Ликвор и ликворея. Цереброспинальная жидкость (ликвор) и ее циркуляция Спинномозговой канал и желудочки мозга

ИСТОРИЧЕСКИЙ ОЧЕРК ИЗУЧЕНИЯ ЛИКВОРА

Изучение цереброспинальной жидкости можно разделить на два периода:

1) до извлечения жидкости у живого человека и у животных и

2) после ее извлечения.

Первый период по существу является анатомическим, описательным. Физиологические предпосылки носили тогда главным образом умозрительный характер, основывались на анатомических взаимоотношениях тех образований нервной системы, которые находились в тесной связи с жидкостью. Эти выводы отчасти базировались на исследованиях, проводимых на трупах.

В этот период уже было получено много ценных данных, касающихся анатомии ликворных пространств и некоторых вопросов физиологии ликвора. Впервые описание мозговых оболочек мы встречаем у Герофила Александрийского (Herophile), в III веке до н. э. давшего название твердой и мягкой оболочкам и открывшего сеть сосудов на поверхности мозга, синусы твердой мозговой оболочки и их слияние. В том же веке Эразистрат описал желудочки мозга и отверстия, связывающие боковые желудочки с III желудочком. Позднее этим отверстиям было дано название монроевых.

Наибольшая заслуга в области изучения ликворных пространств принадлежит Галену (131- 201 гг.), впервые подробно описавшему мозговые оболочки и желудочки мозга. По Галену, головной мозг окружен двумя оболочками: мягкой (membrana tenuis), прилегающей к мозгу и содержащей большое количество сосудов, и плотной (membrana dura), прилегающей к некоторым частям черепа. Мягкая оболочка проникает в желудочки, но автор еще не называет эту часть оболочки сосудистым сплетением. По Галену, в спинном мозгу имеется еще третья оболочка, защищающая спинной мозг при движениях позвоночника. Наличие полости между оболочками в спинном мозгу Гален отрицает, но предполагает, что она имеется в головном мозгу в силу того, что последний пульсирует. Передние желудочки, по Галену, сообщаются с задним (IV). Очищение желудочков от лишних и посторонних веществ происходит через отверстия в оболочках, ведущих в слизистую носа и нёба. Описывая довольно подробно анатомические соотношения оболочек в головном мозгу, Гален, однако, не нашел в желудочках жидкости. По его мнению, они наполнены неким животным духом (spiritus animalis). Наблюдающуюся же в желудочках влажность он производит от этого животного духа.

Дальнейшие работы по изучению ликвора и ликворных пространств относятся к более позднему времени. В XVI веке Везалий (Vesalius) описал те же оболочки в мозгу, что и Гален, но он указал на сплетения в передних желудочках. Жидкости в желудочках он также не нашел. Варолий (Varolius) первый установил, что желудочки заполнены жидкостью, которая, как он думал, выделяется сосудистым сплетением.

Об анатомии оболочек и полостей головного и спинного мозга и цереброспинальной жидкости упоминают затем ряд авторов: Виллис (Willis, XVII век), Вьессен (Vieussen), XVII- XVIII век), Галлер (Haller, XVIII век). Последний допускал, что IV желудочек соединяется с подпаутинным пространством через боковые отверстия; позднее эти отверстия получили название отверстий Люшки. Соединение боковых желудочков с III желудочком, независимо от описания Эразистрата, установил Монро (Monroe, XVIII век), имя которого и присвоено этим отверстиям. Но последний отрицал наличие отверстий в IV желудочке. Пахиони (Pacchioni, XVIII век) дал подробное описание грануляций в синусах твердой мозговой оболочки, названных впоследствии его именем, и высказал предположение о секреторной функции их. В описаниях указанных авторов речь шла в основном о желудочковой жидкости и о связях желудочковых вместилищ.

Котуньо (Cotugno, 1770) впервые открыл наружную цереброспинальную жидкость как в головном, так и в спинном мозгу и дал подробное описание наружных ликворных пространств, особенно в спинном мозгу. По его мнению, одно пространство является продолжением другого; желудочки связаны с подоболочечным пространством спинного мозга. Котуньо подчеркивал, что жидкости головного и спинного мозга едины по составу и происхождению. Выделяется эта жидкость мелкими артериями, всасывается в вены твердой оболочки и во влагалища II, V и VIII пар нервов. Открытие Котуньо было, однако, забыто, и ликвор субарахноидальных пространств был вторично описан Мажанди (Magendie, 1825). Этот автор довольно подробно охарактеризовал субарахноидальное пространство головного и спинного мозга, цистерны головного мозга, связи паутинной оболочки с мягкой, околоневральные арахноидальные влагалища. Мажанди отрицал наличие канала Биша, с помощью которого предполагалось сообщение желудочков с субарахноидальным пространством. Путем эксперимента он доказал существование отверстия в нижнем отделе IV желудочка под писчим пером, через которое жидкость желудочков проникает в заднее вместилище субарахноидального пространства. Вместе с тем Мажанди сделал попытку выяснить направление движения жидкости в полостях головного и спинного мозга. В его опытах (на животных) окрашенная жидкость, введенная под естественным давлением в заднюю цистерну, распространялась по субарахноидальному пространству спинного мозга до крестца и в головном мозгу до лобной поверхности и во все желудочки. По детальности описания анатомии субарахноидального пространства, желудочков, связей оболочек между собой, а также по изучению химического состава ликвора и его патологических изменений Мажанди по праву принадлежит ведущее место. Однако физиологическая роль цереброспинальной жидкости осталась для него неясной и загадочной. Его открытие не получило в свое время полного признания. В частности, его противником выступил Вирхов (Virchow), не признававший свободных сообщений между желудочками и субарахноидальными пространствами.

После Мажанди появилось значительное количество работ, касающихся в основном анатомии ликворных пространств и отчасти физиологии спинномозговой жидкости. В 1855 г. Люшка (Luschka) подтвердил наличие отверстия между IV желудочком и субарахноидальным пространством и дал ему название отверстия Мажанди (foramen Magendie). Помимо того, он установил наличие пары отверстий в боковых бухтах IV желудочка, через которые последний свободно сообщается с субарахноидальным пространством. Эти отверстия, как мы отметили, были описаны значительно раньше Галлером. Основная же заслуга Люшка заключается в детальном изучении сосудистого сплетения, которое автор считал секреторным органом, продуцирующим цереброспинальную жидкость. В тех же работах Люшка дает подробное описание паутинной оболочки.

Вирхов (1851) и Робен (1859) изучают стенки сосудов головного и спинного мозга, их оболочек и указывают на наличие щелей вокруг сосудов и капилляров более крупного калибра, располагающихся кнаружи от собственной адвентиции сосудов (так называемые вирхов-робеновские щели). Квинке (Quincke), инъецируя собакам сурик в арахноидальное (субдуральное, эпидуральное) и субарахноидальное пространства спинного и головного мозга и исследуя животных через некоторое время после инъекций, установил, во-первых, что между субарахноидальным пространством и полостями головного и спинного мозга имеется связь и, во-вторых, что движение жидкости в этих полостях идет в противоположных направлениях, но более мощное- снизу вверх. Наконец Кей и Ретциус (1875) в своей работе дали довольно детальное описание анатомии субарахноидального пространства, взаимоотношений оболочек между собой, с сосудами и периферическими нервами и заложили основы физиологии спинномозговой жидкости, главным образом в отношении путей ее движения. Некоторые положения этой работы не потеряли ценности до сих пор.

Отечественные ученые внесли весьма значительный вклад в изучение анатомии ликворных пространств, цереброспинальной жидкости и смежных вопросов, причем это изучение шло в тесной связи с физиологией образований, связанных с ликвором. Так, Н.Г.Квятковский (1784) упоминает в своей диссертации о мозговой жидкости в связи с ее анатомо-физиологическими взаимоотношениями с нервными элементами. В.Рот описал тонкие волокна, отходящие от наружных стенок сосудов мозга, которые пронизывают периваскулярные пространства. Волокна эти встречаются у сосудов всех калибров, вплоть до капилляров; другие концы волокон исчезают в сетчатой структуре спонгиозы. Рот рассматривает эти волокна как лимфатический ретикулум, в котором подвешены кровеносные сосуды. Аналогичную волокнистую сеть Рот обнаружил в эпицеребральной полости, где волокна отходят от внутренней поверхности intimae piae и теряются в сетчатой структуре мозга. В месте перехода сосуда в мозг волокна, исходящие из pia, заменяются волокнами, отходящими от адвентиции сосудов. Эти наблюдения Рота получили частичное подтверждение в отношении периваскулярных пространств.

С.Пашкевич (1871) дал довольно детальное описание строения твердой мозговой оболочки. И.П.Мержеевский (1872) установил наличие отверстий в полюсах нижних рогов боковых желудочков, связывающих последние с субарахноидальным пространством, что позднейшими исследованиями других авторов подтверждено не было. Д.А.Соколов (1897), производя ряд экспериментов, дал подробное описание отверстия Мажанди и боковых отверстий IV желудочка. В отдельных случаях Соколов не находил отверстия Мажанди, и в таких случаях связь желудочков с субарахноидальным пространством осуществлялась только латеральными отверстиями.

К.Нагель (1889) изучал кровообращение в мозгу, пульсацию мозга и взаимоотношения между колебанием крови в мозгу и давлением ликвора. Рубашкин (1902) подробно описал строение эпендимы и субэпендимного слоя.

Подводя итог историческому обзору по цереброспинальной жидкости, можно отметить следующее: основные работы касались изучения анатомии ликворных вместилищ и обнаружения ликвора, причем на это понадобилось несколько веков. Изучение анатомии ликворных вместилищ и путей движения ликвора дало возможность сделать чрезвычайно много ценных открытий, дать ряд описаний, до сих пор незыблемых, но частично устаревших, потребовавших пересмотра и иной трактовки в связи с введением в исследования новых, более тонких методов. Что касается физиологических проблем, то их касались попутно, исходя из анатомических соотношений, и главным образом места и характера образования спинномозговой жидкости и путей ее движения. Введение метода гистологических исследований в значительной степени расширило изучение физиологических проблем и принесло ряд данных, не потерявших ценности до настоящего времени.

В 1891 г. Эссекс Уинтер (Essex Winter) и Квинке впервые извлекли у человека цереброспинальную жидкость путем люмбальной пункции. Этот год надо считать началом более детального и более плодотворного изучения состава ликвора в нормальных и патологических условиях и более сложных вопросов физиологии цереброспинальной жидкости. С этого же времени начато изучение одной из существенных глав в учении о цереброспинальной жидкости- проблемы барьерных образований, обмена в центральной нервной системе и роли цереброспинальной жидкости в обменных и защитных процессах.

ОБЩИЕ СВЕДЕНИЯ О ЛИКВОРЕ

Ликвор- жидкая среда, циркулирующая в полостях желудочков головного мозга, ликворопроводящих путях, субарахноидальном пространстве головного и спинного мозга. Общее содержание ликвора в организме 200 — 400 мл. Цереброспинальная жидкость заключена в основном в боковых, III и IV желудочках головного мозга, Сильвиевом водопроводе, цистернах головного мозга и в субарахноидальном пространстве головного и спинного мозга.

Процесс ликворообращения в ЦНС включает 3 основных звена:

1) Продукцию (образование) ликвора.

2) Циркуляцию ликвора.

3) Отток ликвора.

Движение ликвора осуществляется поступательными и колебательными движениями, ведущими к периодическому её обновлению, совершающемуся с различной скоростью (5 — 10 раз в сутки). Что зависит у человека от суточного режима, нагрузки на ЦНС и от колебаний в интенсивности физиологических процессов в организме.

Распределение ликвора головного мозга.

Цифры распределения ликвора таковы: каждый боковой желудочек содержит 15 мл ликвора; III, IV желудочки вместе с Сильвиевым водопроводом содержат 5 мл; церебральное субарахноидальное пространство — 25 мл; спинальное пространство — 75 мл ликвора. В младенчестве и в раннем детстве количество ликвора колеблется между 40 — 60 мл, у детей младшего возраста 60 — 80 мл, у старших детей 80 — 100 мл.

Скорость образования ликвора у человека.

Одни авторы (Mestrezat, Eskuchen) полагают, что жидкость может обновляться в течение суток 6 — 7 раз, другие авторы (Dandy) считают, что 4 раза. Это означает, что в сутки продуцируется 600 — 900 мл ликвора. По Weigeldt, полный обмен его совершается в течение 3 дней, иначе в сутки образуется всего 50 мл ликвора. Иные авторы указывают цифры от 400 до 500 мл, другие от 40 до 90 мл ликвора за сутки.

Столь различные данные объясняются в первую очередь неодинаковыми методиками исследования скорости образования ликвора у человека. Одни авторы получили результаты путём введения постоянного дренажа в желудочек мозга, другие — путём собирания ликвора у больных при назальной ликворее, третьи вычисляли быстроту резорбции введённой в мозговой желудочек краски или рассасывания введённого в желудочек воздуха при энцефалографии.

Помимо различных методик, обращает на себя внимание и то обстоятельство, что указанные наблюдения велись в патологических условиях. С другой стороны, количество продуцируемого ликвора и у здорового человека, несомненно, колеблется в зависимости от ряда разнообразных причин: функционального состояния высших нервных центров и висцеральных органов, физического или умственного напряжения. Следовательно, связь с состоянием крово- и лимфообращения в каждый данный момент, зависит от условия питания и приёма жидкостей, отсюда связь с процессами тканевого обмена в ЦНС у различных индивидуумов, возраст человека и прочие, безусловно, влияют на общее количество ликвора.

Одним из важных вопросов является вопрос о количестве выпускаемой цереброспинальной жидкости, необходимой для тех или иных целей исследователя. Одни исследователи рекомендуют брать для диагностических целей 8 — 10 мл, а другие — около 10 — 12 мл, третьи — от 5 до 8 мл ликвора.

Разумеется, нельзя точно установить для всех случаев более или менее одинаковое количество ликвора, потому что необходимо: а. Считаться с состоянием больного и уровнем давления в канале; б. Согласовываться с теми методами исследования, которые пунктирующий должен провести в каждом отдельном случае.

Для наиболее полного же исследования, согласно современным требованиям лаборатории, необходимо иметь в среднем 7 — 9 мл ликвора, исходя из следующего примерного расчёта (необходимо иметь в виду, что в этот расчёт не входят специальные биохимические методы исследования):

Морфологические исследования1 мл

Определение белка1 — 2 мл

Определение глобулинов1 — 2 мл

Коллоидные реакции1 мл

Серологические реакции (Вассермана и др.)2 мл

Минимальное количество ликвора — 6 — 8 мл, максимальное10 — 12 мл

Возрастные изменения ликвора.

По данным Tassovatz, Г. Д. Ароновича и других, у нормальных, доношенных детей при рождении ликвор прозрачен, но окрашен в желтый цвет (ксантохромия). Жёлтая окраска ликвора соответствует степени общей желтушности младенца (icteruc neonatorum). Количество и качество форменных элементов также не соответствует ликвору взрослого человека в норме. Кроме эритроцитов (от 30 до 60 в 1 мм3), обнаруживается несколько десятков лейкоцитов, из них от 10 до 20% лимфоцитов и 60 — 80 % макрофагов. Общее количество белка также увеличено: от 40 до 60 мл %. При стоянии ликвора образуется нежная плёнка, сходная с той, которая обнаруживается при менингитах, кроме увеличения количества белка, следует отметить нарушения в углеводном обмене. Впервые 4 — 5 дней жизни новорождённого часто обнаруживается гипогликемия и гипогликорахия, что, вероятно, объясняется неразвитостью нервного механизма регуляции углеводного обмена. Внутричерепные кровотечения и особенно кровотечение в надпочечниках усиливают естественную склонность в гипогликемии.

У недоношенных детей и при тяжелых родах, сопровождаемых травмами плода, обнаруживаются ещё более резкое изменение ликвора. Так, например, при мозговых кровоизлияниях у новорождённых в 1-е сутки отмечается примесь крови к ликвору. На 2 — 3-и сутки обнаруживается асептическая реакция со стороны мозговых оболочек: резкий гиперальбуминоз в ликворе и плеоцитоз с наличием эритроцитов и полинуклеаров. На 4 — 7-й день воспалительная реакция со стороны мозговых оболочек и сосудов затихает.

Общее количество у детей, как и у стариков, резко увеличено по сравнению с взрослым человеком среднего возраста. Однако, судя по химизму ликвора, интенсивность окислительно-восстановительных процессов в мозгу у детей значительно выше, чем у стариков.

Состав и свойства ликвора.

Цереброспинальная жидкость полученная при спинномозговой пункции так называемый люмбальный ликвор — в норме прозрачна, бесцветна, имеет постоянный удельный вес 1,006 — 1,007; удельный вес цереброспинальной жидкости из желудочков головного мозга (вентрикулярный ликвор) — 1,002 — 1,004. Вязкость цереброспинальной жидкости в норме колеблется от 1,01 до 1,06. Ликвор имеет слабощелочную реакцию рН 7,4 — 7,6. Длительное хранение ликвора вне организма при комнатной температуре приводит к постепенному повышению её рН. Температура цереброспинальной жидкости в субарахноидальном пространстве спинного мозга 37 — 37,5о С; поверхностное натяжения 70 — 71 дин/см; точка замерзания 0,52 — 0,6 С; электропроводимость 1,31 10-2 — 1,3810-2 ом/1см-1; рефрактометрический индекс 1,33502 — 1,33510; газовый состав (в об %) О2 -1,021,66; СО2 — 4564; щелочной резерв 4954 об%.

Химический состав цереброспинальной жидкости сходен с составом сыворотки крови 89 — 90% составляет вода; сухой остаток 10 — 11% содержит органические и неорганические вещества, принимающие участие в метаболизме мозга. Органические вещества, содержащиеся в цереброспинальной жидкости представлены белками, аминокислотами, углеводами, мочевиной, гликопротеидами и липопротеидами. Неорганические вещества — электролитами, неорганическим фосфором и микроэлементами.

Белок нормальной цереброспинальной жидкости представлен альбуминами и различными фракциями глобулинов. Установлено содержание в цереброспинальной жидкости более 30 различных белковых фракций. Белковый состав цереброспинальной жидкости отличается от белкового состава сывороткой крови наличием двух дополнительных фракций: предальбуминовой (Х-фракций) и Т-фракции, располагающейся между фракциями и -глобулинов. Предальбуминовая фракция в вентрикулярном ликворе составляет 13-20%, в цереброспинальной жидкости, содержащейся в большой цистерне 7-13%, в люмбальном ликворе 4-7% общего белка. Иногда предальбуминовую фракцию в цереброспинальной жидкости обнаружить не удаётся; так как она может маскироваться альбуминами или при очень большом количестве белка в цереброспинальной жидкости вообще отсутствовать. Диагностическое значение имеет белковый коэффициент Кафки (отношение количества глобулинов к количеству альбуминов), который в норме колеблется от 0,2 до 0,3.

По сравнению с плазмой крови в цереброспинальной жидкости отмечается более высокое содержание хлоридов, магния, но меньшее содержание глюкозы, калия, кальция, фосфора и мочевины. Максимальное количество сахара содержится в вентрикулярной цереброспинальной жидкости, наименьшее -в цереброспинальной жидкости субарахноидального пространства спинного мозга. 90% сахара составляет глюкоза, 10% декстроза. Концентрация сахара в цереброспинальной жидкости зависит от его концентрации в крови.

Количество клеток (цитоз) в цереброспинальной жидкости в норме не превышает 3-4 в 1 мкл, это лимфоциты, клетки арахноидэндотелия, эпендимы желудочков головного мозга, полибласты (свободные макрофаги).

Давление ликвора в спинномозговом канале при положении больного лёжа на боку составляет 100-180 мм вод. ст., в положении сидя оно повышается до 250 — 300 мм вод. ст., В мозжечково-мозговой (в большой) цистерне головного мозга давление её несколько снижается, а в желудочках головного мозга составляет всего 190 — 200 мм вод. ст… У детей давление цереброспинальной жидкости ниже чем у взрослых.

ОСНОВНЫЕ БИОХИМИЧЕСКИЕ ПОКАЗАТЕЛИ ЛИКВОРА В НОРМЕ

ПЕРВЫЙ МЕХАНИЗМ ОБРАЗОВАНИЯ ЛИКВОРА

Первым механизмом образования ликвора (80%) является продукция осуществляемая сосудистыми сплетениями желудочков головного мозга путём активной секреции железистыми клетками.

СОСТАВ ЛИКВОРА , традиционная система единиц, (система СИ)

Органические вещества:

Общий белок цистерного ликвора — 0,1 -0,22 (0,1 -0,22 г/л)

Общий белок вентрикулярного ликвора — 0,12 — 0,2 (0,12 — 0,2 г/л)

Общий белок люмбального ликвора — 0,22 — 0,33 (0,22 — 0,33 г/л)

Глобулины — 0,024 — 0,048 (0,024 — 0,048 г/л)

Альбумины - 0,168 — 0,24 (0,168 — 0,24 г/л)

Глюкоза — 40 — 60 мг% (2,22 — 3,33 ммоль/л)

Молочная кислота — 9 — 27 мг% (1 — 2,9 ммоль/л)

Мочевина — 6 — 15 мг% (1 — 2,5 ммоль/л)

Креатинин — 0,5 — 2,2 мг% (44,2 — 194 мкмоль/л)

Креатин — 0,46 — 1,87 мг% (35,1 — 142,6 мкмоль/л)

Общий азот - 16 — 22 мг% (11,4 — 15,7 ммоль/л)

Остаточный азот - 10 — 18 мг% (7,1 — 12,9 ммоль/л)

Эфиры и холестерины - 0,056 — 0,46 мг% (0,56 — 4,6 мг/л)

Свободный холестерин - 0,048 — 0,368 мг% (0,48 — 3,68 мг/л)

Неорганические вещества:

Фосфор неорганический - 1,2 — 2,1 мг% (0,39 — 0,68 ммоль/л)

Хлориды - 700 — 750 мг% (197 — 212 ммоль/л)

Натрий - 276 — 336 мг% (120 — 145 ммоль/л)

Калий — (3,07 — 4,35 ммоль/л)

Кальций — 12 — 17 мг% (1,12 — 1,75 ммоль/л)

Магний - 3 — 3,5 мг% (1,23 — 1,4 ммоль/л)

Медь — 6 — 20 мкг% (0,9 — 3,1 мкмоль/л)

Сосудистые сплетения головного мозга расположенные в желудочках головного мозга- это сосудисто-эпителиальные образования, являются производными мягкой мозговой оболочки, проникают в желудочки головного мозга и участвуют в образовании сосудистого сплетения.

Сосудистые основы

Сосудистая основа IV желудочка является складкой мягкой мозговой оболочки, выпячивающейся вместе с эпендимой в IV желудочек, и имеет вид треугольной пластинки, прилегающей к нижнему мозговому парусу. В сосудистой основе разветвляются кровеносные сосуды, образующие сосудистую основу IV желудочка. В этом сплетении выделяют: среднюю, косо-продольную часть (залегающую в IV желудочке) и продольную часть (располагающуюся в его латеральном кармане). Сосудистая основа IV желудочка образует передние и задние ворсинчатые ветви IV желудочка.

Передняя ворсинчатая ветвь IV желудочка отходит от передней нижней мозжечковой артерии около клочка и разветвляется в сосудистой основе, формирует сосудистую основу латерального кармана IV желудочка. Задняя ворсинчатая часть IV желудочка отдаётся от задней нижней мозжечковой артерии и ветвится в средней части сосудистой основы. Отток крови от сосудистого сплетения IV желудочка осуществляем по нескольким венам, впадающим в базальную или в большую мозговую вену. Из сосудистого сплетения расположенного в области латерального кармана, кровь оттекает по венам латерального кармана IV желудочка в среднемозговые вены.

Сосудистая основа III желудочка представляет собой тонкую пластинку, расположенную под сводом мозга, между правым и левом таламусом, которую можно видеть после удаления мозолистого тела и свода мозга. Её форма зависит от формы и размеров III желудочка.

В сосудистой основе III желудочка выделяют 3 отдела: средний (заключается между мозговыми полосками таламуса) и два боковых (покрывающих верхние поверхности таламуса); кроме того, различают правый и левый края, верхний и нижний листки.

Верхний листок распространяется на мозолистое тело, свод и далее на полушария головного мозга, где представляет собой мягкую оболочку мозга; нижний листок покрывает верхние поверхности таламуса. От нижнего листка, по бокам от средней линии в полости III желудочка, внедряются ворсины, дольки, узлы сосудистого сплетения III желудочка. Спереди сплетение подходит к межжелудочковым отверстиям, через которые соединяется с сосудистым сплетением боковых желудочков.

В сосудистом сплетении разветвляются медиальные и латеральные задние ворсинчатые ветви задней мозговой артерии и ворсинчатые ветви передней ворсинчатой артерии.

Медиальные задние ворсинчатые ветви через межжелудочковые отверстия анастомозируют с латеральной задней ворсинчатой ветвью. Латеральная задняя ворсинчатая ветвь, располагаясь вдоль подушки таламуса, распространяется в сосудистую основу боковых желудочков.

Отток крови из вен сосудистого сплетения III желудочка осуществляют несколько тонких вен, относящихся к задней группе притоков внутренних мозговых вен. Сосудистое основа боковых желудочков является продолжением сосудистого сплетения III желудочка, которое выпячивается в боковые желудочки с медиальных сторон, через щели между таламусами и сводом. Со стороны полости каждого желудочка сосудистое сплетение покрыто слоем эпителия, который прикрепляется с одной стороны к своду, а с другой — к прикреплённой пластинке таламуса.

Вены сосудистого сплетения боковых желудочков формируются многочисленными извитыми протоками. Между ворсинками тканей сплетений имеется большое количество вен, связанных между собой анастомозами. Многие вены, особенно обращённые в полость желудочка, имеет синусоидальные расширения, образуя петли и полукольца.

Сосудистое сплетение каждого бокового желудочка размещается в его центральной части и переходит в нижний рог. Оно формируется передней ворсинчатой артерией, частично ветвями медиальной задней ворсинчатой ветви.

Гистология сосудистого сплетения

Слизистая оболочка покрыта однослойным кубическим эпителием — сосудистыми эпендимоцитами. У плодов и новорождённых сосудистые эпендимоциты имеют реснички, окружённые микроворсинками. У взрослых на апикальной поверхности клеток реснички сохраняются. Сосудистые эпендимоциты соединены непрерывной запирательной зоной. В близи основания клетки имеется круглое или овальное ядра. Цитоплазма клетки зерниста в базальной части, содержит много крупных митохондрий, пиноцитозных пузырьков, лизосом и других органелл. На базальной стороне сосудистых эпендимоцитов формируются складки. Эпителиальные клетки располагаются на соединительно-тканном слое, состоящем из коллагеновых и эластических волокон, клеток соединительной ткани.

Под соединительно-тканным слоем находится собственно сосудистое сплетение. Артерии сосудистого сплетения образуют капилляроподобные сосуды с широким просветом и стенкой, характерной для капилляров. Выросты или ворсинки сосудистого сплетения имеют в середине центральный сосуд, стенка которого состоит из эндотелия; сосуд окружён соединительно-тканными волокнами; ворсинка снаружи покрыта соединительными эпителиоцитами.

По данным Минкрота, барьер между кровью сосудистого сплетения и цереброспинальной жидкостью состоит из системы круговых тугих соединений, связывающих прилежащие эпителиальные клетки, гетеролитической системы пиноцитозных пузырьков и лизосом цитоплазмы эпендимоцитов и системы клеточных ферментов, связанных с активным транспортом веществ в обоих направлениях между плазмой и ликвором.

Функциональное значение сосудистого сплетения

Принципиальное сходство ультраструктуры сосудистого сплетения с такими эпителиальными образованьями, как почечный клубочек даёт основание полагать, что функция сосудистого сплетения связана с продукцией и транспортом ликвора. Вейнди и Джойт называют сосудистое сплетение околожелудочковым органом. Помимо секреторной функции сосудистого сплетения, важное значение имеет регуляция состава ликвора, осуществляемая всасывающими механизмами эпендимоцитов.

ВТОРОЙ МЕХАНИЗМ ОБРАЗОВАНИЯ ЛИКВОРА

Вторым механизмом образования ликвора (20%) является диализ крови через стенки кровеносных сосудов и эпендиму желудочков мозга, которые функционируют как диализные мембраны. Обмен ионами между плазмой крови и цереброспинальной жидкостью происходит путём активного мембранного транспорта.

В продукции спинной жидкости помимо структурных элементов желудочков мозга принимает участие сосудистая сеть мозга и его оболочек, а также клетки мозговой ткани (нейроны и глия). Однако в нормальных физиологических условиях экстровентрикулярная (вне желудочков мозга) продукция цереброспинальной жидкости весьма незначительна.

ЦИРКУЛЯЦИЯ ЛИКВОРА

Циркуляция ликвора происходит постоянно, из боковых желудочков мозга через отверстие Монро он поступает в III желудочек, а затем через Сильвиев водопровод оттекает в IV желудочек. Из IV желудочка, через отверстие Люшки и Мажанди, большая часть ликвора переходит в цистерны основания мозга (мозжечково-мозговую, охватывающую цистерны моста, межножковую цистерну, цистерну перекрёста зрительных нервов и другие). Достигает Сильвиевой (боковой) борозды и поднимается в субарахноидальное пространство конвекситольной поверхности полушарий головного мозга — это так называемый боковой путь циркуляции ликвора.

В настоящие время установлено, что существует и другой путь циркуляции цереброспинальной жидкости из мозжечково-мозговой цистерны в цистерны червя мозжечка, через охватывающую цистерну в субарахноидальное пространство медиальных отделов полушарий головного мозга — это так называемый центральный путь циркуляции ликвора. Меньшая часть ликвора из мозжечково-мозговой цистерны спускается каудально в субарахноидальное пространство спинного мозга, достигает конечной цистерны.

Мнения о циркуляции ликвора в субарахноидальном пространстве спинного мозга противоречивы. Точка зрения о существовании тока цереброспинальной жидкости и в краниальном направлении пока разделяется не всеми исследователями. Циркуляция цереброспинальной жидкости связана с наличием градиентов гидростатического давления в ликвороносных путях и вместилищах, которые создаются вследствие пульсации внутричерепных артерий, изменения венозного давления и положения тела, а так же других факторов.

Отток цереброспинальной жидкости в основном (30- 40 %) происходит через арахноидальные грануляции (пахионовы ворсины) в верхней продольный синус, являющиеся частью венозной системы головного мозга. Арахноидальные грануляции представляют собой отростки паутинной оболочки, которые пронизывают твёрдую мозговую оболочку и располагаются непосредственно в венозных синусах. А теперь рассмотрим строение арахноидальной грануляции более углублено.

Арахноидальные грануляции

Выросты мягкой оболочки мозга, расположенные на её наружной поверхности впервые описал Пахион (1665 — 1726 гг.) в 1705 году. Он считал, что грануляции являются железами твёрдой оболочки мозга. Некоторые из исследователей (Гиртль) даже считали, что грануляции это патологически злокачественные образования. Кей и Ретциус (Key u. Retzius, 1875) рассматривали их как "вывороты arachnoideae и субарахноидальной ткани", Смирнов определяет их как "дупликатуру arachnoideae", ряд других авторов Иванов, Блуменау, Раубер рассматривает структуру пахионовых грануляций, как разрастания arachnoideae, то есть "узелки соединительной ткани и гистиоцитов", не имеющих внутри каких-либо полостей и "естественных оформленных отверстий". Считается, что грануляции развиваются после 7 — 10 лет.

Целый ряд авторов указывает на зависимость внутричерепного давления от дыхания и внутрикровяного давления и потому различает дыхательные и пульсовые движения мозга (Мажанди (magendie, 1825), Экер (Ecker, 1843), Лонге (Longet), Люшка (Luschka, 1885) и др. Пульсация артерий мозга в совокупности своей, и особенно более крупные артерии основания мозга создают условия для пульсаторных движений всего мозга, дыхательные же движения мозга связаны с фазами вдоха и выдоха, когда в связи с вдохом цереброспинальная жидкость оттекает от головы, а в момент выдоха она притекает к головному мозгу и в связи с этим изменяется внутричерепное давление.

Ле Гросс Кларк указывал, что образование ворсинок arachnoideae "является ответом на изменение давления со стороны цереброспинальной жидкости". Г. Иванов в своих работах показал, что "весь, значительной по ёмкости, ворсинчатый аппарат паутинной оболочки является регулятором давления в подпаутинном пространстве и в мозге. Это давление, переходя известную грань, измеряемую степенью растяжения ворсинок, быстро передаётся на ворсинчатый аппарат, который таким образом в принципе играет роль как бы предохранителя высокого давления".

Наличием у новорождённых и на первом году жизни ребёнка родничков создаётся условие, облегчающие внутричерепное давление путём выпячивания перепонки родничков. Наибольшим по своим размерам является лобный родничок: он является тем естественным эластическим "вентилем", который местно регулирует давление ликвора. При наличии родничков нет, по-видимому, условий для развития грануляции arachnoideae, ибо имеются другие условия, регулирующие внутричерепное давления. С окончанием формирования костного черепа эти условия исчезают, и на смену им начинает появляться новый регулятор внутричерепного давления- ворсинки паутинной оболочки. Поэтому не случайно, что именно в области бывшего лобного родничка, в области лобных углов теменной кости располагаются в большинстве случаев пахионовы грануляции взрослых.

В части топографии пахионовы грануляции указывают преимущественное расположение их вдоль сагиттального синуса, поперечного синуса, у начала прямого синуса, на основании мозга, в области Сильвиевой борозды и в других местах.

Грануляции мягкой оболочки мозга аналогичны выростам других внутренних оболочек: ворсинам и аркадам серозных оболочек, синовиальных ворсинок суставов и другим.

По форме, в частности субдуральное, напоминают колбочку с расширенной дистальной частью и стебельком, прикреплённым к мягкой мозговой оболочке мозга. В зрелых арахноидальных грануляциях дистальная часть ветвится. Являясь производным мягкой оболочки мозга, арахноидальные грануляции образованы двумя соединительными компонентами: арахноидальной оболочкой и субарахноидальной тканью.

Арахноидальная оболочка

Арахноидальная грануляция включает три слоя: наружный- эндотелиальный, редуцированный, волокнистый и внутренний- эндотелиальный. Субарахноидальное пространство образовано множеством мелких щелей, расположенных между трабекулами. Оно заполнено ликвором и свободно сообщается с ячейками и канальцами субарахноидального пространства мягкой оболочки мозга. В арахноидальной грануляции имеются кровеносные сосуды, первичные волокна и их окончания в виде клубочков, петелек.

В зависимости от положения дистальной части различают: субдуральные, интрадуральные, интралакунарные, интрасинусные, интравенозные, эпидуральные, интракраниальные и экстракраниальные арахноидальные грануляции.

Арахноидальные грануляции в процессе развития подвергается фиброзу, гиалинизации и обызвествлению с образованием псаммомных телец. На смену гибнущим формам приходят вновь образовавшиеся. Поэтому у человека одновременно встречаются все стадии развития арахноидальной грануляции и их инволюционных превращений. По мере приближения к верхним краям больших полушарий головной мозга число и размеры арахноидальной грануляции резко увеличиваются.

Физиологическое значение, ряд гипотез

1) Является аппаратом оттока ликвора в венозные русла твёрдой оболочки.

2) Являются системой механизма, регулирующего давление в венозных синусах, твёрдой оболочки и субарахноидальном пространстве.

3) Является аппаратом, подвешивающим головной мозг в полости черепа и предохраняющим его тонкостенные вены от растяжения.

4) Является аппаратом задержки и переработки токсических продуктов обмена, препятствующим проникновению этих веществ в ликвор, и абсорбции белка из ликвора.

5) Является сложным барорецептором воспринимающим давление ликвора и крови в венозных синусах.

Отток ликвора.

Отток ликвора через арахноидальные грануляции- частное выражение общей закономерности- оттока её через всю арахноидальную оболочку. Возникновение омываемых кровью арахноидальных грануляций чрезвычайно мощно развитых у взрослого человека, создаёт наиболее короткий путь оттока ликвора непосредственно в венозные синусы твёрдой оболочки, минуя обходной путь через субдуральное пространство. У маленьких детей и мелких млекопитающих, у которых нет арахноидальных грануляций, выделение ликвора осуществляется через паутинную оболочку в субдуральное пространство.

Субарахноидальные щели интрасинусных арахноидальных грануляций, представляющие тончайшие, легко спадающиеся "трубочки", являются клапанным механизмом, открывающимся при повышении давления ликвора в большом субарахноидальном пространстве и закрывающихся при повышении давления в синусах. Этот клапанный механизм обеспечивает одностороннее продвижение цереброспинальной жидкости в синусах и согласно экспериментальным данным, открываются при давлении 20 -50 мм. воз. столба в большом субарахноидальном пространстве.

Основным механизмом оттока ликвора из подпаутинного пространства через паутинную оболочку и её дериваты (арахноидальные грануляции) в венозную систему является разница в гидростатическом давлении ликвора и венозной крови. Давление цереброспинальной жидкости в норме превышает венозное давление в верхнем продольном синусе на 15 — 50 мм. вод. ст. Около 10% цереброспинальной жидкости оттекает через сосудистое сплетение желудочков мозга, от 5% до 30% в лимфатическую систему через переневральные пространства черепно-мозговых и спинномозговых нервов.

Кроме того, существуют и другие пути оттока цереброспинальной жидкости, направленные из субарахноидального в субдуральное пространство, а затем в сосудистую сеть твёрдой мозговой оболочки или из межмозжечковых пространств мозга в сосудистую систему мозга. Некоторое количество цереброспинальной жидкости резорбируется эпендимой желудочков мозга и сосудистыми сплетениями.

Не много отступая от данной темы, нужно сказать, что в изучении невральных влагалищ, и соответственно периневральных влагалищ огромный вклад внёс выдающийся профессор, заведующий кафедрой анатомии человека Смоленского Государственного Медицинского Института (ныне академии) П.Ф.Степанов. В его работах любопытным является тот факт, что изучение велось на эмбрионах самых ранних периодов, 35 мм темено-копчиковой длинны, до сформировавшегося плода. В своей работе по развитию невральных влагалищ, он выделил следующие стадии: клеточную, клеточно-волокнистую, волокнисто- клеточную и волокнистую.

Закладка периневрия представлена внутриствольными клетками мезенхимы, имеющими клеточную структуру. Выделение периневрия только начинается на клеточно-волокнистой стадии. У эмбрионов, начиная с 35 мм темено-копчиковой длинны, среди внутристволовых отросчатых клеток мезенхимы, спинномозговых и черепно-мозговых нервов, начинают постепенно преобладать в количественном отношении именно те клетки, которые напоминают контуры первичных пучков. Границы первичных пучков становятся более чёткими особенно в местах внутриствольного выделения ветвей. По мере выделения не многочисленных первичных пучков, вокруг них формируются клеточно-волокнистый периневрий.

Так же были замечены различия в структуре периневрия различных пучков. В тех участках, которые возникли более рано, периневрий по своей структуре напоминает эпиневрий, имея волокнисто-клеточное строения, а пучки, возникшие в более поздние сроки, оказываются окружённые периневрием имеющим клеточно-волокнистое и даже клеточное строение.

ХИМИЧЕСКАЯ АСИММЕТРИЯ МОЗГА

Суть её в том, что некоторые эндогенные (внутреннего происхождения) вещества- регуляторы преимущественно взаимодействуют с субстратами левого или правого полушарий мозга. Это приводит к одностороннему физиологическому ответу. Исследователи пытались найти такие регуляторы. Изучить механизм их действия, сформировать гипотезу о биологическом значении, а также наметить пути использования этих веществ в медицине.

У пациента с правосторонним инсультом, парализованными левой рукой и ногой взяли спинномозговую жидкость и ввели в спинной мозг крысы. Предварительно ей перерезали спинной мозг в верхней части, чтобы исключить влияние головного мозга на те же процессы, которые может вызвать спинномозговая жидкость. Сразу же после введения задние лапы крысы, лежавшие до сих пор симметрично, изменили положение: причем одна лапа согнулась больше, чем другая. Другими словами у крысы развилась асимметрия позы задних конечностей. Удивительно, та сторона согнутой лапы животного совпала со стороной парализованной ноги больного. Такое совпадение было зарегистрировано в экспериментах со спинной жидкостью многих больных с левосторонними и правосторонними инсультами и черепно-мозговыми травмами. Итак, в спинномозговой жидкости впервые были обнаружены некие химические факторы, несущие информацию о стороне повреждения мозга и вызывающие асимметрию позы, то есть действующие, скорее всего, по-разному на нейроны, лежащие слева и справа от плоскости симметрии мозга.

Не вызывает сомнения поэтому существование механизма, который должен контролировать при развитии мозга движение клеток, их отростков и клеточных пластов слева направо и справа налево относительно продольной оси тела. Химический контроль процессов происходит при наличии градиентов химических веществ и их рецепторов в этих направлениях.

ЛИТЕРАТУРА

1. Большая советская энциклопедия. Москва. Том №24/1, стр. 320.

2. Большая медицинская энциклопедия. 1928г. Москва. Том №3, стр. 322.

3. Большая медицинская энциклопедия. 1981г. Москва. Том №2, стр. 127 — 128. Том №3, стр. 109 — 111. Том №16, стр. 421. Том №23, стр. 538 — 540. Том №27, стр. 177 — 178.

4. Архив анатомии, гистологии и эмбриологии. 1939 г. Том 20. Выпуск второй. Серия А. Анатомия. Книга вторая. Гос. изд-во мед. литература Ленинградское отделение. Стр. 202 — 218.

5. Развитие невральных влагалищ и внутриствольных сосудов плечевого сплетения человека. Ю. П. Судаков автореферат. СГМИ. 1968г. Смоленск.

6. Химическая асимметрия мозга. 1987 г. Наука в СССР. №1 Стр. 21 — 30. Е. И. Чазов. Н. П. Бехтерева. Г. Я. Бакалкин. Г. А. Вартанян.

7. Основы ликворологии. 1971 г. А. П. Фридман. Ленинград. "Медицина".

Спинномозговая жидкость заполняет подпаутинное пространство, отделяет мозг от черепа, окружая мозг водной средой.

Солевой состав спинномозговой жидкости аналогичен составу морской воды. Отметим не только механическую защитную функцию жидкости для мозга и лежащих на его основании сосудов, но и роль ее как специфической внутренней среды, необходимой для нормального функционирования нервной системы.

Так как ее белки и глюкоза являются источником энергии для нормальной работы клеток мозга, а лимфоциты препятствуют проникновению инфекции.

Жидкость образуется из сосудов сосудистых сплетений желудочков, проходя через гематоэнцефалический барьер, и обновляется 4-5 раз в день. Из боковых желудочков жидкость оттекает через межжелудочковое отверстие в третий желудочек, затем через водопровод мозга в четвертый желудочек (рис. 1).

Рис. 1. : 1 - пахионовы грануляции; 2 - боковой желудочек; 3 - полушарие большого мозга; 4 - мозжечок; 5 - четвертый желудочек; б - спинной мозг; 7 - субарахноидальное пространство; 8 - корешки спинномозговых нервов; 9 - сосудистое сплетение; 10 - намет мозжечка; 13 - верхний сагиттальный синус.

Циркуляции жидкости способствует пульсация мозговых артерий. Из четвертого желудочка жидкость направляется через отверстия Люшка и Можанди (Lushka и Magendii) в подпаутинное пространство, омывая спинной и головной мозг. Благодаря движениям позвоночника спинномозговая жидкость течет позади спинного мозга по направлению вниз, а по центральному каналу и спереди спинного мозга - наверх. Из подпаутинного пространства спинномозговая жидкость через пахионовы грануляции, granulationes arachnoidales (Pachioni), фильтруется в просвет синусов твердой мозговой оболочки, в венозную кровь (рис. 2).

Рис. 2. : 1 - кожа волосистой части головы; 2 - кость черепа; 3 - твердая мозговая оболочка; 4 - субдуральное пространство; 5 - паутинная оболочка; 6 - субарахноидальное пространство; 7 - мягкая мозговая оболочка; 8 - венозный выпускник; 9 - верхний сагиттальный синус; 10 - пахионовы грануляции; 11 — кора полушарий головного мозга.

Цистерны - это расширения подпаутинного пространства. Различают следующие цистерны:

  • Cisterna cerebellomedullaris, cisterna magna - задняя мозжечково-мозговая цистерна, большая цистерна;
  • Cisterna cerebellomedullaris lateralis - боковая мозжечково-мозговая цистерна;
  • Cisterna fossae lateralis cerebri - цистерна латеральной ямки большого мозга;
  • Cisterna chiasmatica - цистерна перекреста;
  • Cisterna interpeduncularis - межножковая цистерна;
  • Cisterna ambiens - охватывающая цистерна (на дне щели между затылочными долями полушарий и верхней поверхностью мозжечка);
  • Cisterna pericallosa - околомозолистая цистерна (вдоль верхней поверхности и колена мозолистого тела);
  • Cisterna pontocerebellaris - мостомозжечковая цистерна;
  • Cisterna laminae terminalis - цистерна конечной пластинки (от переднего края перекреста паутинная оболочка свободно перекидывается на нижнюю поверхность прямой извилины и на обонятельные луковицы);
  • Cisterna quadrigeminalis (cisterna venae magnae cerebri) - четверохолмная цистерна (цистерна большой вены мозга);
  • Cisterna pontis - расположена соответственно основной борозде моста.

Головной мозг – сложная закрытая система, охраняющаяся многими структурами и барьерами. Эти защитные опоры тщательно фильтруют весь материал, подходящий к извилистому органу. Однако такой энергоемкой системе все же нужно взаимодействовать и сохранять связь с телом, и желудочки головного мозга – один из инструментов обеспечения такой связи: в этих полостях содержится спинномозговая жидкость, поддерживающая процессы метаболизма, транспорта гормонов и удаления продуктов обмена. Анатомически желудочки головного мозга являются производным расширения центрального канала.

Итак, ответ на вопрос о том, за что отвечает желудочек головного мозга, будет таков: одной из главных задач полостей является синтез спинномозговой жидкости. Этот ликвор служит в качестве амортизатора, то есть обеспечивает механическую защиту отделов мозга (защищает от разного рода травм). Ликвор, как жидкость, во многом напоминает структуру лимфы. Как и последняя, спинномозговая жидкость содержит огромное количество витаминов, гормонов, минеральных веществ и питательных для мозга веществ (белки, глюкоза, хлор, натрий, калий).

Разные желудочки головного мозга у грудничка имеют различный размер.

Виды желудочков

Всякий отдел головного центральной нервной системы требует собственного ухода за собой, поэтому и имеет свои хранилища спинномозгового ликвора. Так, выделяют боковые желудки (к которым относится первый и второй), третий и четвертый. Вся желудочковая организация имеет собственную систему сообщений. Некоторые (пятый) являются патологическими образованиями.

Боковые желудочки – 1 и 2

Анатомия желудочка головного мозга предполагает строение из переднего, нижнего, заднего рога и центральной части (тела). Эти являются наибольшими в мозге человека и содержат в себе ликвор. Латеральные желудочки подразделяются на левый – первый, и правый – второй. Благодаря монроевым отверстиям , боковые полости соединяются с третьим желудочком мозга.

Боковой желудочек головного мозга и носовая луковица как функциональные элементы тесно взаимосвязаны, несмотря на их относительную анатомическую отдаленность. Связь их заключается в том, что между ними располагается, по словам ученых, короткий путь, по которому проходят пулы стволовых клеток. Таким образом, боковой желудок является поставщиком клеток-прародительниц для других структур нервной системы.

Говоря об этом виде желудочков, можно утверждать, что нормальный размер желудочков головного мозга у взрослых зависит от их возраста, формы черепа и соматотипа.

В медицине всякая полость имеет свои нормальные значения. Латеральные полости не являются исключением. У новорожденных боковые желудочки головного мозга в норме имеют свои размеры: передний рог – до 2мм, центральная полость – 4мм. Эти размеры имеют огромное диагностическое значение при исследовании патологий мозга грудничка (гидроцефалия – болезнь, о которой пойдет речь ниже). Один из самых эффективных методов исследования всякой полости, в том числе и полостей мозга, является УЗИ. С помощью него можно определить как и патологический, так и нормальный размер желудочков головного мозга у детей до года.

3 желудочек головного мозга

Третья по счету полость располагается ниже первых двух, и находится на уровне промежуточного отдела
ЦНС между зрительными буграми. 3 желудочек сообщается с первым и вторым с помощью отверстий Монро, а с полостью ниже (4 желудочек) – путем водопровода.

В норме размеры третьего желудочка головного мозга изменяются с ростом плода: у новорожденного – до 3мм; 3 месяца – 3,3мм; у годовалого ребенка – до 6 мм. Кроме того, показателем нормы развития полостей является их симметричность. Данный желудок также заполнен спинномозговым ликвором, однако строение его отличается от боковых: полость имеет 6 стенок. Третий желудочек плотно контактирует с .

4 желудочек головного мозга

Эта структура, как и прежние две, содержит ликвор. Он располагается между Сильвиевым водопроводом и задвижкой. Жидкость, находящаяся в этой полости, поступает в субарахноидальное пространство с помощью нескольких каналов – двух отверстий Люшко и одного отверстия Мажанди. Ромбовидная ямка образует дно и представляется поверхностями стволовых структур мозга: продолговатого отдела и моста.
Также четвертый желудочек головного мозга обеспечивает фундамент 12, 11, 10, 9, 8, 7 и 5 пар черепно-мозговых нервов. Эти ответвления иннервируют язык, некоторые внутренние органы, глотку, лицевые мимические мышцы и кожу лица.

5 желудочек головного мозга

В медицинской практике употребляют название «пятый желудочек головного мозга», однако этот термин не является корректным. По определению, желудки мозга – совокупность полостей, объединяющихся между собой системой сообщений (каналов), заполненных спинномозговым ликвором. В данном случае: структура, называющаяся 5 желудочком, не сообщается с желудочковой системой, и правильным будет название «полость прозрачной перегородки». Из этого вытекает ответ на вопрос о том, сколько желудочков в головном мозге: четыре (2 боковых, третий и четвертый).

Эта полая структура располагается между слоями прозрачной перегородки. Она, тем не менее, также содержит ликвор, поступающий в «желудочек» с помощью пор. В большинстве случаев размер этой структуры не коррелирует с частотой патологии, однако, есть сведения, говорящие, что у больных шизофренией, стрессовыми расстройствами и лиц, перенесших черепно-мозговую травму, этот отдел нервной системы увеличен.

Сосудистые сплетения желудочков мозга

Как было отмечено, функция полостной системы – продукция ликвора. Но с помощью чего эта жидкость образуется? Единственной структурой мозга, обеспечивающей синтез цереброспинальной жидкости, является сосудистое сплетение. Это малые в своих размерах ворсинчатые образования, принадлежащие позвоночным.

Сосудистые сплетения – это производные элементы мягкой мозговой оболочки. Они содержат огромное число сосудов и проводят большое количество нервных окончаний.

Заболевания желудочков

В случае подозрения, важным методом определения органического состояния полостей является пункция желудочков головного мозга у новорожденных.

К заболеваниям желудочков мозга относят:

Вентрикуломегалия – патологическое расширение полостей. Чаще всего такие расширения встречаются у недоношенных детей. Симптомы данной болезни разнообразны и проявляются в виде неврологической и соматической симптоматики.

Асимметрия желудочков (отдельные части желудочков изменяются в размере). Эта патология возникает вследствие чрезмерного количества церебрального ликвора. Следует знать, что нарушение симметрии полостей – это не самостоятельная болезнь – она является как следствие другой, более серьезной патологии, как, например нейроинфекции, массивный ушиб черепа или опухоли.

Гидроцефалия (жидкость в желудочках головного мозга у новорожденных). Это тяжелое состояние, характеризующееся избыточным наличием цереброспинального ликвора в системе желудков мозга. Таких людей называют гидроцефалами. Клиническим проявлением болезни является чрезмерный объем головы ребенка. Голова становится настолько большой, что это невозможно не заметить. Кроме того, определяющим признаком патологии является симптом «захода солнца», когда глаза смещаются к низу. Инструментальные методы диагностики покажут, что индекс боковых желудочков головного мозга выше нормы.

Патологические состояния сосудистых сплетений возникают на фоне как инфекционных заболеваний (туберкулез, менингит), так и опухолей различной локализации. Распространенным состоянием является сосудистая киста головного мозга. Такая болезнь может быть как у взрослых, так и у детей. Причиной кисты часто являются аутоиммунные нарушения в организме.

Так, норма желудочков головного мозга у новорожденных является важной составляющей в знаниях врача педиатра или неонатолога, так как знание нормы позволяет определить патологию и найти отклонение в ранних сроках.

Больше о причинах и симптомах заболеваний полостной системы головного мозга можно прочитать в статье увеличение желудочков.

Движение ликвора обусловлено его непрерывным образованием и резорбцией. Движение ликвора осуществляется в следующем направлении: из боковых желудочков, через межжелудочковые отверстия в III желудочек и из него через водопровод большого мозга в IV желудочек, а оттуда через его срединное и боковые отверстия в мозжечково-продолговато-мозговую цистерну. Затем ликвор передвигается вверх к верхнебоковой поверхности мозга и вниз к конечному желудочку и в спинно-мозговой ликворный канал. Линейная скорость циркуляции ликвора - около 0,3-0,5 мм/мин, а объемная - между 0,2-0,7 мл/мин. Причиной движения ликвора служат сокращения сердца, дыхание, положение и движения тела и движения реснитчатого эпителия сосудистых сплетений.

Оттекает ликвор из субарахноидального пространства в субдуральное, затем всасывается мелкими венами твердой мозговой оболочки.

Спинно-мозговая жидкость (ликвор) образуется преимущественно за счет улътрафильтрации плазмы крови и секреции некоторых компонентов в сосудистых сплетениях головного мозга.

Гематоэнцефалический барьер (ГЭБ) связан с поверхностью, отделяющей мозг и ликвор от крови и обеспечивающей двунаправленный селективный обмен различных молекул между кровью, ликвором и мозгом. Уплотненные контакты эндотелия мозговых капилляров, эпителиальные клетки сосудистых сплетений и арахноидальных мембран служат морфологической базой барьера.

Термин "барьер" указывает на состояние непроницаемости для молекул определенного критического размера. Низкомолекулярные компоненты плазмы крови, такие, как глюкоза, мочевина и креатинин, свободно поступают из плазмы в ликвор, тогда как белки проходят пассивной диффузией через стенку сосудистого сплетения, и между плазмой и спинно-мозговой жидкостью имеется значительный градиент, зависящий от молекулярной массы белков.

Ограниченная проницаемость сосудистых сплетений и ГЭБ поддерживают нормальный гомеостаз и состав ликвора.

Физиологическое значение ликвора :

  • ликвор осуществляет функцию механической защиты мозга;
  • экскреторная и так называемая Sing-функция, т. е. выделение некоторых метаболитов для предупреждения их накапливания в мозге;
  • ликвор служит транспортным средством для разных веществ, особенно биологически активных, таких, как гормоны и т. д.;
  • выполняет стабилизирующую функцию:
    • поддерживает исключительно стабильное окружение мозга, которое должно быть относительно нечувствительно к быстрым изменениям состава крови;
    • поддерживает определенную концентрацию катионов, анионов и рН, что обеспечивает нормальную возбудимость нейронов;
  • осуществляет функцию специфического защитного иммунобиологического барьера.

Правила получения и доставки ликвора в лабораторию


И.И.Миронова, Л.А.Романова, В.В.Долгов
Российская медицинская академия последипломного образования

Для получения ликвора чаще всего применяют люмбальную, реже - субокципитальную пункцию. Вентрикулярный ликвор получают обычно во время операции.

Люмбальная пункция проводится между III и IV поясничными позвонками (L 3 -L 4) по линии Quincke (линия, соединяющая самые высокие части гребней двух подвздошных костей). Пункцию можно также проводить между L 4 -L 5 ; L 5 -S 1 и между L 2 -L 3 .

Субокципитальная (цистернальная) пункция проводится между основанием черепа и I шейным позвонком, на высоте линии, соединяющей сосцевидные отростки.

Вентрикулярная (желудочковая) пункция - это практически хирургическая манипуляция, выполняется в тех случаях, когда другие виды пункции противопоказаны или нецелесообразны. Пунктируется передний, задний или нижний рог одного из боковых желудочков мозга.

При проведении люмбальной пункции необходимо первые 3-5 капель ликвора удалить, что позволяет освободиться от примеси «путевой» крови, попадающей в первую порцию ликвора в результате повреждения иглой кровеносных сосудов, расположенных в области эпидурального пространства. Затем собрать 3 порции (в исключительных случаях две) в стерильные стеклянные или пластиковые пробирки, плотно их закрыть, на каждой пробирке указать её порядковый номер, имя, отчество и фамилию больного, время пункции, диагноз и перечень необходимых исследований. Собранный в пробирки ликвор доставляется в клинико-диагностическую лабораторию немедленно.

С помощью люмбальной пункции у взрослого человека можно без осложнений получить 8-10 мл ликвора, у детей, включая детей младшего возраста, - 5-7 мл, у грудных детей - 2-3 мл.