких сразу же устанавливается атмосферное давление. При проколе с диагностической целью грудной клетки и париетальной плевры взрослого человека полой иглой, соединенной с манометром, и попадании конца иглы в плевральную полость, в манометре сразу же давление уменьшается ниже атмосферного. Манометр регистрирует в плевральной полости отрицательное давление по отношению к атмосферному, принимаемому" за ноль. Эта разница между давлением в альвеолах и давлением легких на внутреннюю поверхность грудной клетки, т.е. давление в плевральной полости, называется транспульмональным давлением.

Еще по теме ДАВЛЕНИЕ В ПЛЕВРАЛЬНОЙ ПОЛОСТИ. МЕХАНИЗМ ЕГО ВОЗНИКНОВЕНИЯ.:

  1. КОЛЕБАНИЯ ДАВЛЕНИЯ В ПЛЕВРАЛЬНОЙ ПОЛОСТИ ПРИ ДЫХАНИИ. ИХ МЕХАНИЗМ.
  2. ДЫХАТЕЛЬНОЕ УПРАЖНЕНИЕ № I. МЕХАНИЗМЫ ЕГО ОЗДОРОВИТЕЛЬНОГО ВОЗДЕЙСТВИЯ. «СИЛЬНЫЕ» И «СЛАБЫЕ» СТОРОНЫ УПРАЖНЕНИЯ.

Легкие расположены в геометрически закрытой полости, образованной стенками грудной клетки и диафрагмой. Изнутри грудная полость выстлана плеврой, состоящей из двух листков. Один листок прилегает к грудной клетке, другой - к легким. Между листками имеется щелевидное пространство, или плевральная полость, заполненная плевральной жидкостью.

Грудная клетка в утробном периоде и после рождения растет быстрее легких. Кроме того, плевральные листки обладают большой всасывающей способностью. Поэтому в плевральной полости устанавливается отрицательное давление. Так, в альвеолах легких давление равно атмосферному - 760, а в плевральной полости - 745-754 мм рт. ст. Эти 10-30 мм и обеспечивают расширение легких. Если проколоть грудную стенку так, чтобы воздух вошел в плевральную полость, то легкие тут же спадутся (ателектаз). Это произойдет потому, что давление атмосферного воздуха на наружную и внутреннюю поверхность легких сравняется.

Легкие в плевральной полости всегда находятся в несколько растянутом состоянии, но во время вдоха их растяжение резко увеличивается, а при выдохе уменьшается. Это явление хорошо демонстрирует модель, предложенная Дондерсом. Если подобрать бутыль, по объему соответствующую величине легких, предварительно поместив их в эту бутыль, и вместо дна натянуть резиновую пленку, выполняющую роль диафрагмы, то легкие будут расширяться при каждом оттягивании резинового дна. Соответственно будет изменяться величина отрицательного давления внутри бутыли.

Отрицательное давление можно измерить, если ввести в плевральное пространство инъекционную иглу, соединенную с ртутным манометром. У крупных животных оно достигает при вдохе 30-35, а при выдохе уменьшается до 8-12 мм рт. ст. Колебания давления при вдохе и выдохе влияют на движение крови по венам, расположенным в грудной полости. Так как стенки вен легкорастяжимы, то отрицательное давление передается на них, что способствует расширению вен, их кровенаполнению и возврату венозной крови в правое предсердие, при вдохе приток крови к сердцу усиливается.

Типы дыхания.У животных различают три типа дыхания: реберный, или грудной,- при вдохе преобладает сокращение наружных межреберных мышц; диафрагмальный, или брюшной,- расширение грудной клетки происходит преимущественно за счет сокращения диафрагмы; эеберно-брюшной - вдох обеспечивается в равной степени межреберными мышцами, диафрагмой и брюшными мышцами. Последний тип дыхания свойственен сельскохозяйственным животным. Изменение типа дыхания может свидетельствовать о заболевании органов грудной или брюшной полости. Например, при заболевании органов брюшной полости преобладает реберный тип дыхания, так как животное оберегает больные органы.

Жизненная и общая емкость легких.В покое крупные собаки и овцы выдыхают в среднем 0,3-0,5, лошади

5-6 л воздуха. Этот объем называют дыхательным воздухом. Сверх данного объема собаки и овцы могут вдохнуть еще 0,5-1, а лошади - 10-12 л - дополнительный воздух. После нормального выдоха животные могут выдохнуть приблизительно такое же количество воздуха - резервный воздух. Таким образом, при нормальном, неглубоком дыхании у животных грудная клетка не расширяется до максимального предела, а находится на некотором оптимальном уровне, при необходимости объем ее может увеличиваться за счет максимального сокращения мышц инспираторов. Дыхательный, дополнительный и резервный объемы воздуха составляют жизненную емкость легких. У собак она составляет 1.5 -3 л, у лошадей - 26-30, у крупного рогатого скота - 30-35 л воздуха. При максимальном выдохе з легких еще остается немного воздуха, этот объем называют остаточным воздухом. Жизненная емкость легких и остаточный воздух составляют общую емкость легких. Величина жизненной емкости легких может значительно уменьшиться при некоторых заболеваниях, что приводит к нарушению газообмена.

Определение жизненной емкости легких имеет большое значение для выяснения физиологического состояния организма в норме и при патологии. Ее можно определить с помощью специального аппарата, называемого водяным спирометром (аппаратом «Спиро 1-В»). К сожалению, эти способы трудно применимы в производственных условиях. У лабораторных животных жизненную емкость определяют под наркозом, при вдыхании смеси с высоким содержанием С02 . Величина наибольшего выдоха примерно соответствует жизненной емкости легких. Жизненная емкость изменяется в зависимости от возраста, продуктивности, породы и других факторов.

Легочная вентиляция.После спокойного выдоха в легких остается резервный, или остаточный, воздух, называемый также альвеолярным воздухом. Около 70 % вдыхаемого воздуха непосредственно поступает в легкие, остальные 25-30 % участия в газообмене не принимают, так как он остается в верхних дыхательных путях. Объем альвеолярного воздуха у лошадей составляет 22 л. Поскольку при спокойном дыхании лошадь вдыхает 5 л воздуха, из которых в альвеолы поступает только 70 %, или 3,5 л, то при каждом вдохе в альвеолах вентилируется только "/б часть воздуха (3,5:22). Отношение вдыхаемого воздуха к альвеолярному называют коэффициентом легочной вентиляции, а количество воздуха, проходящего через легкие за 1 мин,- минутным объемом легочной вентиляции. Минутный объем - величина переменная, зависимая от частоты дыхания, жизненной емкости легких, интенсивности работы, характера рациона, патологического состояния легких и других факторов.

Воздухоносные пути (гортань, трахея, бронхи, бронхиолы) не принимают непосредственного участия в газообмене, поэтому их называют вредным пространством. Однако они имеют большое значение в процессе дыхания. В слизистой оболочке носовых ходов и верхних дыхательных путях имеются серозно-слизистые клетки и мерцательный эпителий. Слизь улавливает пыль и увлажняет дыхательные пути. Мерцательный эпителий движениями своих волосков способствует удалению слизи с частицами пыли, песка и другими механическими примесями в область носоглотки, откуда она выбрасывается. В верхних дыхательных путях находится множество чувствительных рецепторов, раздражение которых вызывает защитные рефлексы, например кашель, чихание, фырканье. Данные рефлексы способствуют выведению из бронхов частиц пыли, корма, микробов, ядовитых веществ, представляющих опасность для организма. Кроме того, вследствие обильного кровоснабжения слизистой оболочки носовых ходов, гортани, трахеи согревается вдыхаемый воздух.

Объем легочной вентиляции несколько меньше количества крови, протекающей через малый круг кровообращения в единицу времени. В области верхушек легких альвеолы вентилируются менее эффективно, чем у основания, прилегающего к диафрагме. Поэтому в области верхушек легких вентиляция относительно преобладает над кровотоком. Наличие вено-артериальных анастомозов и сниженное отношение вентиляции к кровотоку в отдельных частях легких - основная причина более низкого напряжения кислорода и более высокого напряжения двуокиси углерода в артериальной крови по сравнению с парциальным давлением этих газов в альвеолярном воздухе.

Состав вдыхаемого, выдыхаемого и альвеолярного воздуха.Атмосферный воздух содержит 20,82 % кислорода, 0,03 % двуокиси углерода и 79,03 % азота. В воздухе животноводческих помещений обычно содержится больше двуокиси углерода, водяных паров, аммиака, сероводорода и др. Количество кислорода может быть меньше, чем в атмосферном воздухе.

Выдыхаемый воздух содержит в среднем 16,3 % кислорода, 4 % двуокиси углерода, 79,7 % азота (эти показатели приведены в пересчете на сухой воздух, то есть за вычетом паров воды, которыми насыщен выдыхаемый воздух). Состав выдыхаемого воздуха непостоянен и зависит от интенсивности обмена веществ, объема легочной вентиляции, температуры атмосферного воздуха и др.

Альвеолярный воздух отличается от выдыхаемого большим содержанием двуокиси углерода - 5,62 % и меньшим кислорода - в среднем 14,2-14,6, азота - 80,48 %. Выдыхаемый воздух содержит воздух не только альвеол, но и «вредного пространства», где он имеет такой же состав, как и атмосферный.

Азот в газообмене не участвует, но процентное содержание его во вдыхаемом воздухе несколько ниже, чем в выдыхаемом и альвеолярном. Это объясняется тем, что объем выдыхаемого воздуха несколько меньше, чем вдыхаемого.

Предельно допустимая концентрация двуокиси углерода в скотных дворах, конюшнях, телятниках - 0,25 %; но уже 1 % С 0 2 вызывает заметную одышку, и легочная вентиляция увеличивается на 20 %. Содержание двуокиси углерода выше 10 % ведет к смерти.

Дыхание, его основные этапы. Механизм внешнего дыхания. Биомеханика вдоха и выдоха. Эластическая тяга лёгких. Давление в плевральной полости, его происхождение, изменение при дыхании.

Дыхание - совокупность процессов, обеспечивающих потребление организмом кислорода и выделение двуокиси углерода.

Поступление кислорода из атмосферы к клеткам необходимо для биологического окисления органических веществ, в результате которого освобождается энергия, нужная для жизни организма. В процессе биологического окисления образуется двуокись угле­рода, подлежащая удалению из организма. Прекращение дыхания ведет к гибели прежде всего нервных, а затем и других клеток. Кроме того, дыхание участвует в поддержании постоянства реакции жидкостей и тканей внутренней среды организма, а также темпе­ратуры тела.

Дыхание человека включает следующие этапы:

1) внешнее дыхание (вентиляция легких)- это обмен газов между альвеолами лёгких и атмосферным воздухом;

2) обмен газов в легких (между альвеолярным воздухом и кровью капилляров малого круга кровообращения);

3) транспорт газов кровью – процесс переноса О 2 от лёгких к тканям и СО 2 от тканей к лёгким;

4) обмен газов в тканях между кровью капилляров большого круга кровообращения и клетками тканей;

5) внутреннее дыхание (биологическое окисление в митохондриях клеток).

Газообмен между атмосферным воздухом и альвеолярным пространством легких происходит в результате циклических изменений объема легких в течение фаз дыхательного цикла . В фазу вдоха объем легких увеличивается, воздух из внешней среды поступает в дыхательные пути и затем достигает альвеол. Напротив, в фазу выдоха происходит уменьшение объема легких и воздух из альвеол через дыхательные пути выходит во внешнюю среду. Увеличение и уменьшение объема легких обусловлены биомеханическими процессами изменения объема грудной полости при вдохе и выдохе.

Увеличение объема грудной полости при вдохе происходит в результате сокращения инспираторных мышц: диафрагмы и наружных межреберных. Основной дыхательной мышцей является диафрагма, которая находится в нижней трети грудной полости и разделяет грудную и брюшную полости. При сокращении диафрагмальной мышцы диафрагма движется вниз и смещает органы брюшной полости вниз и кпереди, увеличивая объем грудной полости преимущественно по вертикали.

Увеличению объема грудной полости при вдохе способствует сокращение наружных межреберных мышц, которые поднимают грудную клетку вверх, увеличивая объем грудной полости. Этот эффект сокращения наружных межреберных мышц обусловлен особенностями прикрепления мышечных волокон к ребрам - волокна идут сверху вниз и сзади кпереди (рис. 10.2). При подобном направлении мышечных волокон наружных межреберных мышц их сокращение поворачивает каждое ребро вокруг оси, проходящей через точки сочленения головки ребра с телом и поперечным отростком позвонка. В результате этого движения каждая нижележащая реберная дуга поднимается вверх больше, чем опускается вышерасположенная. Одновременное движение вверх всех реберных дуг приводит к тому, что грудина поднимается вверх и кпереди, а объем грудной клетки увеличивается в сагиттальной и фронтальной плоскостях. Сокращение наружных межреберных мышц не только увеличивает объем грудной полости, но и препятствует опусканию грудной клетки вниз. Например, у детей, имеющих неразвитые межреберные мышцы, грудная клетка уменьшается в размере во время сокращения диафрагмы (парадоксальное движение).


При глубоком дыхании в биомеханизме вдоха , как правило, участвует вспомогательная дыхательная мускулатура - грудино-ключично-сосцевидные и передние лестничные мышцы, и их сокращение дополнительно увеличивает объем грудной клетки. В частности, лестничные мышцы поднимают верхние два ребра, а грудино-ключично-сосцевидные - поднимают грудину. Вдох является активным процессом и требует расхода энергии при сокращении инспираторных мышц, которая затрачивается на преодоление эластического сопротивления относительно ригидных тканей грудной клетки, эластического сопротивления легко растяжимой легочной ткани, аэродинамического сопротивления дыхательных путей потоку воздуха, а также на повышение внутриабдоминального давления и возникающего при этом смещения органов брюшной полости книзу.

Выдох в покое у человека осуществляется пассивно под действием эластической тяги легких, которая возвращает объем легких к исходной величине. Тем не менее при глубоком дыхании, а также при кашле и чиханье, выдох может быть активным, и уменьшение объема грудной полости происходит за счет сокращения внутренних межреберных мышц и мышц живота. Мышечные волокна внутренних межреберных мышц идут относительно точек их прикрепления к ребрам снизу вверх и сзади кпереди. При их сокращении ребра поворачиваются вокруг оси, проходящей через точки их сочленения с позвонком, и каждая вышерасположенная реберная дуга опускается вниз больше, чем нижерасположенная поднимается вверх. В результате все реберные дуги вместе с грудиной опускаются вниз, уменьшая объем грудной полости в сагиттальной и фронтальной плоскостях.

При глубоком дыхании человека сокращение мышц живота в фазу выдоха увеличивает давление в брюшной полости, что способствует смещению купола диафрагмы вверх и уменьшает объем грудной полости в вертикальном направлении.

Сокращение дыхательных мышц грудной клетки и диафрагмы при вдохе вызывает увеличение объема легких , а при их расслаблении во время выдоха легкие спадаются до исходного объема. Объем легких как при вдохе, так и при выдохе изменяется пассивно, поскольку благодаря своей высокой эластичности и растяжимости легкие следуют за изменениями объема грудной полости, вызванными сокращением дыхательных мышц. Это положение иллюстрирует следующая модель пассивного увеличения объема легких (рис. 10.3). В этой модели легкие могут быть рассмотрены в качестве эластичного баллона, помещенного внутрь емкости, выполненной из ригидных стенок и гибкой диафрагмы. Пространство между эластичным баллоном и стенками емкости является герметичным. Эта модель позволяет изменять давление внутри емкости при движении вниз гибкой диафрагмы. При увеличении объема емкости, вызванном движением вниз гибкой диафрагмы, давление внутри емкости, т. е. вне баллона, становится ниже атмосферного в соответствии с законом идеального газа. Баллон раздувается, поскольку давление внутри него (атмосферное) становится выше, чем давление в емкости вокруг баллона.

В приложении к легким человека, которые полностью заполняют объем грудной полости , их поверхность и внутренняя поверхность грудной полости покрыты плевральной мембраной. Плевральная мембрана поверхности легких (висцеральная плевра) физически не соприкасается с плевральной мембраной, покрывающей грудную стенку (париетальная плевра), так как между этими мембранами имеется плевральное пространство (синоним - внутриплевральное пространство ), заполненное тонким слоем жидкости - плевральной жидкости. Эта жидкость увлажняет поверхность долей легких и способствует их скольжению относительно друг друга во время раздувания легких, а также облегчает трение между париетальным и висцеральным листками плевры. Жидкость несжимаема и ее объем не увеличивается при уменьшении давления в плевральной полости . Поэтому высокоэластичные легкие в точности повторяют изменение объема грудной полости во время вдоха. Бронхи, кровеносные сосуды, нервы и лимфатические сосуды формируют корень легкого, с помощью которого легкие фиксированы в области средостения. Механические свойства этих тканей обусловливают основную степень усилия, которое должны развивать дыхательные мышцы при сокращении, чтобы вызывать увеличение объема легких . В обычных условиях эластическая тяга легких создает незначительную величину отрицательного давления в тонком слое жидкости внутриплеврального пространства относительно атмосферного давления. Отрицательное внутриплевральное давление варьирует в соответствии с фазами дыхательного цикла от -5 (выдох) до -10 см водн. ст. (вдох) ниже атмосферного давления (рис. 10.4). Отрицательное внутриплевральное давление способно вызвать уменьшение (коллапс) объема грудной полости, которому ткани грудной клетки противодействуют своей чрезвычайно ригидной структурой. Диафрагма по сравнению с грудной клеткой, является более эластичной, и ее купол поднимается вверх под влиянием градиента давления, существующего между плевральной и брюшной полостями.

В состоянии, когда легкие не расширяются и не спадаются (пауза соответственно после вдоха или выдоха), в дыхательных путях отсутствует поток воздуха и давление в альвеолах равно атмосферному. В этом случае градиент между атмосферным и внутриплевральным давлением будет точно уравновешивать давление, развиваемое эластической тягой легких (см. рис. 10.4). В этих условиях величина внутриплеврального давления равна разности между давлением в дыхательных путях и давлением, развиваемым эластической тягой легких. Поэтому чем больше растянуты легкие, тем сильнее будет эластическая тяга легких и более отрицательным относительно атмосферного является величина внутриплеврального давления. Так происходит во время вдоха, когда диафрагма опускается вниз и эластическая тяга легких противодействует раздуванию легких, а величина внутриплеврального давления становится более отрицательной. При вдохе это отрицательное давление способствует продвижению воздуха по дыхательным путям в сторону альвеол, преодолевая сопротивление дыхательных путей. В результате воздух поступает из внешней среды в альвеолы.

Рис. 10.4. Давление в альвеолах и внутриплевральное давление в фазу вдоха и выдоха дыхательного цикла . В отсутствии потока воздуха в дыхательных путях давление в них равно атмосферному (А), а эластическая тяга легких создает в альвеолах давление Е. В этих условиях величина внутри-плеврального давления равна разнице А - Е. При вдохе сокращение диафрагмы увеличивает величину отрицательного давления в плевральной полости до -10 см водн. ст., которое способствует преодолению сопротивления потоку воздуха в дыхательных путях, и воздух движется из внешней среды в альвеолы. Величина внутриплеврального давления обусловлена разницей между давлениями А - R - Е. При выдохе диафрагма расслабляется и внутриплевральное давление становится менее отрицательным относительно атмосферного давления (-5 см водн. ст.). Альвеолы вследствие своей эластичности уменьшают свой диаметр, в них повышается давление Е. Градиент давлений между альвеолами и внешней средой сопособствует выведению воздуха из альвеол по дыхательным путям во внешнюю среду. Величина внутриплеврального давленния обусловлена суммой A+R за вычетом давления внутри альвеол, т. е. А + R - Е. А - атмосферное давление, Е -давление в альвеолах, возникающее вследствие эластической тяги легких, R -давление, обеспечивающее преодоление сопротивления потоку воздуха в дыхательных путях, Р - внутриплевральное давление.

При выдохе диафрагма расслабляется и величина внутриплеврального давления становится менее отрицательной. В этих условиях альвеолы в связи с высокой эластичностью их стенок начинают уменьшаться в размере и выталкивают воздух из легких через дыхательные пути. Сопротивление дыхательных путей потоку воздуха поддерживает положительное давление в альвеолах и препятствует их быстрому спадению. Таким образом, в спокойном состоянии при выдохе поток воздуха в дыхательных путях обусловлен только эластической тягой легких.

Давление в плевральной полости (щели)

Легкие и стенки грудной полости покрыты серозной оболочкой - плеврой. Между листками висцеральной и париетальной плевры имеется узкая (5-10 мкм) щель, содер­жащая серозную жидкость, по составу сходную с лимфой. Легкие постоянно находятся в растянутом состоянии.

Если в плевральную щель ввести иглу, соединенную с манометром, можно устано­вить, что давление в ней ниже атмосферного. Отрицательное давление в плевральной щели обусловлено эластической тягой легких, т. е. постоянным стремлением легких уменьшить свой объем. В конце спокойного выдо­ха, когда почти все дыхательные мышцы расслаб­лены, давление в плевральной щели (Ppi) прибли­зительно -3 мм рт. ст. Давление в альвеолах (Ра) в это время равно атмосферному. Разность Ра- -Ppi=3мм рт. ст. носит название транспульмо-нального давления (р|). Таким образом, давление в плевральной щели ниже, чем давление в альве­олах, на величину, создаваемую эластической тя­гой легких.

При вдохе вследствие сокращения инспира-торных мышц объем грудной полости увели­чивается. Давление в плевральной щели стано­вится более отрицательным. К концу спокойного вдоха оно снижается до -6 мм рт. ст. Вследствие увеличения транспульмонального давления лег­кие расправляются, их объем увеличивается за счет атмосферного воздуха.

Когда инспираторные мышцы расслабляются, упругие силы растянутых легких и стенок брюш­ной полости уменьшают транспульмональное дав­ление, объем легких уменьшается - наступает выдох.

Механизм изменения объема легких при дыхании может быть продемонстрирован с помощью модели Дондерса (рис. 148).

При глубоком вдохе давление в плевральной щели может снизиться до -20 мм рт. ст. Во время активного выдоха это давление может стать положительным, тем не менее оставаясь ниже давления в альвеолах на величину эластической тяги легких.

В плевральной щели в обычных условиях не бывает газов. Если ввести некоторое количество воздуха в плевральную щель, он постепенно рассосется. Всасывание газов из плевральной щели происходит вследствие того, что в крови мелких вен малого круга кровообращения напряжение растворенных газов ниже, чем в атмосфере. Накоплению в плевральной щели жидкости препятствует онкотическое давление: в плевральной жидкости содержание белков значительно ниже, чем в плазме крови. Имеет значение также относительно низкое гидростатическое давление в сосудах малого круга крово­обращения.

Упругие свойства легких. Эластическая тяга легких обусловлена тремя факторами:

1) поверхностным натяжением пленки жидкости, покрывающей внутреннюю поверхность альвеол; 2) упругостью ткани стенок альвеол вследствие наличия в них эластических волокон; 3) тонусом бронхиальных мышц. Устранение сил поверхностного натяжения (заполнение легких солевым раствором) снижает эластическую тягу легких на ^з.

Если бы внутренняя поверхность альвеол была покрыта водным раствором, поверх­ностное натяжение должно было бы быть в 5-8 раз больше. В таких условиях наблюда­лось бы полное спадение одних альвеол (ателектаз) при перерастяжении других. Этого не происходит потому, что внутренняя поверхность альвеол выстлана веществом, имеющим низкое поверхностное натяжение, так называемым сурфактантом. Выстилка имеет тол­щину 20-100 нм. Она состоит из липидов и белков. Сурфактант образуется специальны­ми клетками альвеол - пневмоцитами II типа. Пленка сурфактанта обладает замеча­тельным свойством: уменьшение размеров альвеол сопровождается снижением поверх­ностного натяжения; это важно для стабилизации состояния альвеол. Образование сур­фактанта усиливается парасимпатическими влияниями; после перерезки блуждающих нервов оно замедляется.

Эластическая тяга лёгких - сила, с которой лёгкие стремятся к спадению вследствие:

1) сил поверхностного натяжения альвеол;

2) наличия эластичных волокон в лёгочной ткани;

3) тонуса мелких бронхов.