Что такое вихревое электрическое поле. Вихревое электрическое поле — Гипермаркет знаний. Закон электромагнитной индукции

Электрическое поле, возникающее при изменении магнит­ного поля, имеет совсем другую структуру, чем электростати­ческое. Оно не связано непосредственно с электрическими за­рядами, и его линии напряженности не могут на них начи­наться и кончаться. Они вообще нигде не начинаются и не кончаются, а представляют собой замкнутые линии, подобные линиям индукции магнитного поля. Это так называемое вихревое электрическое поле. Может возник­нуть вопрос: а почему, собственно, это поле называется элект­рическим? Ведь оно имеет другое происхождение и другую конфигурацию, чем статическое электрическое поле. Ответ прост: вихревое поле действует на заряд q точно так же, как и электростатическое, а это мы считали и считаем главным свойством поля. Сила, действующая на заряд, по-прежнему равна F = qE, где Е - напряженность вихревого поля.

Если магнитный поток создается од­нородным магнитным полем, сконцент­рированным в длинной узкой цилиндри­ческой трубке радиусом г 0 (рис. 5.8), то из соображений симметрии очевидно, что линии напряженности электрическо­го поля лежат в плоскостях, перпенди­кулярных линиям В, и представляют со­бой окружности. В соответствии с прави­лом Ленца при возрастании магнитной

индукции линии напряженности E образуют левый винт с направлением магнитной индукции B.

В отличие от статического или стационарного электриче­ского поля работа вихревого поля на замкнутом пути не равна нулю. Ведь при перемещении заряда вдоль замкнутой линии напряженности электрического поля работа на всех участках пути имеет один и тот же знак, так как сила и перемещение совпадают по направлению. Вихревое электрическое поле, так же как и магнитное поле, не потенциальное.

Работа вихревого электрического поля по перемещению единичного положительного заряда вдоль замкнутого непо­движного проводника численно равна ЭДС индукции в этом проводнике.

Если по катушке идет переменный ток, то магнитный поток, пронизывающий катушку, меняется. Поэтому возникает ЭДС индукции в том же самом проводнике, по которому идет переменный ток. Это явление называют самоиндукцией.

При самоиндукции проводящий контур играет двоякую роль: по нему протекает ток, вызывающий индукцию, и в нем же появляется ЭДС индукции. Изменяющееся магнитное по­ле индуцирует ЭДС в том самом проводнике, по которому течет ток, создающий это поле.

В момент нарастания тока напряженность вихревого элект­рического поля в соответствии с правилом Ленца направлена против тока. Следовательно, в этот момент вихревое поле пре­пятствует нарастанию тока. Наоборот, в момент уменьшения тока вихревое поле поддерживает его.

Это приводит к тому, что при замыкании цепи, содержа­щей источник постоянной ЭДС, определенное значение силы тока устанавливается не сразу, а постепенно с течением време­ни (рис. 5.13). С другой стороны, при отключении источника ток в замкнутых контурах прекращается не мгновенно. Воз­никающая при этом ЭДС самоиндукции может превышать ЭДС источника, так как изменение тока и его магнитного поля при отключении источника происходит очень быстро.

Явление самоиндукции можно на­блюдать на простых опытах. На рисун­ке 5.14 показана схема параллельного включения двух одинаковых ламп. Од­ну из них подключают к источнику че­рез резистор R, а другую - последова­тельно с катушкой L с железным сер­дечником. При замыкании ключа первая лампа вспыхивает практиче­ски сразу, а вторая - с заметным запозданием. ЭДС самоин­дукции в цепи этой лампы велика, и сила тока не сразу дости­гает своего максимального значения. Появление ЭДС самоиндукции при размыкании можно на­блюдать на опыте с цепью, схематически показанной на рисун­ке 5.15. При размыкании ключа в катушке L возникает ЭДС самоиндукции, поддерживающая первоначальный ток. В ре­зультате в момент размыкания через гальванометр течет ток (штриховая стрелка), направленный против начального тока до размыкания (сплошная стрелка). Причем сила тока при размыкании цепи превосходит силу тока, проходящего через гальванометр при замкнутом ключе. Это означает, что ЭДС са­моиндукции ξ. больше ЭДС ξ is батареи элементов.

Явление самоиндукции подобно явлению инерции в меха­нике. Так, инерция приводит к тому, что под действием силы тело не мгновенно приобретает определенную скорость, а по­степенно. Тело нельзя мгновенно затормозить, как бы велика ни была тормозящая сила. Точно так же за счет самоиндук­ции при замыкании цепи сила тока не сразу приобретает опре­деленное значение, а нарастает постепенно. Выключая источ­ник, мы не прекращаем ток сразу. Самоиндукция его поддер­живает некоторое время, несмотря на наличие сопротивления цепи.

Далее, чтобы увеличить скорость тела, согласно законам механики, нужно совершить работу. При торможении тело са­мо совершает положительную работу. Точно так же для созда­ния тока нужно совершить работу против вихревого электри­ческого поля, а при исчезновении тока это поле само соверша­ет положительную работу.

Это не просто внешняя аналогия. Она имеет глубокий внут­ренний смысл. Ведь ток - это совокупность движущихся за­ряженных частиц. При увеличении скорости электронов со­здаваемое ими магнитное поле меняется и порождает вихре­вое электрическое поле, которое действует на сами электро­ны, препятствуя мгновенному увеличению их скорости под действием внешней силы. При торможении, напротив, вих­ревое поле стремится поддержать скорость электронов по­стоянной (правило Ленца). Таким образом, инертность элект­ронов, а значит, и их масса, по крайней мере частично, имеет электромагнитное происхождение. Масса не может быть пол­ностью электромагнитной, так как существуют электрически нейтральные частицы, обладающие массой (нейтроны и др.)

Индуктивность.

Модуль В магнитной индукции, создаваемой током в лю­бом замкнутом контуре, пропорционален силе тока. Так как магнитный поток Ф пропорционален В, то Ф ~ В ~ I.

Можно, следовательно, утверждать, что

где L - коэффициент пропорциональности между током в проводящем контуре и созданным им магнитным потоком, пронизывающим этот контур. Величину L называют индук­тивностью контура или его коэффициентом самоиндукции.

Используя закон электромагнитной индукции и выраже­ние (5.7.1), получим равенство:

(5.7.2)

Из формулы (5.7.2) следует, что индуктивность - это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.

Индуктивность, подобно электроемкости, зависит от геометрических факторов: размеров проводника и его формы, но не зависит непосредственно от силы тока в проводнике. Кроме

геометрии проводника, индуктивность зависит от магнитных свойств среды, в которой находится проводник.

Единицу индуктивности в СИ называют генри (Гн). Ин­дуктивность проводника равна 1 Гн, если в нем при измене­нии силы тока на 1 А за возникает ЭДС самоиндукции 1 В:

Еще одним частным случаем электромагнитной индукции является взаимная индукция. Взаимной индукцией называют возникновение индукционного тока в замкнутом контуре (катушке) при изменении силы тока в соседнем контуре (катушке). Контуры при этом неподвижны друг от­носительно друга, как, например, катушки трансформатора.

Количественно взаимная индукция характеризуется коэффициентом взаимной индукции, или взаимной индуктивностью.

На рисунке 5.16 изображены два контура. При изменении силы тока I 1 в контуре 1 в контуре 2 возникает индукционный ток I 2 .

Поток магнитной индукции Ф 1,2 , созданный током в пер­вом контуре и пронизывающий поверхность, ограниченную вторым контуром, пропорционален силе тока I 1:

Коэффициент пропорциональности L 1, 2 называется взаим­ной индуктивностью. Он аналогичен индуктивности L.

ЭДС индукции во втором контуре, согласно закону электро­магнитной индукции, равна:

Коэффициент L 1,2 определяется геометрией обоих конту­ров, расстоянием между ними, их взаимным расположением и магнитными свойствами окружающей среды. Выражается взаимная индуктивность L 1,2 , как и индуктивность L, в генри.

Если сила тока меняется во втором контуре, то в первом контуре возникает ЭДС индукции

При изменении силы тока в проводнике в последнем воз­никает вихревое электрическое поле. Это поле тормо­зит электроны при возрастании силы тока и ускоряет при убывании.

Энергия магнитного поля тока.

При замыкании цепи, содержащей источник постоянной ЭДС, энергия источника тока первоначально расходуется на создание тока, т. е. на приведение в движение электронов про­водника и образование связанного с током магнитного поля, а также отчасти на увеличение внутренней энергии проводни­ка, т. е. на его нагревание. После того как установится посто­янное значение силы тока, энергия источника расходуется исключительно на выделение теплоты. Энергия тока при этом уже не изменяется.

Для создания тока необходимо затратить энергию, т. е. необходимо совершить работу. Объяс­няется это тем, что при замыкании цепи, когда ток начинает нарастать, в проводнике появляется вихревое электрическое поле, действующее против того электрического поля, которое создается в проводнике благодаря источнику тока. Для того чтобы сила тока стала равной I, источник тока должен совер­шить работу против сил вихревого поля. Эта работа и идет на увеличение энергии тока. Вихревое поле совершает отрица­тельную работу.

При размыкании цепи ток исчезает и вихревое поле совер­шает положительную работу. Запасенная током энергия выде­ляется. Это обнаруживается по мощной искре, возникающей при размыкании цепи с большой индуктивностью.

Записать выражение для энергии тока I, текущего по цепи с индуктивностью L, можно на основании аналогии между инерцией и самоиндукцией.

Если самоиндукция аналогична инерции, то индуктив­ность в процессе создания тока должна играть ту же роль, что и масса при увеличении скорости тела в механике. Роль ско­рости тела в электродинамике играет сила тока I как величи­на, характеризующая движение электрических зарядов. Если это так, то энергию тока W m можно считать величиной, подобной кинетической энергии тела - в механике, и записать в виде.

Через контур может происходить: 1) в случае неподвижного проводящего контура, помещенного в изменяющееся во времени поле; 2) в случае проводника, движущегося в магнитном поло, которое может и не меняться со временем. Значение ЭДС индукции в обоих случаях определяется законом (2.1), по происхождение этой ЭДС различно.

Рассмотрим сначала первый случай возникновения индукционного тока. Поместим круговой проволочный виток радиусом r в переменное во времени однородное магнитное поле (рис. 2.8). Пусть индукция магнитного поля увеличивается, тогда будет увеличиваться со временем и магнитный поток через поверхность, ограниченную витком. Согласно закону электромагнитной индукции в витке появится индукционный ток. При изменении индукции магнитного поля по линейному закону индукционный ток будет постоянен.

Какие же силы заставляют заряды в витке двигаться? Само магнитное поле, пронизывающее катушку, этого сделать не может, так как магнитное поле действует исключительно на движущиеся заряды (этим-то оно и отличается от электрического), а проводник с находящимися в нем электронами неподвижен.

Кроме магнитного поля, на заряды, причем как на движущиеся, так и на неподвижные, действует еще электрическое поле. Но ведь те поля, о которых пока шла речь (электростатичсское или стационарное), создаются электрическими зарядами, а индукционный ток появляется в результате действия меняющегося магнитного поля. Поэтому можно предположить, что электроны в неподвижном проводнике приводятся в движение электрическим полем, и это поле непосредственно порождается меняющимся магнитным полем. Тем самым утверждается новое фундаментальное свойство поля: изменяясь во времени, магнитное поле порождает электрическое поле . К этому выводу впервые пришел Дж. Максвелл.

Теперь явление электромагнитной индукции предстает перед нами в новом свете. Главное в нем - это процесс порождения полем магнитным поля электрического. При этом наличие проводящего контура, например катушки, не меняет существа процесса. Проводник с запасом свободных электронов (или других частиц) играет роль прибора: он лишь позволяет обнаружить возникающее электрическое поле.

Поле приводит в движение электроны и проводнике и тем самым обнаруживает себя. Сущность явления электромагнитной индукции и неподвижном проводнике состоит не столько в появлении индукционного тока, сколько в возникновении электрического поля, которое приводит в движение электрические заряды.

Электрическое поле, возникающее при изменении магнитного поля, имеет совсем другую природу, чем электростатическое.

Оно не связано непосредственно с электрическими зарядами , и его линии напряженности не могут на них начинаться и кончаться. Они вообще нигде не начинаются и не кончаются, а представляют собой замкнутые линии, подобныe линиям индукции магнитного поля. Это так называемое вихревое электрическое поле (рис. 2.9).

Чем быстрее меняется магнитная индукция, тем болыпе напряженность электрического поля. Согласно правилу Ленца при возрастании магнитной индукции направление вектора напряженности электрического поля образует левый винт с направлением вектора . Это означает, что при вращении винта с левой нарезкой в направлении линий напряженности электрического поля поступательное перемещение винта совпадает с направлением вектора магнитной индукции. Напротив, при убывании магнитной индукции направление вектора напряженности образует правый винт с направлением вектора .

Направление силовых линий напряженности совпадает с направлением индукционного тока. Сила, действующая со стороны вихревого электрического поля на заряд q (сторонняя сила), по-прежнему равна = q. Но в отличие от случая стационарного электрического поля работа вихревого поля по перемещению заряда q на замкнутом пути не равна нулю. Ведь при перемещении заряда вдоль замкнутой линии напряженности электрического поля работа на всех участках пути имеет один и тот же знак, так как сила и перемещение совпадают по направлению. Работа вихревого электрического поля при перемещении единичного положительного заряда вдоль замкнутого неподвижного проводника численно равна ЭДС индукции в этом проводнике.

Индукционные токи в массивных проводниках. Особенно большого числового значения индукционные токи достигают в массивных проводниках, из-за того, что их сопротивление мало.

Такие токи, называемые токами Фуко по имени исследовавшего их французского физика, можно использовать для нагревания проводников. На этом принципе основано устройство индукционных печей, например используемых в быту СВЧ-печей. Также этот принцип используется для плавки металлов. Кроме этого явление э.пектромагнит-ной индукции используется в детекторах металла, устанавливаемых при входах в здания аэровокзалов, театров и т. д.

Однако во многих устройствах возникновение токов Фуко приводит к бесполезным и даже нежелательным потерям энергии на выделение тепла. Поэтому железные сердечники трансформаторов, электродвигателей, генераторов и т. д. делают не сплошными, а состоящими из отдельных пластин, изолированных друг от друга. Поверхности пластин должны быть перпендикулярны направлению вектора напряженности вихревого электрического поля. Сопротивление электрическому току пластин будет при этом максимальным, а выделение тепла - минимальным.

Применение ферритов. Радиоэлектронная аппаратура работает в области очень высоких частот (миллионы колебаний в секунду). Здесь применение сердечников катушек из отдельных пластин уже не дает нужного эффекта, так как большие токи Фуко возникают в каледой пластине.

В § 7 отмечалось, что существуют магнитные изоляторы - ферриты. При перемагничивании в ферритах не возникают вихревые токи. В результате потери энергии на выделение в них тепла сводятся к минимуму. Поэтому из ферритов делают сердечники высокочастотных трансформаторов, магнитные антенны транзисторов и др. Ферритовые сердечники изготовляют из смеси порошков исходных веществ. Смесь прессуется и подвергается значительной термической обработке.

При быстром изменении магнитного поля в обычном ферромагнетике возникают индукционные токи, магнитное поле которых, в соответствии с правилом Ленца , препятствует изменению магнитного потока в сердечнике катушки. Из-за этого поток магнитной индукции практически не меняется и сердечник не перемагничивается. В ферритах вихревые токи очень малы, поэтому их можно быстро перемагничивать.

Наряду с потенциальным кулоновским электрическим полем существует вихревое электрическое поле. Линии напряженности этого поля замкнуты. Вихревое поле порождается меняющимся магнитным полем.

1. Какова природа сторонних сил, вызывающих появление индукционного тока в неподвижном проводнике!
2. В чем отличие вихревого электрического поля от электростатического или стационарного!
3. Что такое токи Фуко!
4. В чем преимущества ферритов по сравнению с обычными ферромагнетиками!

Мякишев Г. Я., Физика . 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. - 17-е изд., перераб. и доп. - М. : Просвещение, 2008. - 399 с: ил.

Библиотека с учебниками и книгами на скачку бесплатно онлайн , Физика и астрономия для 11 класса скачать , школьная программа по физике, планы конспектов уроков

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Из закона Фарадея (см. (123.2)) следует, что любое изменение сцепленного с контуром потока магнитной индукции приводит к возникновению электродвижущей силы индукции и вследствие этого появляется индукционный ток. Следовательно, возникновение э.д.с. электромагнитной индукции возможно и в неподвижном контуре,

находящемся в переменном магнитном поле. Однако э.д.с. в любой цепи возникает только тогда, когда в ней на носители тока действуют сторонние силы - силы неэлектростатического происхождения (см. § 97). Поэтому встает вопрос о природе сторонних сил в данном случае.

Опыт показывает, что эти сторонние силы не связаны ни с тепловыми, ни с химическими процессами в контуре; их возникновение также нельзя объяснить силами Лоренца, так как они на неподвижные заряды не действуют. Максвелл высказал гипотезу, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в контуре. Согласно представлениям Максвелла, контур, в котором появляется э.д.с., играет второстепенную роль, являясь своего рода лишь «прибором», обнаружи­вающим это поле.

Итак, по Максвеллу, изменяющееся во времени магнитное поле порождает электрическое поле Е В циркуляция которого, по (123.3),

где Е В l - проекция вектора Е B на направление dl.

Подставив в формулу (137.1) выражение (см. (120.2)), получим

Если поверхность и контур неподвижны, то операции дифференцирования и интегрирования можно поменять местами. Следовательно,

(137.2)

где символ частной производной подчеркивает тот факт, что интеграл является функцией только от времени.

Согласно (83.3), циркуляция вектора напряженности электростатического поля (обозначим его Е Q) вдоль любого замкнутого контура равна нулю:

(137.3)

Сравнивая выражения (137.1) и (137.3), видим, что между рассматриваемыми полями (Е В и Е Q) имеется принципиальное различие: циркуляция вектора Е B в отличие от

циркуляции вектора Е Q не равна нулю. Следовательно, электрическое поле Е B , возбуждаемое магнитным полем, как и само магнитное поле (см. § 118), является вихревым.

Ток смещения

Согласно Максвеллу, если всякое переменное магнитное поле возбуждает в окружа­ющем пространстве вихревое электрическое поле, то должно существовать и обратное явление: всякое изменение электрического поля должно вызывать появление в окружающем пространстве вихревого магнитного поля. Для установления количественных соотношений между изменяющимся электрическим полем и вызываемым им магнит­ным полем Максвелл ввел в рассмотрение так называемыйток смещения.

Рассмотрим цепь переменного тока, содержащую конденсатор (рис. 196). Между обкладками заряжающегося и разряжающегося конденсатора имеется переменное электрическое поле, поэтому, согласно Максвеллу, через конденсатор «протекают» токи смещения, прячем в тех участках, где отсутствуют проводники.

Найдем количественную связь между изменяющимся электрическим и вызываемым им магнитным полями. По Максвеллу, переменное электрическое поле в конденсаторе в каждый момент времени создает такое магнитное поле, как если бы между обклад­ками конденсатора существовал ток проводимости, равный току в подводящих проводах. Тогда можно утверждать, что токи проводимости (I)и смещения (I см) равны: I см =I.

Ток проводимости вблизи обкладок конденсатора

,(138.1)

(поверхностная плотность заряда s на обкладках равна электрическому смещению D в конденсаторе (см. (92.1)). Подынтегральное выражение в (138.1) можно рассматривать как частный случай скалярного произведения , когда и dS взаимно

параллельны. Поэтому для общего случая можно записать

Сравнивая это выражение c (см. (96.2)), имеем

Выражение (138.2) и было названо Максвеллом плотностыю тока смещения.

Рассмотрим, каково же направление векторов плотностей токов проводимости и смещения j и j см. При зарядке конденсатора (рис. 197, в) через проводник, соединя­ющий обкладки, ток течет от правой обкладки к левой; поле в конденсаторе усиливается, следовательно, , т. е. вектор направлен в ту же сторону, что и D. Из рисунка видно, что направления векторов и j совпадают. При разрядке конденсатора (рис. 197, б) через проводник, соединяющий обкладки, ток течет от левой

обкладки к правой; поле в конденсаторе ослабляется; следовательно, <0, т. е.

вектор направлен противоположно вектору D. Однако вектор направлен опять

так же, как и вектор j. Из разобранных примеров следует, что направление вектора j, cледовательно, и вектора j см совпадает с направлением вектора , как это и следует из формулы (138.2).

Подчеркнем, что из всех физических свойств, присущих току проводимости. Макс­велл приписал току смещения лишь одно - способность создавать в окружающем пространстве магнитное поле. Таким образом, ток смещения (в вакууме или веществе) создает в окружающем пространстве магнитное поле (линии индукции магнитных полей токов смещения при зарядке и разрядке конденсатора показаны на рис. 197 штриховыми линиями).

В диэлектриках ток смещения состоитиз двух слагаемых. Так как, согласно (89.2), D= , где Е-напряженность электростатического поля, а Р-поляризованность (см. § 88), то плотность тока смещения

, (138.3)

где - плотность тока смещения в вакууме, - плотность тока поляризации - тока, обусловленного упорядоченным движением электрических зарядов в ди­электрике (смещение зарядов в неполярных молекулах или поворот диполей в полярных молекулах). Возбуждение магнитного поля токами поляризации правомерно, так как токи поляризации по своей природе не отличаются от токов проводимости. Однако то, что и другая часть плотности тока смещения , не связанная с движением зарядов, а обусловленная только изменением электрического поля во времени, также возбуждает магнитное поле, является принципиально новым утверждением Максвелла. Даже в вакууме всякое изменение во времени электрического поля приводит к возник­новению в окружающем пространстве магнитного поля.

Следует отметить, что название «ток смещения» является условным, а точ­нее - исторически сложившимся, так как ток смещения по своей сути - это изменя­ющееся со временем электрическое поле. Ток смещения поэтому существует не только в вакууме или диэлектриках, но и внутри проводников, по которым проходит переменный ток.



Однако в данном случае он пренебрежимо мал по сравнению с током проводимости. Наличие токов смещения подтверждено экспериментально А. А. Эйхенвальдом, изучавшим магнитное поле тока поляризации, который, как следует из (138.3), является частью тока смещения.

Максвелл ввел понятиеполного тока, равногосумме токов проводимости (а также конвекционных токов) и смещения.Плотность полного тока

Введя понятия тока смещения и полного тока. Максвелл по-новому подошел к рас­смотрению замкнутости цепей переменного тока. Полный ток в них всегда замкнут, т. е. на концах проводника обрывается лишь ток проводимости, а в диэлектрике (вакууме) между концами проводника имеется ток смещения, который замыкает ток проводимости.

Максвелл обобщил теорему о циркуляции вектора Н (см. (133.10)), введя в ее правую часть полный ток сквозь поверхность S, натянутую на замкнутый контур L. Тогда обобщенная теорема о циркуляции вектора Н запишется в виде

(138.4)

Выражение (138.4) справедливо всегда, свидетельством чего является полное соответствие теории и опыта.

Один из вопросов, который часто можно найти на просторах глобальной Сети - это чем отличается вихревое электрическое поле от электростатического. На самом деле различия кардинальны. В электростатике рассматривается взаимодействие двух (или более) зарядов и, что важно, линии напряженности таких полей не замкнуты. А вот вихревое электрическое поле подчиняется совершенно другим законам. Рассмотрим этот вопрос более подробно.

Один из самых распространенных приборов, с которым сталкивается практически каждый человек - это счетчик учета потребленной электрической энергии. Только не современные электронные модели, а «старые», в которых используется алюминиевый вращающийся диск. Его «заставляет» вращаться индукция электрического поля. Как известно, в любом проводнике большого объема и массы (не провод), который пронизывает изменяющийся магнитный поток, в соответствии с возникает электродвижущая сила и электрический ток, называемый вихревым. Отметим, что в данном случае совершенно не принципиально, изменяется ли магнитное поле или в нем перемещается сам проводник. В соответствии с законом электромагнитной индукции в массе проводника создаются замкнутые контуры вихреобразной формы, по которым циркулируют токи. Их ориентированность можно определить, воспользовавшись правилом Ленца. Оно гласит, что тока направлено таким образом, чтобы компенсировать любое изменение (как уменьшение, так и увеличение) инициирующего внешнего магнитного потока. Диск счетчика вращается именно благодаря взаимодействию внешнего магнитного поля и генерируемого токами, возникающими в нем самом.

Каким же образом вихревое электрическое поле связано со всем вышесказанным? На самом деле связь есть. Все дело в терминах. Любое изменение магнитного поля создает вихревое электрическое поле. Далее все просто: в проводнике генерируется и возникает ток в контуре. Его величина зависит от скорости изменения основного потока: например, чем быстрее проводник пересекает линии напряженности поля, тем больше ток. Особенность данного поля в том, что его линии напряженности не имеют ни начала, ни конца. Иногда его конфигурацию сравнивают с соленоидом (цилиндр с витками проволоки на его поверхности). Еще одно схематичное представление для пояснения использует вектор Вокруг каждого из них создаются линии действительно, напоминающие вихри. Важная особенность: последний пример верен в том случае, если интенсивность магнитного потока изменяется. Если «смотреть» по вектору индукции, то при увеличении потока линии вихревого поля вращаются по часовой стрелке.

Свойство индукции широко применяется в современной электротехнике: это и измерительные приборы, и двигатели и в ускорителях электронов.

  • данный вид поля неразрывно связан с носителями заряда;
  • сила, действующая на носитель заряда, создается полем;
  • по мере удаления от носителя поле слабеет;
  • характеризуется силовыми линиями (или, что также верно, линиями напряженности). Они направлены, поэтому представляют собой векторную величину.

Для изучения свойств поля в каждой произвольной точке используют тестовый (пробный) заряд. При этом стремятся так подобрать «пробник», чтобы его внесение в систему не повлияло на действующие силы. Обычно это эталонный заряд.

Отметим, что правило Ленца дает возможность рассчитать только электродвижущую силу, а вот значение вектора поля и его направленность определяют другим методом. Речь идет о системе уравнений Максвелла.

Переменное магнитное поле порождает инду­цированное электрическое поле . Если магнитное поле постоянно, то индуциро­ванного электрического поля не возникнет. Следовательно, индуцированное электрическое поле не связано с зарядами , как это имеет место в случае элект­ростатического поля; его силовые линии не начинаются и не заканчиваются на зарядах, а замкнуты сами на себя , подобно силовым линиям магнитного поля. Это означает, что индуцированное электрическое поле , подобно магнитному, является вихревым.

Если неподвижный проводник поместить в переменное магнитное поле, то в нем индуцируется э. д. с. Электроны приводятся в направленное движение электрическим полем, индуцированным переменным магнитном полем; возни­кает индуцированный электрический ток. В этом случае проводник является лишь индикатором индуцированного электрического поля. Поле приводит в движение свободные электроны в проводнике и тем самым обнаруживает себя. Теперь можно утверждать, что и без проводника это поле существует, обладая запасом энергии.

Сущность явления электромагнитной индукции заключается не столько в появлении индуцированного тока, сколько в возникновении вихревого электрического поля.

Это фундаментальное положение электродинамики установлено Максвел­лом как обобщение закона электромагнитной индукции Фарадея.

В отличие от электростатического поля индуцированное электрическое поле является непотенциальным, так как работа, совершаемая в индуцированном электрическом поле, при перемещении единичного положительного заряда по замкнутому контуру равна э. д. с. индукции, а не нулю.

Направление вектора напряженности вихревого электрического поля уста­навливается в соответствии с законом электромагнитной индукции Фарадея и правилом Ленца. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока.

Так как вихревое электрическое поле существует и в отсутствие проводника, то его можно применять для ускорения заряженных частиц до скоростей, со­измеримых со скоростью света. Именно на использовании этого принципа основано действие ускорителей электронов - бетатронов.

Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

Отличие вихревого электрического поля от электростатического

1) Оно не связано с электрическими зарядами;
2) Силовые линии этого поля всегда замкнуты;
3) Работа сил вихревого поля по перемещению зарядов на замкнутой траектории не равна нулю.

электростатическое поле

индукционное электрическое поле
(вихревое электр. поле)

1. создается неподвижными электр. зарядами 1. вызывается изменениями магнитного поля
2. силовые линии поля разомкнуты - потенциальное поле 2. силовые линии замкнуты - вихревое поле
3. источниками поля являются электр. заряды 3. источники поля указать нельзя
4. работа сил поля по перемещению пробного заряда по замкнутому пути = 0. 4. работа сил поля по перемещению пробного заряда по замкнутому пути = ЭДС индукции