Скорость распространеия пульсовой волны (српв). Пульсовая волна. Аускультативный метод измерения давления Распространение пульсовой волны

Размер: px

Начинать показ со страницы:

Транскрипт

1 Пульсовая волна Математическая модель расчета скорости пульсовой волны При сокращении сердца, распространяющаяся вдоль артерии волна деформации и утолщения ее стенок получила название пульсовой волны, она легко прощупывается на лучевой артерии руки. Ее скорость лежит в пределах от 5 до 10 метров в секунду и более, что в 10 раз превышает среднюю скорость движения крови по кровеносным сосудам. Оказалось, что скорость распространения пульсовой волны зависит от упругости артериальной стенки и поэтому может служить показателем ее состояния при различных заболеваниях. Артерия с внутренним диаметром d представляет собой достаточно длинный (чтобы можно было пренебречь концевыми эффектами) цилиндр со стенками толщиной h, сделанными из материала с модулем упругости Юнга E. Построим упрощенную математическую модель возникновения пульсовой волны, а также определим ее основной параметр продольную скорость распространения v. Заменим, представленную на рисунке, колокообразную форму волны на прямоугольную и введем следующие обозначения: D диаметр утолщения сосуда; d внутренний диаметр сосуда; h толщина стенки ссуда; P1 давление на начальном участке; P2 давление в конце утолщенного участка; L длина утолщенной части сосуда; F, F - усилие; ρ удельная плотность крови; S 0, S d, S i - площадь (наружная, внутренняя и кольца). Деформация стенки сосуда в процессе возникновения пульса

2 A - A d F1, F1 D P1 P2 d h L Схема и условные обозначения параметров при деформации сосуда Сила, возникающая при нагнетании крови в сосуд, где: S 0 = = = /. Поскольку, то S 0 =. Отсюда, С другой стороны, поскольку пульсовая волна это движение стенки сосуда за счет силы, которая возникает в продольном направлении в результате давления избыточной массы крови, поступающей в сосуд при каждом сокращении сердца, то в соответствии со вторым законом Ньютона имеем:, где: m избыточная (систолическая) масса крови, ускорение = v/t, ρ плотность крови, v скорость v = L/t, Q объем избыточной массы крови., где: L длина области деформации стенки сосуда, Si - площадь кольца утолщения сосуда., следовательно v/t = = v 2, поскольку F = F, следовательно, отсюда, v 2 = ((P1 P2) / ρ) ((d /4 d) + 1) или окончательно v = / /. (1) В данное выражение, полученное нами из законов кинематики и динамики движения крови по сосуду, входят относительная деформация стенок сосуда d/d

3 и увеличение давления крови в нем (P1-P2). Очевидно, что отношение этих двух величин можно найти, если использовать закон Гука, который, как известно, связывает величину относительной деформации материала с силой, вызывающей эту деформацию, а именно L/L = F /(S i E) Подставляем найденные ранее значения F и S i и получаем L/L = / (E) = =ρ v 2 / E, принято считать, что L/L= R/R=h/d, тогда окончательно получаем v= /. (2) Уравнение 2 это основное уравнение скорости пульсовой волны в кровеносной системе, причем считается, практически для любых сосудов, что отношение h/d 0.1, т.е. скорость пульсовой волны v практически зависит только от модуля Юнга E. Анизотропия сосудов Необходимо различать модуль Юнга для Е пр продольной и поперечной Е поп деформации сосудов. Исходя из физиологической целесообразности, сосуды в поперечном направлении должны быть менее жесткими, чем в продольном, т.е. сосуды также должны выполнять роль каркаса, который выдерживает дополнительную нагрузку на мышечную ткань организма, а также обеспечивают постоянство геометрических размеров и формы отдельных органов. В данном случае мы рассчитывали E = Е пр Известно, что E для артериальных сосудов соответствуют 0,5МПа. Подстановка h/d=0,1, Е= 0,5МПа и ρ=1000 кг/м3 в выражение (2) дает значение v 7 метров в секунду, которое близко к, полученному экспериментально, среднему значению скорости распространения пульсовой волны. Анатомические исследования показывают, что величина h/d мало изменяется от человека к человеку и практически не зависит от типа артерии. Поэтому, учитывая постоянство h/d, можно считать, что скорость пульсовой волны изменяется только при изменении упругости стенки артерии, ее модуля Юнга в продольном направлении. Сопоставим значения E поп и Е пр Рассмотрим, полученное нами, соотношение v 2 =E пр, а также формулу Гука P=E поп = k Eпр, отсюда получим P=v2 k ρ. Рассчитаем значение k= Р/(v 2 ρ) для ρ=1050кг/м 3 Для этого определим с помощью тонометра значение P и с помощью прибора Pulstream+ величины E пр и v.

4 Показания тонометра: систолическое давление 135 мм.рт.ст., диастолическое давление 79 мм.рт.ст., P= 56 мм.рт.ст. Для определения значений E пр и v на базе устройства Pulstream+ был разработан программно-аппартный комплекс, позволяющий производить измерение времени запаздывания пульсовой волны относительно R-зубца ЭКГ. Результаты измернния скорости пульсовой волны дали значение v=6,154 м/сек, откуда E пр = 2989,72 мм.рт.ст. = ,76Па. Коэффициент перевода - 1 мм.рт.ст. = 133Па. Из полученных результатов определим анизотропию сосудов как соотношение E поп =k E пр. P= 56 мм.рт.ст. = 7436Па. Отсюда k = 7436/(37,) = 0,187, т. е. жесткость сосудов в поперечном направлении в 5 раз меньше, чем в продольном. E поп =0,187 E пр = 0,76 =74357,3Па. Проведенные измерения E поп сосудов аорты на атомно-силовом микроскопе дали значение близкое к С возрастом, а также при заболеваниях, сопровождающихся увеличением модуля Юнга стенки артерий (гипертонии, атеросклерозе), скорость распространения пульсовой волны может увеличиваться почти в 2-4 раза по сравнению с нормой. Негативную роль при этом также играет увеличение концентрации холестерина в крови и его оседание на стенках сосудов. Это позволяет использовать измерение скорости распространения пульсовой волны при постановке диагноза. Процесс измерения скорости пульсовой волны Измерительный комплекс состоит из двухканального устройства Pulstream+, металлических электродов браслетного типа, которые одеваются на запястья рук и которые, с помощью разъема типа «джек», подключены к ЭКГ каналу прибора. Процедура измерения сводится к фиксации электродов на запястьях рук, размещению указательного пальца левой руки в зоне фотосенсора и запуску программы измерения.

5 В процессе измерения на экране отображаются 2 кривые одна содержит маркеры R-зубца ЭКГ, вторая дифференциальная пульсограмма. Далее производится обработка кривых с целью определения времени запаздывания пульсограммы относительно ЭКГ. При этом на экран выводится разметка по максимуму маркера ЭКГ и моменту открытия аортального клапана на пульсограмме. Таким образом рассчитываются длительности интервалов запаздывания. Результаты измерений времени усредняются и выводятся на экран. Скорость пульсовой волны определяется как отношение длины артерий от начала аорты до фаланги прикладываемого к датчику пальца ко времени задержки пульсограммы. Значения продольного коэффициента Юнга и скорости пульсовой волны рассчитываются сразу на первом этапе и выводятся в отведенные поля главной формы программы. Результаты измерений отражены на рисунке.

6 Расчеты давления Давление в камере левого желудочка Рассмотрим механизм сократительной функции сердца, обеспечивающий артериальный кровоток за счет работы левого желудочка. Рис. 1. Рис. 2. Прежде всего, рассчитаем значение систолического давления, исходя из следующих допущений. Будем считать, что систолическое давление крови определяется работой левого желудочка после закрытия митрального клапана и с момента открытия аортального клапана. До момента закрытия митрального клапана кровь из левого предсердия перекачивается в полость левого желудочка. На рисунке 1 кровь поступает из предсердия в желудочек, а на рисунке 2 кровь изгоняется из левого желудочка через аортальный клапан в аорту. Нас будет интересовать весь цикл выдавливания крови в аорту с момента открытия аортального клапана. Обозначим объем крови в левом желудочке через Q, а давление в нем через P и массу крови через m. Определим работу миокарда как A=P Q, тогда P=A/Q. Но работа, с другой стороны, равна A=F L, где F-сила выталкивания, а L- путь перемещения порции крови, тогда P= F L/Q, но F=m a, где a=v/t, а v=l/t. Следует отметить, что v не является скоростью кровотока в аорте. Это скорость выброса порции крови из левого желудочка, которая создает систолическое давление. Представим камеру сердца в виде цилиндра с площадью основания S длиной L, тогда L=Q/S. В результате подстановки в P найденных выражений получим P = (m v L)/(t Q) = =(m Q L)/(S t 2 Q) =

7 =(m L)/(S t 2) = (m Q)/(S t) 2. Окончательно,. Это соотношение имеет практическую ценность, поскольку позволяет определять давление через параметры левого желудочка сердца. Проведем его более подробный анализ. Определим размерность давления в метрической системе СИ. В этой системе формула размерности давления имеет вид - P, где L-длина, M-масса, T-время. Подставим эти символы в полученное нами выражение P = P, что соответствует формуле давления в системе СИ. Вывод таков в процессе получения формулы давления использованы физические величины, которые корректно определяют значение давления. Анализ соотношения также показывает, что параметры в знаменателе входят в формулу во второй степени, - как время, так и площадь отверстия выхода в аорту. В этой области расположен аортальный клапан. То есть, недостаточная пропускная способность клапана, резко увеличивает давление в камере. В равной степени это относится и ко времени изгнания крови из камеры левого желудочка. Показатели в числители масса и объем суть одно и то же, поскольку масса численно равна объему, умноженному на плотность крови ρ, а она практически равна единице. Таким образом, если S и t уменьшатся, а Q увеличится на 25%, то давление возрастет почти в 10 раз! Необходимо отметить, что рассчитанное нами систолическое давление есть превышение давления в аорте над диастолическим давлением, которое поддерживается за счет напряжения сосудов при закрытом аортальном клапане. Для определения массы и ударного объема крови можно применить модифицированную формулу Старра: Q=90,97+0,54 (P сис -Р диа)-0,57 Р диа -0,61 В, где В возраст. Ударный объем Q рассчитывается по артериальному давлению, находящемуся в пределах: Р сис систолическое мм рт.ст., Р диа диастолическое мм рт.ст., значение пульса от 60 до 90 ударов в мин. Расчеты проводятся для лиц 3-х возрастных групп: 1. Женщин от лет, мужчин от лет с коэффициентом умножения Q на 1,25 2. Женщин от лет, мужчин от лет с коэффициентом умножения Q на 1,55 3. Женщин от 56 лет, мужчин от 61 года с коэффициентом умножения Q на 1,70 Произведем расчеты давления при некоторых выбранных параметрах.

8 Полученное нами выражение позволяет в выбранной системе физических величин рассчитать значение давления. На практике давление измеряют в мм. ртутного столба (мм.рт.ст.). Если задать массу крови в г, объем в мл, время в сек и диаметр в см, то, с учетом коэффициентов перевода физических единиц измерения, получим формулу расчета давления в мм.рт.ст. Р = 7,34 10 [мм.рт.ст.] Здесь диаметр сосуда входит в знаменатель формулы в четвертой степени! Рассчитаем P для некоторых значений m, d, t и Q, m=ρ Q, ρ=1. d [см] t [сек] Q [мл] P[мм.рт.ст.] L[см] V[см/сек] 2 0,3 74,3 1,6 132,1 1,2 297,2 Из приведенных данных видно, что при уменьшении d в 2 раза давление возрастает в 16 раз. Совместное использование формулы расчета давления Р и формулы Старра для определения Q позволяет найти d-диаметр отверстия выхода потока крови левого желудочка через аортальный клапан. Для расчета измерим тонометром артериальное давление Р сис и Р диа, а с помощью устройства Pulstream+ определим время систолы t. Показания тонометра: 130/70 мм.рт.ст. Ударный объем Q по Старру: Q=1,70 (90,97+0,61 71) = 67,8 мл. Время систолы t: 0,35 сек. Подстановка в формулу расчета 11,34 10 значений параметров дает величину диаметра отверстия аортального клапана d=1,6 см, что соответствует среднему размеру для восходящей аорты (1,5 см.) сердца.

9 Диастолическое давление При расчете диастолического давления будем использовать законы деформации сосудов при следующих допущениях. Диастолическое давление это давление в аорте, имеющей форму цилиндрической трубки радиуса R и длиной L. С момента открытия аортального клапана за время систолы в аорту вбрасывается порция крови, равная ударному объему Q и массой m. При этом несколько увеличивается давление внутри аорты и ее радиус. Повышение давления вызывает отток крови в венозную систему организма, т.е. одновременно происходит и некоторое уменьшение объема и давления крови в аорте. Анализ кинетического уравнения движения крови позволяет сделать вывод, что масса вытекающей жидкости пропорциональна величине давления. Это значит, что за время, равное длительности кардиоинтервала, объем крови в артериальной системе уменьшится на величину, где - общее периферическое сопротивление сосудов, P - текущее значение давления, T длительность кардиоинтервала. Периферическое сопротивление µ = Р ср /Q t имеет тот же смысл, что и сопротивление электрическому току в законе Ома. Определим значение при следующих нормированных значениях: среднее давление в аорте P ср = P диа +0,33 (Р сис -Р диа) = = 80-0,33(120-80) = 93,3 мм.рт.ст.; ударный объем Q = 70 мл. Q t = Q/T. При пульсе 76 уд/мин, длительность кардиоинтервала T = 60/76 = 0,79 сек. Отсюда Q t = 70/0,79 = 88,6 мл/сек, а µ = 93,3/88,6 =1,053 мм.рт.ст сек/мл. Рекурсивное уравнение увеличения объема крови при каждом ударе можно записать в виде Q i+1 = Q i + Q P i T/µ

10 Если стенки сосуда обладают эластичностью и деформация стенок подчинена закону Гука, то R/R = P/E или Р = Е (R/R) R приращение радиуса, P давление, E модуль Юнга для стенки сосуда, R радиус аорты, Рассмотрим упрощенную схему нагнетания крови в аорту 2(R+ R) Q L L длина сосуда S площадь поперечного сечения аорты Найдем приращение радиуса через приращение объема Q = Q 0 + Q Q ударный объем S = Q/L, S = π R 2 / = / R = / R = R R 0 R/R = R/R 0 1 R/R = / Тогда, Р = Е Q i+1 = Q i + Q Е T/µ, привяжем приращение Q под знаком квадратного корня к начальному значению Q 0, Q i+1 = Q i + Q Е Q i+1 = Q i + Q Е Р i = Е T/µ T/µ,

11 Ряд1

12 Ряд Дифференциальная пульсограмма t1 - Фаза (время) интенсивного сокращения ФИС; t2 - Фаза (время) экстремальной нагрузки ФЭН; t3 - Фаза (время) снижения нагрузки ФСН; t4 - Фаза (время) завершения систолы ФЗС.

13 На рисунке представлены две пульсограммы: верхняя обычная, нижняя дифференциальная. Видно, что дифференциальная пульсограмма содержит значительно больше экстремальных точек. Это позволяет с помощью методов фазового анализа получать достоверную информацию о гемодинамике сосудистого кровотока. Еще более ценную информацию о состоянии сосудистой стенки можно получить по второй производной от давления по времени. Следует отметить, что процесс дифференцирования всегда сопровождается значительным повышением уровня шумов, ухудшением показателя отношения сигнал/шум и осложняет процесс получения достоверных результатов измерений. Проблема усугубляется тем, что для надежной регистрации даже обычной пульсограммы необходимо иметь устройства обладающие коэффициентом усиления более 1000 (60 дб). При этом чувствительность на входе, при соотношении сигнал/шум 1:1, не менее 1 милливольт. Для выделения дифференцированного сигнала (по первой производной) коэффициент усиления электронного устройства необходимо доводить до 10000, что очень проблематично, так как электронное устройство обычно при таких коэффициентах усиления может переходить в режим самогенерации. Надежный сигнал от второй производной практически получить не представляется возможным. Необходимо было найти принципиально новые решения. Эти решения были найдены в рамках разработанной технологии Pulstream. Существует несколько способов улучшения показателя отношения сигнал/шум. Это создание специализированных электронных и программных систем. Программные фильтры. После усиления и цифрового преобразования сигнал с каждого канала устройства «Pulstream+» поступает через USB порт в компьютер и далее для подавления шумов фильтруется методом скользящего среднего. Скользящее среднее метод сглаживания временных рядов при цифровой обработке сигналов для устранения высокочастотных составляющих и шумов, то есть он может быть использован в качестве фильтра низких частот. Причем фильтрация сигнала осуществляется без искажений фазовых характеристик сигнала. Пусть имеется оцифрованный сигнал S(n), где n номер отчета в выборке сигнала. Применив метод скользящего среднего, получаем сигнал F(n). Общая формула для вычисления скользящего среднего: F(k) =, (1) где W ширина области усреднения, p i весовые коэффициенты. Суть метода заключается в замене точки выборки средним значением соседних точек в заданной окрестности. В общем случае для усреднения

14 используются весовые коэффициенты, которые в нашем случае принимаются p i =1. Алгоритм вычисления скользящего среднего можно оптимизировать по числу операций, а следовательно по времени выполнения, за счет сокращения операций сложения. Для этого можно использовать тот факт, что суммирование по W отчетам можно провести только один раз для нахождения элемента F(k)= SUM(k)/W, (2) / где SUM(k) = / ; (3) Тогда последующий элемент может быть вычислен по формуле F(k+1) = (SUM(k) + S(k+ W/2 + 1) S(k- W/2)) / W (4) Вычислительные затраты на обработку сигнала алгоритмом простого скользящего среднего составляют Nh + 2 (Ns-1) операций сложения; Таким образом, на первой итерации алгоритма необходимо провести Nh операций сложения, а на последующих Ns-1 итерациях - всего по две операции сложения. Nh - ширина окна (число сэмплов фильтра). Ns - число сэмплов во входном сигнале. Для исключения искажений, связанных с переходными процессами электронных компонентов системы, процесс обработки начинается с задержкой, которая составляет 100 циклов чтения из входного буфера. За один цикл обращения к буферу в обработку передается по 5 отсчетов для каждого канала. Принимая во внимание специфику чтения информации в виде пакета из 5 отсчетов, в алгоритм фильтрации были встроены блоки, позволяющие многократно повторять процедуру сглаживания. Благодаря этому многократно увеличивалось значение отсчета для каждой точки измерения. Так например, при трехкратном повторении процедуры сглаживания значение сигнала возрастало до десятков тысяч. Это позволило надежно дифференцировать сигнал и получать производную 3-го порядка. Из вышесказанного следует, что метод скользящего среднего обладает следующими положительными качествами: - простотой алгоритмизации; - малыми вычислительными затратами; - большим приведенным коэффициентом усиления; - отсутствием фазовых искажений сигнала.

15 Классический метод измерения скорости пульсовой волны Техника регистрации достаточно проста: на место пульсации сосуда, например, лучевой артерии, накладывается датчик, в качестве которого используются пьезокристаллические, тензометрические или емкостные датчики, сигнал от которого идет на регистрирующее устройство (например, электрокардиограф). При сфигмографии непосредственно регистрируются колебания артериальной стенки, вызванные прохождением по сосуду пульсовой волны. Для регистрации скорости распространения пульсовой волны по артериям эластического типа проводят синхронную регистрацию пульса на сонной артерии и на бедренной артерии (в области паха). По разнице между началами сфигмограмм (время) и на основании замеров длины сосудов рассчитывают скорость распространения. В норме она равна 4 8 м/с. Для регистрации скорости распространения пульса по артериям мышечного типа регистрируют синхронно пульс на сонной артерии и на лучевой. Расчет такой же. Скорость, в норме от 6 до 12 м/с значительно выше, чем для артерий эластического типа. Реально с помощью механокардиографа регистрируют одновременно пульс на сонной, бедренной и лучевой артериях и рассчитывают оба показателя. Эти данные имеют важное значение для диагностики патологий сосудистой стенки и для оценки эффективности лечения этой патологии. Например, при склерозировании сосудов скорость пульсовой волны из-за роста жёсткости сосудистой стенки возрастает. При занятии физической культурой интенсивность склерозирования снижается, и это отражается на уменьшении скорости распространения пульсовой волны. Возрастные значения скорости распространения пульсовой волны по сосудам эластического (Сэ) и мышечного (См) типов, полученные с помощью пьзодатчиков устанавливаемых на теле в различных зонах залегания крупных сосудов. Возраст Сэ, м/cек Возраст См, м/сек,1 71 и старше 9,4 51 и старше 9,3 Измерение скорости пульсовой волны с помощью устройства «Pulstream+»

16 Устройство «Pulstream+», благодаря наличию 2-х каналов и достаточно хорошим временным разрешением (около 2.5 млсек), может успешно использоваться для регистрации скорости пульсовой волны. Для этих целей разработано специальное программное обеспечение, которое определяет временное запаздывание пульсограммы относительно R-зубца электрокардиограммы. Синхронно регистрируется пульсограмма и I отведение ЭКГ. За базу L-путь, пройденный пульсовой волной, принимается длина руки плюс расстояние от сердца до плечевого сустава. Он примерно равен 1 метру. Временной сдвиг определяется как S=S1+S2 Сфигнограмма Сфигмография неинвазивный механокардиографический метод, направленный на изучение колебаний артериальной стенки, обусловленных выбросом ударного объема крови в артериальное русло. С каждым сокращением сердца увеличивается давление в артериях и имеет место прирост их поперечного сечения, затем происходит восстановление исходного состояния. Весь этот цикл превращений и получил название артериального пульса, а запись его в динамике сфигмограммы. Различают сфигмограммы центрального пульса (запись производится на крупных артериях, близко расположенных к сердцу: подключичной, сонной) и периферического (регистрация осуществляется с более мелких артериальных сосудов).

17 В последние годы для регистрации сфигмограммы используют пьезоэлектрические датчики, что позволяет не только достаточно точно воспроизвести кривую пульса, но и измерить скорость распространения пульсовой волны. Сфигмограмма имеет определенные опознавательные точки и при синхронной записи с ЭКГ и ФКГ позволяет анализировать фазы сердечного цикла раздельно для правого и левого желудочков. Технически записать сфигмограмму несложно. Обычно одновременно накладывают 2 и более пьезодатчиков или производят синхронную запись с электро- и фонокардиограммами. В первом случае исследование направлено на определение скорости распространения пульсовой волны по сосудам эластического и мышечного типов (датчики накладывают над областью сонной, бедренной и лучевой артерий). Для получения кривых, годных к расшифровке, датчики следует располагать на переднешейной борозде на уровне верхнего края щитовидного хряща (сонная артерия), на середине пупартовой связки (бедренная артерия) и в зоне максимальной пульсации лучевой артерии. О синхронной записи сфигмограммы, электрокардиограммы и фонокардиограммы см. раздел «Поликардиография». Записывается сфигмограмма при скорости движения лентопротяжного механизма мм/с. Морфология кривых, записанных с крупных и периферических сосудов, неодинакова. Более сложную структуру имеет кривая сонной артерии. Она начинается маленькой волной «а» (предсистолическая волна), за которой следует крутой подъем (анакрота «а б»), соответствующий периоду быстрого изгнания крови из левого желудочка в аорту (запаздывание между открытием клапанов аорты и появлением пульса на сонной артерии равно приблизительно 0,02 с), затем на некоторых кривых видны мелкие осцилляции. В дальнейшем кривая резко опускается книзу (дикротическая волна «в г»). Эта часть кривой отражает период медленного поступления крови в сосудистое русло (под меньшим давлением). В конце этой части кривой, соответствующей окончанию систолы, отчетливо регистрируется выемка (инцизура «д») конец фазы изгнания. В ней можно отмерить короткий подъем, вызванный захлопыванием полулунных клапанов аорты, что

18 соответствует моменту выравнивания давления в аорте и желудочке (по Н. Н. Савицкому), он четко совпадает со II тоном синхронно записанной фонокардиограммы. Затем кривая постепенно падает (пологий спуск), на спуске в большинстве случаев видно небольшое возвышение («е»). Эта часть кривой отражает диастолический период сердечной деятельности. Морфология кривой периферического пульса менее сложна. В ней различают 2 колена: восходящее анакрота «а» (обусловленное внезапным подъемом давления в исследуемой артерии) с добавочной дикротической волной «б» (происхождение которой не совсем ясно) и нисходящее (см. рисунок). Анализ сфигмограммы центрального пульса может быть направлен на изучение временных характеристик сердечного цикла Е. Б. Бабский и В. Л. Карпман предложили такие уравнения для расчета систолы и диастолы: S=0,324 С; S=0,183 C+0,142 где S продолжительность систолы, С сердечный цикл. Как известно, эти показатели коррелируют с ЧСС. Если при данной ЧСС регистрируется удлинение систолы на 0,02 с и более, то можно констатировать наличие увеличенного диастолического объема (повышенный венозный приток крови к сердцу или застойные явления в сердце в стадии компенсации). Укорочение систолы указывает на поражение миокарда (дистрофия и др.). По морфологии кривой можно получить представление об особенностях изгнания крови из левого желудочка при различных патологических состояниях. Крутой подъем кривой (более чем в норме) с восходящим плато характерен для повышенного давления в аорте и периферических сосудах, а ранний пик с низкой систолической вершиной, переходящей в быстрое снижение с глубокой инцизурой, соответствует низкому давлению в аорте. Достаточно типичные кривые записываются при недостаточности аортальных клапанов (высокая начальная амплитуда и быстрое диастолическое падение), при аортальном стенозе (низкая амплитуда кривой с коротким начальным подъемом и резко выраженной анакротической инцизурой) и др. Синхронная запись сфигмограмм сонной, бедренной и лучевой артерий (см. рисунок) позволяет определить скорость распространения пульсовой волны. Для расчета «времени запаздывания пульса» производят линейные измерения следующих расстояний: l1 между точками расположения датчика пульса на сонной артерии и яремной вырезке грудины, l2 от яремной вырезки грудины до пупка; l3 от пупка до места наложения датчика пульса на бедренной артерии, l4 от яремной вырезки грудины до места фиксации датчика на лучевой артерии при вытянутой под прямым углом к туловищу руке. Определение времени

19 запаздывания начала подъема. 3аписанных сфигмограмм лежит в основе анализа скорости распространения пульсовой волны. При определении разницы во времени появления подъема кривых сонной и бедренной артерий рассчитывается скорость распространения пульсовой волны по сосудам эластического типа (Сэ): Сэ = l2+l3 l1/tэ где tэ время запаздывания пульсовой волны от сонной до бедренной артерий. Расчет скорости распространения пульсовой волны по сосудам мышечного типа производится по формуле: СМ =l2+l3 l1/tм где 1м время запаздывания пульсовой волны от сонной до лучевой артерий. Данные рассчитываются в 5 10 комплексах и выводятся средние величины в см/с. Отношение скоро сти распространения пульсовой волны по сосудам мышечного типа к скорости распространения пульсовой волны по сосудам эластического типа у здоровых людей находится в пределах 1,1 1,3. Скорость распространения пульсовой волны определяется упругими свойствами артериальной стенки и изменяется с возрастом от 400 см/с у детей до 1000 см/с у лиц старше 65 лет (таблица1).

20 Описание «ПУЛЬСТРИМ+» Общие сведения Изделие ПУЛЬСТРИМ+ является продолжением развития ряда устройств, разработанных по технологии ДОКТОР МАУС. Опыт эксплуатации предыдущей модели ПУЛЬСТРИМ показал высокую эффективность этого прибора при бытовом применении. С течением времени возникла необходимость, как в улучшении его эксплуатационных характеристик, так и в расширении функций прибора. Таковыми являются: - возможность одновременной регистрации пульсограммы и ЭКГ; - возможность определения скорости пульсовой волны; - повышение чувствительности и помехозащищенности устройства; - возможность автономной работы без подключения к ПК; - возможность непосредственного подключения к сотовому телефону; - возможность передачи SMS сообщений врачу; - возможность передачи пульсограмм и ЭКГ на медицинский сервер. При этом необходимо было сохранить весовые и размерные характеристики устройства, а также обеспечить преемственность существующего интерфейса пользователя и сохранение структуры имеющейся базы данных. Все вышеперечисленные требования были реализованы в приборе ПУЛЬСТРИМ+. Одновременная регистрация достигается введением второго независимого канала, при этом временное разрешение каждого канала составляет 5 ms. Ослабление по соседнему каналу не хуже 70 Дб. Повышение порога чувствительности достигается за счет применения метода стохастического резонанса. Чувствительность каналов 2,5 мкв, при соотношении сигнал/шум 1:1. Для улучшения помехозащищенности разработаны дополнительные цифровые фильтры. Скорость пульсовой волны определяется при одновременной регистрации пульсограммы и ЭКГ и позволяет оценивать состояние сосудистой стенки. По этому параметру также оценивается динамика изменения артериального давления. Для обеспечения работы с подключением к сотовому телефону был разработан, на базе СМАРТФОНА типа HTC, интерфейс пользователя в значительной степени идентичный интерфейсу разработанному для ПК.

21 Программное обеспечение на КПК создано для работы под управлением ОС Windows Mobile ver Связь устройства ПУЛЬСТРИМ со СМАРТФОНОМ осуществляется по каналу USB. Программное обеспечение на ПК создано для работы под управлением ОС Windows XP, Windows 7. Внешний вид устройства изображен на Рис 1. Устройство имеет размеры 135 Х 70 Х 20 мм и вес около 150 г. Устройство состоит из пластмассового корпуса, на котором расположена пленочная передняя панель с кнопками управления, дисплей и зона оптического сенсора. Слева, сбоку установлены мини USB разъем и разъем для подключения ЭКГ-электродов. С обратной стороны корпуса имеется отсек для размещения батарейного питания. Внутри корпуса находится плата с электронными компонентами. Батарейное питание используется при автономной работе и при подключении смартфона. При подключении к персональному компьютеру питание осуществляется от USB порта. Рис. 1 В автономном режиме можно произвести проверку устройства и снять пульсограмму.

22 При подключении устройства к смартфону или ПК на дисплей выводится информация о состоянии связи с подключенным устройством. Программное обеспечение для компьютера и смартфона можно скачать с этого сайта. Описание режима регистрации и обработки ЭКГ Внешний вид заставки (главного окна) «ПУЛЬСТРИМ+» мало чем отличается от окна «ПУЛЬСТРИМ», за исключением группы двух радиокнопок «сигнал», расположенных в нижнем левом углу заставки, с помощью которых устанавливается режим ввода ПУЛЬСОГРАММЫ (ПУЛ) или ЭКГ (Рис. 2). Назначение остальных кнопок управления и их внешний вид одинаковы, как для режима ПУЛ, так и для ЭКГ. Рис. 2 После установки измерительных электродов на теле пациента можно приступить к процессу снятия ЭКГ. Для этого желательно перейти в ручной режим и нажать кнопку «Измер». В процессе измерения недопустимы движения тела и рук. Измерения могут производиться с помощью стандартных электродов. Разработаны также ручные электроды на базе электродов, используемых для снятия электростатического потенциала с рук при проведении монтажных работ с электронными изделиями. Как и в случае регистрации пульсограммы, на экране отображается дифференциальная кривя ЭКГ, обработка которой позволяет выявить и удалить из сигнала помехи и шумы. Проблеме получения «чистого» неискаженного сигнала при разработке уделялось большое внимание. Были использованы современные методы подавления помех при сохранении высокой чувствительности. Отсутствие помех позволяет с высокой точностью рассчитывать временные характеристики работы сердца и сосудов и значительно улучшает диагностические возможности устройства.

23 Дифференциальная кривая значительно более информативна и позволяет более точно выявить нарушения в работе сердечной мышце. После завершения процесса регистрации необходимо активизировать кнопку «Пров», На экране появится преобразованная к интегральному виду размеченная кривая ЭКГ. В настоящее время в диагностических целях в кардиологии применяют именно этот вид ЭКГ. Ниже представлены рисунки дифференциальной (Рис. 3) и интегральной (Рис. 4) ЭКГ. Рис. 3 Рис. 4 После визуального анализа ЭКГ следует, нажав кнопку «Расчет», вывести результаты (Рис. 5). Рассчитанные вариационные параметры ритма полностью соответствуют результатам расчета при анализе ритма для ПУЛЬСОГРАММЫ.

24 Рис. 5 Результаты анализа формы ЭКГ сводятся к автоматическому определению длительности QRS-интервала и графического вывода одного фрагмента ЭКГ. В кардиологии в соответствии с принятыми стандартами производят измерения амплитуд и интервалов предварительно размеченных pqrst-зубцов (Рис. 6). Рис. 6 Существует большое разнообразие форм ЭКГ и произвести автоматический их анализ во многих случаях практически невозможно. Поэтому был применен метод полуавтоматического ручного определения длительностей выбранных интервалов. Для этого на кривой (Рис. 7) с помощью курсора мышки выбирается нажатием левой клавиши начальная точка, а затем курсор переводится в конечную точку и повторным нажатием автоматически в окне появляется (Рис. 8) вычисленное значение в ms. В данном случае измеренное значение pq-интервала соответствует 180 ms.существуют нормированные значения этих показателей определяющие состояние сердечной мышцы и проводящей системы сердца.

25 Рис. 7 Рис. 8 После нажатия на кнопку «Заключ» появляется краткое заключение (Рис. 9), которое базируется на анализе значений параметров ритма зарегистрированной ЭКГ. Рис. 9 Для сохранения полученных результатов после получения заключения нужно меню «Файл» и выбрать режим «Регис», откроется окно Рис. 10. Затем нужно заполнить (исправить) предлагаемые поля и нажать кнопку «Сохр». Необходимо соблюдать следующее условие внесения сведений в поле «ПАЦИЕНТ»: первый символ пульсограммы - «#», электрокардиограммы

26 Рис. 10 Режимы меню «Файл», «Сервис» и «Справка» отрабатывают идентично режиму обработки пульсограммы. Электроды для снятия ЭКГ Используется и разработано несколько типов измерительных электродов: стандартные для грудного отведения, ручные в виде металлических браслетов, ручные с фиксацией на «липучках», ручные с регулируемым натяжением резиновой тесьмой. Для длительного и постоянного ношения наиболее эффективно использование металлических браслетов, которые имеют большую площадь соприкосновения и не требуют нанесения электропроводящего геля. Для снятия ЭКГ у детей целесообразно применить ручные электроды с регулируемым натяжением резиновой тесьмой или с фиксацией на «липучках». На рисунках 11 и 12 изображены применяемые электроды. Рис. 11 Регистрация пульсограмм с помощью видеокамеры

27 Видеокамера это электронно-оптическое устройство, позволяющее регистрировать в отраженном свете различные непрозрачные объекты. Изображение объекта с помощью линзы объектива проецируется на светочувствительную матрицу, сигнал с которой через USB-канал поступает в персональный компьютер. Далее, производится программная обработка видеосигнала и вывод изображения на монитор компьютера. Разрешение камеры определяется количеством точек (пикселей), приходящихся на единицу площади светочувствительной матрицы видеокамеры. Чем больше пикселей, тем выше разрешение. Для наших целей этот параметр не является определяющим. Более того, чем он ниже, тем лучше, улучшается помехоустойчивость. Более существенными являются показатели чувствительности в спектральном диапазоне. Спектральный диапазон видимого света от 400 до 700 нм. Нас будет интересовать область красного и ближнего инфракрасного участка (более 700 нм). Практически все камеры в этом диапазоне имеют достаточно высокую чувствительность, т.е. пригодны для использования в качестве сенсора пульсовой волны. Остановимся подробнее на вопросах регистрации пульса с помощью камеры. Предварительные пояснения. Если в темном помещении закрыть яркий источник света ладонью руки, то мы увидим красный рельеф очертаний пальцев, т.е. ткань руки является фильтром, пропускающим красный свет. Поскольку вся ткань пронизана сетью сосудов, которые в такт с сокращением сердца меняют свое кровенаполнение, в результате чего происходит изменение интенсивности (модуляция) проходящего света. Такую же картину мы получим и при использовании видеокамеры. Если закрыть пальцем объектив и направить на него источник света, то при включенной камере на экране монитора появится неравномерно светящийся красный квадрат, на котором видны незначительные колебания яркости отдельных участков. Это и есть пульсация крови в фаланге пальца. Вернемся к вопросу регистрации пульсаций яркости светового потока в камере. Яркость пикселя определяется тремя показателями цветности красного, синего и зеленого. Их значения можно получить программным путем. Необходимо сразу отметить, что регистрация пульсаций яркости производится на уровне больших помех и шумов. Далее выбирается участок изображения размером, например 10х10 пикселей, и рассчитывается суммарный показатель яркости для каждого кадра видеозаписи. При этом производится фильтрация сигнала и его сглаживание. Если запись производится с регистрацией яркости каждого кадра, то на выходе мы получим пульсограмму.

28 В этом и состоит суть метода, на базе которого разработано программное обеспечение системы VIDEOPULS. Имитатор пульсовой волны Для получения стабильного оптического сигнала, имитирующего пульсовую волну при заданных физиологических параметрах, был разработан и изготовлен имитатор пульсовой волны. Имитатор пульсовой волны в своем составе состоит из ПК, к которому через последовательный порт подключена оптическая головка, состоящая из управляемых цветовых излучателей, и программного обеспечения. Программное управление излучателями позволяет, за счет вариаций очередности включения и изменения длительности зажигания и гашения отдельных разноцветных источников, имитировать прохождение пульсовой волны с заданными физиологическими параметрами. Была выбрана форма модельного сигнала, который в своем составе содержит некоторые отклонения от нормы в гемодинамике капиллярного кровотока, а именно, на участке экстремальной нагрузки миокарда наблюдается «ступенька», а также во время диастолы виден значительный подъем над нулевым уровнем. В таблицу сведены результаты обработки сигналов поступавших на вход устройства ПУЛЬСТРИМ+ от имитатора в различное время суток. Ном Пульс уд/ми н Вариационный размах (сек.) Коэффициент вариации (%) Тонус сосудов % Максим. нагрузка сек Сопрот. сосудов сек 1 71,7 0,005 0,279 0,0744 0,7 0,005 0,133 0,0731 0,7 0,005 0,061 0,0733 0,0434

29 4 71,7 0,005 0,075 0,0727 0,7 0,005 0,132 0,0734 0,7 0,005 0,177 0,0732 0,7 0,005 0,204 0,0742 0,0429 ВЫВОД: Имитатор и ПО «ПУЛЬСТРИМ+» обладают высокой стабильностью и хорошей воспроизводимостью результатов.


Описание «ПУЛЬСТРИМ+» Общие сведения Изделие ПУЛЬСТРИМ+ является продолжением развития ряда устройств, разработанных по технологии ДОКТОР МАУС. Пятилетний опыт эксплуатации предыдущей модели ПУЛЬСТРИМ

5 Фотоплетизмография Введение Движение крови в сосудах обусловлено работой сердца. При сокращении миокарда желудочков кровь под давлением перекачивается из сердца в аорту и легочную артерию. Ритмические

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ АМУРСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ Н.В.НИГЕЙ ИЗМЕРЕНИЕ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ ТКАНЕЙ ОРГАНИЗМА И ЕГО ИЗМЕНЕНИЯ ЗА ЦИКЛ РАБОТЫ СЕРДЦА МЕТОДИЧЕСКИЕ

УДК 535.341.6 О.А. РЕМАЕВА, канд. техн. наук, Е.В. РЕМАЕВ ОПТИЧЕСКИЙ МЕТОД НЕИНВАЗИВНОГО ОПРЕДЕЛЕНИЯ АРТЕРИАЛЬНОГО ДАВЛЕНИЯ ЧЕЛОВЕКА В последнее десятилетие в развитых странах наблюдается повышенный интерес

ТЕСТЫ ТЕКУЩЕГО КОНТРОЛЯ по теме «МЕТОДЫ ИССЛЕДОВАНИЯ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ» Выберите номер правильного ответа 1. Сердечные тоны это звуковые феномены, возникающие а) при аускультации сердца б) при

1. Гемодинамика артериальных сосудов. Физический механизм преобразования импульсного выброса крови желудочками сердца в непрерывный артериальный кровоток. Уравнение Пуазейля, смысл. Законы общесистемной

Тесты текущего контроля по теме «Методы исследования сердечнососудистой системы. Сердечный цикл» Выберите номер правильного ответа 1. Впервые точное описание механизмов кровообращения и значение сердца

43 МЕХАНИЧЕСКИЕ СВОЙСТВА БИОЛОГИЧСКИХ ТКАНЕЙ. ФИЗИЧЕСКИЕ ВОПРОСЫ ГЕМОДИНАМИКИ Задание 1. Выберите правильный ответ: 1. Деформацией называется.... а) изменение взаимного положения тел; б) изменение взаимного

Главное условие выполнения кровью ее функций - ДВИЖЕНИЕ В течение суток кровь 1,5-2 тысячи раз прокачивается через сердце Сердечно-сосудистая система Кровеносная система замкнута. Два круга кровообращения

Министерство образования Омской области БОУ ОО СПО «Омский техникум мясной и молочной промышленности» Научно-практическая конференция студентов «Физика медицине. Артериальное давление» Выполнила: Сайдашева

ТЕСТЫ текущего контроля по теме «ЗАКОНЫ ГЕМОДИНАМИКИ» 1. Выберите 3 правильных ответа. Основными факторами, обуславливающими движение крови по сосудам, являются а) работа сердца б) градиент кровяного давления

ЛЕКЦИЯ 4 МЕХАНИКА ЖИДКОСТЕЙ, ОСНОВЫ БИОРЕОЛОГИИ И НЕКОТОРЫЕ ВОПРОСЫ ГЕМОДИНАМИКИ I. Идеальная и реальная жидкости II.Ньютоновские и неньютоновские жидкости III.Течение вязкой жидкости по трубам IV.Предмет

БИОЛОГИЯ Движение крови по сосудам класс Преподаватель: Крюкова Маргарита Хрисанфовна Причины движения крови по сосудам. Кровяное давление это давление крови на стенки кровеносных сосудов. Разность давления

24 А.И. Дядык, Л.С. Холопов. Аускультация сердца Систола I тон II тон Диастола I тон Рисунок 3. Тоны сердца и периоды сердечного цикла Период между I и II тонами соответствует систоле желудочков, период

Глава IV. Кровообращение На дом: 20 Тема: Давление крови в сосудах Задачи: Изучить изменение кровяного давления и его регуляцию Пименов А.В. 2006 Кровяное давление В кровеносной системе человека кровь

УДК 62.791.2 Прибор для исследования артериального кровообращения окклюзионно-осциллометрическим методом Быков А.А., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Медико-технические

ММА им. И.М. Сеченова Кафедра факультетской терапии 1 ЭЛЕКТРОКАРДИОГРАФИЯ 1. Нормальная ЭКГ профессор Подзолков Валерий Иванович Происхождение ЭКГ Токи, генерируемые кардиомиоцитами во время деполяризации

ЛАБОРАТОРНАЯ РАБОТА ИЗУЧЕНИЕ ЭЛЕКТРИЧЕСКИХ ПРОЦЕССОВ В ПРОСТЫХ ЛИНЕЙНЫХ ЦЕПЯХ Цель работы: исследование коэффициента передачи и сдвига фаз между силой тока и напряжением в цепях, состоящих из последовательно

Нормальная электрокардиограмма Чтобы оправдаться в собственных глазах, мы нередко убеждаем себя, что не в силах достичь цели, на самом же деле мы не бессильны, а безвольны. Франсуа де Ларошфуко. Калибровочный

ЛАЗЕРНАЯ ДОППЛЕРОВСКАЯ ФЛОУМЕТРИЯ Общий вид анализатора ЛАКК-02 исполнение 1 1 блок анализатора, 2 базовый зонд для исследования микроциркуляции, 3 белый диск из фторопласта для проверки нулевого показания

ИЗУЧЕНИЕ ЯВЛЕНИЯ ИНТЕРФЕРЕНЦИИ: ОПЫТ ЮНГА Цель работы - изучение явления интерференции света на примере опыта Юнга, изучение интерференционной картины, получаемой в опыте Юнга, исследование зависимости

Программное обеспечение для акустико-эмиссионных систем «РАНИС». Программное обеспечение (ПО) для акустико-эмиссионных систем «РАНИС» создано для поддержки всех особенностей аппаратуры и учитывает многолетний

Лабораторная работа 10 ОПЫТНОЕ ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЯ АДИАБАТЫ ДЛЯ ВОЗДУХА Цель работы изучение основных соотношений между термодинамическими параметрами и величинами, процессов происходящих в идеальном

Цель работы ЛАБОРАТОРНАЯ РАБОТА 9 А Изучение интерференции электромагнитных волн изучение распространения электромагнитных волн; изучение явления интерференции волн; экспериментальное определение длины

Диагностическое значение дефибрилляции Электрическая дефибрилляция помимо лечебного имеет большое диагностическое значение. Вопросы точной диагностики при митральных пороках, особенно с тех пор, как стало

Лабораторная работа 41 2 Определение радиуса кривизны линзы интерференционным методом Цель работы: изучение интерференции в тонких плёнках на примере колец Ньютона и определение радиуса кривизны линзы.

Санкт-Петербургский Государственный Университет Математико-механический факультет Кафедра информационно-аналитических систем Курсовая работа Определение пульса по ЭКГ Чирков Александр Научный руководитель:

Муниципальное общественное учреждение гимназия 64 Научно-экспериментальная биология Тема: «Сердечно-сосудистая система» Подготовила:Корначѐва Анастасия Учащаяся: 8в класса Руководитель: Федорова Е. В.

ЗАКЛЮЧИТЕЛЬНЫЙ ЭТАП АКАДЕМИЧЕСКОГО СОРЕВНОВАНИЯ ОЛИМПИАДЫ ШКОЛЬНИКОВ «ШАГ В БУДУЩЕЕ» ПО ОБЩЕОБРАЗОВАТЕЛЬНОМУ ПРЕДМЕТУ «ФИЗИКА» 0 ГОД ВАРИАНТ З А Д А Ч А Маленький шарик падает с высоты = м без начальной

Основные положения теории.... Предварительная подготовка... 5 3. Задание на проведение эксперимента... 8 4. Обработка результатов экспериментов... 3 5. Вопросы для самопроверки и подготовке к защите

Государственное высшее учебное заведение «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра физики ОТЧЁТ по лабораторной работе 90 ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ ГАЗОВ ОТ ДАВЛЕНИЯ

ЛАБОРАТОРНАЯ РАБОТА 1 ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ ТЕПЛОЕМКОСТЕЙ ВОЗДУХА ПРИ ПОСТОЯННЫХ ДАВЛЕНИИ И ОБЪЕМЕ РЕЗОНАНСНЫМ МЕТОДОМ Цель работы: изучение процесса распространения звуковой волны, измерение скорости

Лекция 8 Волновое движение Распространение колебаний в однородной упругой среде Продольные и поперечные волны Уравнение плоской гармонической бегущей волны смещение, скорость и относительная деформация

69 С.П. ФОМИН Разработка модуля анализа электрокардиограммы УДК 004.58 Муромский институт (филиал) ФГБОУ ВПО «Владимирский государственный университет имени А.Г. и Н.Г. Столетовых» г. Муром В работе рассматривается

Введение Болезни кровообращения являются причиной более 50% смертей в развитых странах мира и в частности в нашей стране. Считается, что основным способом борьбы с этими заболеваниями является развитие

Лабораторная работа 35 Исследование резонанса в цепи переменного тока Методическое руководство Москва 04 г. Исследование резонанса в цепи переменного тока. Цель лабораторной работы Изучение зависимости

Программа для ЭВМ Акустическая томография- Течеискатель (версия 1.1.5) ИНСТРУКЦИЯ ПОЛЬЗОВАТЕЛЯ 1. Общие сведения. Программа Акустическая томография - течеискатель (АТ-Т) предназначена для обработки записей

Лабораторная работа 1.5 ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ МЕТОДОМ СТОКСА Цель работы: определение оптимальных параметров эксперимента для определения вязкости жидкости методом Стокса. Постановка задачи

ИЗМЕНЕНИЯ К РУКОДСТВУ ПО ЭКСПЛУАТАЦИИ НА ПРИБОР «БАЛКОМ 1» Приложение 2 1. Введение В связи с доработкой программного обеспечения (ПО) прибора «Балком 1», выполненных с целью расширения технологических

Уникальное явление в истории современной цивилизации создание новой фундаментальной науки Кардиометрии www.rosnou.ru www.cardiomery.ne www.cardiocode.ru Учёные «Российского нового университета» сделали

Работа 9 Определение моментов инерции тел методом вращательных колебаний Цель работы: определение момента инерции диска методом вращательных колебаний и проверки теоремы Гюйгенса-Штейнера. Введение Основной

Работа.. Изучение вынужденных колебаний в колебательном контуре Цель работы: изучение зависимости тока в колебательном контуре от частоты источника ЭДС, включенного в контур, и измерение резонансной частоты

ЦИФРОВОЙ АКСЕЛЕРОМЕТР ZET 7151 РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ЭТМС.421425.001-151 РЭ ООО «ЭТМС» Оглавление 1 Назначение и технические характеристики... 3 1.1. Назначение цифровых датчиков... 3 1.2. Условия

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «АМУРСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ» МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Н.В. НИГЕЙ ИЗМЕРЕНИЕ

Лабораторная работа Исследование дифракции в параллельном пучке лазерного излучения. Цель работы: ознакомление дифракцией света на одномерной дифракционной решетке и определение длины волны лазерного излучения;

1. Общие. Технические характеристики 1.1. Питание прибора либо от аккумуляторов, либо от подключаемого сетевого адаптера. 1.1.1. Сетевой адаптер +В с мощностью не менее 4 Вт (ток нагрузки не менее 8 ма).

Работа.8 ИЗМЕРЕНИЕ ПОКАЗАТЕЛЯ АДИАБАТЫ ВОЗДУХА РЕЗОНАНСНЫМ МЕТОДОМ адача. Измерить собственные частоты колебаний поршня в трубке при условиях, когда возвращающая сила создается: а) магнитным полем; б)

Лабораторная работа 1 Определение радиуса кривизны поверхности линзы методом колец Ньютона. Цель работы. Цель работы определить радиус кривизны выпуклой сферической поверхности (одной из поверхностей стеклянной

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет» ИЗУЧЕНИЕ ВЫНУЖДЕННЫХ КОЛЕБАНИЙ В ЭЛЕКТРИЧЕСКОМ

R.M.S. Joemai Медицинский центр университета Лейдена, Лейден, Нидерланды МСКТ сканирование: - автоматический выбор сердечной фазы с использованием алгоритма phasexact phasexact определяет оптимальную для

ЗАКЛЮЧИТЕЛЬНЫЙ ЭТАП АКАДЕМИЧЕСКОГО СОРЕВНОВАНИЯ ОЛИМПИАДЫ ШКОЛЬНИКОВ «ШАГ В БУДУЩЕЕ» ПО ОБЩЕОБРАЗОВАТЕЛЬНОМУ ПРЕДМЕТУ «ФИЗИКА» 05 ГОД ВАРИАНТ 9 З А Д А Ч А Маленький шарик падает с высоты = м без начальной

Цель работы: ЛАБОРАТОРНАЯ РАБОТА 9 ИЗМЕРЕНИЕ МОДУЛЯ ЮНГА МЕТОДОМ СТОЯЧИХ ВОЛН В СТЕРЖНЕ 1.Изучить условия возникновения продольной стоячей волны в упругой среде..измерить скорость распространения упругих

МОДЕЛИРОВАНИЕ ЭЛЕКТРИЧЕСКОГО ГЕНЕРАТОРА СЕРДЦА Расчет параметров электрокардиограммы желудочкового комплекса Рассмотрим работу дипольного эквивалентного электрического генератора сердца (ДЭЭГС) в процессе

X A0 e βt cos (ω t α) Изобразим график зависимости амплитуды колебаний от времени для разных значений β Видно, чем больше β тем быстрее затухает амплитуда β τ коэффициент затухания Изобразим графики соответствующих

Лабораторная работа 20 Определение длин волн линий спектра излучения с помощью дифракционной решетки Цель работы: ознакомление с прозрачной дифракционной решеткой; определение длин волн спектра источника

`ЛАБОРАТОРНАЯ РАБОТА 3.0 ОПРЕДЕЛЕНИЕ РАДИУСА КРИВИЗНЫ ЛИНЗЫ ПРИ ПОМОЩИ КОЛЕЦ НЬЮТОНА. Цель работы Целью данной работы является изучение явления интерференции света и применения этого явления для измерения

Лабораторная работа Определение электроемкости конденсатора по осциллограмме его разряда через резистор Методическое руководство Москва 04 г. Определение электроемкости конденсатора по осциллограмме его

ПАКЕТ ИЗМЕРЕНИЯ МОЩНОСТИ ПРОГРАММА PMA ОСНОВНЫЕ ХАРАКТЕРИСТИКИ: Автоматическая установка и отображение формы сигнала и его параметров. Масштабирование сигнала, вывод на дисплей в единицах измерения: Вольт,

Кафедра кардіології НМАПО Носенко Н.М. Гемодинамика раздел науки, изучающий механизмы движения крови в сердечнососудистой системе. Он является частью гидродинамики раздела физики, изучающего движение жидкостей.

Вариант 1 1. Промежуток времени от начала одного колебания до его завершения 1. Длительностью импульса 2. Периодом колебаний 3. Временем реверберации 4. Временем задержки 2. Для какого типа волн в одном

10 класс Задача 1 (10 баллов) Шарик падает без начальной скорости с высоты на наклонную плоскость, угол наклона которой равен Через какое время шарик ударится о стенку, расположенную перпендикулярно наклонной

Лабораторная работа 2.2 ИЗУЧЕНИЕ ЯВЛЕНИЯ ИНТЕРФЕРЕНЦИИ: ОПЫТ ЮНГА Цель работы: изучение явления интерференции света на примере опыта Юнга, изучение интерференционной картины, получаемой в опыте Юнга, исследование

Работа 25а ИЗУЧЕНИЕ ЯВЛЕНИЙ, ОБУСЛОВЛЕННЫХ ДИФРАКЦИЕЙ Цель работы: наблюдение дифракции света на дифракционной решетке, определение периода дифракционной решетки и области пропускания светофильтров Оборудование:

УДК 12.04.421.7(07) Е.В. Стрыгина ВЫБОР ПОКАЗАТЕЛЕЙ ГЕМОДИНАМИКИ ДЛЯ МОНИТОРИРОВАНИЯ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ Адекватная гемодинамика это абсолютно необходимое условие нормальной работы внутренних органов.

Амплитудой пульсовой волны (пульсовое давление ) называется разность между максимальным и минимальным значением давлений в данной точке сосуда. В начале аорты амплитуда волны () – максимальна и равна разности систолического и диастолического давлений. Затухание амплитуды пульсовой волны при ее распространении вдоль сосуда представлена формулой:

, где – коэффициент затухания, увеличивающийся с уменьшением радиуса.

Скорость распространения пульсовой волны зависит от свойств сосуда и крови.

, где – модуль упругости; – толщина стенки сосуда; – плотность крови; – диаметр сосуда.

, что в 20-30 раз больше скорости движения крови .

18. Рассчитаем работу , совершаемую при однократном сокращении сердца.

,

Работа сердца идет на продавливание (продвижение) объема крови по аорте сечением S на расстояние при среднем давлении P и на сообщение крови кинетической энергии:

– объем крови, – масса крови,

– плотность крови, – скорость течения крови.

.

Работа сердца при однократном сокращении равна 1 Дж.

Мощность сердца за время систолы: .

19. Определение скорости кровотока.



20.Силовые характер. электр. поля

, , где – пробный заряд (точечный единичный позитивный заряд, внесенный в электрическое поле); F – сила, действующая на заряд со стороны электрического поля.

2.Силовые линии (или линии напряженности) - это воображаемые направленные линии в пространстве, это незамкнутые линии, которые начинаются на положительных и оканчиваются на отрицательных зарядах.

, где q 0 – заряд, который создает электрическое поле; r – расстояние от точечного заряда q 0 до точки, в которой исследуется напряженность поля;

– коэф. пропорциональности;

ε – относительная диэлектрическая проницаемость среды;

ε 0 = 8,85 . 10 – 12 Ф/м – электрическая постоянная.

22. Проводники – это вещества, которые имеют свободные заряды, способные перемещаться под действием эл. поля. Примеры: плазма крови, лимфа, межклеточная жидкость, спинномозговая жидкость, цитоплазма.

Диэлектрики (изоляторы) – это вещества, которые не имеют свободных зарядов, поэтому не проводят электрический ток. Примеры: сухая кожа, связки, сухожилия, костная ткань, клеточная мембрана.

Измерение электропроводимости (кондуктометрия) использ.:

При изучении процессов в клетках и тканях во время изменений физиологического состояния;

При исследовании патологических процессов (например, при воспалении увеличивается электрическое сопротивление);

Для нахождения активных точек рефлексотерапии;

21. Энергетич. характер. эл. поля : 1.Потенциал (), разность потенциалов ().

, = = B.

Потенциал – это физическая величина численно равная работе, которую совершают силы электрического поля при перемещении единичного положительного заряда из данной точки поля в бесконечность (в точку, где потенциал поля принимается равным нулю).

.

2. Разность потенциалов – это физическая величина численно равная работе, которую совершают силы электрического поля при перемещении единичного положительного заряда из точки поля 1 в 2.

, [Δ ] = B.

Paзность потенциалов называется напряжением: .

3.Потенциал поля точечного заряда:

.

4.Эквипотенциальная поверхность.

23.Полное сопротивление (импеданс) живой ткани переменному току определяется только омическим (R ) и емкостным сопротивлениями (X C ):

,[Z] = Ом; где С – электр. емкость; – циклическая частота переменного тока.

Омические и емкостные свойства биологических тканей моделируют на основе сочетания параллельного и последовательного соединение элементов (рис. 24):

С
R 1
R 2

При прохождении переменного тока через живые ткани полное сопротивление ткани увеличивается с уменьшением частоты тока до некоторой максимальной величины Z max и стремится к некоторому минимальному значению Z min при увеличении частоты.

24. Биопотенциалы – это потенциалы электр. полей, созданных живыми системами от клеток до органов.

Мембр. потенциал - потенциалов между внутренней и внешней поверхностями плазматической мембраны.

Потенциал покоя (75 – 100 мВ) – разность потенциалов, регистрируемая между внутренней и наружной поверхностями мембраны в невозбужденном состоянии.

Внеклеточная среда имеет высокую концентрацию ионов натрия (Na+) и хлора (Cl–). Внутриклеточная среда – калия (K+). Натрий-калиевый насос позволяет поддержив. различие концентраций ионов натрия и калия по обе стороны мембран.

Электрокардиография – регистрация электр. процессов в сердце, возникающих при ее возбуждении (деполяризации и реполяризации мембраны клеток сердца).

Электрический диполь – система из двух равных по величине и противоположных по знаку точечных электрических зарядов (+q и – q), расположенных на некотором расстоянии друг от друга, называемом плечом диполя l .

ЭКГ) – график временной зависимости разности биопотенциалов сердца в соответствующем отведении.

Отведения – пара точек, между котор. измер. разн. потенц.

РУ
Блок-схема ЭКГ

*ПО – переключатель отведений;

**РУ – регистрирующее устройство.

25. Реография – это метод оценки состояния кровеносного русла путем измерения полного сопротивления (импеданса) участка ткани или органа переменному току.

Формула полного сопротивл. биотканей переменному току:

Для уменьшения емкостного сопротивления используют высокую частоту. Измерения проводятся на частоте 30 кГц. При увеличении частоты увеличивается выделение тепла, что приводит к изменению состояния кровеносного русла. При частоте 30 кГц влиянием емкостных сопротивлений тканей и крови пренебрегают, поэтому , где = 1,5 Ом. м – удельное сопротивление крови, R – омическое сопротивление участка кровеносного русла, – длина сосуда.

Реограмма:

А – амплитуда анакроты; В – амплитуда инцезуры;

С – амплитуда катакроты; Т – длительн. одного серд. цикла.

26. Электротерапия – метод лечения, воздействие постоянных и переменных эл. полей на биол. ткани.

Терапевтический эффект зависит от:

а)физических характер. полей и токов; б) типа реакции тканей.

Типы реакций биотканей на воздействие эл. током:

1. Неспецифическая реакция тканей – имеет признаки:

а) выделение тепла; б) увеличение проницаемости стенок сосуда; в) изменение ионного состава межклет. жидкости;

г) выделение медиаторов (АЦХ, гистамин и т.д);

д) возбужд. рецепторов и возникн. афферентных импульсов.

Эти признаки приводят к:

а) улучшению крово- и лимфообращения; б) улучшению трофики тканей; в) рассасыванию инфильтратов; г) болеутоляющему эффекту.

2. Специфическая реакция тканей – возбуждение тканей.

Реакция раздраж. тканей током подчиняется закону Дюбуа-Реймона: раздражение вызывается при изменении силы тока и зависит от скорости, с которой это изменение происходит.

Минимальное значение силы тока, вызывающее реакцию возбудимой ткани, называется порогом.

Согласно уравнению Вейса-Лапика : пороговое значение тока находится в обратно пропорциональной зависимости от быстроты нарастания тока:

, где I п – пороговая сила тока; t и – длительность импульса, q – заряд, R реобаза – это пороговая сила тока прямоугольного импульса, независимо от длительности его действия. В уравнении Вейса-Лапика при . Время, в течении которого ток в две реобазы вызывает возбуждение этой ткани, называется хронаксией или временем возбуждения.


Похожая информация.


Методы контроля кровенаполнения тканей

и измерения скорости пульсовой волны

Скорость распространения пульсовой волны в аорте может составлять 4-6 м/сек, в артериях мышечного типа 8/12 м в сек. Линейная скорость кровотока по артериям обычно не превышает 0,5 м/сек.

Плетизмография (от греч. plethysmos - наполнение, увеличение + graphō - писать, изображать) - метод исследования сосудистого тонуса и кровотока в сосудах мелкого калибра, основанный на графической регистрации пульсовых и более медленных колебаний объема какой-либо части тела, связанных с динамикой кровенаполнения сосудов.

Метод фотоплетизмографии основан на регистрации оптической плотности исследуемой ткани (органа).

Физические основы кровотока (гемодинамики ).

Объёмной скоростью кровотока (Q) называют объём жидкости (V), протекающий в единицу времени через поперечное сечение сосуда:

Q = V / t (1)

Линейная скорость кровотока определяется отношением пути, проходимого частицами крови, ко времени:

υ = l / t (2)

Объёмная и линейная скорости связаны соотношением:

Q = υ · S , (3)

где S – площадь поперечного сечения потока жидкости.

Для сплошного течения несжимаемой жидкости выполняется уравнение неразрывности: через любое сечение струи в единицу времени протекают одинаковые объёмы жидкости.

Q = υ · S = const (4)

В любом сечении сердечно - сосудистой системы объёмная скорость кровотока одинакова .

Площадь суммарного просвета капилляров в 700-800 раз больше поперечного сечения аорты. С учётом уравнения неразрывности (4) это значит, что линейная скорость кровотока в капиллярной сети в 700-800 раз меньше, чем в аорте, и составляет примерно 1 мм / с . В покое средняя скорость кровотока в аорте лежит в интервале от 0.5 м / с до 1 м / с , а при большой физической нагрузке может достигать 20 м / с .



Рис. 2. Соотношение между суммарным поперечным сечением сосудистой системы (S) на разных уровнях (сплошная линия) и линейной скоростью кровотока (V) в соответствующих сосудах (штриховая линия):

Сила вязкого трения по формуле Ньютона:

F тр = - η · S ·(d υ / dy ), (5)

где η- коэффициент вязкости (динамическая вязкость), S – площадь соприкосновения контактирующих слоёв. У цельной крови коэффициент вязкости, измеренный на вискозиметре, составляет около 5 мПа·с, что в 5 раз больше вязкости воды . При патологических состояниях вязкость крови колеблется от 1.7 мПа·с до 22.9 мПа·с.

Кровь вместе с другими жидкостями, вязкость которых зависит от градиента скорости, относится к неньютоновским жидкостям. Вязкость крови неодинакова в широких и узких сосудах, причём влияние диаметра кровеносного сосуда на вязкость начинает сказываться при просвете менее 1 мм.

Ламинарное и турбулентное (вихревое ) течение . Переход от одного вида течения к другому определяется безразмерной величиной, называемой числом Рейнольдса:

Re = ρ < υ > d / η = < υ > d / ν , (6)

где ρ – плотность жидкости, <υ> - средняя по сечению сосуда скорость жидкости, d – диаметр сосуда, ν=η/ρ – кинематическая вязкость.

Критическое значение числа Рейнольдса Re кр

Для однородных жидкостей Reкр = 2300, для крови Reкр = 970±80, но уже при Re >400 возникают локальные завихрения в разветвлениях артерий и в области их крутых изгибов.

Формула Пуазейля, для объёмной скорости кровотока:

Q = π r 4 Δ p /8 η l , (7)

где Q – объёмная скорость кровотока, r – радиус сосуда, Δp – разность давлений на концах сосуда, η – вязкость крови.

Видно, что при заданных внешних условиях (Δp) через сосуд протекает тем больше крови, чем меньше её вязкость и чем больше радиус сосуда.

Формуле Пуазейля можно придать и такой вид:

Q = Δ p / R г ., (8)

В этом случае формула Пуазейля обнаруживает сходство с законом Ома.

Rг = 8ηl/πr4 отображает сопротивление сосудистого русла кровотоку, включая все факторы, от которых оно зависит. Поэтому Rг называют гемодинамическим сопротивлением (или общим периферическим сопротивлением сосудов).

Гемодинамическое сопротивление 3-х сосудов, соединённых последовательно и параллельно, вычисляется по формулам:

R г = R г 1 + R г 2 + R г 3 , (10)

R г = (1/ R г 1 + 1/ R г 2 + 1/ R г 3 ) -1 (11)

Из анализа модели разветвлённой сосудистой трубки следует, что вклад крупных артерий в R г незначителен , хотя общая длина всех артерий большого диаметра сравнительно велика .


Возникновение и распространение пульсовой волны

по стенкам сосудов обусловлено упругостью аортальной стенки. Дело в том, что во время систолы левого желудочка сила, возникающая при растяжении аорты кровью, направлена не строго перпендикулярно к оси сосуда и может быть разложена на нормальную и тангенциальную составляющие. Непрерывность кровотока обеспечивается первой из них, тогда как вторая является источником артериального импульса, под которым понимают упругие колебания артериальной стенки.


Пульсовая волна распространяется от места своего возникновения до капилляров, где затухает. Скорость её распространения можно рассчитать по формуле:

υ п = (E b /2 ρ r ) 1/2 , (12)

где Е – модуль Юнга сосудистой стенки, b – её толщина, r – радиус сосуда, ρ – плотность тканей сосудистой стенки.

Скорость пульсовой волны можно принять в качестве количественного показателя упругих свойств артерий эластического типа – тех свойств, благодаря которым они выполняют свою основную функцию.

Скорость пульсовой волны в аорте составляет 4 - 6 м / с , а в лучевой артерии 8 – 12 м / с . При склеротических имениях артерий повышается их жёсткость, что проявляется в нарастании скорости пульсовой волны.

Сфигмография

(греч. sphygmos пульс, пульсация + graphō писать, изображать) - метод исследования гемодинамики и диагностики некоторых форм патологии сердечно-сосудистой системы, основанный на графической регистрации пульсовых колебаний стенки кровеносного сосуда.

Сфигмографию осуществляют с помощью специальных приставок к электрокардиографу или другому регистратору, позволяющих преобразовывать воспринимаемые приемником пульса механические колебания стенки сосуда (или сопутствующие им изменения электрической емкости либо оптических свойств исследуемого участка тела) в электрические сигналы, которые после предварительного усиления подаются на регистрирующее устройство. Записываемую кривую называют сфигмограммой (СГ). Существуют как контактные (накладываемые на кожу над пульсирующей артерией), так и бесконтактные, или дистанционные, приемники пульса. Последние обычно используют для регистрации венного пульса - флебосфигмографии. Запись пульсовых колебаний сегмента конечности с помощью накладываемых по ее периметру пневматической манжеты или тензометрического датчика называют объемной сфигмографией.

Сфигмография применяется как самостоятельный метод исследования или входит в состав других методик, например механокардиографии, поликардиографии. Как самостоятельный метод С. используют для оценки состояния артериальных стенок (по скорости распространения пульсовой волны, амплитуде и форме СГ), диагностики некоторых заболеваний, в частности клапанных пороков сердца, неинвазивного определения ударного объема сердца по методу Вецлера - Бегера. По диагностическому значению С. уступает более совершенным методам, например рентгенологическим или ультразвуковым методам исследования сердца и сосудов, но в ряде случаев дает ценную дополнительную информацию и в связи с простотой исполнения доступна для применения в условиях поликлиники.


Рис. 1. Сфигмограмма сонной артерии в норме: а - предсердная волна; b - анакрота; d - поздняя систолическая волна; е-f -g - инцизура; g - дикротическая волна, i - преданакротический зубец; be - период изгнания; ef - протодиастолический интервал.

Артериальная сфигмограмма отражает колебания стенки артерии, связанные с изменениями давления в сосуде на протяжении каждого сердечного цикла. Выделяют центральный пульс, отражающий колебания давления в аорте (СГ сонных и подключичных артерий), и периферический пульс (СГ бедренной, плечевой, лучевой и других артерий).

На нормальной СГ сонной артерии (рис. 1 ) после низкоамплитудных волн а (отражает систолу предсердий) и зубца i (возникает в связи с изометрическим напряжением сердца) наблюдается крутой подъем основной волны b - анакрота, обусловленная открытием аортального клапана и переходом крови из левого желудочка в аорту. Этот подъем сменяется в точке с нисходящей частью волны - катакротой, формирующейся в результате преобладания в данный период в сосуде оттока крови над притоком. В начале катакроты определяется поздняя систолическая волна d , за которой следует инцизура efg . За время ef (протодиастолический интервал) происходит захлопывание аортального клапана, что сопровождается повышением давления в аорте, формирующим дикротическую волну g . Интервал времени, представленный отрезком b -e , соответствует периоду изгнания крови из левого желудочка.

СГ периферических артерий отличаются от кривых центрального пульса более округлыми очертаниями вершины основной волны, отсутствием волн а и i , иногда и инцизуры, более выраженной дикротической волной, часто появлением второй диастолической волны. Интервал между вершинами основной и дикротической волн бедренного пульса соответствует, по мнению Вецлера и Бегера (К. Wezler, A. Böger, 1939), времени основного колебания артериального пульса и используется для расчета ударного объема сердца.

При оценке формы артериальной СГ придают значение крутизне нарастания анакроты, характеру перехода ее в катакроту, наличию и расположению дополнительных зубцов, выраженности дикротической волны. Форма кривых центрального пульса в значительной мере зависит от периферического сопротивления. При низком периферическом сопротивлении СГ центральных артерий имеют круто поднимающуюся анакроту, острые вершины и глубокие инцизуры; при высоком периферическом сопротивлении изменения противоположны.

Абсолютные значения амплитуд отдельных компонентов СГ обычно не оцениваются, т. к. метод С. не имеет калибровки. Для диагностических целей соотносят амплитуды компонентов СГ с амплитудой основной волны. Аналогично вместо оценки абсолютных значений временных интервалов СГ используют их соотношение в процентах с общей продолжительностью систолической волны; это позволяет проводить временной анализ СГ независимо от частоты сердечных сокращений.

Синхронно записанные СГ центрального и периферического пульса используют для определения скорости распространения пульсовой волны по артериям; она вычисляется как частное от деления длины пути пробега волны на длительность интервала между началами анакрот пульса исследуемых артерий. Скорость распространения пульсовой волны в аорте (сосуде эластического типа) рассчитывают по СГ сонной и бедренной артерий, в периферических артериях (сосудах мышечного типа), - по объемным СГ, зарегистрированным на плече и нижней трети предплечья или на бедре и нижней трети голени. Отношение скорости распространения пульсовой волны по сосудам мышечного типа к скорости распространения пульсовой волны по сосудам эластического типа у здоровых людей находится в пределах 1,1-1,3. Скорость распространения пульсовой волны зависит от модуля упругости артериальной стенки; она увеличивается при повышении напряжения артериальных стенок или их уплотнения и изменяется с возрастом (от 4 м/с у детей до 10 м/с и более у лиц старше 65 лет).

Флебосфигмограмма регистрируется обычно с яремной вены. Основные элементы СГ яремной вены в норме представлены положительными волнами а , с , d и отрицательными - х- , у -коллапсами (рис. 2 ). Волна а отражает систолу правого предсердия, волна с обусловлена воздействием на яремную вену пульсации сонной артерии. Перед волной с иногда выявляется зубец b , совпадающий по времени с изометрическим напряжением желудочков сердца. Формирование х -коллапса на отрезке а- b обусловлено диастолой предсердий, на отрезке b - быстрым опорожнением полых вен в правое предсердие в результате оттягивания вниз атриовентрикулярной перегородки во время систолы правого желудочка, а также понижения внутригрудного давления вследствие изгнания крови в брюшную аорту. Следующая положительная волна d обусловлена заполнением полых вен и правого предсердия кровью при закрытом трикуспидальном клапане. После открытия клапана кровь из правого предсердия устремляется в правый желудочек, что способствует опорожнению полых вен, - наступает диастолический у -коллапс. По мере заполнения правого желудочка кровью скорость опорожнения предсердия уменьшается, давление в нем повышается, кровенаполнение вен примерно с середины диастолы желудочка вновь увеличивается, что отражается появлением на флебосфигмограмме второй диастолической волны d (застойная волна).


Рис. 2. Флебосфигмограмма яремной вены в норме: а - предсердная волна; b - зубец, отражающий изометрическое напряжение желудочков; с - передаточная волна пульса сонной артерии; d, d" - диастолические волны; х - систолический коллапс ; y - диастолический коллапс.

Диагностическое значение . Патологические изменения артериальных СГ при некоторых заболеваниях имеют определенную специфичность. При стенозе устья аорты на анакроте центральных СГ появляются зазубрины (анакротический пульс), время подъема анакроты удлиняется, иногда кривые приобретают вид петушиного гребня (рис. 3, а ). При гипертрофическом субаортальном стенозе (см. Кардиомиопатии) время подъема анакроты укорачивается, соотношение длительности анакроты и изгнания уменьшается. Недостаточность клапанов аорты проявляется резким возрастанием амплитуды всех волн, сглаживанием или исчезновением инцизуры на СГ центральных артерий (рис. 3, б ), появлением высокочастотных осцилляций на анакроте бедренного пульса (рис. 3, в ) и на всех объемных СГ нижних конечностей. При коарктации аорты амплитуда центральных СГ и объемных СГ верхних конечностей увеличена, длительность накроты СГ сонной артерии укорочена, вершина пульсовой волны расщеплена; СГ бедренной артерии и объемные СГ нижних конечностей представляют собой низкоамплитудные куполообразные волны, лишенные дикроты (треугольный пульс, рис. 3, г ). Облитерирующие и окклюзионные поражения периферических артерий проявляются на объемных СГ, зарегистрированных ниже места окклюзии, снижением амплитуды пульсовых волн (в тяжелых случаях регистрируется прямая линия) и отсутствием дикроты (монокротический пульс). При поражении сосуда одной конечности или неравномерной облитерации артерий в случаях их системного поражения имеет место разница амплитуд и формы кривых пульса на симметричных артериях. Преобладание коллатерального зависит от частоты сердцебиений; при тахикардии волна d уменьшена, волна d " отсутствует.

Техническая реализация метода фотоплетизмографии ,

параметры регистрируемого сигнала .

Пальцевая фотоплетизмография.

Исследуемым органом является концевая фаланга кисти или стопы.

(в дистальных фалангах пальцев кисти и стопы наиболее интенсивные значения артериального и венозного кровообращения.)


Анакрота – восходящий участок пульсовой волны

Нисходящий участок пульсовой волны называется катакротой .

На нисходящем участке есть волна, называемая дикротической , обусловленная захлопыванием полулунных клапанов между левым желудочком сердца и аортой.

(А 2 ) образуется за счёт отражения объёма крови от аорты и крупных

магистральных сосудов и частично соответствует диастолическому периоду сердечного цикла.

Дикротическая фаза несет информацию о тонусе сосудов.

Вершина пульсовой волны соответствует наибольшему объёму крови, а её противолежащая часть – наименьшему объёму крови в исследуемом участке ткани.

Частота и продолжительность пульсовой волны зависят от особенностей работы сердца , а величина и форма её пиков от состояния сосудистой стенки .


Волны первого порядка (I), или объемный пульс

Волны второго порядка (II) имеют период дыхательных волн

Волнами третьего порядка (III) называют все регистрируемые колебания с периодом, большим, чем период дыхательных волн

Использование метода фотоплетизмографии в медицинской практике .

Базовый вариант.

После наложения на дистальную фалангу пальца руки или ноги датчика-прищепки и активации регистрации фотоплетизмограммы в интерфейсной части устройства выполняется последовательное измерение значений объемного пульса в различные фазы исследования воздействия на организм человека изучаемого фактора. Исследование объемного пульса при перемене положения конечности.

Механизм: Изменение сосудистых артериальных рефлексов при различных положениях конечности - превалирование сосудорасширяющего рефлекса при поднятии конечности вверх, при опускании конечности вниз превалирует сосудосуживающий рефлекс.

При развитии сосудосуживающего эффекта амплитуда пульсовых волн нарастает, при развитии сосудорасширяющего эффекта амплитуда пульсовых волн уменьшается.

Возможно выявить подвижность механизмов, регулирующих распределение крови, что имеет существенное значение при выявлении локальных капиллярных нарушений и сосудистых заболеваний на уровне всего организма.

Техника окклюзионной фотоплетизмографии

заключается в следующем: на уровне верхней трети плеча накладывается тонометрическая манжета и в нее нагнетается воздух до давления, на 30 мм рт. ст превышающее артериальное давление. Давление в манжете сохраняется в течение 5 минут, затем воздух быстро стравливается. В течении первых 30 секунд в норме возникает пиковое объемной и линейной скорости кровотока, постепенно снижающееся к 3-й минуте.

Методика определения артериального давления в плечевой артерии с помощью фотоплктизмографии.

Декомпрессионный вариант:

В резиновую манжету, соединенную с манометром, нагнетается воздух до исчезновения периферического пульса. Затем с постоянной скоростью выпускается воздух. Когда давление в манжете соответствует артериальному, объем крови в пальце увеличивается, что проявляется появлением пульсации; когда давление соответствует венозному давлению, объем крови снова уменьшается. По экспериментальным данным такая методика регистрации артериального давления является наиболее точной и может использоваться при его уменьшении.

Изучаемые параметры фотоплетизмограммы:

По вертикальной оси изучаются амплитудные характеристики пульсовой волны, соответствующие анакротическому и дикротическому периоду. Несмотря на то, что эти параметры являются относительными, их изучение в динамике предоставляет ценную информацию о силе сосудистой реакции. В этой группе признаков изучаются:

1. амплитуда анакротической и дикротической волны,

Последний показатель имеет абсолютное значение и имеет собственные нормативные показатели.

По горизонтальной оси изучаются временные характеристики пульсовой волны, предоставляющие информацию о длительности сердечного цикла, соотношении и длительности систолы и диастолы. Эти параметры имеют абсолютные значения и могут сравниваться с существующими нормативными показателями.


Амплитуда пульсовой волны или анакротической фазы (АПВ), определяется по вертикальной оси как: АПВ = В2-В1.

lНормативных значений не имеет, оценивается в динамике.

Амплитуда дикротической волны (АДВ), определяется по вертикальной оси как: АДВ = В4-В5.

lВ норме составляет 1/2 от величины амплитуды пульсовой волны.

Индекс дикротической волны (ИДВ), определяется в процентах как: ИДВ = ((В3-В5)/(В2 – В1))·100

lНормативное значение составляет%.

Длительность анакротической фазы пульсовой волны (ДАФ), определяется в секундах по горизонтальной оси как: ДАФ = В3-В1

Длительность дикротической фазы пульсовой волны (ДДФ), определяется в секундах по горизонтальной оси как: ДДФ = В5-В3 .

lНормативное значение не установлено.

Длительность пульсовой волны (ДПВ ) , определяется в секундах по горизонтальной оси как: ДПВ = В5-В1.

lНормативные значения по возрастным группам:

Возраст, лет

Длительность пульсовой волны, сек

Длительность систолической фазы сердечного цикла (ДС), определяется в секундах по горизонтальной оси как: ДС = В4-В1.

lНормативный параметр вычисляемый, равен произведению длительности ДПВ и 0.324.

Длительность диастолической фазы сердечного цикла (ДД), определяется в секундах по горизонтальной оси как: ДД = В5-В4.

lВ норме равна остатку вычитания длительности систолы от общей продолжительности пульсовой волны.

Частота сердечных сокращений (ЧСС), определяется в ударах в минуту как: ЧСС = 60/ДПВ.

lНормативные значения частоты сердечных сокращений по Кассирскому:

Возраст, лет

ЧСС в мин

Методики клинической фотоплетизмографии (часть 3).

Качественные критерии оценки фотоплетизмограмм.

Перечисленные количественные показатели не предоставляют исчерпывающую информацию о характере пульсовой волны. Немаловажное значение имеет качественная оценка формы пульсовых волн нередко имеющее решающее значение. При анализе формы пульсовых волн привлекаются термины, заимствованные из клинической практики, такие, как pulsus tardus, pulsus celer.

При повышенном периферическом сопротивлении, например, при сочетании атеросклероза и гипертонической болезни, а особенно у больных аортальным стенозом форма пульсовых волн соответствует pulsus tardus: подъем пульсовой волны пологий, неравномерный, вершина смещается к концу систолы («позднее систолическое выпячивание»).

https://pandia.ru/text/78/415/images/image011_47.gif" height="1 src=">

Рис 4 Пульсовые волны типа pulsus tardus при повышенном периферической сопротивлении.

При низком периферическом сопротивлении и большом систолическом выбросе, характерном больным с аортальной недостаточностью, пульсовые волны имеют вид pulsus celer:подъем пульсовой волны имеет крутой подъем, быстрое снижение и малозаметную инцизуру. Между локализацией инцизуры, величиной периферического сопротивления и упругим состоянием артерий отмечается определенная зависимость: при пониженной эластичности сосудов инцизура приближается к вершине, а при вазодилятации не выходит за пределы нижней половины пульсовой кривой.

https://pandia.ru/text/78/415/images/image013_12.jpg" width="397" height="132">

Рис 6. Симптом «петушиного гребня». Симптомы получены в момент избыточного воздействия дозы инфракрасного терапевтического лазера.

https://pandia.ru/text/78/415/images/image015_14.jpg" width="225" height="110">

Рис 8. Ступенька на вершине пульсовой волны.

https://pandia.ru/text/78/415/images/image017_14.jpg" width="339" height="254 src=">

Рис 10. Отсутствие дикротической волны на пульсограмме у больной сахарным диабетом.

Кроме того, зарегистрированы следующие патологические отклонения при различных заболеваниях:

r отсутствие дикротического зубца указывает на наличие атеросклероза, гипертонической болезни
(рис 10) ;

r различие объемного пульса на руках и ногах может указывать на коарктацию аорты;

r слишком большой объемный пульс – возможно, у больного незаращенный боталлов проток;

r при облитерирующем эндартериите амплитуда пульсовых волн снижена на всех пальцах пораженной конечности;

r при проведении функциональной пробы с переменой положения конечности у больных в начальной фазе облитерирующего эндартериита резко снижен сосудорасширяющий эффект при подъеме ноги (невысокая амплитуда пульсовых волн) и значительно выражен сосудосуживающий эффект при опускании ноги;

r при проведении функциональной пробы с переменой положения конечности у больных с облитерирующим атеросклерозом в стадии субкомпенсации при опускании конечности амплитуда пульсовых волн значительно уменьшается.

Половые и возрастные особенности фотоплетизмограмм:

1. В период с 8 до 18 лет амплитуда пульсовой волны имеет тенденцию к увеличению, с 19 до 30 лет стабилизируется, после 50-ти амплитуда пульсовой волны вновь нарастает.

2. По наблюдениям (1967) пульсовые волны у детей отличаются крутым подъемом. Вершина кривой имеет округлые очертания. Инцизура у 72% здоровых детей располагается в верхней или средней трети пульсовой волны, у 28% - в нижней трети пульсовой волны. У абсолютного большинства детей инцизура и начальная диастолическая волна отчетливо выражены.

3. Половые различия – у девочек до 16 лет по сравнению с мальчиками, амплитуда пульсовой волны выше.

Другие особенности фотоплетизмограмм:

1. Величина объемного пульса не зависит от времени года, но сосудистые реакции легче вызываются в июле и августе (Hetzman 1948).

2. При магнитных бурях, прохождении атмосферных фронтов и других колебаниях погоды возникают большие колебания периферического капиллярного кровообращения, особенно у больных ревматизмом – возрастает количество реакций, указывающих на расширение сосудов. При контрольном измерении во время физиотерапевтических процедур отмечается явное уменьшение неповреждающей дозы физического фактора.

Сердечно-сосудистая болезнь (ССБ) лидирует среди причин смерти и смертельных болезней у мужчин и женщин. В 1948 г. кардиологическое исследование Фрэмингема под руководством Национального института болезней сердца, легких и крови (НИБСЛК) начало изучение факторов и характеристик, которые приводят к возникновению ССБ. В то время как набор инструментов и объем проводимых анализов были довольно ограниченны в то время, конфигурация пульсовой волны являлась важным параметром, зарегистрированным в данном исследовании. Было установлено, что визуальное изучение схем колебаний пульсовой волны с высокой степенью точности соотносится с возросшим риском развития ССБ.

Недавно исследователи из больницы св. Томаса повторно изучили это поразительное наблюдение. Группа исследователей из больницы св. Томаса конкретизировала первоначальные заключения, чтобы доказать, что объем пульса в пальце, полученный цифровым фотоплетизмографическим сенсором, напрямую зависит от пульсовых колебаний артериального давления в лучевой и плечевой артериях.

Пульс генерируется, когда сердце качает и распространяет кровь. Первый компонент колебательного сигнала цифрового объема пульса (ЦОП) (т.е. систолический компонент, показанный ниже голубым цветом) является результатом прямого распространения пульса от корня артерии к пальцу. Пока пульс перемещается ниже по руке, прямой пульс прокачивается вдоль аорты в нижнюю часть корпуса. Это приводит к изменению диаметра артерии и бифуркациям, благодаря которым часть пульса отражается обратно. Кульминацией этих отражений является отражение в виде одной волны из нижней части корпуса, которая перемещается вверх по аорте и затем вниз к пальцу, образуя второй компонент ЦОП (т.е. диастолический компонент, обозначенный ниже зеленым цветом). Рука служит проводником и для волны прямой передачи, и для отраженной волны, таким образом, оказывая незначительное влияние на контур ЦОП.

Конфигурация колебательного сигнала цифрового объема пульса находится в прямой зависимости от ригидности большой артерии и сосудистого тонуса. Поэтому характеристики колебательного сигнала цифрового объема пульса могут изменяться в зависимости от этих факторов.

Скорость распространения пульсовой волны (СРПВ)

Мы наблюдаем и измеряем скорость распространения пульсовой волны (СРПВ) в артериальной системе во время циркуляции крови. Этот физиологический феномен предоставляет нам уникальную информацию о причинах изменения кровяного давления, течения, скорости и профильного среза. Такие изменения в пульсовой волне могут использоваться для классификации артериальной эластичности. См. диаграмму ниже для более подробной информации:

S (Начальная точка артериального пульса - волна)
Открывается клапан аорты; удаляется кровь из левого желудочка.

P (Первая основная сфигмографическая волна)
Волна вызвана выбросом из левого желудочка, который линеарно увеличивает стенку артерии.

T (Вторая дополнительная сфигмографическая волна)
Волна, отраженная от малой артерии.

C (Вырезка завитка)
Конечная точка систолической фазы, клапан аорты закрывается.

D (Дикротическая волна)
Отражаемая колебательная волна, полученная в результате удара крови, вызванного кровяным давлением в аорте об артериальный клапан

Заболевания и расстройства сердечно-сосудистой системы напрямую связаны с состоянием малых и больших артерий. Артериальная ригидность и расширение основных артерий являются мощным предвестником потенциальных проблем со здоровьем, сердечной недостаточности, почечных осложнений, атеросклероза и инфаркта. Возраст и систолическое давление – вот два самых важных фактора способных усилить СРПВ. При старении организма происходит медиакальциноз, и артерии теряют эластичность. Как результат, измерение СРПВ оказывается полезным для изучения эффекта старения, сосудистых заболеваний, влияния сосудорасширяющих и сосудосужающих препаратов на артерии.

Измерение скорости распространения пульсовой волны:

Быстрый и объективный анализ функционирования сосудистой системы
Качественно определяет артериальную ригидность и расширение
Предоставляет информацию о сердечно-сосудистом статусе
Облегчает мониторинг медикаментозного и иного лечения, образа жизни /диеты
Помогает приостанавливать развитие болезни

Анализ СРПВ

Анализ СРПВ широко признан Европейским обществом по лечению гипертензии в качестве неотъемлемой составляющей диагностирования и лечения гипертензии (т.е. повышенного кровяного давления). Зависимость между СРПВ и сердечн-ососудистыми заболеваниями, нарушениями и смертями была доказана.

Индексы артериальной ригидности (EEl, DDI and DEI) дают жизненно важные сведения работникам системы здравоохранения. Этот анализ дает быструю и объективную оценку функционированию сосудистой системы. Эта информация полезна для информирования и ориентирования медработников (т.к. данные могут быть использованы при принятии решений, касающихся начала лечения, до того как появятся симптомы или клинические признаки).

Анализ СРПВ определяет, правильно ли функционирует сосудистая система, есть какие-либо ограничения её функциональности, которые могут угрожать здоровью пациента. Здоровое сердце эффективно поставляет кислород и питательные вещества по всему телу, одновременно прокачивая продукты жизнедеятельности к почкам, печени и легким для последующего удаления из организма. Для того чтобы это произошло, необходимо, чтобы артерии были в хорошем состоянии. Со временем артерии могут становиться атеросклеротическими, артериосклеротическими или затвердевать (потеряв эластичность и увеличив сужение). Эти изменения увеличивают нагрузку на сердце, клапаны и артерии, которая может привести к инсульту, инфаркту, отказу почек и/или внезапной смерти.

Артериальная ригидность, вызванная медиакальцинозом и потерей эластичности (т.е. старением), является самым важным фактором, способствующим увеличению СРПВ. Скорость пульсовой волны (СРПВ) – эффективное и высоко воспроизводимое измерение для оценки васкулярной эндотелиальной дисфункции (т.е. эластичности артерий) и артериальной ригидности.

Обзор

Распространение крови по артериям происходит во время одного сердечного сокращения. Кровь перемещается по артериям благодаря кинетической энергии из участка удаления кровяного объема к потенциальной энергии вытянутого участка сосудистой стенки. Последующие изменения происходят с давлением, течением, скоростью и конфигурацией. Эти изменения составляют физиологический феномен, известный как пульсовая волна, за которым легко наблюдать и измерять при анализе артериальной эластичности.

Взаимодействия

Возраст является самым важным фактором, способствующим увеличению СРПВ. Артериальная ригидность возникает по причине кальцификации и утраты эластичности, которые сопровождают процесс старения. Исследования показали, что увеличение СРПВ может быть предвестником атеросклеротического развития (например, диабет), в то время как другие исследования не выявили увеличения СРПВ с возрастом у пациентов с предрасположенностью к атеросклерозу (т.е. с диагнозом наследственная гиперхолестеролемия). Принимая во внимание все вышесказанное, была установлена качественная зависимость между процессом атеросклероза и артериальной ригидностью.

Исследования показывают, что гипертензия в большей степени, чем атеросклероз, способствуют росту артериальной ригидности, обусловленной возрастом. В то время как артериальное давление является ценным первоочередным индикатором гипертензии, СРПВ предоставляет дальнейшие подробные сведения. Анализ СРПВ измеряет движение артериальной стенки, стимулируя движение посредством пульсового давления, вызванного барофлексом.

Обширное повреждение артерий способствует развитию сердечно-сосудистых патологий и увеличению смертности, наблюдаемой при гипертонии. Артериальное растяжение, которое ассоциируется с подобным повреждением, ведет к увеличению диспропорциональности систолического давления и пульсового давления. Данные факторы ассоциируются с увеличением показателей частоты и летальности сердечно-сосудистых нарушений. Анализ пульсовой волны предоставляет информацию об артериальной ригидности и растяжении, которая чрезвычайно важна при изучении процессов старения, сосудистых нарушений и препаратов, которые расширяют или сужают артерии.

Пациенты с сахарным диабетом и ишемической болезнью сердца часто демонстрируют ухудшение артериального функционирования в неоклюзированных артериях. При атеросклерозе стены артерий имеют тенденцию к утолщению, отвердению и суживанию, что делает их менее эффективными в абсорбировании энергии от артериального пульса. Это в свою очередь увеличивает СРПВ.

Установление статуса главных артерий имеет ключевое значение для раннего диагностирования, лечения и профилактики сердечно-сосудистых нарушений. Анализ артериальной ригидности позволяет получить колоссальную информацию о потенциальных медицинских проблемах, включая инфаркты, сердечную недостаточность, диабет и почечные осложнения.

Измерение СРПВ посредством датчика на пальце

Когда сердце сжимается, оно производит прямую волну, которая перемещается вниз к пальцу. Эта волна отражается в нижней части корпуса и тоже направляется к пальцу. Вот эта комбинация, прямой и отраженной волн, измеряется и записывается с помощью датчика на пальце.

Цифровой объем пульса (ЦОП)

Первый компонент колебательного сигнала цифрового объема пульса (ЦОП) (т.е. систолический компонент) является результатом прямого распространения пульса от корня артерии к пальцу. Пока пульс перемещается ниже по руке, прямой пульс прокачивается вдоль аорты в нижнюю часть корпуса. Это приводит к изменениям артериального давления, благодаря которым часть пульса отражается обратно к пальцу. Кульминацией этих отражений является отражение в виде одной волны из нижней части корпуса, которая перемещается вверх по аорте и затем вниз к пальцу, образуя второй компонент ЦОП (т.е. диастолический компонент). Рука служит проводником и для волны прямой передачи, и для отраженной волны, таким образом, оказывая незначительное влияние на контур ЦОП.

Измерение цифрового объема пульса (ЦОП)

Цифровой объем пульса измеряется путем передачи инфракрасного света через палец. Количество поглощенного света прямо пропорционально количеству крови в пальце.

Присутствие контрольной системы позволяет поддерживать оптимальный уровень для измерения изменений объема артериального давления. Благодаря этому минимизируется возможность получения некорректных сигналов, вызванных спазмом сосудов или слабой перфузией.

Измерение артериальной ригидности

Система СРПВ демонстрирует высокую эффективность при оценке артериальной ригидности. Используя данные о цифровом объеме пульса, полученные от инфракрасного датчика на пальце, система СРПВ определяет время, затраченное пульсовыми волнами на проход по артериям. Конфигурация колебательного сигнала, полученная в результате этого измерения, находится в прямой зависимости от времени, которое требуется пульсовым волнам для прохода по артериальной системе. Скорость, с которой пульс проходит по артериям, напрямую связана с артериальной ригидностью. Таким образом, это измерение делает СРПВ ценным и неинвазивным инструментом для оценки сосудистых изменений.

Клиническая значимость артериальной ригидности

Колебательный сигнал цифрового объема пульса, измеренный системой СРПВ, не зависит от изменений в сосудистой системе, но скорее определяется артериальной ригидностью (оценивается с помощью SI) в больших артериях и сосудистым тонусом (оценивается с помощью RI). Артериальная ригидность эффективно оценивает здоровье органа и дает информацию о необходимых изменениях в образе жизни или требуемом медикаментозном лечении. Она также является сильным индикатором целого ряда потенциальных медицинских проблем, включая болезни сердечно-сосудистой системы.

Измерение функционирования эндотелия

В дополнение к артериальной ригидности, система СРПВ эффективно определяет сосудистый тонус артериального дерева. Используя высокоточный фотоплетизмографический преобразователь со схемой формирования сигнала, система СРПВ измеряет колебательный сигнал СРПВ. Мощная система управления поддерживает оптимальный уровень трансмиссии для измерения изменений объема крови с предельной точностью, независимо от размера пальца. Это неинвазивная, независимая от оператора система для измерения артериальной ригидности и сосудистого тонуса.

Клиническая значимость функционирования эндотелия

Система СРПВ может использоваться для регистрации измерения изменений колебательного сигнала СРПВ благодаря сосудорасширителям зависимым от эндотелия, таким как сальбутамол (альбутерол). Эти наблюдения могут использоваться для оценки функционирования эндотелия. Сальбутамол вводится достаточно просто, ингаляционным способом, упрощая этот анализ, который можно проводить как в клинических условиях, так и дома у пациента.

Техническое Описание Анализа СРПВ

Система СРПВ собирает информацию о колебательном сигнале у пациента с помощью неинвазивного сенсора, расположенного на пальце. Измерения, полученные с аппланационного тонометра, включают:

Длительность опорожнения
Индекс артериального утолщения и давления
Индекс субэндокардиальной жизнеспособности

Система полезна как для лечения таких заболеваний как гипертензия, диабет, почечная недостаточность, так и для ранней диагностики сердечно-сосудистых заболеваний.

Ключевые сферы применения анализа СРПВ

1. Ранняя диагностика: Легко и быстро идентифицирует пациентов с риском следующих заболеваний:
a. Гипертензия
b. Артериосклероз (затвердевание артерий)
c. Нарушения циркуляции кровеносной системы
d. Преждевременное старение кровеносных сосудов
e. Патологии в более мелких кровеносных сосудах (тех, которые нельзя охватить манжетой для измерения кровяного давления)

2. Улучшенная оценка: Измеряет артериальную ригидность и её влияние на гипертензию, диабет, инфаркт.

3. Мониторинг: Оценивает результаты медикаментозного лечения

Составляющие системы:

1 Анализ ключевых параметров, в числе которых:
o Пульсовое давление на аорте
o Систолическое давление на аорте
o Индекс наращивания аорты
o Нагрузка на левый желудочек
o Пульсовое давление в левом желудочке и восходящей аорте (по которой движется мозговой кровоток)
o Центральное систолическое давление (как получено баро-рецепторами)
o Длительность опорожнения в отношении сердечного цикла
o Перфузионное артериальное давление в течение сердечного цикла

2 Оценка артериальной ригидности и её клинического влияния на сердце

3 Измерение субэндокардиальной жизнеспособности

Преимущества:

Раннее предсказание будущих сердечно-сосудистых нарушений
Оценка медикаментозного лечения, которую нельзя получить с помощью измерения плечевого давления
Признана в международной практике как показатель повреждения органов и предсказатель сердечно-сосудистого риска
Наглядное свидетельство того, какой эффект оказывают на пациента изменения в образе жизни и медикаментозное лечение
Комфортная и неинвазивная
Не используются расходные материалы
Результаты в режиме реального времени
Автоматическая и не зависящая от оператора

Применение СРПВ

Заболевания сердечной системы являются самыми распространенными – они встречаются у большего количества пациентов по сравнению со всеми остальными заболеваниями. Многие люди могут даже и не предполагать, что у них есть какие-то проблемы с сердцем до тех пор, пока у них не случится инсульт или инфаркт. Факторы, ведущие к нарушениям в работе сердечной системы, очень разнообразны и их список постоянно растет. Факторы, обусловленные образом жизни, такие как высокий уровень холестерина, курение и кровяное давление были связаны с инфарктами и инсультами сравнительно недавно, в то время как другие детерминанты, такие как возраст и диабет, являются известными факторами.

Все эти факторы способствуют артериальной ригидности, которая в свою очередь, ограничивает кровоток, таким образом подвергая сердце дополнительной нагрузке.

Анализ пульсовой волны измеряет кровяное давление точно и адресно. Он позволяет докторам оценить артериальный и сердечно-сосудистый статус пациента с предельной точностью. Он измеряет кровяное давление на уровне сердца в сравнении с давлением на руке пациента при измерении традиционным способом с помощью компрессионной манжеты. Измерение пульсовой волны предоставляет врачам ценную информацию о взаимосвязи между сердцем пациента и его кровеносными сосудами, такая информация позволяет анализировать работу сердца пациента.

Эта революционная технология дополняет традиционный способ измерения давления с помощью компрессионной манжеты, поскольку она предоставляет дальнейшую информацию о сердечной деятельности. Таким образом, анализ СРПВ полезен при использовании дома, в клинических условиях и в операционных. Анализ СРПВ обеспечивает кардиологов, докторов и пациентов всесторонней информацией о функционировании сердечно-сосудистой системы.

Кардиология и терапия

Система СРПВ безупречно вписывается в клинические или специализированные условия и предоставляет ценную информацию о здоровье пациента и его артериальном статусе. Это позволяет и доктору, и пациенту принимать решения о более качественном лечении.

Проводить скрининг на аритмию и другие аномалии
Оценивать артериальный статус
Более эффективно выписывать лекарства для лечения гипертензии
Выявлять сердечно-сосудистые риски на ранней стадии
Проводить мониторинг эффективности медикаментозного лечения
Стимулировать выбор в пользу здорового образа жизни посредством демонстрации доступных для понимания результатов
Полноценное, последовательное и точное измерение кровяного давления


Будь это профессиональный спорт или фитнесс, анализ СРПВ дает важную информацию о работе сердца и общем состоянии организма. Результаты могут применяться для организации и стимулирования эффективного режима тренировок.

Установить возраст сосудистой системы (т.е. индикатор общего артериального здоровья)
Следить за прогрессом (определять, какие упражнения благотворно влияют на артериальное здоровье на протяжении определенного периода времени)
Определять, когда тело разогрето и готово к нагрузкам

Гипертензия
Это простое в использовании устройство предоставляет всестороннюю информацию о работе сердечной системы и артериальном здоровье, которое необходимо для эффективного диагностирования, лечения и мониторинга гипертензии.

Измерение периферического кровяного давление и частоты пульса (т.е. лидирующие измерения при клиническом лечении гипертензии)
Предсказание сердечно-сосудистых заболеваний, с использованием измерения центрального кровяного давления (более сильный предсказатель по сравнению с периферическим кровяным давлением)
Определение индекса наращивания (индикатор артериального возраста, статуса и поддаваемости лечению)

Фармацевтика
Система СРПВ - быстрый, легкий в использовании способ получить ценную для пациентов информацию, которая позволит построить успешные отношения с клиентами.

Определение возраста сосудистой системы (т.е. индикатор общего артериального здоровья)
Отслеживание эффекта, производимого образом жизни, лечением и медикаментами
Скрининг на аритмии и другие патологии
Точное измерение кровяного давления

Индустрия здоровья
Демонстрация эффектов wellness терапии или программ на общее здоровье пациентов с использованием анализа СРПВ.

Проведение подробного кардиологического осмотра в любых условиях (пример: в клинике, дома, и т.д.)
Предложение клиентам всесторонней информации об их здоровье
Демонстрация эффекта здорового образа жизни и отслеживание прогресса пациента

Зачем Нужен Тест На Эластичность Артерий?

Во многих частях мира, таких как США и Канада, сердечно-сосудистые заболевания в виде инфаркта или инсульта являются лидирующей причиной смерти. Ещё больше людей страдают от сердечно-сосудистых расстройств или инвалидностей. Стоимость затрат системы здравоохранения и количество потерянных жизней ошеломляют.

Широкую известность приобрел тот факт, что здоровье эндотелия и работа кровеносных сосудов напрямую связаны с общим здоровьем сердечно-сосудистой системы. Определение и наблюдение за работой артерий на таком уровне позволяет осуществить на ранней стадии вмешательство и профилактику болезни.

Старение и болезни нарушают эластичность и работоспособность кровеносных сосудов. Эти изменения ослабляют пульсирующую функцию артерий, которая может привести к сердечно-сосудистым нарушениям и проблемам со здоровьем. Измерение пульсирующей функции или скорости распространения пульсовой волны дает важные сведения, которые не способны предоставить традиционные измерения кровяного давления.

Артериальная Ригидность

Термин «артериальная ригидность» описывает пластичность или эластичность артерий. Затвердевание или жесткость артерий описывается как артериосклероз. Артериальная ригидность описывает насколько усердно необходимо работать сердцу для того, чтобы прокачать кровь по телу.

Почему артериальная ригидность имеет значение?

Работа артерий напрямую связана с потенциальным развитием таких сердечно-сосудистых заболеваний, как инфаркт или инсульт. Измерение артериальной ригидности дает информацию о больших артериях и предлагает раннюю идентификацию пациентов группы риска. Артериальная ригидность также зарекомендовала себя как более точный предвестник нарушений в работе сердечно-сосудистой системы по сравнению с традиционным методом компрессионной манжеты.

Метод измерения артериальной ригидности

Индекс наращивания: измеряет артериальную ригидность на основе конфигурации пульсовой волны
Центральное кровяное давление: имеет склонность увеличиваться при большей артериальной ригидности
Скорость распространения пульсовой волны: измеряет время необходимое пульсовым колебаниям кровяного давления для преодоления расстояния между двумя пунктами артериального дерева
Толщина интима-медиа сонной артерии: ультразвук измеряет толщину стенки артерии

Каким образом анализ СРПВ измеряет артериальную ригидность?

Анализ СРПВ чрезвычайно эффективен при оценке артериальной ригидности. Система использует простой и удобный инфракрасный датчик на пальце для определения промежутка времени, который требуется пульсу для прохождения по артериям. Скорость распространения пульсовой волны прямо пропорциональна артериальной ригидности. Данные по индексу наращивания и о центральном кровяном давлении, полученные в результате этого измерения, являются признанными индикаторами ригидности больших артерий.

Каким образом артериальная ригидность соотносится с кровяным давлением?

Когда сердце закачивает кровь в артериальную систему, ригидность артерий определяет, насколько легко эта кровь перемещается по всему телу. Мягкие, пластичные артерии проводят кровь легко и эффективно, поэтому сердцу не приходится работать очень активно. И наоборот, неэластичные и твердые артерии оказывают сопротивление кровотоку, таким образом подвергая сердце дополнительной нагрузке и заставляя его работать более активно. Сила каждого удара и сопротивление кровотоку оказываемое артериями определяют кровяное давление.

Способы уменьшения артериальной ригидности

После постановки диагноза «артериальная ригидность» можно обратиться к нескольким методам лечения.

1 Физическая нагрузка
o Постоянная физическая активность помогает предотвратить дальнейшее отвердение и может повысить эластичность

2 Препараты для контроля кровяного давления
o Определенные препараты для кровяного давления расслабляют артериальную стенку, таким образом уменьшая ригидность

3 Новые лекарства
o Исследуются новые препараты, хотя долговременные разрушения могут быть невосстанавливаемыми

4 Индивидуализированный подход к лечению
o Доктора могут прописать комбинацию из вариантов связанных с изменением образа жизни и лечением

Ригидность Аорты

Скорость распространения пульсовой волны играет важную роль при анализе влияния артериальной ригидности на общее состояние здоровья. Широко признан тот факт, что ригидность аорты является эффективным предвестником и индикатором сердечно-сосудистых нарушений и болезней.

Более высокая СРПВ в стареющей, неэластичной аорте, к примеру, влечет за собой быстрый возврат отраженной (систолической) волны к сердцу. Это измерение определяет повышенный риск трех потенциальных вариантов развития событий для сердечно-сосудистой системы.

1. Увеличенное центральное пульсовое давление
Центральное систолическое давление увеличивается и влечет за собой нагрузку на кровеносные сосуды мозга. Это может привести к инсульту. Важно: это изменение может произойти без каких-либо заметных изменений в систолическом давлении в компрессионной манжете.

2. Увеличивается нагрузка на левый желудочек (нагрузка ЛЖ)
При увеличении нагрузки на левый желудочек (нагрузка ЛЖ), масса ЛЖ и гипертрофия ЛЖ увеличиваются. Это увеличение нагрузки ЛЖ обозначено участком с черными стрелками.

3. Уменьшенное перфузионное давление коронарной артерии в диастоле
Уменьшение наблюдается в период критической диастолы благодаря давлению, которое распространяется по коронарным артериям. Это увеличивает риск сердечной ишемии.

Анализ СРПВ И Физическая Нагрузка

Исследования показывают, что физическая нагрузка улучшает эластичность и уменьшает ригидность артерий. Физические упражнение не только оказывают огромный эффект на артерии в долгосрочной перспективе, но определенные положительные результаты заметны и могут быть измерены практически сразу. После занятий спортом время, необходимое отраженной пульсовой волне для возвращения к сердцу, уменьшается, таким образом, снижается нагрузка на сердце и оказывается благоприятное воздействие на общее состояние сердечно-сосудистой системы. В долгосрочной перспективе комбинация занятий аэробикой и упражнений на гибкость, таких как йога и Пилатес, продемонстрировали дальнейшее улучшение эластичности артерий.

Анализ СРПВ дает ценную информацию о влиянии занятий спортом на артериальную ригидность. Оценка состояния артерий до занятий спортом, вовремя, после и после продолжительного периода времени позволяет с легкостью отслеживать, проводить мониторинг и анализ состояния сосудистой системы пациента. Данные, собранные во время СРПВ анализа, полезны на следующих стадиях:

Разогрев
o Определение скорости, с которой артерии расширяются в ответ на физическую нагрузку и фиксация времени, когда тело должным образом разогрето и подготовлено к переходу на следующий уровень

Непосредственный эффект
o Оценка реакции организма на увеличение физической активности и мониторинг реакции артерий для измерения эффективности и производительности кровотока

Восстановление после занятий спортом
o Установление времени, которое требуется артериям для возвращения в состояние покоя, после прекращения занятий спортом

Долговременный эффект
o Отслеживание улучшений, касающихся возраста сосудов на протяжении периода времени на основании предписанного режима тренировок, изменений в образе жизни, и т.д.

Типичный ответ на занятия спортом

Спортивные упражнения производят физиологический эффект на кровяное давление, которое можно измерить с помощью индекса наращивания. Во время физической активности частота пульса возрастает, и индекс наращивания уменьшается. В то же время минимальные изменения наблюдаются в кровяном давлении во время физической нагрузки. После окончания физической нагрузки, и индекс наращивания, и частота пульса возвращаются к своим значениям в состоянии покоя.

Следующая таблица иллюстрирует типичный ответ на физические упражнения, измеренный посредством определения частоты пульса, диастолического давления и систолического давления. Она также отображает изменения до, во время и после занятий спортом.

Эффект разогрева

Увеличение физической активности заставляет сердце выталкивать больше крови для обеспечения питания для всех органов. В начале занятий спортом артериям ещё только предстоит расшириться. Соответственно, кровяное давление поднимается, в то время как кровь устремляется к органам для снабжения. Этот первоначальный дисбаланс увеличивает нагрузку на сердце. Такое увеличение физической активности и резкий рост кровяного давления заставляют артерии расшириться в ответ. Артериальное расширение облегчает эффективность кровотока и позволяет сердцу эффективно поставлять кровь по всему телу. Артериальное расширение также уменьшает нагрузку на сердце, вследствие чего кровяное давление нормализуется, в то время как частота пульса остается повышенной.

Эффект занятий спортом

Физическая активность влечет за собой значительные изменения в движении и циркуляции крови. Эти физиологические изменения включают в себя следующее:

Увеличенное сердцебиение
Изменения кровяного давления
Расширение кровеносных сосудов

Если физические упражнения не являются обычной частью ежедневного распорядка дня пациента, измерения СРПВ необходимо производить, когда пациент находится в расслабленном, спокойном состоянии. Это позволит добиться более точных результатов.

До занятий спортом:

После занятий спортом:

Обзор Научных Работ По Гипертензии

Следующие статьи и публикации содержат дальнейшие исследования и данные о роли артериального здоровья для общего статуса сердечно-сосудистой системы.

«Повторное открытие артерий»

Джон Р Кокрофт и Айэн Б Вилкинсон (2002г.) сделали вывод о том, что анализ артериальной ригидности может помочь в лечении сердечно-сосудистых заболеваний. Вопрос изучения такого применения в будущем исследовании был поднят Лоран и др. (2002г.), а методы измерения артериальной ригидности были предложены МакКензи и др.(2002г.).

Технологии измерения артериальной ригидности были далее изучены Оливер и Вебб (2003г.) наряду с их практическим применением и взаимодействием с медикаментозными препаратами для лечения сердечно-сосудистой системы. Эти ранние обзоры продемонстрировали важность артериального здоровья и его роль в определении кровяного давления.

«Гипертензия в качестве артериального симптома»

Иццо(2004г.) представил отношения между изолированным систолическим повышенным давлением и артериальной ригидностью, Касс (2005 г.) изучил соотношение между артериальной ригидностью и функционированием желудочков. Эту тему далее изучил Николс (2005г.) и позднее Зиман и др.(2005г.).

Эти важные исследования послужили толчком для выпуска согласованного экспертного заключения (Лоран и др. 2006 г.) по методам и применениям артериальной ригидности. Хирата и др.(2006г). На основании этих данных Конн (2007 г) рассмотрел свидетельство измерений и потенциальную пользу для лечения гипертензии. Майкл Ф О"Рурке и Хасимото (2008г.) опубликовали исторический обзор данных по артериальной ригидности, Франклин (2008 г.) обозначил артериальную ригидность в качестве нового и надежного индикатора сердечно-сосудистых заболеваний.

«Лечение артерий для управления сердечно-сосудистым риском»

П. Аволио и др. (2009г.) подчеркнул разницу между центральным и периферическим кровяным давлением, в то время как Нильссон и др.(2009г.) предложил управлять сердечно-сосудистым риском на основании возраста сосудов. Сочетание традиционного метода измерения артериального давления с помощью компрессионной манжеты с новым анализом периферической пульсовой волны был описан как будущее для лечения патологий кровяного давления П. Аволио и др (2010 г.).

Клиническая Проблема

Согласно последнему выпуску Глобального атласа по предотвращению и контролю заболеваний сердечно-сосудистой системы опубликованному Всемирной организацией здравоохранения (2011 г.), заболевания сердечно-сосудистой системы лидирует среди причин смерти и инвалидности по всему миру. К заболеваниям сердечно-сосудистой системы болезни и травмы сердца, кровеносных сосудов сердца, системы кровеносных сосудов (вен и артерий) по всему телу и в головном мозге. Среди факторов риска для развития сердечно-сосудистых патологий называют семейную историю любого из нижеследующих заболеваний:

Сердечно-сосудистая патология или смерть в результате сердечно-сосудистой патологии
Ожирение
Диабет
Высокий уровень холестерина в крови
Высокое артериальное давление

В дополнение к этим наследственным проблемам, образ жизни играет важную роль в развитии сердечно-сосудистых заболеваний. Курение и малоподвижный образ жизни также являются известными прогностическими факторами. При отсутствии этих традиционных факторов риска, специалисты могут произвести оценку артериального статуса для определения потенциала для развития сердечно-сосудистых патологий.

Высокий процент сердечно-сосудистых заболеваний можно предотвратить, однако действовать следует на раннем этапе для того, чтобы предотвратить патологии. Артерии предоставляют крайне важную, всестороннюю информацию о сердечно-сосудистом заболевании для того, чтобы улучшить лечение. Вместе с тем, как только из-за скопления бляшек артерии сильно закупорились, возможность оценить их функционирование и структуру ограничивается.

Система СРПВ позволяет специалистам оценивать артериальную функцию на ранней стадии для того, чтобы определить пациентов группы риска. Скрининг на ранней стадии может помочь в раннем диагностировании и/или лечении скрытых сосудистых патологий, до того как они превратятся в более серьезные проблемы. Система СРПВ также позволяет специалистам точно определять проблемы и получать в итоге более целенаправленную диагностическую оценку. И наконец, система СРПВ дает возможность врачам-терапевтам следить за артериальным здоровьем пациента на каждой последующей стадии, чтобы убедиться, что вмешательства производят желаемый эффект.

Как Помогает Сердечно-Сосудистый Анализ

Традиционно, сердечно-сосудистый анализ в первую очередь выполняется с использованием таких методов, как электрокардиограммы (ЭКГ), эхокардиограммы и электрокардиограммы, снятые во время физических упражнений с нагрузкой. В то время как эти тесты эффективны для оценки функции сердца, их диапазон ограничен только сердцем, и как таковые, эти методы не предоставляют информацию об артериях. Поскольку уже хорошо установлено, что артериальное здоровье по своей природе связано с артериальной функцией, артериальная оценка является оптимальной мерой.

Тогда как артериальное обследование предоставляет детальную оценку сердечно-сосудистого здоровья, традиционные методы получения информации дискредитируются на поздних стадиях сердечно-сосудистой болезни. Это происходит из-за накопления бляшек, которое угрожает функциональной и структурной целостности артерий. Систем СРПВ обходит обструкцию артерий, чтобы точно и легко оценить артериальную функцию.

Таким образом, сердечно-сосудистый анализ посредством артериальной оценки важен по следующим причинам:

Клинические исследования артериальной эластичности успешно установили взаимосвязь между уменьшенной артериальной эластичностью и последующим развитием сердечно-сосудистых патологий.

Артериальная ригидность часто присутствует даже при отсутствии традиционных факторов риска, и дополнительные данные успешно связали потерю артериальной ригидности у пациентов, страдающих от повышенного давления, диабетов, сердечной недостаточности или болезни коронарных артерий, с их заболеваниями.

Исследования показывают, что незначительные изменения в эластичности артерий дают неоценимую информацию об общем сердечно-сосудистом статусе. Изменения в артериальной эластичности часто предшествуют таким заболеваниям, как гипертензия и диабет, и эти изменения отражены в колебательном сигнале артериального давления.

Данные указывают на то, что изменения в сосудистой системе предваряют типичные и явные симптомы сердечно-сосудистых заболеваний, а также инфаркты и инсульты на много лет. Более того, клинические исследования показали взаимосвязь между потерей артериальной эластичности и старением, которая означает, что артериальная ригидность является ранним био-маркером сердечно-сосудистых заболеваний.

Система СРПВ позволяет проводить легкое, неинвазивное измерение и анализ сердечно-сосудистого статуса. Информация, полученная в результате, дает ценные сведения об артериальной эластичности, ригидности и сосудистых изменениях, которые являются мощными детерминантами сердечно-сосудистых патологий. Клинический анализ позволяет проводить на ранней стадии скрининг, лечение и мониторинг любых значимых сердечно-сосудистых патологий.

Метод определения скорости распространения пульсовой волны позволяет дать объективную и точную характеристику свойств стенок артериальных сосудов. Для этого производится запись сфигмограммы с двух или нескольких участков сосудистой системы с определением времени запаздывания пульса на дистальном отрезке артерий эластического и мышечною типов по отношению к центральному пульсу, для чего надо знать расстояние между двумя исследуемыми точками.

Чаще всего сфигмограммы записывают одновременно с сонной артерии на уровне верхнего края щитовидного хряща, с бедренной артерии на месте выхода ее из-под пупартовой связки и с лучевой артерии.

Отрезок «сонная артерия-бедренная артерия» отражает скорость распространения пульсовой волны но сосудам преимущественно эластического типа (аорта). Отрезок «сонная артерия-лучевая артерия» отражает распространение волны по сосудам мышечного типа. Время запаздывания периферического пульса по отношению к центральному надо высчитывать по расстоянию между началом подъема регистрируемых сфигмограмм. Длина пути «сонная артерия-бедренная артерия» и «сонная артерия-лучевая артерия» измеряется сантиметровой лентой с последующим расчетом истинной длины сосуда по специальной методике.

Для определения скорости распространения пульсовой волны (С) надо путь, пройденный пульсовой волной в см (L), разделить на время запаздывания пульса в секундах (Т):

У здоровых людей скорость распространения пульсовой волны по эластическим сосудам раина 5-7 м/с, по сосудам мышечного типа - 5-8 м/с.

Скорость распространения пульсовой волны зависит от возраста, индивидуальных особенностей сосудистой стенки, от степени ее напряжения и тонуса, от величины артериального давления.

При атеросклерозе в большей степени увеличивается скорость пульсовой волны по эластическим сосудам, чем по сосудам мышечного типа. Гипертоническая болезнь обусловливает увеличение скорости пульсовой волны по обоим типам сосудов, что объясняется повышенным артериальным давлением и повышенным сосудистым тонусом.

Флебография

Флебографня - метод исследования, позволяющий зарегистрировать пульсацию вен в виде кривой, называемой флебограммой. Флебограмму чаще всего записывают с яремных вен, колебания которых отражают работу правого предсердия и правого желудочка.

Флебограмма - сложная кривая, начинающаяся с отлогого подъема, соответствующего концу диастолы желудочков. Ее вершиной является зубец «а», обусловленный систолой правого предсердия, во время которой значительно увеличивается давление в полости правого предсердия, а ток крови из яремных вен замедляется, вены набухают.


При сокращении желудочков на флебограмме появляется резко отрицательная волна - волна падения, которая начинается после зубца «а» и заканчивается зубцом «с», после чего возникает резкая волна падения - систолический коллапс («х»). Он обусловлен расширением полости правого предсердия (вслед за его систолой) и понижением внутригрудного давления вследствие систолы левого желудочка. Понижение давления в грудной полости способствует усиленному оттоку крови из яремных вен в правое предсердие.

Зубец «с», находящийся между зубцами «а» и «v», связывают с записью пульса сонной и подключичной артерий (передача пульсации с данных сосудов), а также с некоторым выпячиванием трехстворчатого клапана в полость правого предсердия в фазу замкнутых клапанов сердца. В связи с этим в правом предсердии происходит кратковременный подъем давления и замедляется кровоток в яремных венах.

За систолическим коллапсом «х» следует зубец «v» - диастолическая волна. Он соответствует наполнению яремных вен и правого предсердия в период его диастолы при закрытом трехстворчатом клапане. Таким образом, зубец «v» отображает вторую половину систолы правого желудочка сердца. Открытие трехстворчатого клапана и отток крови из правого предсердия в правый желудочек сопровождаются повторным снижением кривой «у» - диастолическим коллапсом (спадением).

При недостаточности трехстворчатого клапана, когда правый желудочек во время систолы выбрасывает кровь не только в легочную артерию, но и обратно в правое предсердие, появляется положительный венный пульс из-за повышения давления в правом предсердии, что препятствует оттоку крови из яремных вен. На флебограмме значительно уменьшается высота зубца «а». По мере увеличения застоя и ослабления систолы правого предсердия зубец «а» сглаживается.

Зубец «а» также становится ниже и исчезает при всех застойных явлениях в правом предсердии (гипертония малого круга кровообращения, стеноз легочной артерии). В этих случаях, как и при недостаточности трехстворчатого клапана, колебания венного пульса зависят только от фаз работы правого желудочка, поэтому регистрируется высокий зубец «v».

При большом застое крови в правом предсердии на флебограмме исчезает коллапс «х» (спадение).

Застой крови в правом желудочке и его недостаточность сопровождаются сглаживанием зубца «v» и коллапса «у».

Недостаточность аортальных клапанов, гипертония, недостаточность трехстворчатого клапана, анемия сопровождаются увеличением зубца «с». Недостаточность левого желудочка сердца, наоборот, дает снижение зубца «с» в результате малого систолического объема крови, выбрасываемого в аорту.

Измерение скорости кровотока

Принцип метода заключается в определении периода, в течение которого биологически активное вещество, введенное в один из участков системы кровообращения, регистрируется в другом.

Проба с сульфатом магния. После введения в локтевую вену 10 мл 10% сульфата магния регистрируется момент появления ощущения тепла. У здоровых людей ощущение тепла во рту возникает через 7-18 секунд, и цальцал рук - через 20-24 секунды, в подошвах стоп - через 3U-40 секунд.

Проба с хлоридом кальция. В локтевую вену вводится 4-5 мл 10% раствора хлорида кальцин, после чего отмечается момент появления тепла в ней, во рту, в голове. У здоровых людей ощущение тепла в лице возникает через 9-16 секунд, в руках - через 14-27 секунд, в ногах - через 17 - 36 секунд.

При сердечной недостаточности время кровотока увеличивается пропорционально Степени недостаточности. При анемии, тиреотоксикозе, лихорадке кровоток ускоряется. При тяжелых формах инфаркта миокарда происходит замедление тока крови в связи с ослаблением сократительной функции миокарда. Значигельное уменьшение скорости кровотока наблюдается у больных с врожденными пороками сердца (часть введенного вещества не попадает в легкие, а посгупает из отделов правого предсердия или neiочной артерии через шунт непосредственно в отделы левого сердца или в аорту).