Концентрация калия и натрия в клетке. Мембранный потенциал клетки, или потенциал покоя. Потенциалы действия в других возбудимых клетках

Мысль о двух формах конвертируемой энергии я высказал в 1975 году. Спустя два года эта точка зрения была поддержана Митчелом. А в группе А. Глаголева тем временем начались опыты по проверке одного из предсказаний этой новой концепции.

Я рассуждал следующим образом. Если протонный потенциал - разменная монета, то клетка должна располагать достаточным количеством, таких «денежных знаков».

Это требование выполнялось, если речь шла об АТФ. Клетка всегда содержит довольно большие количества АТФ, причем приняты меры для стабилизации этого количества в условиях меняющейся конъюнктуры - непрерывно варьирующих скоростей образования и использования АТФ. Есть особое вещество - креатин-фосфат, участвующее только в одной реакции - фосфорилировании АДФ:

АДФ + креатинфосфат ⇔ АТФ + креатин.

Когда АТФ в избытке, а АДФ в дефиците, реакция идет справа налево и накапливается креатинфосфат, которого в этих условиях становится много больше, чем АТФ. Но стоит повыситься уровню АДФ и уменьшиться АТФ, как реакция меняет направление, и креатинфосфат оказывается поставщиком АТФ. Тем самым креатинфосфат выполняет свою функцию стабилизатора, буфера уровня АТФ.

А как обстоят дела с протонным потенциалом?

Несложный расчет позволяет перевести одну энергетическую «валюту» в другую. Этот расчет показывает, что количество энергии, накопленное, к примеру, бактериальной клеткой в виде протонного потенциала, оказывается почти в тысячу раз меньшим, чем количество АТФ, если протонный потенциал находится в электрической форме. Это количество одного порядка с числом генераторов и потребителей потенциала в бактериальной мембране.

Такая ситуация создает особую необходимость в буферной системе, стабилизирующей уровень протонного потенциала. В противном случае даже кратковременное превышение общей скорости потребляющих потенциал процессов над скоростью его генерации приведет к исчезновению потенциала и остановке всех систем, питаемых потенциалом.

Итак, должен быть буфер для протонного потенциала наподобие креатинфосфата для АТФ. Но что за компонент подобрала природа на такую роль?

Обдумывая эту проблему, я попытался найти какую-нибудь связанную с потенциалом биологическую систему, функция которой была бы неизвестна.

Одна из старых загадок биологии: зачем клетка поглощает ионы калия и выбрасывает ионы натрия, создавая дорогостоящую асимметрию в распределении этих близких по своим свойствам ионов между цитоплазмой и окружающей средой? Практически в любой живой клетке ионов калия намного больше, чем ионов натрия, в то время как в среде натрий находится в огромном избытке над калием. Может быть, Na + - яд для клетки?

Нет, это не так. Хоть некоторые ферментные системы действительно лучше работают в КСl, чем в NaCl, это выглядит вторичным приспособлением к «многокалиевой» и «малонатриевой» внутренней среде клетки. За огромный срок биологической эволюции клетка могла бы приспособиться к естественному соотношению ионов щелочных металлов во внешней среде. Живут же галофильные бактерии в насыщенном растворе NaCl, причем концентрация Na + в их цитоплазме иногда доходит до моля на литр, что почти в тысячу раз больше концентрации Na + в обычных клетках. Итак, Na + не яд.

Заметим, что те же галофильные бактерии поддерживают внутриклеточную концентрацию К + около 4 молей на литр, тратя на создание натрий-калиевого градиента колоссальные по масштабам клетки количества энергетических ресурсов.

Известно, что возбудимые клетки животных, такие, как нейроны, используют натрий-калиевый градиент для проведения нервного импульса. Но как быть с другими типами клеток, например, с бактериями?

Давайте обратимся к механизму транспорта К + и Na + через бактериальную мембрану. Известно, что между цитоплазмой бактерии и внешней средой существует разность электрических потенциалов, поддерживаемая работой белков-генераторов в бактериальной мембране. Откачивая протоны изнутри клетки наружу, белки-генераторы тем самым заряжают внутренность бактерии отрицательно. В этих условиях накопление ионов К + внутри клетки могло бы происходить просто за счет электрофореза - движения положительно заряженного иона калия в отрицательно заряженную цитоплазму бактерии.

При этом поток калия должен разряжать мембрану, предварительно заряженную протонными генераторами.

В свою очередь, разрядка мембраны должна немедленно активировать работу генераторов.

Это означает, что энергетические ресурсы, затрачиваемые на генерацию разности электрических потенциалов между клеткой и средой, будут использованы для концентрирования ионов К + внутри клетки. Конечным балансом такого процесса окажется обмен внутриклеточных ионов Н + на внеклеточные ионы К + (ионы Н + откачиваются белками-генераторами наружу, ионы К + поступают внутрь, двигаясь в электрическом поле, созданном движением ионов Н +).

Стало быть, внутри клетки будет создаваться не только избыток ионов К + , но и дефицит ионов Н + .

Этот дефицит можно использовать для откачки ионов Na + . Сделать это можно следующим образом. Известно, что бактерии располагают особым переносчиком ионов натрия, обменивающим Na + на Н + (этот переносчик носит название Nа + /Н + -антипортера). В условиях нехватки Н + в цитоплазме антипорт может компенсировать протонный дефицит, перенося Н + из внешней среды внутрь клетки. Произвести такой антипорт переносчик может только одним способом: обменяв внешний на внутренний Na + . Значит, движение ионов Н + внутрь клетки может быть использовано для откачки из той же клетки ионов Na + .

Вот мы и создали калий-натриевый градиент: внутри клетки накопили К + и откачали оттуда Na + . Движущей силой этих процессов был создаваемый белками-генераторами протонный потенциал. (Направление потенциала было таково, что внутренность клетки заряжалась отрицательно и там возникала нехватка ионов водорода.)

Допустим теперь, что протонные генераторы по какой-то причине выключились. Что произойдет в этих новых условиях с калий-натриевым градиентом?

Конечно же, он рассеется: ионы К + вытекут из клетки в окружающую среду, где их мало, ионы Na + войдут внутрь, где эти ионы в дефиците.

Но вот что интересно. Рассеиваясь, калий-натриевый градиент сам окажется генератором протонного потенциала того же направления, что образовывался при работе белков-генераторов.

Действительно, выход иона К + как положительно заряженной частицы создает диффузионную разность потенциалов на клеточной мембране со знаком «минус» внутри клетки. Вход Na + при участии Nа + /Н + - антипортера будет сопровождаться выходом Н + , то есть созданием дефицита Н + внутри клетки.

Так что же получается? Когда белки-генераторы работают, создаваемый ими протонный потенциал расходуется на образование калий-натриевого градиента. Зато когда они выключены (или их мощности недостает, чтобы удовлетворить многочисленных потребителей потенциала), калий-натриевый градиент, рассеиваясь, сам начинает генерировать протонный потенциал.

Так ведь это и есть буфер протонного потенциала, тот самый буфер, который так необходим для работы мембранных энергетических систем!

Схематично эту концепцию можно изобразить так:

Калий-натриевый градиент ↓ внешние энергетические ресурсы → протонный потенциал → работа.

Но если такая схема верна, то калий-натриевый градиент должен продлить работоспособность клетки в условиях, когда исчерпаны энергетические ресурсы.

А. Глаголев и И. Броун проверили справедливость этого вывода. Был взят мутант кишечной палочки, лишенный протонной АТФ-синтетазы. Для такого мутанта окисление субстратов кислородом служит единственным энергетическим ресурсом, пригодным, чтобы образовать протонный потенциал. Как было показано в свое время Дж. Адлером и его сотрудниками, мутант подвижен, пока в среде есть кислород.

Глаголев и Броун повторили опыт Адлера и убедились, что исчерпание запаса кислорода в растворе действительно останавливает бактерии, если они находятся в среде с КСl. В этих условиях калий-натриевый градиент отсутствует: калия много и в клетках и в среде, а натрия нет ни там, ни здесь.

А теперь давайте возьмем среду с NaCl. В таких условиях должны быть оба интересующих нас градиента: калиевый (калия много внутри и мало снаружи) и натриевый (натрия много снаружи и мало внутри). Гипотеза предсказывала, что в такой ситуации подвижность сохранится какое-то время и в бескислородных условиях, поскольку возможно превращение энергии:

калий-натриевый градиент → протонный потенциал → вращение флагеллы.

И в самом деле, бактерии двигались еще 15-20 минут после того, как измерительное устройство зарегистрировало нулевой уровень СЬ в среде.

Но особенно наглядным, как и следовало ожидать, оказался опыт с солелюбивыми бактериями, которые транспортируют очень большие количества ионов К + и Na + , чтобы создать калий-натриевый градиент. Такие бактерии быстро останавливались в темноте в бескислородных условиях, если в среде был КСl, и все еще двигались спустя девять (!) часов, если КСl был заменен на NaCl.

Эта величина - девять часов - интересна прежде всего как иллюстрация объема того резервуара энергии, который представляет собой калий-натриевый градиент у солелюбивых бактерий. Кроме того, она приобретает особый смысл, если вспомнить о том, что солелюбивые бактерии располагают бактериородопсином и, стало быть, способны к превращению энергии света в протонный потенциал. Ясно, что такое превращение возможно лишь в светлый период суток. А как быть ночью? Так вот оказывается, что энергии, запасенной днем в виде калий-натриевого градиента, хватает на всю ночь.

Утверждение, что калий-натриевый градиент играет роль буфера протонного потенциала, позволяет понять не только биологическую функцию этого градиента, но и причину, которая в течение многих лет препятствовала выяснению его значения для жизнедеятельности клетки. Мысль о буферной роли калий-натриевого градиента не могла родиться, прежде чем был открыт протонный потенциал и было доказано, что он служит конвертируемой формой энергии. Все эти годы проблема калия и натрия просто ждала своего часа.

Выполнение нейроном своих основных функций – генерации, проведения и передачи нервного импульса становится возможно в первую очередь потому, что концентрация ряда ионов внутри и вне клетки существенно различается. Наибольшее значение здесь имеют ионы K+, Na+, Ca2+, Cl-. Калия в клетке в 30-40 раз больше, чем снаружи, а натрия примерно в 10 раз меньше. Кроме того, в клетке гораздо меньше, чем в межклеточной среде, ионов хлора и свободного кальция.

Разность концентраций натрия и калия создается специальным биохимическим механизмом, называемым натрий-калиевым насосом . Он представляет собой белковую молекулу, встроенную в мембрану нейрона (рис. 6) и осуществляющую активный транспорт ионов. Используя энергию АТФ (аденозинтрифосфорной кислоты), такой насос обменивает натрий на калий в пропорции 3: 2. Для переноса трех ионов натрия из клетки в окружающую среду и двух ионов калия в обратном направлении (т.е. против градиента концентрации) требуется энергия одной молекулы АТФ.

При созревании нейронов происходит встраивание в их мембрану натрий-калиевых насосов (на 1 мкм2 может быть расположено до 200 таких молекул), после чего начинается накачка в нервную клетку ионов калия и вывод из нее ионов натрия. В результате концентрация ионов калия в клетке возрастает, а натрия уменьшается. Скорость этого процесса может быть очень большой: до 600 ионов Nа+ в секунду. В реальных нейронах она определяется, прежде всего, доступностью внутриклеточного Nа+ и резко возрастает при его проникновении извне. В отсутствии любого из двух типов ионов работа насоса останавливается, поскольку она может протекать только как процесс обмена внутриклеточного Nа+ на внеклеточный K+.

Сходные системы переноса существуют и для ионов Cl- и Ca2+. При этом ионы хлора выводятся из цитоплазмы в межклеточную среду, и ионы кальция обычно переносятся внутрь клеточных органоидов – митохондрий и каналов эндоплазматической сети.

Для понимания процессов, происходящих в нейроне, необходимо знать, что в мембране клетки есть ионные каналы, количество которых задано генетически. Ионный канал – это отверстие в особой белковой молекуле, встроенной в мембрану. Белок может менять свою конформацию (пространственную конфигурацию), в результате чего канал находится в открытом или закрытом состоянии. Существует три основных типа таких каналов:

— постоянно открытые;

— потенциалзависимые (вольтзависимые, электрочувствительные) — канал открывается и закрывается в зависимости от трансмембранной разности потенциалов, т.е. разности потенциалов между наружной и внутренней поверхностями цитоплазматической мембраны;

— хемозависимые (лигандзависимые, хемочувствительные) — канал открывается в зависимости от воздействия на него того или иного вещества, специфичного для каждого канала.

Для изучения электрических процессов в нервной клетке применяется микроэлектродная техника. Микроэлектроды позволяют регистрировать электрические процессы в одном отдельно взятом нейроне или нервном волокне. Обычно это стеклянные капилляры с очень тонким кончиком диаметром меньше 1 мкм, заполненные раствором, проводящим электрический ток (например, хлористым калием).

Если установить два электрода на поверхности клетки, то между ними не регистрируется никакой разности потенциалов. Но если одним из электродов проколоть цитоплазматическую мембрану нейрона (т.е. кончик электрода окажется во внутренней среде), вольтметр зарегистрирует скачок потенциала примерно до -70 мВ (рис. 7). Такой потенциал назвали мембранным потенциалом. Его можно зарегистрировать не только у нейронов, но и в менее выраженной форме у других клеток организма. Но только в нервных, мышечных и железистых клетках мембранный потенциал может изменяться в ответ на действие раздражителя. В этом случае мембранный потенциал клетки, на которую не действуют никаким раздражителем, называют потенциалом покоя (ПП). В разных нервных клетках величина ПП отличается. Она колеблется в пределах от -50 до -100 мВ. За счет чего возникает этот ПП?

Исходное (до развития ПП) состояние нейрона можно охарактеризовать как лишенное внутреннего заряда, т.е. количество катионов и анионов в цитоплазме клетки равноза счет присутствия крупных органических анионов, для которых мембрана нейрона непроницаема. Реально такая картина наблюдается на ранних этапах эмбрионального развития нервной ткани. Затем по мере ее созревания включаются гены, запускающие синтез постоянно открытых K+-каналов . После их встраивания в мембрану ионы K+ получают возможность за счет диффузии свободно выходить из клетки (где их много) в межклеточную среду (где их гораздо меньше).

Но это не приводит к уравновешиванию концентраций калия внутри и вне клетки, т.к. выход катионов ведет к тому, что в клетке остается все больше нескомпенсированных отрицательных зарядов. Это вызывает образование электрического потенциала, препятствующего выходу новых положительно заряженных ионов. В результате выход калия продолжается до тех пор, пока не уравновесятся сила концентрационного давления калия, за счет которой он выходит из клетки, и действие электрического поля, препятствующее этому. В итоге между наружной и внутренней средой клетки возникает разность потенциалов, или равновесный калиевый потенциал, который описывается уравнением Нернста :

ЕK = (RT / F) (ln [К+]о / [К+ ]i),

где R – газовая постоянная, T – абсолютная температура, F – число Фарадея, [К+]o – концентрация ионов калия в наружном растворе, [К+ ]i – концентрация ионов калия в клетке.

Уравнение подтверждает зависимость, которую можно вывести даже путем логических рассуждений – чем больше разность концентраций ионов калия в наружной и внутренней среде, тем больше (по абсолютной величине) ПП.

Классические исследования ПП проводили на гигантских аксонах кальмара. Их диаметр составляет около 0,5 мм, поэтому все содержимое аксона (аксоплазму), можно без особых проблем удалить и заполнить аксон раствором калия, концентрация которого соответствует его внутриклеточной концентрации. Сам аксон при этом помещали в раствор калия с концентрацией, соответствующей межклеточной среде. После этого регистрировали ПП, который оказался равным -75 мВ. Равновесный калиевый потенциал, рассчитанный по уравнению Нернста для этого случая, оказался очень близок к полученному в эксперименте.

Но ПП в аксоне кальмара, заполненном настоящей аксоплазмой, равен приблизительно -60 мВ. Откуда же возникает разница в 15 мВ? Оказалось, что в создании ПП участвуют не только ионы калия, но и ионы натрия. Дело в том, что кроме калиевых каналов в мембрану нейрона встроены и постоянно открытые натриевые каналы . Их гораздо меньше, чем калиевых, однако мембрана все же пропускает в клетку небольшое количество ионов Na+, в связи с чем у большинства нейронов ПП составляет –60-(-65) мВ. Ток натрия также пропорционален разности его концентраций внутри и снаружи клетки – поэтому чем меньше эта разность, тем больше по абсолютному значению ПП. Зависит ток натрия и от самого ПП. Кроме того, через мембрану диффундирует очень небольшое количество ионов Cl-. Поэтому при расчете реального ПП уравнение Нернста дополняют данными о концентрациях ионов натрия и хлора внутри и вне клетки. В таком случае расчетные показатели оказываются очень близки к экспериментальным, что подтверждает правильность объяснения происхождения ПП диффузией ионов через мембрану нейрона.

Таким образом, конечный уровень потенциала покоя определяется взаимодействием большого числа факторов, основными из которых являются токи K+, Nа+ и деятельность натрий-калиевого насоса. Конечная величина ПП является результатом динамического равновесия этих процессов. Воздействуя на любой из них, можно смещать уровень ПП и, соответственно, уровень возбудимости нервной клетки.

В результате описанных выше событий мембрана постоянно находится в состоянии поляризации – ее внутренняя сторона заряжена отрицательно по отношению к внешней. Процесс уменьшения разности потенциалов (т.е. уменьшения ПП по абсолютной величине) называется деполяризацией, а увеличения ее (увеличения ПП по абсолютной величине) — гиперполяризацией.

Дата публикования: 2015-10-09; Прочитано: 361 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.002 с)…

2–1. Мембранный потенциал покоя – это:

1) разность потенциалов между наружной и внутренней поверхностями клеточной мембраны в состоянии функционального покоя *

2) характерный признак только клеток возбудимых тканей

3) быстрое колебание заряда мембраны клетки амплитудой 90-120 мВ

4) разность потенциалов между возбужденным и невозбужденным участками мембраны

5) разность потенциалов между поврежденным и неповрежденным участками мембраны

2–2. В состоянии физиологического покоя внутренняя поверхность мембраны возбудимой клетки по отношению к наружной заряжена:

1) положительно

2) так же как наружная поверхность мембраны

3) отрицательно*

4) не имеет заряда

5) нет правильного ответа

2–3. Сдвиг в позитивную сторону (уменьшение) мембранного потенциала покоя при действии раздражителя называется:

1) гиперполяризацией

2) реполяризацией

3) экзальтацией

4) деполяризацией*

5) статической поляризацией

2–4. Сдвиг в негативную сторону (увеличение) мембранного потенциала покоя называется:

1) деполяризацией

2) реполяризацией

3) гиперполяризацией*

4) экзальтацией

5) реверсией

2–5. Нисходящая фаза потенциала действия (реполяризация) связана с повышением проницаемости мембраны для ионов:

2) кальция

2–6. Внутри клетки по сравнению с межклеточной жидкостью выше концентрация ионов:

3) кальция

2–7. Увеличение калиевого тока во время развития потенциала действия вызывает:

1) быструю реполяризацию мембраны*

2) деполяризацию мембраны

3) реверсию мембранного потенциала

4) следовую деполяризацию

5) местную деполяризацию

2–8. При полной блокаде быстрых натриевых каналов клеточной мембраны наблюдается:

1) сниженная возбудимость

2) уменьшение амплитуды потенциала действия

3) абсолютная рефрактерность*

4) экзальтация

5) следовая деполяризация

2–9. Отрицательный заряд на внутренней стороне клеточной мембраны формируется в результате диффузии:

1) К+ из клетки и электрогенной функции K-Na-насоса *

2) Na+ в клетку

3) С1– из клетки

4) Са2+ в клетку

5) нет правильного ответа

2–10. Величина потенциала покоя близка к значению равновесного потенциала для иона:

3) кальция

2–11. Восходящая фаза потенциала действия связана с повышением проницаемости для ионов:

2) нет правильного ответа

3) натрия*

2–12. Укажите функциональную роль мембранного потенциала покоя:

1) его электрическое поле влияет на состояние белков-каналов и ферментов мембраны*

2) характеризует повышение возбудимости клетки

3) является основной единицей кодирования информации в нервной системе

4) обеспечивает работу мембранных насосов

5) характеризует снижение возбудимости клетки

2–13. Способность клеток отвечать на действие раздражителей специфической реакцией, характеризующейся быстрой, обратимой деполяризацией мембраны и изменением метаболизма, носит название:

1) раздражимость

2) возбудимость*

3) лабильность

4) проводимость

5) автоматия

2–14. Биологические мембраны, участвуя в изменении внутриклеточного содержимого и внутриклеточных реакций за счет рецепции внеклеточных биологически активных веществ, выполняет функцию:

1) барьерную

2) рецепторно-регуляторную*

3) транспортную

4) дифференциации клеток

2–15. Минимальная сила раздражителя, необходимая и достаточная для возникновения ответной реакции, называется:

1) пороговой*

2) сверхпороговой

3) субмаксимальной

4) подпороговой

5) максимальной

2–16. При увеличении порога раздражения возбудимость клетки:

1) увеличилась

2) уменьшилась*

3) не изменилась

4) всё верно

5) нет правильного ответа

2–17. Биологические мембраны, участвуя в преобразовании внешних стимулов неэлектрической и электрической природы в биоэлектрические сигналы, выполняют преимущественно функцию:

1) барьерную

2) регуляторную

3) дифференциации клеток

4) транспортную

5) генерации потенциала действия*

2–18. Потенциал действия – это:

1) стабильный потенциал, который устанавливается на мембране при равновесии двух сил: диффузионной и электростатической

2) потенциал между наружной и внутренней поверхностями клетки в состоянии функционального покоя

3) быстрое, активно распространяющееся, фазное колебание мембранного потенциала, сопровождающееся, как правило, перезарядкой мембраны*

4) небольшое изменение мембранного потенциала при действии подпорогового раздражителя

5) длительная, застойная деполяризация мембраны

2–19. Проницаемость мембраны для Na+ в фазе деполяризации потенциала действия:

1) резко увеличивается и появляется мощный входящий в клетку натриевый ток*

2) резко уменьшается и появляется мощный выходящий из клетки натриевый ток

3) существенно не меняется

4) всё верно

5) нет правильного ответа

2–20. Биологические мембраны, участвуя в высвобождении нейромедиаторов в синаптических окончаниях, выполняют преимущественно функцию:

1) барьерную

2) регуляторную

3) межклеточного взаимодействия*

4) рецепторную

5) генерации потенциала действия

2–21. Молекулярный механизм, обеспечивающий выведение из цитоплазмы ионов натрия и введение в цитоплазму ионов калия, называется:

1) потенциалзависимый натриевый канал

2) неспецифический натрий-калиевый канал

3) хемозависимый натриевый канал

4) натриево-калиевый насос*

5) канал утечки

2–22. Система движения ионов через мембрану по градиенту концентрации, не требующая непосредственной затраты энергии, называется:

1) пиноцитозом

2) пассивным транспортом*

3) активным транспортом

4) персорбцией

5) экзоцитозом

2–23. Уровень потенциала мембраны, при котором возникает потенциал действия, называется:

1) мембранным потенциалом покоя

2) критическим уровнем деполяризации*

3) следовой гиперполяризацией

4) нулевым уровнем

5) следовой деполяризацией

2–24. При повышении концентрации К+ во внеклеточной среде с мембранным потенциалом покоя в возбудимой клетке произойдет:

1) деполяризация*

2) гиперполяризация

3) трансмембранная разность потенциалов не изменится

4) стабилизация трансмембранной разности потенциалов

5) нет правильного ответа

2–25. Наиболее существенным изменением при воздействии блокатором быстрых натриевых каналов будет:

1) деполяризация (уменьшение потенциала покоя)

2) гиперполяризация (увеличение потенциала покоя)

3) уменьшение крутизны фазы деполяризации потенциала действия*

4) замедление фазы реполяризации потенциала действия

5) нет правильного ответа

3. ОСНОВНЫЕ ЗАКОНОМЕРНОСТИ РАЗДРАЖЕНИЯ

ВОЗБУДИМЫХ ТКАНЕЙ

3–1. Закон, согласно которому при увеличении силы раздражителя ответная реакция постепенно увеличивается до достижения максимума, называется:

1) «все или ничего»

2) силы–длительности

3) аккомодации

4) силы (силовых отношений)*

5) полярным

3–2. Закон, согласно которому возбудимая структура на пороговые и сверхпороговые раздражения отвечает максимально возможным ответом, называется:

2) «все или ничего»*

3) силы-длительности

4) аккомодации

5) полярным

3–3. Минимальное время, в течение которого ток, равный удвоенной реобазе (удвоенной пороговой силы), вызывает возбуждение, называется:

1) полезным временем

2) аккомодацией

3) адаптацией

4) хронаксией*

5) лабильностью

3–4. Закону силы подчиняется структура:

1) сердечная мышца

2) одиночное нервное волокно

3) одиночное мышечное волокно

4) целая скелетная мышца*

5) одиночная нервная клетка

Закону «Все или ничего» подчиняется структура:

1) целая скелетная мышца

2) нервный ствол

3) сердечная мышца*

4) гладкая мышца

5) нервный центр

3–6. Приспособление ткани к медленно нарастающему по силе раздражителю называется:

1) лабильностью

2) функциональной мобильностью

3) гиперполяризацией

4) аккомодацией*

5) торможением

3–7. Для парадоксальной фазы парабиоза характерно:

1) уменьшение ответной реакции при увеличении силы раздражителя*

2) уменьшение ответной реакции при уменьшении силы раздражителя

3) увеличение ответной реакции при увеличении силы раздражителя

4) одинаковая ответная реакция при увеличении силы раздражителя

5) отсутствие реакции на любые по силе раздражители

3–8. Порог раздражения является показателем:

1) возбудимости*

2) сократимости

3) лабильности

4) проводимости

5) автоматии

Дата публикования: 2015-04-08; Прочитано: 2728 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.009 с)…

РОЛЬ АКТИВНОГО ТРАНСПОРТА ИОНОВ В ФОРМИРОВАНИИ МЕМБРАННОГО ПОТЕНЦИАЛА

Одним из преимуществ «идеальной» мембраны, пропускающей какой-либо один ион, является поддержание сколь угодно долго мембранного потенциала без затрат энергии при условии, если проникающий ион исходно распределен неравномерно по обе стороны мембраны. Вместе с тем мембрана живых клеток прони-цаема в той или иной степени для всех неорганических ионов, на-ходящихся в окружающем клетку растворе. Поэтому клетки долж-

ны как-то поддерживать внутриклеточную концентрацию ионов на определенном уровне. Достаточно показательны в этом отно-шении ионы натрия, на примере проницаемости которых в пре-дыдущем разделе разбиралось отклонение мембранного потенци-ала мышцы от равновесного калиевого потенциала. Согласно из-меренным концентрациям ионов натрия снаружи и внутри мы-шечной клетки равновесный потенциал, рассчитанный по уравнению Нернста для этих ионов, будет около 60 мВ, причем со знаком «плюс» внутри клетки. Мембранный потенциал, рассчи-танный по уравнению Голдмана и измеренный с помощью микро-электродов, равен 90 мВ со знаком «минус» внутри клетки. Таким образом, отклонение его от равновесного потенциала для ионов натрия будет 150 мВ. Под действием такого высокого потенциала даже при низкой проницаемости ионы натрия будут входить через мембрану и накапливаться внутри клетки, что соответственно бу-дет сопровождаться выходом ионов калия из нее. В результате это-го процесса внутри- и внеклеточные концентрации ионов через некоторое время выравняются.

На самом же деле в живой клетке этого не происходит, поскольку постоянно осуществляется удаление ионов натрия из клетки с помощью так называемого ионного насоса. Пред-положение о существовании ионного насоса было выдвинуто Р. Дином в 40-е годы XX в. и явилось чрезвычайно важным дополнением к мембранной теории формирования потенциала покоя в живых клетках. Экспериментально показано, что ак-тивное «выкачивание» Na+ из клетки идет с обязательным «за-качиванием» ионов калия внутрь клетки (рис. 2.8). Поскольку проницаемость мембраны для ионов натрия мала, то их вход из наружной среды в клетку будет происходить медленно, поэтому

Низкая концентрация К+ Высокая концентрация Na++

насос эффективно будет поддерживать низкую концентрацию ионов натрия в клетке. Проницаемость мембраны для ионов ка-лия в покое достаточно высокая, и они легко диффундируют через мембрану.

На поддержание высокой концентрации ионов калия не надо тратить энергии, она сохраняется благодаря возникаю-щей трансмембранной разности потенциалов, механизмы воз-никновения которой подробно изложены в предыдущих раз-делах. Перенос ионов насосом требует затрат метаболической энергии клетки. Источником энергии этого процесса является энергия, запасенная в макроэргических связях молекул АТФ. Энергия освобождается за счет гидролиза АТФ с помощью фер-мента аденозинтрифосфатазы. Полагают, что этот же фермент непосредственно осуществляет и перенос ионов. В соответст-вии со строением клеточной мембраны АТФаза является од-ним из интегральных белков, встроенных в липидный бислой. Особенностью фермента-переносчика является его высокое срод-ство на внешней поверхности к ионам калия, а на внутрен-ней - к ионам натрия. Действие ингибиторов окислительных процессов (цианидов или азидов) на клетку, охлаждение клетки блокирует гидролиз АТФ, а также и активный перенос ионов натрия и калия. Ионы натрия постепенно поступают в клетку, а ионы калия выходят из нее, и по мере снижения отношения [К+]о/[К+],- потенциал покоя будет медленно снижаться до нуля. Мы обсуждали ситуацию, когда ионный насос выводит из внут-риклеточной среды один положительно заряженный ион на-трия и соответственно переносит из внеклеточного простран-ства один положительно заряженный ион калия (соотношение 1: 1). В этом случае говорят, что ионный насос является элект-ронейтральным.

Вместе с тем экспериментально было обнаружено,что в некото-рых нервных клетках ионный насос за один и тот же промежуток времени больше удаляет ионов натрия, чем закачивает ионов ка-лия (соотношение может быть 3:2). В таких случаях ионный на-сос является электрогенным, т.

Fiziologia_Otvety

е. он сам создает небольшой, но по-стоянный суммарный ток положительных зарядов из клетки и до-полнительно способствует созданию отрицательного потенциала внутри нее. Отметим, что создаваемый с помощью электрогенного насоса в покоящейся клетке дополнительный потенциал не пре-вышает нескольких милливольт.

Подытожим сведения о механизмах формирования мемб-ранного потенциала - потенциала покоя в клетке. Основной про-цесс, за счет которого создается большая часть потенциала с от-рицательным знаком на внутренней поверхности клеточной мембраны, - это возникновение электрического потенциала, за-держивающего пассивный выход ионов калия из клетки по сво-ему концентрационному градиенту через калиевые каналы - ин-


тегральные белки. Другие ионы (например, ионы натрия) участ-вуют в создании потенциала лишь в небольшой степени, посколь-ку проницаемость мембраны для них значительно ниже, чем для ионов калия, т. е. число открытых каналов для этих ионов в состо-янии покоя невелико. Чрезвычайно важным условием для поддер-жания потенциала покоя является наличие в клетке (в клеточной мембране) ионного насоса (интегрального белка), который обес-печивает концентрацию ионов натрия внутри клетки на низком уровне и тем самым создает предпосылки, чтобы главными потен-циалобразующими внутриклеточными ионами стали ионы калия. Небольшой вклад в потенциал покоя может вносить непосредст-венно и сам ионный насос, но при условии, что его работа в клет-ке электрогенна.

Концентрация ионов внутри и вне клетки

Итак, есть два факта, которые необходимо учесть, чтобы понять механизмы, поддерживающие мембранный потенциал покоя.

1 . Концентрация ионов калия в клетке значительно выше, чем во внеклеточной среде. 2 . Мембрана в покое избирательно проницаема для К+ , а для Nа+ проницаемость мембраны в покое незначительна. Если принять проницаемость для калия за 1, то проницаемость для натрия в покое составит лишь 0,04. Следовательно, существует постоянный поток ионов К+ из цитоплазмы по градиенту концентрации . Калиевый ток из цитоплазмы создает относительный дефицит положительных зарядов на внутренней поверхности, для анионов клеточная мембрана непроницаема в результате цитоплазма клетки оказывается заряженной отрицательно по отношению к окружающей клетку среде. Эта разность потенциалов между клеткой и внеклеточным пространством, поляризация клетки, называется мембранным потенциалом покоя (МПП).

Возникает вопрос: почему же ток ионов калия не продолжается до уравновешивания концентраций иона вне и внутри клетки? Следует вспомнить о том, это заряженная частица, следовательно, ее движение зависит и от заряда мембраны. Внутриклеточный отрицательный заряд, который создается благодаря току ионов калия из клетки, препятствует выходу из клетки новых ионов калия. Поток ионов калия прекращается, когда действие электрического поля компенсирует движение иона по градиенту концентрации. Следовательно, для данной разности концентраций ионов на мембране формируется так называемый РАВНОВЕСНЫЙ ПОТЕНЦИАЛ для калия. Этот потенциал (Ek) равен RT/nF *ln /, (n – валентность иона.) или

Ek=61,5 log/

Мембранный потенциал (МП) в большой степени зависит от равновесного потенциала калия, однако, часть ионов натрия все же проникает в покоящуюся клетку, так же, как и ионы хлора. Таким образом, отрицательный заряд, который имеет мембрана клетки, зависит от равновесных потенциалов натрия, калия и хлора и описывается уравнением Нернста. Наличие этого мембранного потенциала покоя чрезвычайно важно, потому, что именно он определяет способность клетки к возбуждению — специфическому ответу на раздражитель.

Возбуждение клетки

Возбуждение клетки (переход от покоя к активному состоянию) происходит при повышении проницаемости ионных каналов для натрия, а иногда и для кальция. Причиной изменения проницаемости может быть и изменение потенциала мембраны — активируются электровозбудимые каналы, и взаимодействие мембранных рецепторов с биологически активным веществом – рецептор — управляемые каналы, и механическое воздействие. В любом случае для развития возбуждения необходима начальная деполяризация — небольшое снижение отрицательного заряда мембраны, вызванная действием раздражителя. Раздражителем может быть любое изменение параметров внешней или внутренней среды организма: свет, температура, химические вещества (воздействие на вкусовые и обонятельные рецепторы), растяжение, давление. Натрий устремляется в клетку, возникает ионный ток и происходит снижение мембранного потенциала — деполяризация мембраны.

Таблица 4

Изменение мембранного потенциала при возбуждении клетки .

Обратите внимание на то, что вход натрия в клетку осуществляется по градиенту концентрации и по электрическому градиенту: концентрация натрия в клетке в 10 раз ниже, чем во внеклеточной среде и заряд по отношению к внеклеточному — отрицательный. Одновременно активируются и калиевые каналы, но натриевые (быстрые) активируются и инактивируются в течение 1 – 1,5 миллисекунд, а калиевые дольше.

Изменения мембранного потенциала принято изображать графически. На верхнем рисунке представлена начальная деполяризация мембраны — изменение потенциала в ответ на действие раздражителя. Для каждой возбудимой клетки существует особый уровень мембранного потенциала, при достижении которого резко изменяются свойства натриевых каналов. Этот потенциал назван критическим уровнем деполяризации (КУД ). При изменении мембранного потенциала до КУД открываются быстрые, потенциал зависимые натриевые каналы, поток ионов натрия устремляется в клетку. При переходе положительно заряженных ионов в клетку, в цитоплазме — увеличивается положительный заряд. В результате этого трансмембранная разность потенциалов уменьшается, значение МП снижается до 0, а затем, по мере дальнейшего поступления натрия в клетку происходит перезарядка мембраны и реверсия заряда (овершут)- теперь поверхность становится электроотрицательной по отношению к цитоплазме — мембрана ДЕПОЛЯРИЗОВАНА полностью – средний рисунок. Дальнейшего изменения заряда не происходит потому, что инактивируются натриевые каналы – больше натрий в клетку поступать не может, хотя градиент концентрации изменяется весьма незначительно. Если раздражитель обладает такой силой, что деполяризует мембрану до КУД, этот раздражитель называется пороговым, он вызывает возбуждение клетки. Точка реверса потенциала – это знак того, что вся гамма раздражителей любой модальности переведена в язык нервной системы — импульсы возбуждения. Импульсы, или потенциалы возбуждения называются потенциалами действия. Потенциал действия (ПД) – быстрое изменение мембранного потенциала в ответ на действия раздражителя пороговой силы. ПД имеет стандартные амплитуду и временные параметры, не зависящие от силы стимула — правило "ВСЕ ИЛИ НИЧЕГО". Следующий этап – восстановление мембранного потенциала покоя — реполяризация (нижний рисунок) в основном обусловлена активным ионным транспортом. Наиболее важен процесс активного транспорта — это работа Na/K — насоса, который выкачивает ионы натрия из клетки, одновременно закачивая ионы калия внутрь клетки. Восстановление мембранного потенциала происходит благодаря току ионов калия из клетки – калиевые каналы активируются и пропускают ионы калия до достижения равновесного калиевого потенциала. Это процесс важен потому, что до тех пор, пока не восстановлен МПП, клетка не способна воспринимать новый импульс возбуждения.

ГИПЕРПОЛЯРИЗАЦИЯ — кратковременное увеличение МП после его восстановления, которое обусловлено повышением проницаемости мембраны для ионов калия и хлора. Гиперполяризация бывает только после ПД и характерна далеко не для всех клеток. Попытаемся еще раз представить графически фазы потенциала действия и ионные процессы, лежащие в основе изменений потенциала мембраны (рис.

Потенциал покоя нейрона

9). На оси абсцисс отложим значения мембранного потенциала в милливольтах, на оси ординат – время в миллисекундах.

1. Деполяризация мембраны до КУД – могут открыться любые натриевые каналы, иногда кальциевые, и быстрые, и медленные, и потенциал-зависимые, и рецептор-управляемые. Это зависит от вида раздражителя и типа клеток

2. Быстрое поступление натрия в клетку — открываются быстрые, потенциал-зависимые натриевые каналы, и деполяризация достигает точки реверса потенциала – происходит перезарядка мембраны, знак заряда меняется на положительный.

3. Восстановление градиента концентрации по калию – работа насоса. Калиевые каналы активированы, калий переходит из клетки во внеклеточную среду – реполяризация, начинается восстановление МПП

4. Следовая деполяризация, или отрицательный следовой потенциал — мембрана еще деполяризована относительно МПП.

5. Следовая гиперполяризация. Калиевые каналы остаются открытыми и дополнительный ток калия гиперполяризует мембрану. После этого клетка возвращается к исходному уровню МПП. Длительность ПД составляет для разных клеток от 1 до 3-4 мс.

Рисунок 9 Фазы потенциала действия

Обратите внимание на три величины потенциала, важные и постоянные для каждой клетки ее электрические характеристики.

1. МПП — электроотрицательность мембраны клетки в покое, обеспечивающая способность к возбуждению — возбудимость. На рисунке МПП = -90 мв.

2. КУД — критический уровень деполяризации (или порога генерации мембранного потенциала действия) — это такая величина мембранного потенциала, при достижении которой открываются быстрые , потенциал зависимые натриевые каналы и происходит перезарядка мембраны за счет поступления в клетку положительных ионов натрия. Чем выше электроотрицательность мембраны, тем труднее деполяризовать ее до КУД, тем менее возбудима такая клетка.

3. Точка реверса потенциала (овершут) — такая величинаположительного мембранного потенциала, при которой положительно заряженные ионы уже не проникают в клетку — кратковременный равновесный натриевый потенциал. На рисунке + 30 мв. Суммарное изменение потенциала мембраны от –90 до +30 составит для данной клетки 120 мВ, эта величина и является потенциалом действия. Если этот потенциал возник в нейроне, он будет распространяться по нервному волокну, если в мышечных клетках – будет распространяться по мембране мышечного волокна и приведет к сокращению, в железистых к секреции – к действию клетки. Это и есть специфический ответ клетки на действие раздражителя, возбуждение.

При действии раздражителя подпороговой силы возникает неполная деполяризация — ЛОКАЛЬНЫЙ ОТВЕТ (ЛО).

Неполная, или частичная деполяризация – это такое изменение заряда мембраны, которое не достигает критического уровня деполяризации (КУД).

Рисунок 10. Изменение мембранного потенциала в ответ на действие раздражителя подпороговой силы — локальный ответ

Локальный ответ обладает, в основном, тем же механизмом, что и ПД, его восходящая фаза определяется входом ионов натрия, а нисходящая — выходом ионов калия.

Однако амплитуда ЛО пропорциональна силе подпорогового раздражения, а не стандартна, как у ПД.

Таблица 5

Нетрудно видеть, что в клетках имеются условия, при которых между клеткой и межклеточной средой должна возникать разность потенциалов:

1) мембраны клеток хорошо проницаемы для катионов (в первую очередь — калия), в то время как проницаемость мембран для анионов гораздо меньше;

2) концентрации большинства веществ в клетках и в межклеточной жидкости сильно различаются (сравните со сказанным на стр.

). Поэтому на мембранах клеток будет возникать двойной электрический слой ("минус" на внутренней стороне мембраны, "плюс" на наружной), и на мембране должна существовать постоянная разность потенциалов, которую и называют потенциалом покоя. Говорят, что мембрана в состоянии покоя поляризована.

Впервые гипотезу об аналогичной природе ПП клеток и диффузионногопотенциала Нернста высказал в 1896 г.

База знаний

студент Военно-медицинской академии Ю.В.Чаговец. Сейчас эта точка зрения подтверждена многочисленными экспериментальными данными. Правда, между измеренными значениями ПП и вычисленными по формуле (1) имеются некоторые расхождения, но ониобъясняются двумя очевидными причинами. Во-первых, в клетках находитсяне один катион, а много (K , Na , Ca , Mg и др.). Это можно учесть, заменив формулу Нернста (1) на более сложную формулу, выеденную Гольдманом:

Где рK — проницаемость мембраны для калия, рNa -то же для натрия, рCl — то же для хлора; [К + ] e — концентрация ионов калия вне клетки, [К + ] i — то же внутри клетки (аналогично для натрия и хлора); многоточием обозначены соответствующие члены для других ионов. Ионы хлора (и других анионов) идут в направлении, противоположном ионам калия и натрия, поэтому значки "е" и "i" для них поставлены в обратном порядке.

Расчёт по формуле Гольдмана даёт значительно лучшее совпадение с экспериментом, однако некоторые расхождения всё же остаются. Это объясняется тем, что что при выводе формулы (2) не рассматривалась работа активного транспорта. Учёт последнего позволяет добиться практически полного согласия с опытом.

19. Натриевые и калиевые каналы в мембране и их роль в биоэлектрогенезе. Воротный механизм. Особенности потенциалзависимых каналов. Механизм возникновения потенциала действия. Состояние каналов и характер ионных потоков в разные фазы ПД. Роль активного транспорта в биоэлектрогенезе. Критический мембранный потенциал. Закон «все или ничего» для возбудимых мембран. Рефрактерность.

Выяснилось, что селективный фильтр обладает «жесткой» структурой, то есть не изменяет свой просвет в разных усло-виях. Переходы канала из открытого состояния в закрытое и обратно связаны с работой не селективного фильтра, воротного механизма. Под воротными процессами, происходящими в той или иной части ионного канала, которая называется воротами, понимают всякие изменения конформации белковых молекул, образующих канал, в результате которых его пара может открываться или закрываться. Следовательно, воротами принято называть функциональные группы белковых молекул, ко-торые обеспечивают воротные процессы. Важно, что ворота приводятся в движение физиологическими стимулами, то есть такими, которые присутствуют в естественных условиях. Сре-ди физиологических стимулов особую роль играют сдвиги мембранного потенциала.

Существуют каналы, которые управляются разностью по-тенциалов на мембране, будучи открытыми при одних значе-ниях мембранного потенциала и закрытыми - при других. Та-кие каналы называются потенциалзависимыми. Именно с ни-ми связана генерация ПД. Ввиду их особой значимости все ионные каналы биомембран подразделяют на 2 типа: потенциалзависимые и потенциалнезависимые. Естественными сти-мулами, управляющими движением ворот в каналах второго типа служат не сдвиги мембранного потенциала, а другие фак-торы. Например, в химиочувствительных каналах роль управ-ляющего стимула принадлежит химическим веществам.

Существенным компонентом потенциалзависимого ионного канала является сенсор напряжения. Так называют группы белковых молекул, способные реагировать на изменения элек-трического поля. Пока нет конкретных сведений о том, что они собою представляют и как расположены, но понятно, что электрическое поле может взаимодействовать в физической среде только с зарядами (либо свободными, либо связанны-ми). Было предположение, что сенсором напряжения служит Са2+ (свободные заряды), так как изменения его содержания в межклеточной жидкости приводят к таким же последстви-ям, как и сдвиги мембранного потенциала. Например, десяти-кратное снижение концентрации ионов кальция в интерстиции эквивалентно деполяризации плазматической мембраны при-близительно на 15 мВ. Одн-ко в дальнейшем оказалось, что Са2+ необходим для работы сенсора напряжения, но сам не является им. ПД генерируется даже тогда, когда концентра-ция свободного кальция в межклеточной среде падает ниже 10~8 моль. Кроме того, содержание Са2+ в цитоплазме вооб-ще мало влияет на ионную проводимость плазмолеммы. Очевидно, сенсором напряжения служат связанные заря-ды - группы белковых молекул, обладающие большим дипольным моментом. Они погружены в липидный бислой, ко-торому свойственны довольно невысокая вязкость (30 - 100 сП) и низкая диэлектрическая проницаемость. К такому заключению привело изучение кинетических характеристик движения сенсора напряжения при сдвигах мем-бранного потенциала. Это движение представляет собой типичный ток смещения.

Современная функциональная модель натриевого потен-циалзависимого канала предусматривает существование в нем двух типов ворот, работающих в противофазе. Они отличаются инерционными свойствами. Более подвижные (легкие) на-званы m-воротами, более инерционные (тяжелые) - h – воротами. В покое h-ворота открыты, m – ворота закрыты, движение Na+ по каналу невозможно. При деполяризации плазмолеммы ворота обоих типов приходят в движе-ние, но в силу неодинаковой инерции m-ворота успевают

открыться раньше, чем закроются h-ворота. В этот миг натриевый канал открыт и Na+ устремляется по нему в клетку. Запаздывание движения h-ворот относительно m-ворот соответствует длительности деполяризационной фазы ПД. Когда же h-ворота закроются, поток Na+ сквозь мембрану прекратится и нач-нется реполяризация. Затем происходит возврат h — и m — ворот в исходное состояние. Потенциалзависимы натриевые каналы активируются (включаются) при быстрой (скачкообразной) деполяризаций плазматической мембраны. ,

ПД создается за счет более быстрой диффузии сквозь плазматическую мембрану ионов натрия по сравнению с анионами, образующими с ним соли в межклеточной среде. Следовательно, деполяризация связана с вхождением в цитоплазму катионов натрия. При развитии ПД в клетке не накапливается натрий. При возбуждении наблюдается входящий и выходящий потоки натрия. Возникновение ПД обусловлено не нарушением ионных концентраций в цитоплазме, а падением электрического сопротивления плазматической мембраны вследствие повышения ее проницаемости для натрия.

Как уже говорилось, под действием порогового и надпорогового раздражителей возбудимая мембрана генерирует ПД. Для этого процесса характерен закон «все или ничего. Он является антитетой градуальностия. Смысл закона состоит в том, что параметры ПД не зависят от интнетсивности раздражителя. Как только достигается КМП, изменения разности потенциалов на возбудимой мембране определяются только свойствами её потенциалзависимых ионных каналов, которые обеспечивают входящий ток. Среди них внешний стимул открывает только самые чувствительные. Другие открываются за счет предыдущих, уже независимо от раздражителя. Говорят о спантанном характере процесса вовлечения в трансмембранный перенос ионов всё новых потенциалзависимых ионных каналов. Поэтому амплитуда. Длительность, крутизна переднего и заднего фронтов ПД зависит только от ионных градиетнов на клеточной мембране и кинетических характеристик её каналов. Закон «всё или ничего» — характернейшее свойство одиночных клеток и волокон, обладающтх возбудимой мембраной. Большинству многоклеточных образований он не свойственен. Исключение составляют структуры, организованные по типу синцития.

Дата публикования: 2015-01-25; Прочитано: 421 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Итак, есть два факта, которые необходимо учесть, чтобы понять механизмы, поддерживающие мембранный потенциал покоя.

1 . Концентрация ионов калия в клетке значительно выше, чем во внеклеточной среде. 2 . Мембрана в покое избирательно проницаема для К + , а для Nа + проницаемость мембраны в покое незначительна. Если принять проницаемость для калия за 1, то проницаемость для натрия в покое составит лишь 0,04. Следовательно, существует постоянный поток ионов К + из цитоплазмы по градиенту концентрации . Калиевый ток из цитоплазмы создает относительный дефицит положительных зарядов на внутренней поверхности, для анионов клеточная мембрана непроницаема в результате цитоплазма клетки оказывается заряженной отрицательно по отношению к окружающей клетку среде. Эта разность потенциалов между клеткой и внеклеточным пространством, поляризация клетки, называется мембранным потенциалом покоя (МПП).

Возникает вопрос: почему же ток ионов калия не продолжается до уравновешивания концентраций иона вне и внутри клетки? Следует вспомнить о том, это заряженная частица, следовательно, ее движение зависит и от заряда мембраны. Внутриклеточный отрицательный заряд, который создается благодаря току ионов калия из клетки, препятствует выходу из клетки новых ионов калия. Поток ионов калия прекращается, когда действие электрического поля компенсирует движение иона по градиенту концентрации. Следовательно, для данной разности концентраций ионов на мембране формируется так называемый РАВНОВЕСНЫЙ ПОТЕНЦИАЛ для калия. Этот потенциал (Ek) равен RT/nF *ln /, (n – валентность иона.) или

Ek=61,5 log/

Мембранный потенциал (МП) в большой степени зависит от равновесного потенциала калия, однако, часть ионов натрия все же проникает в покоящуюся клетку, так же, как и ионы хлора. Таким образом, отрицательный заряд, который имеет мембрана клетки, зависит от равновесных потенциалов натрия, калия и хлора и описывается уравнением Нернста. Наличие этого мембранного потенциала покоя чрезвычайно важно, потому, что именно он определяет способность клетки к возбуждению - специфическому ответу на раздражитель.

Возбуждение клетки

Возбуждение клетки (переход от покоя к активному состоянию) происходит при повышении проницаемости ионных каналов для натрия, а иногда и для кальция. Причиной изменения проницаемости может быть и изменение потенциала мембраны - активируются электровозбудимые каналы, и взаимодействие мембранных рецепторов с биологически активным веществом – рецептор - управляемые каналы, и механическое воздействие. В любом случае для развития возбуждения необходима начальная деполяризация - небольшое снижение отрицательного заряда мембраны, вызванная действием раздражителя. Раздражителем может быть любое изменение параметров внешней или внутренней среды организма: свет, температура, химические вещества (воздействие на вкусовые и обонятельные рецепторы), растяжение, давление. Натрий устремляется в клетку, возникает ионный ток и происходит снижение мембранного потенциала - деполяризация мембраны.

Таблица 4

Изменение мембранного потенциала при возбуждении клетки .

Обратите внимание на то, что вход натрия в клетку осуществляется по градиенту концентрации и по электрическому градиенту: концентрация натрия в клетке в 10 раз ниже, чем во внеклеточной среде и заряд по отношению к внеклеточному - отрицательный. Одновременно активируются и калиевые каналы, но натриевые (быстрые) активируются и инактивируются в течение 1 – 1,5 миллисекунд, а калиевые дольше.

Изменения мембранного потенциала принято изображать графически. На верхнем рисунке представлена начальная деполяризация мембраны - изменение потенциала в ответ на действие раздражителя. Для каждой возбудимой клетки существует особый уровень мембранного потенциала, при достижении которого резко изменяются свойства натриевых каналов. Этот потенциал назван критическим уровнем деполяризации (КУД ). При изменении мембранного потенциала до КУД открываются быстрые, потенциал зависимые натриевые каналы, поток ионов натрия устремляется в клетку. При переходе положительно заряженных ионов в клетку, в цитоплазме - увеличивается положительный заряд. В результате этого трансмембранная разность потенциалов уменьшается, значение МП снижается до 0, а затем, по мере дальнейшего поступления натрия в клетку происходит перезарядка мембраны и реверсия заряда (овершут)- теперь поверхность становится электроотрицательной по отношению к цитоплазме - мембрана ДЕПОЛЯРИЗОВАНА полностью – средний рисунок. Дальнейшего изменения заряда не происходит потому, что инактивируются натриевые каналы – больше натрий в клетку поступать не может, хотя градиент концентрации изменяется весьма незначительно. Если раздражитель обладает такой силой, что деполяризует мембрану до КУД, этот раздражитель называется пороговым, он вызывает возбуждение клетки. Точка реверса потенциала – это знак того, что вся гамма раздражителей любой модальности переведена в язык нервной системы - импульсы возбуждения. Импульсы, или потенциалы возбуждения называются потенциалами действия. Потенциал действия (ПД) – быстрое изменение мембранного потенциала в ответ на действия раздражителя пороговой силы. ПД имеет стандартные амплитуду и временные параметры, не зависящие от силы стимула - правило "ВСЕ ИЛИ НИЧЕГО". Следующий этап – восстановление мембранного потенциала покоя - реполяризация (нижний рисунок) в основном обусловлена активным ионным транспортом. Наиболее важен процесс активного транспорта - это работа Na/K - насоса, который выкачивает ионы натрия из клетки, одновременно закачивая ионы калия внутрь клетки. Восстановление мембранного потенциала происходит благодаря току ионов калия из клетки – калиевые каналы активируются и пропускают ионы калия до достижения равновесного калиевого потенциала. Это процесс важен потому, что до тех пор, пока не восстановлен МПП, клетка не способна воспринимать новый импульс возбуждения.

ГИПЕРПОЛЯРИЗАЦИЯ - кратковременное увеличение МП после его восстановления, которое обусловлено повышением проницаемости мембраны для ионов калия и хлора. Гиперполяризация бывает только после ПД и характерна далеко не для всех клеток. Попытаемся еще раз представить графически фазы потенциала действия и ионные процессы, лежащие в основе изменений потенциала мембраны (рис. 9). На оси абсцисс отложим значения мембранного потенциала в милливольтах, на оси ординат – время в миллисекундах.

1. Деполяризация мембраны до КУД – могут открыться любые натриевые каналы, иногда кальциевые, и быстрые, и медленные, и потенциал-зависимые, и рецептор-управляемые. Это зависит от вида раздражителя и типа клеток

2. Быстрое поступление натрия в клетку - открываются быстрые, потенциал-зависимые натриевые каналы, и деполяризация достигает точки реверса потенциала – происходит перезарядка мембраны, знак заряда меняется на положительный.

3. Восстановление градиента концентрации по калию – работа насоса. Калиевые каналы активированы, калий переходит из клетки во внеклеточную среду – реполяризация, начинается восстановление МПП

4. Следовая деполяризация, или отрицательный следовой потенциал - мембрана еще деполяризована относительно МПП.

5. Следовая гиперполяризация. Калиевые каналы остаются открытыми и дополнительный ток калия гиперполяризует мембрану. После этого клетка возвращается к исходному уровню МПП. Длительность ПД составляет для разных клеток от 1 до 3-4 мс.

Рисунок 9 Фазы потенциала действия

Обратите внимание на три величины потенциала, важные и постоянные для каждой клетки ее электрические характеристики.

1. МПП - электроотрицательность мембраны клетки в покое, обеспечивающая способность к возбуждению - возбудимость. На рисунке МПП = -90 мв.

2. КУД - критический уровень деполяризации (или порога генерации мембранного потенциала действия) - это такая величина мембранного потенциала, при достижении которой открываются быстрые , потенциал зависимые натриевые каналы и происходит перезарядка мембраны за счет поступления в клетку положительных ионов натрия. Чем выше электроотрицательность мембраны, тем труднее деполяризовать ее до КУД, тем менее возбудима такая клетка.

3. Точка реверса потенциала (овершут) - такая величинаположительного мембранного потенциала, при которой положительно заряженные ионы уже не проникают в клетку - кратковременный равновесный натриевый потенциал. На рисунке + 30 мв. Суммарное изменение потенциала мембраны от –90 до +30 составит для данной клетки 120 мВ, эта величина и является потенциалом действия. Если этот потенциал возник в нейроне, он будет распространяться по нервному волокну, если в мышечных клетках – будет распространяться по мембране мышечного волокна и приведет к сокращению, в железистых к секреции – к действию клетки. Это и есть специфический ответ клетки на действие раздражителя, возбуждение.

При действии раздражителя подпороговой силы возникает неполная деполяризация - ЛОКАЛЬНЫЙ ОТВЕТ (ЛО). Неполная, или частичная деполяризация – это такое изменение заряда мембраны, которое не достигает критического уровня деполяризации (КУД).

Рисунок 10. Изменение мембранного потенциала в ответ на действие раздражителя подпороговой силы - локальный ответ

Локальный ответ обладает, в основном, тем же механизмом, что и ПД, его восходящая фаза определяется входом ионов натрия, а нисходящая - выходом ионов калия. Однако амплитуда ЛО пропорциональна силе подпорогового раздражения, а не стандартна, как у ПД.

Статья на конкурс «био/мол/текст»: Потенциал покоя - это важное явление в жизни всех клеток организма, и важно знать, как он формируется. Однако это сложный динамический процесс, трудный для восприятия целиком, особенно для студентов младших курсов (биологических, медицинских и психологических специальностей) и неподготовленных читателей. Впрочем, при рассмотрении по пунктам, вполне возможно понять его основные детали и этапы. В работе вводится понятие потенциала покоя и выделяются основные этапы его формирования с использованием образных метафор, помогающих понять и запомнить молекулярные механизмы формирования потенциала покоя.

Мембранные транспортные структуры - натрий-калиевые насосы - создают предпосылки для возникновения потенциала покоя. Предпосылки эти - разность в концентрации ионов на внутренней и наружной сторонах клеточной мембраны. Отдельно проявляет себя разность концентрации по натрию и разность концентрации по калию. Попытка ионов калия (K +) выровнять свою концентрацию по обе стороны мембраны приводит к его утечке из клетки и потере вместе с ними положительных электрических зарядов, за счёт чего значительно усиливается общий отрицательный заряд внутренней поверхности клетки. Эта «калиевая» отрицательность составляет бóльшую часть потенциала покоя (−60 мВ в среднем), а меньшую его часть (−10 мВ) составляет «обменная» отрицательность, вызванная электрогенностью самого ионного насоса-обменника.

Давайте разбираться подробнее.

Зачем нам нужно знать, что такое потенциал покоя и как он возникает?

Вы знаете, что такое «животное электричество»? Откуда в организме берутся «биотоки»? Как живая клетка, находящаяся в водной среде, может превратиться в «электрическую батарейку» и почему она моментально не разряжается?

На эти вопросы можно ответить только в том случае, если узнать, как клетка создаёт себе разность электрических потенциалов (потенциал покоя) на мембране.

Совершенно очевидно, что для понимания того, как работает нервная система, необходимо вначале разобраться, как работает её отдельная нервная клетка - нейрон. Главное, что лежит в основе работы нейрона - это перемещение электрических зарядов через его мембрану и появление вследствие этого на мембране электрических потенциалов. Можно сказать, что нейрон, готовясь к своей нервной работе, вначале запасает энергию в электрической форме, а затем использует ее в процессе проведения и передачи нервного возбуждения.

Таким образом, наш самый первый шаг к изучению работы нервной системы - это понять, каким образом появляется электрический потенциал на мембране нервных клеток. Этим мы и займёмся, и назовём этот процесс формированием потенциала покоя .

Определение понятия «потенциал покоя»

В норме, когда нервная клетка находится в физиологическом покое и готова к работе, у неё уже произошло перераспределение электрических зарядов между внутренней и наружной сторонами мембраны. За счёт этого возникло электрическое поле, и на мембране появился электрический потенциал - мембранный потенциал покоя .

Таким образом, мембрана оказывается поляризованной. Это означает, что она имеет разный электрический потенциал наружной и внутренней поверхностей. Разность между этими потенциалами вполне возможно зарегистрировать.

В этом можно убедиться, если ввести внутрь клетки микроэлектрод, соединённый с регистрирующей установкой. Как только электрод попадает внутрь клетки, он мгновенно приобретает некоторый постоянный электроотрицательный потенциал по отношению к электроду, расположенному в окружающей клетку жидкости. Величина внутриклеточного электрического потенциала у нервных клеток и волокон, например, гигантских нервных волокон кальмара, в покое составляет около −70 мВ. Эту величину называют мембранным потенциалом покоя (МПП). Во всех точках аксоплазмы этот потенциал практически одинаков.

Ноздрачёв А.Д. и др. Начала физиологии .

Ещё немного физики. Макроскопические физические тела, как правило, электрически нейтральны, т.е. в них в равных количествах содержатся как положительные, так и отрицательные заряды. Зарядить тело можно, создав в нем избыток заряженных частиц одного вида, например, трением о другое тело, в котором при этом образуется избыток зарядов противоположного вида. Учитывая наличие элементарного заряда (e ), полный электрический заряд любого тела можно представить как q = ±N×e , где N - целое число.

Потенциал покоя - это разность электрических потенциалов, имеющихся на внутренней и наружной сторонах мембраны, когда клетка находится в состоянии физиологического покоя. Его величина измеряется изнутри клетки, она отрицательна и составляет в среднем −70 мВ (милливольт), хотя в разных клетках может быть различной: от −35 мВ до −90 мВ.

Важно учитывать, что в нервной системе электрические заряды представлены не электронами, как в обычных металлических проводах, а ионами - химическими частицами, имеющими электрический заряд. И вообще в водных растворах в виде электрического тока перемещаются не электроны, а ионы. Поэтому все электрические токи в клетках и окружающей их среде - это ионные токи .

Итак, изнутри клетка в покое заряжена отрицательно, а снаружи - положительно. Это свойственно всем живым клеткам, за исключением, разве что, эритроцитов, которые, наоборот, заряжены отрицательно снаружи. Если говорить конкретнее, то получается, что снаружи вокруг клетки будут преобладать положительные ионы (катионы Na + и K +), а внутри - отрицательные ионы (анионы органических кислот, не способные свободно перемещаться через мембрану, как Na + и K +).

Теперь нам всего лишь осталось объяснить, каким же образом всё получилось именно так. Хотя, конечно, неприятно сознавать, что все наши клетки кроме эритроцитов только снаружи выглядят положительными, а внутри они - отрицательные.

Термин «отрицательность», который мы будем применять для характеристики электрического потенциала внутри клетки, пригодится нам для простоты объяснения изменений уровня потенциала покоя. В этом термине ценно то, что интуитивно понятно следующее: чем больше отрицательность внутри клетки - тем ниже в отрицательную сторону от нуля смещён потенциал, а чем меньше отрицательность - тем ближе отрицательный потенциал к нулю. Это намного проще понять, чем каждый раз разбираться в том, что же именно означает выражение «потенциал возрастает» - возрастание по абсолютному значению (или «по модулю») будет означать смещение потенциала покоя вниз от нуля, а просто «возрастание» - смещение потенциала вверх к нулю. Термин «отрицательность» не создаёт подобных проблем неоднозначности понимания.

Сущность формирования потенциала покоя

Попробуем разобраться, откуда берётся электрический заряд нервных клеток, хотя их никто не трёт, как это делают физики в своих опытах с электрическими зарядами.

Здесь исследователя и студента поджидает одна из логических ловушек: внутренняя отрицательность клетки возникает не из-за появления лишних отрицательных частиц (анионов), а, наоборот, из-за потери некоторого количества положительных частиц (катионов)!

Так куда же деваются из клетки положительно заряженные частицы? Напомню, что это покинувшие клетку и скопившиеся снаружи ионы натрия - Na + - и калия - K + .

Главный секрет появления отрицательности внутри клетки

Сразу откроем этот секрет и скажем, что клетка лишается части своих положительных частиц и заряжается отрицательно за счёт двух процессов:

  1. вначале она обменивает «свой» натрий на «чужой» калий (да-да, одни положительные ионы на другие, такие же положительные);
  2. потом из неё происходит утечка этих «наменянных» положительных ионов калия, вместе с которыми из клетки утекают положительные заряды.

Эти два процесса нам и надо объяснить.

Первый этап создания внутренней отрицательности: обмен Na + на K +

В мембране нервной клетки постоянно работают белковые насосы-обменники (аденозинтрифосфатазы, или Na + /K + -АТФазы), встроенные в мембрану. Они меняют «собственный» натрий клетки на наружный «чужой» калий.

Но ведь при обмене одного положительного заряда (Na +) на другой такой же положительный заряд (K +) никакого дефицита положительных зарядов в клетке возникать не может! Правильно. Но, тем не менее, из-за этого обмена в клетке остаётся очень мало ионов натрия, потому что они почти все ушли наружу. И в то же время клетка переполняется ионами калия, которые в неё накачали молекулярные насосы. Если бы мы могли попробовать на вкус цитоплазму клетки, мы бы заметили, что в результате работы насосов-обменников она превратилась из солёной в горько-солёно-кислую, потому что солёный вкус хлорида натрия сменился сложным вкусом довольно-таки концентрированного раствора хлорида калия. В клетке концентрация калия достигает 0,4 моль/л. Растворы хлорида калия в пределах 0,009–0,02 моль/л имеют сладкий вкус, 0,03–0,04 - горький, 0,05–0,1 - горько-солёный, а начиная с 0,2 и выше - сложный вкус, состоящий из солёного, горького и кислого .

Важно здесь то, что обмен натрия на калий - неравный . За каждые отданные клеткой три иона натрия она получает всего два иона калия . Это приводит к потере одного положительного заряда при каждом акте ионного обмена. Так что уже на этом этапе за счёт неравноценного обмена клетка теряет больше «плюсов», чем получает взамен. В электрическом выражении это составляет примерно −10 мВ отрицательности внутри клетки. (Но помните, что нам надо ещё найти объяснение для оставшихся −60 мВ!)

Чтобы легче было запомнить работу насосов-обменников, образно можно выразиться так: «Клетка любит калий!» Поэтому клетка и затаскивает калий к себе, несмотря на то, что его и так в ней полно. И поэтому она невыгодно обменивает его на натрий, отдавая 3 иона натрия за 2 иона калия. И поэтому она тратит на этот обмен энергию АТФ. И как тратит! До 70% всех энергозатрат нейрона может уходить на работу натрий-калиевых насосов. (Вот что делает любовь, пусть она даже и не настоящая!)

Кстати, интересно, что клетка не рождается с готовым потенциалом покоя. Ей его ещё надо создать. Например, при дифференцировке и слиянии миобластов потенциал их мембраны изменяется от −10 до −70 мВ, т.е. их мембрана становится более отрицательной - поляризуется в процессе дифференцировки. А в экспериментах на мультипотентных мезенхимальных стромальных клетках костного мозга человека искусственная деполяризация, противодействующая потенциалу покоя и уменьшающая отрицательность клеток, даже ингибировала (угнетала) дифференцировку клеток .

Образно говоря, можно выразиться так: Создавая потенциал покоя, клетка «заряжается любовью». Это любовь к двум вещам:

  1. любовь клетки к калию (поэтому клетка насильно затаскивает его к себе);
  2. любовь калия к свободе (поэтому калий покидает захватившую его клетку).

Механизм насыщения клетки калием мы уже объяснили (это работа насосов-обменников), а механизм ухода калия из клетки объясним ниже, когда перейдём к описанию второго этапа создания внутриклеточной отрицательности. Итак, результат деятельности мембранных ионных насосов-обменников на первом этапе формирования потенциала покоя таков:

  1. Дефицит натрия (Na +) в клетке.
  2. Избыток калия (K +) в клетке.
  3. Появление на мембране слабого электрического потенциала (−10 мВ).

Можно сказать так: на первом этапе ионные насосы мембраны создают разность концентраций ионов, или градиент (перепад) концентрации, между внутриклеточной и внеклеточной средой.

Второй этап создания отрицательности: утечка ионов K + из клетки

Итак, что начинается в клетке после того, как с ионами поработают её мембранные натрий-калиевые насосы-обменники?

Из-за образовавшегося дефицита натрия внутри клетки этот ион при каждом удобном случае норовит устремиться внутрь : растворённые вещества всегда стремятся выровнять свою концентрацию во всём объёме раствора. Но это у натрия получается плохо, поскольку ионные натриевые каналы обычно закрыты и открываются только при определённых условиях: под воздействием специальных веществ (трансмиттеров) или при уменьшении отрицательности в клетке (деполяризации мембраны).

В то же время в клетке имеется избыток ионов калия по сравнению с наружной средой - потому что насосы мембраны насильно накачали его в клетку. И он, тоже стремясь уравнять свою концентрацию внутри и снаружи, норовит, напротив, выйти из клетки . И это у него получается!

Ионы калия K + покидают клетку под действием химического градиента их концентрации по разные стороны мембраны (мембрана значительно более проницаема для K + , чем для Na +) и уносят с собой положительные заряды. Из-за этого внутри клетки нарастает отрицательность.

Тут ещё важно понять то, что ионы натрия и калия как бы «не замечают» друг друга, они реагируют только «на самих себя». Т.е. натрий реагирует на концентрацию натрия же, но «не обращает внимания» на то, сколько вокруг калия. И наоборот, калий реагирует только на концентрацию калия и «не замечает» натрий. Получается, что для понимания поведения ионов надо по отдельности рассматривать концентрации ионов натрия и калия. Т.е. надо отдельно сравнить концентрацию по натрию внутри и снаружи клетки и отдельно - концентрацию по калию внутри и снаружи клетки, но не имеет смысла сравнивать натрий с калием, как это, бывает, делается в учебниках.

По закону выравнивания химических концентраций, который действует в растворах, натрий «хочет» снаружи войти в клетку; туда же его влечёт и электрическая сила (как мы помним, цитоплазма заряжена отрицательно). Хотеть-то он хочет, но не может, так как мембрана в обычном состоянии плохо его пропускает. Натриевые ионные каналы, имеющиеся в мембране, в норме закрыты. Если все же его заходит немножко, то клетка сразу же обменивает его на наружный калий с помощью своих натрий-калиевых насосов-обменников. Получается, что ионы натрия проходят через клетку как бы транзитом и не задерживаются в ней. Поэтому натрий в нейронах всегда в дефиците.

А вот калий как раз может легко выходить из клетки наружу! В клетке его полно, и она его удержать не может. Он выходит наружу через особые каналы в мембране - «калиевые каналы утечки», которые в норме открыты и выпускают калий .

К + -каналы утечки постоянно открыты при нормальных значениях мембранного потенциала покоя и проявляют взрывы активности при сдвигах мембранного потенциала, которые длятся несколько минут и наблюдаются при всех значениях потенциала. Усиление К + -токов утечки ведёт к гиперполяризации мембраны, тогда как их подавление - к деполяризации. ...Однако, существование канального механизма, ответственного за токи утечки, долгое время оставалось под вопросом. Только сейчас стало ясно, что калиевая утечка - это ток через специальные калиевые каналы.

Зефиров А.Л. и Ситдикова Г.Ф. Ионные каналы возбудимой клетки (структура, функция, патология) .

От химического - к электрическому

А теперь - ещё раз самое главное. Мы должны осознанно перейти от движения химических частиц к движению электрических зарядов .

Калий (K +) положительно заряжен, и поэтому он, когда выходит из клетки, выносит из неё не только самого себя, но и положительный заряд. За ним изнутри клетки к мембране тянутся «минусы» - отрицательные заряды. Но они не могут просочиться через мембрану - в отличие от ионов калия - т.к. для них нет подходящих ионных каналов, и мембрана их не пропускает. Помните про оставшиеся необъяснёнными нами −60 мВ отрицательности? Это и есть та самая часть мембранного потенциала покоя, которую создаёт утечка ионов калия из клетки! И это - большая часть потенциала покоя.

Для этой составной части потенциала покоя есть даже специальное название - концентрационный потенциал . Концентрационный потенциал - это часть потенциала покоя, созданная дефицитом положительных зарядов внутри клетки, образовавшимся за счёт утечки из неё положительных ионов калия .

Ну, а теперь немного физики, химии и математики для любителей точности.

Электрические силы связаны с химическими по уравнению Гольдмана. Его частным случаем является более простое уравнение Нернста , по формуле которого можно рассчитать трансмембранную диффузионную разность потенциалов на основе различной концентрации ионов одного вида по разные стороны мембраны. Так, зная концентрацию ионов калия снаружи и внутри клетки, можно рассчитать калиевый равновесный потенциал E K:

где Е к - равновесный потенциал, R - газовая постоянная, Т - абсолютная температура, F - постоянная Фарадея, К + внеш и K + внутр - концентрации ионов К + снаружи и внутри клетки, соответственно. По формуле видно, что для расчёта потенциала между собой сравниваются концентрации ионов одного вида - K + .

Более точно итоговая величина суммарного диффузионного потенциала, который создаётся утечкой нескольких видов ионов, рассчитывается по формуле Гольдмана-Ходжкина-Катца. В ней учтено, что потенциал покоя зависит от трех факторов: (1) полярности электрического заряда каждого иона; (2) проницаемости мембраны Р для каждого иона; (3) [концентраций соответствующих ионов] внутри (внутр) и снаружи мембраны (внеш). Для мембраны аксона кальмара в покое отношение проводимостей Р K: PNa :P Cl = 1: 0,04: 0,45 .

Заключение

Итак, поте нциал покоя состоит из двух частей:

  1. −10 мВ , которые получаются от «несимметричной» работы мембранного насоса-обменника (ведь он больше выкачивает из клетки положительных зарядов (Na +), чем закачивает обратно с калием).
  2. Вторая часть - это всё время утекающий из клетки калий, уносящий положительные заряды. Его вклад - основной: −60 мВ . В сумме это и дает искомые −70 мВ.

Что интересно, калий перестанет выходить из клетки (точнее, его вход и выход уравниваются) только при уровне отрицательности клетки −90 мВ. В этом случае сравняются химические и электрические силы, проталкивающие калий через мембрану, но направляющие его в противоположные стороны. Но этому мешает постоянно подтекающий в клетку натрий, который несёт с собой положительные заряды и уменьшает отрицательность, за которую «борется» калий. И в итоге в клетке поддерживается равновесное состояние на уровне −70 мВ.

Вот теперь мембранный потенциал покоя окончательно сформирован.

Схема работы Na + /K + -АТФазы наглядно иллюстрирует «несимметричный» обмен Na + на K + : выкачивание избыточного «плюса» в каждом цикле работы фермента приводит к отрицательному заряжению внутренней поверхности мембраны. Чего в этом ролике не сказано, так это того, что АТФаза ответственна за менее чем 20% потенциала покоя (−10 мВ): оставшаяся «отрицательность» (−60 мВ) появляется за счет выхода из клетки через «калиевые каналы утечки» ионов K + , стремящихся выровнять свою концентрацию внутри клетки и вне нее.

Литература

  1. Jacqueline Fischer-Lougheed, Jian-Hui Liu, Estelle Espinos, David Mordasini, Charles R. Bader, et. al.. (2001). Human Myoblast Fusion Requires Expression of Functional Inward Rectifier Kir2.1 Channels . J Cell Biol . 153 , 677-686;
  2. Liu J.H., Bijlenga P., Fischer-Lougheed J. et al. (1998). Role of an inward rectifier K + current and of hyperpolarization in human myoblast fusion . J. Physiol. 510 , 467–476;
  3. Sarah Sundelacruz, Michael Levin, David L. Kaplan. (2008). Membrane Potential Controls Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells . PLoS ONE . 3 , e3737;
  4. Павловская М.В. и Мамыкин А.И. Электростатика. Диэлектрики и проводники в электрическом поле. Постоянный ток / Электронное пособие по общему курсу физики. СПб: Санкт-Петербургский государственный электротехнический университет;
  5. Ноздрачёв А.Д., Баженов Ю.И., Баранникова И.А., Батуев А.С. и др. Начала физиологии: Учебник для вузов / Под ред. акад. А.Д. Ноздрачёва. СПб: Лань, 2001. - 1088 с.;
  6. Макаров А.М. и Лунева Л.А. Основы электромагнетизма / Физика в техническом университете. Т. 3;
  7. Зефиров А.Л. и Ситдикова Г.Ф. Ионные каналы возбудимой клетки (структура, функция, патология). Казань: Арт-кафе, 2010. - 271 с.;
  8. Родина Т.Г. Сенсорный анализ продовольственных товаров. Учебник для студентов вузов. М.: Академия, 2004. - 208 с.;
  9. Кольман Я. и Рем К.-Г. Наглядная биохимия. М.: Мир, 2004. - 469 с.;
  10. Шульговский В.В. Основы нейрофизиологии: Учебное пособие для студентов вузов. М.: Аспект Пресс, 2000. - 277 с..

Для образования МПП необходимо наличие: 1) ионных трансмембранных градиентов между цитозолем и внеклеточной средой (ведущую роль играют ионы натрия и калия); 2) разной проницаемости мембраны для ионов, что определяется ионными каналами мембраны.

Величины градиентов: К + в цитозоле клетки примерно в 33 раза больше, чем во внеклеточной среде; Na + в клетке примерно в 14 раз, С1 _ в 20 раз и Са 2+ в десятки тысяч раз меньше, чем во внеклеточной среде.

Механизмы образования градиентов: калий-натриевый насос образует градиенты Na + и К + (рис. 1.2.3). Градиент С1~ создается в результате использования энергии градиента К + при их совместном транспорте из клетки, а также в результате его обмена на гидрокарбонат с помощью анионообменника CI/HCO3. Ионы активно удаляются из клетки с помощью Са 2+ -насоса и ионообмена на Na + .

Рис. 1.2.3. Калий-натриевый насос в клеточной мембране. Используя энергию фосфатной группы одной молекулы АТФ, насос переносит против градиента концентрации два иона К + из внеклеточной жидкости в цитозоль клетки и три иона Na + в противоположном направлении

Различная проницаемость мембраны для ионов определена наличием ионных каналов, их числом и состоянием.

Ионные каналы - интегральные белки мембраны, состоящие из нескольких субъединиц, образующих отверстие (пору) и способные с большей или меньшей избирательностью (селективностью) пропустить в клетку или из клетки неорганические ионы по концентрационному и электрическому градиентам (рис. 1.2.4).


Рис. 1.2.4.

а - каналы утечки без воротного механизма; б-г - каналы с воротным механизмом: б - канал закрыт, потенциально активен, в - канал открыт, г - канал закрыт, инактивирован; д - липидный бислой мембраны; 1 - селективный фильтр;

2 - активационные ворота; 3 - инактивационные ворота

В канале имеется участок, выполняющий роль «селективного фильтра» (d = 0,3-0,6 нм), через который ион может пройти после частичной или полной утраты своей водной оболочки. Через ионный канал в течение 1 с может проходить до 20 млн ионов, поэтому ионные токи каналов во много раз превосходят ионные токи, связанные с работой ионных насосов и ионообменников

Существует несколько видов ионных каналов. Каналы имеют воротный механизм, который определяет закрытое (потенциально активное), открытое (активированное) или закрытое (инактивированное) состояние канала. Проницаемость канала (состояние «ворот») регулируется: 1) изменением поляризации мембраны (по- тенциалуправляемые каналы); 2) влиянием химических веществ - нейромедиаторов, гормонов, лекарственных средств (хемоуправля- емые каналы); 3) деформацией мембраны (механочувствительные каналы).

Потенциалуправляемые каналы (натриевые, калиевые, кальциевые, хлорные) находятся в возбудимых клетках. Они имеют воротную «частицу» (сенсор канала) в виде диполя, на концах которого располагаются разноименные заряды. По времени срабатывания ворот (от миллисекунд до секунд) каналы подразделяют на быстрые и медленные. Те участки мембраны возбудимых клеток, которые имеют такие каналы, называются возбудимыми мембранами (только в них возможно образование потенциала действия).

Хемоуправляемые каналы («канал-рецептор», «ионотропный рецептор») находятся в составе рецептора, на который действуют биоактивные вещества: нейромедиаторы - ацетилхолин, ГАМК, глутамат и др., гормоны, лекарственные средства (например, М-холи- норецептор, ГАМК А -рецептор и др.).

Механочувствительные каналы (МЧК) изменяют проводимость в ответ на деформацию мембраны при действии механических раздражителей, гидростатического и осмотического давления. Выделены различные виды МЧК: каналы, активируемые и ингибируемые растяжением мембраны; катионные (калиевые, кальциевые, неселективные), анионные каналы и др. Они могут создавать токи, достаточные для изменения электрического потенциала мембраны и активации потенциалуправляемых каналов.

В состоянии физиологического покоя проницаемость мембраны (Р) определяется в основном каналами утечки. Она очень низкая для Na + , средняя для С1 _ и более высокая для К + . Если P R+ принять

за единицу, то Р к+ : Р сг: P Na+ = 1: 0,4: 0,04.

Механизмы возникновения мембранного потенциала покоя. Диффузия К + из клетки по каналам утечки до равновесного потенциала (Е к+ = -94 мВ) является главным механизмом формирования МПП

(К + как поляризующий ион). Равновесный потенциал (Е ион) для К + - потенциал, при котором возникает равенство двух сил: силы перемещения иона по химическому градиенту и противоположной по направлению электростатической силы. При равенстве этих сил прекращается диффузия иона. Диффузия К + из клетки по электростатической силе (разность зарядов) увлекает за собой цитозольные анионы (белки, фосфаты), которые останавливаются около внутренней поверхности непроницаемой для них клеточной мембраны, образуя отрицательный мембранный потенциал.

Асимметричная работа калий-натриевого насоса (на 2 иона К + , перемещаемого в клетку, из нее выводится 3 иона Na +) создает поляризацию мембраны (около -10 мВ) и является вторым механизмом образования МПП (см. рис. 1.2.3).

Небольшая диффузия Na + по каналам утечки внутрь клетки (E Na+ = +60 мВ) делает реальный МПП несколько ниже, чем Е к+

(Na + как деполяризующий ион).

Функциональная роль МПП. Отрицательный мембранный потенциал и преимущественно внеклеточное расположение ионов натрия создает большую электродвижущую силу для Na + , направленную на движение этого катиона внутрь клетки. При открытых Na + -Ka- налах эта сила определяет выдающуюся роль Na + в развитии биопотенциалов (фазы деполяризации). В деятельности транспортеров и ионообменников возбудимых и невозбудимых клеток она позволяет осуществить вторично-активный транспорт: электродвижущая сила Na + используется для перемещения в клетку аминокислот и глюкозы, или выведения из клетки ионов кальция и водорода.

Препотенциал и критический уровень деполяризации. Главный потенциал возбудимых клеток - потенциал действия (ПД). Раздражителем при этом в естественных условиях служат биопотенциалы (рецепторные, синаптические) и их биотоки, которые деполяризуют мембрану, имеющую потенциалуправляемые ионные каналы. ПД возникает, если раздражитель способен деполяризовать мембрану до критического уровня (примерно на 15-20 мВ). Если деполяризация при действии раздражителя не достигает критического уровня, т.е. раздражитель является субпороговым, ПД не возникает, а образуется препотенциал.

Препотенциал (локальный ответ) - локальный потенциал, возникающий при действии субпороговых раздражителей в тех же участках мембраны, где и потенциал действия (т.е. имеющих потенциалуправляемые каналы). Препотенциал расположен в субпороговой области (между МПП и критическим уровнем деполяризации), имеет фазы деполяризации и реполяризации (рис. 1.2.5).

Механизмы возникновения препотенциала. При действии субпорогового раздражителя возникает деполяризация, связанная с открытием потенциалуправляемых 1Ча + -каналов и входящим в клетку Na + -TOKOM, который не достигает критического уровня деполяризации. Деполяризация открывает также и более медленные потенциалуправляемые К + -каналы, что увеличивает выходящий из клетки К + -ток и вызывает затем фазу реполяризации. Во время препотенциала входящий в клетку Na + -TOK меньше, чем выходящий из клетки К + -ток через потенциалуправляемые каналы и К + -каналы утечки. Поэтому после прекращения действия субпорогового раздражителя препотенциал исчезает.


Рис. 1.2.5. Схема локального ответа (препотенциала) и потенциала действия: 7 - деполяризация; 2 - реполяризация

Свойства препотенциала. Амплитуда препотенциала находится в прямой зависимости от силы раздражителя, он возникает в соответствии с законом «силы» (его амплитуда пропорциональна силе раздражителя). Препотенциалы способны к суммации, если промежутки между раздражителями короче, чем продолжительность существования препотенциала - новый препотенциал будет суммироваться с предыдущим. Следовательно, высокочастотные субпороговые раздражители могут деполяризовать мембрану до критического уровня и вызвать ПД. Во время препотенциала повышена возбудимость. Распространение препотенциала происходит с затуханием амплитуды на небольшие расстояния (обычно в пределах 1 мм).

Критический уровень деполяризации (КУД, или критический потенциал - Е кр) - тот уровень, при котором деполяризация мембраны может принимать регенеративный (самоусиливающийся) характер, свидетельствующий о развитии потенциала действия. При этом входящий в клетку Na + -TOK равен выходящему из клетки К + - току, что характеризует электрическую нестабильность мембраны - в равной степени процесс может идти как в сторону деполяризации и образования ПД, так и в сторону реполяризации и ограничиться препотенциалом. Раздражитель, деполяризующий МПП до КУД, называется пороговым раздражителем. Величина потенциала, равная разности между КУД и МПП, называется пороговым потенциалом (ПП = МПП - КУД), он характеризует возбудимость клетки (чем меньше ПП, тем больше возбудимость, и наоборот)