Лекция: Понятие об иммунологической памяти иммунологической толерантности. Иммунологическая память, клетки, механизм Как удалить клетки иммунной памяти

Периоды образования специфических антител в ответ на введение вакцины (рис. 4):

Рис. 4 . Динамика образования антител при первичном (А-прайминг)
и вторичном (Б-бустерная иммунизация) введении антигена.
Периоды образования специфических антител (А. А. Воробьев и др., 2003):

а - латентный; б - логарифмического роста; в - стационарный; г - снижения

· латентный («лаг»-фаза) - макрофаги перерабатывают антиген, представляют его Т-лимфоцитам, Тh активируют В-лимфоциты, последние превращаются в плазматические антителообразующие клетки, параллельно образуются В-лимфоциты памяти. От введения вакцины до появления антител в сыворотке крови проходит от нескольких суток до 2 недель (время зависит от вида вакцины, способа введения и особенностей
иммунной системы);

· роста («лог»-фаза) - экспоненциальное увеличение количества антител в сыворотке крови продолжительностью от 4 дней до 4 недель;

· стационарный - количество антител поддерживается на постоянном уровне;

· снижения - после достижения максимального титра антител происходит его снижение, причем сначала относительно быстро, а затем медленно. Длительность фазы снижения зависит от соотношения скорости синтеза антител и их полураспада. Когда снижение уровня протективных антител достигает критического, защита падает, и становится возможным заболевание при контакте с источником инфекции. Поэтому для поддержания напряженного иммунитета часто необходимо вводить бустерные дозы вакцины.

Различают первичный и вторичный иммунный ответ организма. Первичный иммунный ответ наблюдается при первичном введении антигена. Вторичный иммунный ответ развивается после повторных контактов системы иммунитета с антигенами.

При первичном иммунном ответе на антиген в основном продуцируются IgM, при вторичном - плазматические клетки переключаются с продукции IgM на более зрелые изотипы и продуцируют антитела классов IgG, IgA или IgE с более высоким сродством к антигену. IgG наиболее полно проходят фазы созревания аффинитета. Они нейтрализуют экзотоксины, активируют комплемент и обладают высоким сродством к Fc-рецепторам всех типов. Нейтрализация и удаление свободных патогенов осуществляется путем их опсонизации и последующего фагоцитоза. IgG являются также важным фактором борьбы с внутриклеточными патогенами. Опсонизируя клетки, IgG делают их доступными для антителозависимого клеточного цитолиза.

Иммунологическая память - способность иммунной системы отвечать на повторный контакт с антигеном быстрее, сильнее и длительнее по сравнению с первичным ответом. Иммунологическая память обеспечивается клетками памяти - длительно живущими субпопуляциями антигенспецифических T- и B-клеток, быстрее реагирующими на повторное введение антигена. Они находятся на стадии G 1 клеточного цикла, т. е. вышли из стадии покоя G 0 и готовы к быстрому превращению в эффекторные клетки при очередном контакте с антигеном.

Иммунологическая память, особенно память Т-лимфоцитов, очень стойкая, благодаря чему удается искусственно формировать длительный противоинфекционный иммунитет. Преобладающее направление развития вторичного иммунного ответа закодировано в субпопуляционной принадлежности Т-клеток памяти и последующей их дифференцировке
в Th1 или Th2.

Вторичный иммунный ответ характеризуется следующими
признаками:

1. Более раннее развитие иммунных реакций по сравнению с первичным ответом.

2. Уменьшение дозы антигена, необходимой для достижения оптимального ответа.

3. Увеличение напряженности и длительности иммунного ответа.

4. Усиление гуморального иммунитета: увеличение количества
антителообразующих клеток и циркулирующих антител, активация Тh2
и усиление выработки ими цитокинов (ИЛ 3, 4, 5, 6, 9, 10, 13), сокращение периода образования IgM, преобладание IgG и IgA.

5. Повышение специфичности гуморального иммунитета в результате феномена «созревания аффинности».

6. Усиление клеточного иммунитета: увеличение числа антигенспецифических Т-лимфоцитов, активация Тh1 и усиление выработки ими цитокинов (γ-интерферона, ФНО, ИЛ2), повышение аффинности антигенспецифических рецепторов Т-лимфоцитов.

Эффективность вторичного иммунного ответа прежде всего зависит от полноценности (достаточной интенсивности) первичного антигенного стимула, длительности интервала между первичным и вторичным введением антигена.

Так как в процессе иммунного ответа основное значение имеют антитела, то в его развитии главная роль принадлежит В-системе лимфоцитов. Определенное значение имеет клеточный иммунитет, в развитии которого основная роль принадлежит Т-системе лимфоцитов.

Иммунологическая память. При повторной встрече с антигеном организм формирует более активную и быструю иммуннуюреакцию - вторичный иммунный ответ. Этот феномен получил название иммунологической памяти.

Иммунологическая память имеет высокую специфичность к конкретному антигену, распространяется как на гуморальное, так и клеточное звено иммунитета и обусловлена В- и Т-лимфоцитами. Она образуется практически всегда и сохраняется годами и даже десятилетиями. Благодаря ней наш организм надежно защищен от повторных антигенных интервенций.

Существует также ограничение ответов генетически отличных людей, что не дает решения. Низкая иммуногенность, вызванная быстрой деградацией пептидов с помощью пептидаз в сыворотке, может быть скорректирована с помощью модификации пептидов или путем их включения в композицию с контролируемым высвобождением.

Могут ли пептидные вакцины использоваться в терапии рака?

Некоторые мутации могут приводить к последовательности, которая распознается Т-лимфоцитами. Другие, такие как мутации р53, вызывают значительно повышенную экспрессию белка из-за структурных изменений , которые препятствуют его деградации. Супер-экспрессия вызывает появление обычно тихих эпитопов. Это способствует знаниям, необходимым для производства конкретных вакцин против мутированных или сверхэкспрессированных последовательностей онкобелков.

На сегодняшний день рассматривают два наиболее вероятных механизма формирования иммунологической памяти. Один из них предполагает длительное сохранение антигена в организме. Этому имеется множество примеров: инкапсулированный возбудитель туберкулеза, персистирующие вирусы кори, полиомиелита, ветряной оспы и некоторые другие патогены длительное время, иногда всю жизнь, сохраняются в организме, поддерживая в напряжении иммунную систему. Вероятно также наличие долгоживущих дендритных АПК, способных длительно сохранять и презентировать антиген.

Такая терапия не используется у людей, но эксперименты с крысами пришли к выводу, что пептидная вакцина, вводимая адъювантом, может вызывать защитный иммунный ответ против опухолевых клеток , имеющих гомологичную мутацию последовательности, используемой для производства вакцины. Рекомбинантная векторная вакцина.

Для создания рекомбинантных вакцин используются несколько различных организмов , таких как бактерии сальмонеллы и вирусы, такие как вакциния и аденовирус. Акцент будет сделан здесь на вакцину и технологию вакцинации на основе аденовирусов. Это выгодно тем, что они очень эффективны при активации гуморального и клеточного иммунного ответа, часто требуя только одного применения. С другой стороны, существуют такие риски, как конверсия вставленных вирусных генов в вирулентность или рекомбинацию с вирусами дикого типа и возможное вмешательство в ранее существовавший иммунитет к вакцинному вектору.

Другой механизм предусматривает, что в процессе развития в организме продуктивного иммунного ответа часть антигенореактивных Т- или В-лимфоцитов дифференцируется в малые покоящиеся клетки, или клетки иммунологической памяти. Эти клетки отличаются высокой специфичностью к конкретной антигенной детерминанте и большой продолжительностью жизни (до 10 лет и более). Они активно рециркулируют в организме, распределяясь в тканях и органах, но постоянно возвращаются в места своего происхождения за счет хоминговых рецепторов. Это обеспечивает постоянную готовность иммунной системы реагировать на повторный контакт с антигеном по вторичному типу.

Эффективность вакцины от вакцинии доказана с помощью экспериментов с вирусом бешенства. Животные, иммунизированные этой вакциной, защищены от летальных доз вируса бешенства. Иммунитет был получен либо с системной, либо с оральной инокуляцией. Его нельзя использовать ни у людей, ни у животных, которые вступают в контакт с ними, потому что у них есть небольшая вероятность обращения к вирулентности.

Он имеет как преимущества, так и высокую эффективность, длительный период воздействия антигена и очень некомпетентность репликации, которая предотвращает нежелательную пролиферацию вирусного вектора. В основном из-за аспекта репликации-некомпетентности эта вакцина была предметом изучения для людей и домашних животных. Использование аденовирусного вектора сильно нацелено, поскольку оно индуцирует иммунитет при применении через слизистые оболочки.

Феномен иммунологической памяти широко используется в практике вакцинации людей для создания напряженного иммунитета и поддержания его длительное время на защитном уровне. Осуществляют это 2-3-кратными прививками при первичной вакцинации и периодическими повторными введениями вакцинного препарата - ревакцинациями .

Однако феномен иммунологической памяти имеет и отрицательные стороны . Например, повторная попытка трансплантировать уже однажды отторгнутую ткань вызывает быструю и бурную реакцию - криз отторжения.

В отличие от классических вакцин основной иммунный ответ не против вставленных генов, а против кодируемых ими белков. Этот процесс приводит к входу этих плазмид в клетки, смежные с местом инъекции. Иммунизация этим методом имеет некоторые необычные характеристики, например, реакция антитела протекает медленно, достигая пика только через 10 недель и, хотя и слабая, ответ очень длительный, и в экспериментах с морскими свинками этот ответ стал постоянным, Эта характеристика иммунизации в течение длительного периода времени является одним из основных преимуществ этого метода и вызывает большие надежды в научном и медицинском сообществе.

Иммунологическая толерантность -явление,противоположное иммунному ответу и иммунологической памяти.Проявляется она отсутствием специфического продуктивного иммунного ответа организма на антиген в связи с неспособностью его распознавания.

В отличие от иммуносупрессии иммунологическая толерантность предполагает изначальную ареактивность иммунокомпетентных клеток к определенному антигену.

Механизм действия этой вакцины очень мало известен. Что сделано до сих пор, так это сформулировать гипотезы о том, что происходит с помощью некоторых доказательств реакции организма. Это, как правило, вызывает аллергию - отсутствие косимуляторных сигналов - или неиммунный ответ - очень низкие уровни представления, которые мы видели, чего не происходит. Предлагаются две гипотезы, которые пытаются объяснить этот факт, но никто не смог утвердиться как истинный. Но эти клетки молчат и для начала процесса ответа потребуется стимул.

Признаки активации этих дендритных клеток плохо изучены. Другая проблема заключается в том, что дендритные клетки имеют ограниченный срок службы, что противоречит представлению и длительному иммунному ответу. Вторая гипотеза предполагает отложение антигенных комплексов и антител с низким сродством. При этом будет постоянное выделение нескольких антигенов, обеспечивающих длительный иммунный ответ.

Иммунологическую толерантность вызывают антигены, которые получили название толерогены. Ими могут быть практически все вещества, однако наибольшей толерогенностью обладают полисахариды.

Иммунологическая толерантность бывает врожденной и приобретенной. Примером врожденной толерантности является отсутствие реакции иммунной системы на свои собственные антигены. Приобретенную толерантность можно создать, вводя в

Несмотря на отсутствие знаний о механизме работы полинуклеотидной вакцины, существуют большие преимущества этого метода по сравнению с классическими вакцинами. Наиболее очевидным преимуществом является возможность манипулирования этими очень большими плазмидами. С помощью самых разных методов можно выбирать гены и модифицировать их. Другим преимуществом была бы высокая стабильность. Он также имеет большую характеристику отсутствия риска превращения в вирулентность. Его единственным недостатком является небольшая вероятность вставки этих генов в клеточный геном и вызывать онкогению.

организм вещества, подавляющие иммунитет (иммунодепрессанты), или же путем введения антигена в эмбриональном периоде или в первые дни после рождения индивидуума. Приобретенная толерантность может быть активной и пассивной. Активная толерантность создается путем введения в организм толерогена, который формирует специфическую толерантность. Пассивную толерантность можно вызвать веществами, тормозящими биосинтетическую или пролиферативную активность иммунокомпетентных клеток (антилимфоцитарная сыворотка, цитостатики и пр.).

В настоящее время в этой области проводится несколько исследований и разработок вакцин. Его исследование в основном нацелено на производство вакцин, вводимых перорально, для стимуляции иммунной системы, вызывающих гибель животного, и последующее изгнание нематоды из пищеварительного тракта . Это уменьшит или даже прекратит использование медицины против этих организмов.

На сегодняшний день он доступен только для ветеринарного использования. Другим большим преимуществом является то, что представление антигенов, продуцируемых для цитотоксических Т-лимфоцитов, вызывает клонирование экспрессии антиген-специфического, но оно способно распознавать гетерологичные линии, которые иммунизированы, тем самым защищая человека, иммунизированного против нескольких линий за один раз. Это не относится к антителам, которые являются «уникальными» для одной линии. Развитие этих новых вакцин на основе вирусов или рекомбинантных бактерий, пептидов и векторных плазмид обеспечивается недавними достижениями в области иммунологии, молекулярной биологии и биохимии пептидов.

Иммунологическая толерантность отличается специфичностью - она направлена к строго определенным антигенам. По степени распространенности различают поливалентную и расщепленную толерантность. Поливалентная толерантность возникает одновременно на все антигенные детерминанты, входящие в состав конкретного антигена. Для расщепленной, или моновалентной, толерантности характерна избирательная невосприимчивость каких-то отдельных антигенных детерминант.

Однако эти методы до сих пор не используются для массовой вакцинации, и большинство из них все еще проходят клинические испытания . Ни одна из этих различных вакцин, которые разрабатываются, уже не может быть полностью эффективной для профилактики инфекционных заболеваний или иммунотерапии против рака. Но преимущества и преимущества, которые они обещают, принесли большие надежды. Вирусные рекомбинантные вакцины, а также те, которые основаны на вакцинии или вирусе аденовируса, вызывают сильные иммунные ответы.

Вирус вакцины обладает тем преимуществом, что он довольно стабилен и иммуногенен при применении перорально, что делает его хорошим кандидатом для иммунизации диких животных. Рекомбинанты на основе дефектной репликации аденовируса более безопасны и также более эффективны по сравнению с рекомбинантами вирусной вакцины. Кроме того, они вызывают отличную иммунизацию при применении к слизистым оболочкам, что указывает на их использование в качестве вакцины против инфекционных агентов , поступающих в организм через дыхательные пути или половые пути.

Степень проявления иммунологической толерантности существенно зависит от ряда свойств макроорганизма и толерогена. Важное значение в индукции иммунологической толерантности имеют доза антигена и продолжительность его воздействия. Различают высокодозовую и низкодозовую толерантность. Высокодозовую толерантность вызывают введением больших количеств высококонцентрированного антигена. Низкодозовая толерантность, наоборот, вызывается очень малым количеством вы-сокогомогенного молекулярного антигена.

Пептиды все еще имеют ограниченные преимущества в профилактике инфекционных заболеваний, но они перспективны как вакцина в терапии рака. Пока безопасность и эффективность этих вакцин могут быть подтверждены, они могут принести иммунитет многочисленным патологическим агентам, тем самым улучшая стандарт и продолжительность жизни как людей, так и животных, жизненно важных для нашего выживания.

Является изучение ответов организма, которые обеспечивают иммунитет, то есть защиту от болезней. Хотя иммунная система очень сложна, некоторые компоненты иммунной системы легко обнаруживаются, например, антитела. Антигены - чужеродное вещество, которое индуцирует иммунный ответ, вызывая продуцирование антител и / или сенсибилизированных лимфоцитов, которые специфически реагируют с веществом; иммуноген.

Механизмы толерантности многообразны и до конца не расшифрованы.Известно,что ее основу составляют нормальныепроцессы регуляции иммунной системы. Выделяют три наиболее вероятные причины развития иммунологической толерантности:

    Элиминация из организма антигенспецифических клонов лимфоцитов.

    Блокада биологической активности им-мунокомпетентных клеток.

    Антитело - белок сыворотки, который был индуцирован и специфически реагирует с посторонним веществом; иммуноглобулин. Эти антигены могут быть вирусами, клетками или молекулами белка. Иммунная система представляет собой сложную организацию биологически активных тканей, клеток, клеточных продуктов и медиаторов, и все они взаимодействуют для получения иммунного ответа. Иммунный ответ распознает и запоминает различные антигены. Специфический иммунитет характеризуется тремя свойствами.

    Память специфики распознавания. Признание относится к способности иммунной системы распознавать различия в очень большом числе антигенов и различать их. Специфика относится к способности направлять ответ на определенный антиген. Память - это ссылка на способность иммунной системы запоминать антиген долго после первоначального контакта.

    Быстрая нейтрализация антигена антителами.

Феномен иммунологической толерантности имеет большое практическое значение. Он используется для решения

многих важных проблем медицины, таких как пересадка органов и тканей, подавление аутоиммунных реакций , лечение аллергий и других патологических состояний, связанных с агрессивным поведением иммунной системы.

Основными тканями и органами иммунной системы являются. Они являются основными клетками, ответственными за иммунный ответ: Т-лимфоциты и В-лимфоциты. Периферические лимфоидные органы и ткани - лимфатические узлы , селезенка, кишечник-ассоциированной лимфоидной ткани , аппендикс, миндалины, пейеровы бляшки и лимфоидной ткани, связанные с бронхами.

Иммуноглобулины представляют собой белки, продуцируемые плазматическими клетками и секретируемые в организме в ответ на воздействие антигена. Это преобладающий иммуноглобулин в слезах, слюне, респираторных выделениях и желудочно-кишечном тракте . Обеспечивает защиту от организмов, которые вторгаются в эти районы.

64 Классификация гиперчувствительности по Джейлу и Кумбсу.

Изучение молекулярных механизмов аллергии привело к созданию Джеллом и Кумбсом в 1968 г. новой классификации . В соответствии с ней различают четыре основных типа аллергии: анафилактический (I тип), цитотоксический (IIтип), иммунокомплексный (IIIтип) и опосредованный клетками (IV тип). Первые три типа относятся к ГНТ, четвертый - к ГЗТ. Ведущая роль в запуске ГНТ играют антитела (IgE, G и М), а ГЗТ - лимфоидно-макрофагальная реакция.

Иммунная система обладает двумя поистине удивительными свойствами : специфическим распознаванием и иммунной памятью. Под последней понимают способность развивать качественно и количественно более эффективный иммунный ответ при повторном контакте с тем же патогеном. Согласно этому различают первичный и вторичный иммунный ответ. Первичный иммунный ответ реализуется при первом контакте с незнакомым антигеном, а вторичный - при повторном. Вторичный иммунный ответ является более совершенным, так как осуществляется на качественно более высоком уровне из - за наличия преформированных иммунных факторов, отражающих генетическую адаптацию к патогену (уже имеются готовые гены специфических иммуноглобулинов и антиген - распознающих рецепторов Т - клеток) . Действительно, здоровые люди не болеют дважды многими инфекционными заболеваниями , так как при повторном заражении реализуется вторичный иммунный ответ, при котором отсутствует длительная воспалительная фаза, а в работу сразу же вступают иммунные факторы - специфические лимфоциты и антитела.

Вторичный иммунный ответ характеризуется следующими признаками:

1 . Более ранним развитием , иногда - даже молниеносным.

2 . Меньшей дозой антигена, необходимой для достижения оптимального иммунного ответа.

3 . Увеличением силы и продолжительности иммунного ответа за счёт более интенсивной продукции цитокинов (ТД 1 или че 2 профиля, в зависимости от природы патогена) .

4 . Усилением клеточных иммунных реакций за счёт более интенсивного образования специфических Т - хелперов 1 типа и цитотоксических Т - лимфоцитов.

5 . Усилением образования антител за счёт формирования большего количества Т - хелперов 2 типа и плазматических клеток.

6 . Повышением специфичности распознавания иммуногенных пептидов Т - лимфоцитами за счёт увеличения аффинности их антиген - специфических рецепторов.

7 . Повышением специфичности синтезируемых антител за счёт изначальной продукции IgG высокой аффинности / авидности.

Следует отметить, что невозможность формирования эффективной иммунной памяти является одним из характерных симптомов иммунодефицитных заболеваний человека. Так, у пациентов с гипоиммуноглобулинемией наблюдается феномен множественных эпизодов т.н. детских инфекций, так как после перенесённых инфекционных болезней не формируется защитный титр антител. Больные с дефектами клеточного иммунитета также не формируют иммунную память на Т - зависимые антигены, что проявляется отсутствием сероконверсии после инфекций и вакцинаций, однако общие концентрации иммуноглобулинов в их сыворотке крови могут быть нормальными.

1) длительное сохранение анти­гена в организме. Этому имеется множество примеров: инкапсулированный возбудитель туберкулеза, персистирующие вирусы кори, полиомиелита, ветряной оспы и некоторые другие патогены длительное время, иногда всю жизнь, сохраняются в организме, под­держивая в напряжении иммунную систему. Вероятно также наличие долгоживущих де­ндритных АПК, способных длительно сохра­нять и презентировать антиген.
2) в про­цессе развития в организме продуктивного им­мунного ответа часть антигенореактивных Т- или В-лимфоцитов дифференцируется в малые покоящиеся клетки, или клетки иммунологической памяти. Эти клетки отличаются высокой спе­цифичностью к конкретной антигенной детер­минанте и большой продолжительностью жизни (до 10 лет и более). Они активно рециркулируют в организме, распределяясь в тканях и органах, но постоянно возвращаются в места своего про­исхождения за счет хоминговых рецепторов. Это обеспечивает постоянную готовность иммунной системы реагировать на повторный контакт с антигеном по вторичному типу.
Феномен иммунологической памяти широко используется в практике вакцинации людей для создания напряженного иммунитета и под­держания его длительное время на защитном уровне. Осуществляют это 2-3-кратными при­вивками при первичной вакцинации и перио­дическими повторными введениями вакцинно­го препарата - ревакцинациями .
Однако феномен иммунологической памяти имеет и отрицательные стороны. Например, повторная попытка трансплантировать уже однажды отторгнутую ткань вызывает быст­рую и бурную реакцию - криз отторжения.

34. Иммунологическая толерантность, ее виды. Иммунологический паралич .

Состояние ареактивности к собственным антигенам носит название естественной иммунологической толерантности. Наличие естественной толерантности организма к собственным антигенам – необходимое условие для развития способности к иммунному ответу на чужеродные антигены. Естественная иммунологическая толерантность к собственным антигенам закладывается в каждом организме в эмбриональном периоде благодаря контакту элементов формирующейся иммунной системы к собственным антигенам. Утрата естественной иммунологической толерантности к свои антигенам создает предпосылки для развития аутоиммунных реакций, а перспективы искусственного создания или восстановления иммунологической толерантности позволяют найти новые пути лечения аутоиммунных болезней и трансплантации несовместимых органов и тканей. Иммунологическая толерантность рассматривается как противоположность активному иммунитету – «иммунитет со знаком минус».

36.Вакцины живые, убитые, хим, анатоксины, синтетич современ рекомбинантные вакц.Принципы получения, механизмы создаваемого иммунитета, адъюванты. Вакцинация обеспечивает специф иммун отв с формированием активн противоинфекц иммун-та за счет мобилизации иммун памяти. сыв и иммуноглобулины обесп пассивн гумор иммун-тнемедленно т.к. вводят готовые Ат и иммуноглобулины.Вакц-яобесп-ет проф-ку.Вакц 1 поколения-бешенство, туляремия, сиб язва, чумы, паротита, кори, полиомиелита Убитые -убивают микроорганизмы прогреванием, УФ-лучами или хим в-вами-против коклюша, лептоспироза, клещ. энц В убитой лишь немногие детерминанты могут индуцировать имммун-т. В качестве Аг можно использовать как целые тела м.о., так иотдельн компоненты-полисахаридная пневмококковая в. и иммунологич активные фракции –гепатитВ. напря иммун-т, сходный с постинфекционным, применение опасно т.к. у людей с иммуно дефицитами б особенно у детей виру может персистировать в ор-ме.Ослабленные-полностью сохраняют Аг состав возбудителя и более длит д-ют-БЦЖ для проф туберкулеа, есть для брюш тифа используют мутантно ослаблены с пониженной вирулентностью. Вакцины 2 поколения-хим они менее реактогенны, так холерная(холероген-анатоксин +ЛПС, извлеченный из холер вирионов).Противогрипозная-субъединичная, включает гемагглютинин и нейроменидазу. Для повыш иммуногенности используют адьюванты Анатоксины –обработка формалином, утрата ядовитости и способность индуцировать антитокс Ат-для спецеф проф столбняка, дифтерии т.е. с экзотоксинами.Генноинженерные-гепатитВ- в стадии разработки. Рекомбинантная -гриппозная, гепатитВ, столбняк-введение генов патогенных вирусов в геном вируса вакцины так в геном

37. Принципы иммупрофилактики и иммунотерапии-вакцины, сыворотки, иммуноглобулины Вакцинация обеспечивает специф иммун отв с формированием активн противоинфекциммун-та за счет мобилизации иммун памяти. сыв и иммуноглобулины обесп пассивн гумор иммун-тнемедленно т.к. вводят готовые Ат и иммуноглобулины.Вакц-яобесп-ет проф-ку.солержитАг. Вакц 1 поколения-бешенство, туляремия, сиб язва, чумы, паротита, кори, полиомиелита Убитые -убивают микроорганизмы прогреванием, УФ-лучами или хим в-вами-против коклюша,гонококковая, лептоспироза, клещ. энц В убитой лишь немногие детерминанты могут индуцировать имммун-т. В качестве Аг можно использовать как целые тела м.о., так иотдельн компоненты-полисахаридная пневмококковая в. и иммунологич активные фракции –гепатитВ.Живые-например антирабическаясоздают напря иммун-т, сходный с постинфекционным, применение опасно т.к. у людей с иммуно дефицитами б особенно у детей виру может персистировать в ор-ме.Ослабленные-полностью сохраняют Аг состав возбудителя и более длит д-ют-БЦЖ для проф туберкулеа, есть для брюш тифа используют мутантно ослаблены с пониженной вирулентностью, полиомиелит. Вакцины 2 поколения-хим они менее реактогенны, так холерная(холероген-анатоксин +ЛПС, извлеченный из холер вирионов).Противогрипозная-субъединичная, включает гемагглютинин и нейроменидазу. Для повыш иммуногенности используют адьюванты гидроксид алюминия, алюминиево-калиевые хлебцы, фосфат алюминия. Анатоксины из экзотоксинов–обработка формалином, утрата ядовитости и способность индуцировать антитокс Ат-для спецеф проф столбняка, дифтерии т.е. с экзотоксинами.1ИЕ иммуноген ед-ца-мин кол-воанатоксина, которое при добавлении 1АЕ сыв дает р-ю инициальной флокуляции, р-я происходит с мин кол-ком компоентов за самое короткое время.1АЕ мин кол-во антитокс сыв, которая инактивирует опред число DLM, происходит р-я нейтр имунологич. Генноинженерные-гепатитВ- картирование геномов м.о., контролирующие нужные Аг детерминанты, пореносят в геном др. м.о. и клонируют, добиваясь экспрессии этих генов в новых условиях.Антиидиоптическая, липосомальная в стадии разработки. Рекомбинантная -гриппозная, гепатитВ, столбняк-введение генов патогенных вирусов в геном вируса вакцины так в геном сальмонелл.

ИММУНОЛОГИЧЕСКАЯ ПАМЯТЬ - способность организма отвечать ускоренной и усиленной, иммунной реакцией при повторном контакте с ранее введенным антигеном. Иммунологическая память сохраняется в течение многих месяцев, а при воздействии некоторых антигенов – годы. Клетками иммунологической памяти служат Т- и В-лимфоциты, стимулированные данным антигеном, при этом большое значение имеют Т-лимфоциты. Клетки иммунологической памяти представляют собой часть дочерних клеток, переходящих в покоящееся состояние после двух-трех делений, стимулированных антигеном Т- и В-лимфоцитов.

Лимфоциты образуют две популяции – Т- и В-лимфоцитов, которые различаются по набору рецепторов, находящихся на их поверхности, и выполняют различные функции.

Т-лимфоциты – проходят созревание в тимусе и выполняют функцию клеточного звена иммунитета. Т-лимфоциты распознают клетки, несущие чужеродные антигены, и уничтожают их после непосредственного контакта (атаки), а также выполняют функцию регуляции иммунного ответа.

В-лимфоциты – у млекопитающих созревание В-лимфоцитов происходит в костном мозге. В-лимфоциты ответственны за гуморальное звено иммунитета – продукцию антител. После антигенного стимула В-лимфоцит превращается в лимфобласт – клетку, способную к делению. Часть лимфобластов дифференцируется в В-лимфоциты памяти, другая часть превращается в плазматические клетки, которые осуществляют продукцию антител.

Иммунологическая толерантность - явле­ние, противоположное иммунному ответу и иммунологической памяти. Проявляется она отсутствием специфического продуктивного иммунного ответа организма на антиген в связи с неспособностью его распознавания. В отличие от иммуносупрессии имму­нологическая толерантность предполагает изначальную ареактивность иммунокомпе-тентных клеток к определенному антигену. Открытию иммунологической толеран­тности предшествовали работы Р. Оуэна (1945), который обследовал разнояйцовых те­лят-близнецов. Ученый установил, что такие животные в эмбриональном периоде обмени­ваются через плаценту кровяными ростками и после рождения обладают одновременно двумя типами эритроцитов - своими и чу­жими. Наличие чужеродных эритроцитов не вызывало иммунную реакцию и не приводило к внутрисосудистому гемолизу. Явление былоназвано эритроцитарной мозаикой. Однако Оуэн не смог дать ему объяснение. Собственно феномен иммунологической то­лерантности был открыт в 1953 г. независимо чешским ученым М. Гашеком и группой англий­ских исследователей во главе с П. Медаваром. Гашек в опытах на куриных эмбрионах, а Медавар - на новорожденных мышатах показа­ли, что организм становится нечувствительным к антигену при его введении в эмбриональном или раннем постнатальном периоде.
Иммунологическую толерантность вызы­вают антигены, которые получили название толерогены. Ими могут быть практически все вещества, однако наибольшей толерогеннос-тью обладают полисахариды.
Иммунологическая толерантность быва­ет врожденной и приобретенной. Примером врожденной толерантности является отсутс­твие реакции иммунной системы на свои собственные антигены. Приобретенную толе­рантность можно создать, вводя в организм вещества, подавляющие иммунитет (иммуно-депрессанты), или же путем введения антигена в эмбриональном периоде или в первые дни после рождения индивидуума. Приобретенная толерантность может быть активной и пассив­ной. Активная толерантность создается пу­тем введения в организм толерогена, который формирует специфическую толерантность. Пассивную толерантность можно вызвать ве­ществами, тормозящими биосинтетическую или пролиферативную активность иммуно-компетентных клеток (антилимфоцитарная сыворотка, цитостатики и пр.). Иммунологическая толерантность отличает­ся специфичностью - она направлена к строго определенным антигенам. По степени рас­пространенности различают поливалентную и расщепленную толерантность. Поливалентная толерантность возникает одновременно на все антигенные детерминанты, входящие в со­став конкретного антигена. Для расщепленной, или моновалентной, толерантности характер­на избирательная невосприимчивость каких-то отдельных антигенных детерминант. Степень проявления иммунологической толе­рантности существенно зависит от ряда свойств макроорганизма и толерогена. Так, на проявление толерантности влияет возраст и состояние иммунореактивности организма. Иммунологическую толерантность легче индуцировать в эмбрио­нальном периоде развития и в первые дни после рождения, лучше всего она проявляется у жи­вотных со сниженной иммунореактивностью и с определенным генотипом. Из особенностей антигена, которые опреде­ляют успешность индукции иммунологичес­кой толерантности, нужно отметить степень его чужеродности для организма и природу, дозу препарата и продолжительность воздейс­твия антигена на организм. Наибольшей толе-рогенностью обладают наименее чужеродные по отношению к организму антигены, имею­щие малую молекулярную массу и высокую гомогенность. Легче всего формируется то­лерантность на тимуснезависимые антигены, например, бактериальные полисахариды. Важное значение в индукции иммуноло­гической толерантности имеют доза анти­гена и продолжительность его воздействия. Различают высокодозовую и низкодозовую толерантность. Высокодозовую толерантность вызывают введением больших количеств вы­сококонцентрированного антигена. При этом наблюдается прямая зависимость между до­зой вещества и производимым им эффек­том. Низкодозовая толерантность, наоборот, вызывается очень малым количеством вы­сокогомогенного молекулярного антигена. Соотношение «доза-эффект» в этом случае имеет обратную зависимость.

Не все индуцированные антигеном В-лимфоциты подвергаются дифференцировке до конца. Часть из них после нескольких циклов деления перестает размножаться и образует субклон клеток памяти (из одной В-клетки образуется около 1000 клеток памяти, таким же образом образуются клетки памяти и из Т-лимфоцитов). Клетки памяти определяют продолжительность приобретенного иммунитета. При повторном контакте с данным антигеном они быстро превращаются в клетки-эффекторы. При этом В-клетки памяти обеспечивают синтез антител в более короткие сроки, в большем количестве и с более высоким сродством антител другого класса иммуноглобулинов - IgG вместо IgM.

При образовании клеток памяти происходит дальнейшая рекомбинация генов Н-цепи: тандем генов V х D х J переносится с Сц-гена к одному из СН-генов - у, а, е. Установлено, что существуют Т-хелперы, которые определяют направление переключения классов Ig.

В ходе антигензависимой дифференцировки В-лимфоцитов используется и механизм соматических мутаций в V-генах. Они происходят с частотой в 10000 раз большей частоты спонтанных мутаций и ограничиваются определенной стадией дифференцировки, а именно - периодом перехода от продук­ции IgM к продукции IgG. Благодаря этим мутациям обеспечивается максимальная подгонка структу­ры активного центра антитела к детерминанту антигена.

Таким образом, наиболее важными событиями дифференцировки В-лимфоцитов являются:

1)сборка гена иммуноглобулина из его фрагментов, содержащихся в ДНК эмбриональных клеток; 2)возникнове-ние новых вариантов генов Ig в ходе дифференцировки; 3)вспышка соматических мутаций в строго определенной стадии дифференцировки. В результате этих событий происходит образование множе­ства генетически стабильных клонов антителообразующих клеток (вероятно, не менее чем 108).

Общая схема происхождения и дифференцировки Т- и В-лимфоцитов и макрофагов из исходных стволовых клеток представлена на рис. 71.

Рис. 71. Схема происхождения и дифференцировки клеток-эффекторов иммунной системы (ВОЗ, 1978).

HSC - костно-мозговая стволовая кроветворная клетка; LSC - лимфоидная стволовая клетка; РТС - предшественник Т-клеток;

РВС - предшественник В-клеток; ТЕ - T-эффекторы; Тн - Т-помощники; Ts - T-супрессоры; CFUc - кроветворный предшественник макрофагов; PC - плазматическая клетка; ЕС - эпителиальная клетка; THF - тимусный гуморальный фактор.

В соответствии с этой схемой, исходная костномозговая клетка (HSC) генерирует два типа предшественников: лимфоидную стволовую клетку (LSC), от которой происходят клетки-предшествен­ники Т-лимфоцитов (РТС), клетки-предшественники В-лимфоцитов (РВС); и клетку, являющуюся предшественником клеток красной крови, от которой, в свою очередь, происходит предшественник лейкоцитов (CFUc) и берет начало система мононуклеарных макрофагов. Предшественники Т-лимфо­цитов под влиянием тимуса превращаются в Т-лимфоциты и их субклассы. Пути дифференцировки В-лимфоцитов описаны выше.

В целом система В-лимфоцитов обеспечивает синтез антител, отвечает за иммунитет против большинства бактериальных и вирусных инфекций, анафилаксию и другие реакции гиперчувствитель­ности немедленного типа, некоторые аутоиммунные болезни, за формирование клеток иммунной памяти и иммунологическую толерантность.

Система Т-лимфоцитов играет регуляторную роль по отношению к В-лимфоцитам, отвечает за все реакции гиперчувствительности замедленного типа, иммунитет против вирусных и некоторых бактериальных инфекций (туберкулез, бруцеллез, туляремия и др.), осуществляет иммунологичес­кий надзор, отвечает за противоопухолевый иммунитет, иммунологическую толерантность, некото­рые виды иммунопатологии.

Вместе с тем, Т- и В-клетки являются двумя частями единой иммунной системы организма. Поэтому деление иммунитета на гуморальный и клеточный носит весьма условный характер, так как антитела синтезируются В-клетками, а Т-лимфоциты и другие клетки осуществляют свою иммунокомпетентность через синтезируемые ими гуморальные факторы (цитокины, лимфокины, интерлейкины и т. п.).

Координированное взаимодействие макрофагов, Т- и В-лимфоцитов при встрече с антигеном обес­печивает выдачу адекватного иммунного ответа.

49.Гиперчувствительность: общий обзор

Определенные формы антигена при повторном контакте с организмом могут вызвать реакцию, специфическую в своей основе, но включающую неспецифические клеточные и молекулярные факторы острого воспалительного ответа. Это явление чрезмерного или неадекватного проявления реакций приобретенного иммунитета называют гиперчувствительностью.

Реакции гиперчувствительности могут провоцироваться многими антигенами, и причины их у разных людей различны.

Известны две формы повышенной реактивности: гиперчувствительность немедленного типа, включающая в себя три типа гиперчувствительности (типы I, II и III) и гиперчувствительность замедленного (IV-го) типа. На практике типы гиперчувствительности необязательно встречаются порознь.

Если гиперчувствительность немедленного типа обусловлена гуморальными иммунными механизмами, то гиперчувствительность замедленного типа -клеточными. Однако для некоторых реакций гиперчувствительности такая классификация не подходит, т.к. механизм их комплексный. При этом, как для гиперчувствительности, обусловленной IgE (тип I), так и для развития различных форм заболеваний, связанных с IgG (типы II и III), критическое значение имеют дозы и способ проникновения антигена в организм.

Гиперчувствительность немедленного типа (типы I, II и III) проявляется при участии антител, которые цитофильны по отношению к тучным клеткам и базофилам - продуцентам медиаторов воспаления. гиперчувствительность замедленного типа (четвертый тип) реализуется с помощью Т-клеток воспаления (ТН1) как основных эффекторов реакции, обеспечивающих накопление в зоне воспаления макрофагов.

Впервые гиперчувствительность замедленного типа наблюдал немецкий бактериолог Р.Кох в конце XIX века: введение туберкулезных бацилл в кожу зараженного туберкулезом животного вызывало через 1-2 суток сильное местное воспаление с образованием гранулем, тогда как у интактных животных такая инъекция приводила лишь к очень слабой кратковременной реакции.

В 1902 г. Шарль Рише и Поль Портье, изучая антитоксический иммунитет к яду морской анемоны, описали феномен анафилактического шока. Повторное внутривенное введение предварительно иммунизированным собакам яда в количестве, значительно меньшем летальной дозы, приводило к развитию острой системной реакции, проявляющейся в спазме сосудов, коллапсе и гибели животных. Введение яда в кожу иммунизированным животным провоцировало только местную реакцию воспаления.

В то же время Морис Артюс, работая с нетоксическими формами антигена, описал одну из форм местной аллергической реакции. Первая инъекция такого антигена в кожу либо не вызывала реакции, либо она была очень слаба. Повторное введение того же антигена в ряде случаев приводило к интенсивной инфильтрации места инъекции полиморфноядерными лейкоцитами, геморрагической реакции, некрозу сосудов.

Еще один феномен, связанный с аллергической реакцией, был обнаружен при широком применении лошадиных антидифтерийных и антистолбнячных сывороток для лечения соответствующих заболеваний. Введение значительного количества этих сывороток на поздних этапах лечения иногда приводило к системной реакции, сопровождающейся повышением температуры, высыпанием, крапивницей, а в ряде случаев поражением суставов и почек. Это явление получило название сывороточной болезни, так как связано с образованием антител к белкам вводимой сыворотки.

Способность развивать эти аллергические реакции в интактном организме можно инициировать с помощью переноса сыворотки от больных доноров. Причем сенсибилизированный подобным способом реципиент при введении разрешающей дозы аллергена разовьет столь же быстрый ответ повышенной чувствительности, что и донор сыворотки.

Если гиперчувствительность немедленного типа передается с помощью сыворотки, то гиперчувствительность замедленного типа в интактном организме можно вызвать только при адоптивном переносе жизнеспособных лимфоидных клеток от сенсибилизированного донора; при этом время развития реакции замедленного типа у пассивно сенсибилизированного рецепиента равняется, как и у донора, 1-2 суткам.

Эти первые результаты ясно указывали на то, что в основе двух форм повышенной чувствительности лежат разные механизмы.

При повторной встрече с антигеном орга­низм формирует более активную и быструю иммунную реакцию - вторичный иммунный ответ. Этот феномен получил название имму­нологической памяти.

Иммунологическая память имеет высо­
кую специфичность к конкретному анти­
гену, распространяется как на гуморальное,
так и клеточное звено иммунитета и обус­
ловлена В- и Т-лимфоцитами. Она обра­
зуется практически всегда и сохраняется
годами и даже десятилетиями. Благодаря
ней наш организм надежно затишен от
повторных антигенных интервенции. __

На сегодняшний день рассматривают два наиболее вероятных механизма формирова­ния иммунологической памяти. Один из них предполагает длительное сохранение анти­гена в организме. Этому имеется множество примеров: инкапсулированный возбудитель туберкулеза, персистирующие вирусы кори, полиомиелита, ветряной оспы и некоторые другие патогены длительное время, иногда всю жизнь, сохраняются в организме, под­держивая в напряжении иммунную систему. Вероятно также наличие долгоживущих де­ндритных АПК, способных длительно сохра­нять и презентировать антиген.

Другой механизм предусматривает, что в про­цессе развития в организме продуктивного им­мунного ответа часть антигенореактивных Т- или


В-лимфоцитов дифференцируется в малые по­коящиеся клетки, или клетки иммунологической памяти. Эти клетки отличаются высокой спе­цифичностью к конкретной антигенной детер­минанте и большой продолжительностью жизни (до 10 лет и более). Они активно рециркулируют в организме, распределяясь в тканях и органах, но постоянно возвращаются в места своего про­исхождения за счет хоминговых рецепторов. Это обеспечивает постоянную готовность иммунной системы реагировать на повторный контакт с антигеном по вторичному типу

Феномен иммунологической памяти широко используется в практике вакцинации людей для создания напряженного иммунитета и под­держания его длительное время на защитном уровне. Осуществляют это 2-3-кратными при­вивками при первичной вакцинации и перио­дическими повторными введениями вакцинно­го препарата - ревакцинациями (см. гл. 14).

Однако феномен иммунологической памяти имеет и отрицательные стороны. Например, повторная попытка трансплантировать уже однажды отторгнутую ткань вызывает быст­рую и бурную реакцию - криз отторжения.

11.6. Иммунологическая толерантность

Иммунологическая толерантность - явле­ние, противоположное иммунному ответу и иммунологической памяти. Проявляется она отсутствием специфического продуктивного иммунного ответа организма на антиген в связи с неспособностью его распознавания.

В отличие от иммуносупрессии имму­нологическая толерантность предполагает изначальную ареактивность иммунокомпе-тентных клеток к определенному антигену.

Открытию иммунологической толеран­тности предшествовали работы Р. Оуэна (1945), который обследовал разнояйцовых те­лят-близнецов. Ученый установил, что такие животные в эмбриональном периоде обмени­ваются через плаценту кровяными ростками и после рождения обладают одновременно двумя типами эритроцитов - своими и чу­жими. Наличие чужеродных эритроцитов не вызывало иммунную реакцию и не приводило к внутрисосудистому гемолизу. Явление было


названо эритроцитарной мозаикой. Однако Оуэн не смог дать ему объяснение.

Собственно феномен иммунологической то­лерантности был открыт в 1953 г. независимо чешским ученым М. Гашеком и группой англий­ских исследователей во главе с П. Медаваром. Гашек в опытах на куриных эмбрионах, а Медавар - на новорожденных мышатах показа­ли, что организм становится нечувствительным к антигену при его введении в эмбриональном или раннем постнатальном периоде.

Иммунологическую толерантность вызы­вают антигены, которые получили название толерогены. Ими могут быть практически все вещества, однако наибольшей толерогеннос-тью обладают полисахариды.

Иммунологическая толерантность быва­ет врожденной и приобретенной. Примером врожденной толерантности является отсутс­твие реакции иммунной системы на свои собственные антигены. Приобретенную толе­рантность можно создать, вводя в организм вещества, подавляющие иммунитет (иммуно-депрессанты), или же путем введения антигена в эмбриональном периоде или в первые дни после рождения индивидуума. Приобретенная толерантность может быть активной и пассив­ной. Активная толерантность создается пу­тем введения в организм толерогена, который формирует специфическую толерантность. Пассивную толерантность можно вызвать ве­ществами, тормозящими биосинтетическую или пролиферативную активность иммуно-компетентных клеток (антилимфоцитарная сыворотка, цитостатики и пр.).

Иммунологическая толерантность отличает­ся специфичностью - она направлена к строго определенным антигенам. По степени рас­пространенности различают поливалентную и расщепленную толерантность. Поливалентная толерантность возникает одновременно на все антигенные детерминанты, входящие в со­став конкретного антигена. Для расщепленной, или моновалентной, толерантности характер­на избирательная невосприимчивость каких-то отдельных антигенных детерминант.

Степень проявления иммунологической толе­рантности существенно зависит от ряда свойств макроорганизма и толерогена. Так, на проявление толерантности влияет возраст и состояние имму-


нореактивности организма. Иммунологическую толерантность легче индуцировать в эмбрио­нальном периоде развития и в первые дни после рождения, лучше всего она проявляется у жи­вотных со сниженной иммунореактивностью и с определенным генотипом.

Из особенностей антигена, которые опреде­ляют успешность индукции иммунологичес­кой толерантности, нужно отметить степень его чужеродности для организма и природу, дозу препарата и продолжительность воздейс­твия антигена на организм. Наибольшей толе-рогенностью обладают наименее чужеродные по отношению к организму антигены, имею­щие малую молекулярную массу и высокую гомогенность. Легче всего формируется то­лерантность на тимуснезависимые антигены, например, бактериальные полисахариды.

Важное значение в индукции иммуноло­гической толерантности имеют доза анти­гена и продолжительность его воздействия. Различают высокодозовую и низкодозовую толерантность. Высокодозовую толерантность вызывают введением больших количеств вы­сококонцентрированного антигена. При этом наблюдается прямая зависимость между до­зой вещества и производимым им эффек­том. Низкодозовая толерантность, наоборот, вызывается очень малым количеством вы­сокогомогенного молекулярного антигена. Соотношение «доза-эффект» в этом случае имеет обратную зависимость.

В эксперименте толерантность возникает че­рез несколько дней, а иногда часов после вве­дения толерогена и, как правило, проявляется в течение всего времени, пока он циркулирует в организме. Эффект ослабевает или прекра­щается с удалением из организма толерогена. Обычно иммунологическая толерантность на­блюдается непродолжительный срок - всего несколько дней. Для ее пролонгирования необ­ходимы повторные инъекции препарата.

Механизмы толерантности многообразны и до конца не расшифрованы. Известно, что ее основу составляют нормальные процессы регуляции иммунной системы. Выделяют три наиболее вероятные причины развития имму­нологической толерантности:

1. Элиминация из организма антигенспеци-фических клонов лимфоцитов.


2. Блокада биологической активности им-мунокомпетентных клеток.

3. Быстрая нейтрализация антигена анти­телами.

Элиминации, или делеции подвергают­ся, как правило, клоны аутореактивных Т- и В-лимфоцитов на ранних стадиях их онтоге­неза. Активация антигенспецифического ре­цептора (TCR или BCR) незрелого лимфоци­та индуцирует в нем апоптоз. Этот феномен, обеспечивающий в организме ареактивность к аутоантигенам, получил название централь­ной толерантности.

Основная роль в блокаде биологической ак­тивности иммунокомпетентных клеток прина­длежит иммуноцитокинам. Воздействуя на соот­ветствующие рецепторы, они способны вызвать ряд «негативных» эффектов. Например, проли­ферацию Т- и В-лимфоцитов активно тормо­зит (be-ТФР. Дифференцировку ТО-хелпера в Т1 можно заблокировать при помощи ИЛ-4, -13, а в Т2-хелпер - у-ИФН. Биологическая активность макрофагов ингибируется продуктами Т2-хелпе-ров (ИЛ-4, -10, -13, be-ТФР и др.).

Биосинтез в В-лимфоците и его превраще­ние в плазмоцит подавляется IgG. Быстрая инактивация молекул антигена антителами предотвращает их связывание с рецепторами иммунокомпетентных клеток - элиминиру­ется специфический активирующий фактор.

Возможен адаптивный перенос иммуноло­гической толерантности интактному живот­ному путем введения ему иммунокомпетент­ных клеток, взятых от донора. Толерантность можно также искусственно отменить. Для этого необходимо активировать иммунную систему адъювантами, интерлейкинами или переключить направленность ее реакции им­мунизацией модифицированными антиге­нами. Другой путь - удалить из организма толероген, сделав инъекцию специфических антител или проведя иммуносорбцию.

Феномен иммунологической толерантнос­ти имеет большое практическое значение. Он используется для решения многих важных проблем медицины, таких как пересадка ор­ганов и тканей, подавление аутоиммунных реакций, лечение аллергий и других патоло­гических состояний, связанных с агрессив­ным поведением иммунной системы.


Таблица Основные характеристики иммуноглобулинов человека

Характеристика IgM IgG IgA IgD IgE
Молекулярная масса, кДа
Количество мономеров 1-3
Валентность 2-6
Уровень в сыворотке крови, г/л 0,5-1,9 8,0-17,0 1,4- 3,2 0,03- -0,2 0,002-0,004
Период полураспада, сут
Связывание комплемента + ++ ++ - - -
Цитотоксическая активность +++ ++ - - _
Опсонизация + + + + + - -
Преципитация + ++ + - +
Агглютинация + + + + + - +
Участие в анафилактических реакциях + + + - +++
Наличие рецепторов на лимфоцитах + + + + +
Прохождение через плаценту - - + - -
Наличие в секретах в секреторной форме +/- - + - -
Поступление в секреты путем диффузии + + + + +

Таблица 11.3. Классификация аллергических реакции по патогенез [по Джеллу и Кумбсу, 1968]


Тип реакции Фактор патогенеза Механизм патогенеза Клинический пример
III, иммунокомплек- сный (ГНТ) IgM, IgG Образование избытка иммунных комплексов-> Отложение иммунных комплексов на базальных мембранах, эндо­телии и в соединительнотканной строме-> Активация антителозависимой клеточно-опосредованной цито-токсичности -> Запуск иммунного воспаления Сывороточная болезнь, системные заболевания соединительной ткани, феномен Артюса, «легкое фермера»
IV. клеточно-опос- редованный (ГЗТ) Т-лимфоциты Сенсибилизация Т-лимфоцитов-> Активация макрофага-» Запуск иммунного воспаления Кожно-аллергическая проба. контактная аллергия, белковая аллергия за­медленного типа