С каким разрезом объединяют главный вид детали. Построение сечений и разрезов на чертежах. Сечения и их виды

ЛЕКЦИЯ 3

РЕЗЬБОВЫЕ СОЕДИНЕНИЯ

Резьбовые соединения - это самый распространенный вид разъемных со­единений. Они осуществляются болтами, винтами, шпильками, гайками и т. п.

Основным элементом соединения является резьба, образуемая нареза­нием или накаткой на детали по винтовой линии (рис. 5.1.1, 5.1.2).

Рисунок. 5.1.1 - Винтовая линия резьбы

Угол подъема резьбы

Резьбы классифицируются по форме поверхности , на которой образуется резьба: цилиндрические и конические .

По форме профиля различают типы:

треугольные (рис. 5.1.3, а );

упорные (рис. 5.1.3, б );

трапецеидальные (рис. 5.1.3, в );

прямоугольные (рис5.1.3, г );

круглые (рис. 5.1.3, д ).

При подъеме винтовой линии слева на право - резьба правая, у левой - справа налево.

Резьбы делятся на многозаходные и однозаходные (рис. 5.1.4).

По назначению различают:

крепежные:

крепежно-уплотняющие;

ходовые (для преобразования движения).

Рисунок 5.1.2– Образование резьбы

Крепежно-уплотняющие резьбы применя­ют для соединения деталей, требующих герме­тичности (рис. 5.1.6).

Крепежные резьбы чаще однозаходные. Резь­бы для преобразования движения (вращательное в поступательное и наоборот) применяют в вин­товых механизмах (в ходовых и грузовых винтах). Они имеют трапецеидальный профиль, реже - прямоугольный.

Рисунок 5.1.3- Формы профиля резьбы:

а - треугольная; б - упорная; в - трапецеидальная; г - прямоугольная; д - круглая

Достоинства резьбовых соединений:

простота конструкции, технологичность;

удобство сборки, разборки;

высокая нагрузочная способность;

малые габариты соединений;

стандартизация изделий.

Рисунок 5.1.4- Виды резьб

а - трехзаходная; б - однозаходная

Недостаток: наличие резьбы создает концентрацию напряжений на по­верхности деталей, что снижает их прочность при переменных напряжениях.

Геометрические параметры резьбы

Основными параметрами цилиндрической резьбы являются:

d - номинальный диаметр (нагруженный диаметр резьбы винта);

d l - внутренний диаметр резьбы гайки;

d 3 - внутренний диаметр резьбы винта;

d 2 - средний диаметр резьбы, на котором ширины профилей винта и гайки совпадают;

р - шаг резьбы, т. е. расстояние между одноименными сторонами со­седних профилей;

р h - ход резьбы, т. е. расстояние между одноименными сторонами од­ного и того же витка в осевом направлении (рис. 5.1.4, а, б ).

Для однозаходной резьбы p h = р .

Для многозаходной резьбы p h = z∙р , где z - число заходов.

Ход равен пути перемещения винта вдоль своей оси при повороте на один оборот в неподвижной гайке;

α - угол профиля резьбы; наиболее распространенной является метри­ческая резьба, для которой α = 60°.

у - угол наклона боковой стороны профиля (рис. 5.1.5);

у - угол подъема резьбы (рис. 5.1.1);

Основные типы резьб. Метрическая резьба - изготовляется по стандарту с крупным и мелким шагом (табл. 1.12). Угол наклона у боковой стороны профиля дает возмож­ность самоторможения и обеспечивает восприятие больших осевых сил (рис. 5.1.5). Мелкие резьбы применяют в соединениях, работающих при пе­ременных нагрузках.

Рисунок 5.1.5– Метрическая резьба

Дюймовая резьба имеет профиль равно­бедренного треугольника с углом при вер­шине α = 55°. Число витков задают на дюйм (1 дюйм = 25,4 мм). В РФ используется при ремонта импортного оборудования.

Трубная резьба имеет профиль равнобед­ренного треугольника с закругленными вы­ступами и впадинами (рис. 5.1.6).

Рисунок 5.1.6– Трубная резьба

Трапецеидальная резьба - основная в передаче винт-гайка. Профиль - равнобочная трапеция, угол профиля α = 30°, угол наклона боковой стороны = 15° (рис. 5.1.7). Характеризуется технологичностью, малыми потерями на трение, КПД выше, чем у резьб треугольного профиля. Применяется для реверсивных передач под нагруз­кой (домкраты, прессы, ходовые винты станков).

Упорная резьба (рис. 5.1.8). Профиль - неравнобочная трапеция с = 3°. Применяют в передаче винт-гайка при больших односторонних нагрузках (винты домкратов, прессов).


Рисунок 5.1.7– Трапециедальняя резьба Рисунок 5.1.8– Упорная резьба

Прямоугольная резьба (рис. 5.1.9). Профиль резьбы - квадрат, = 0°. Имеет самый высо­кий среди резьб КПД, но затруднительна в изготовлении. Затруднение вызваны тем, что эту резьбу нельзя фрезеровать и шлифовать, т. к. угол профиля α = 0°. Не стандартизиро­вана. Применение ограниченно (малонагруженные передачи винт-гайка).

Рис. 5.1.9. Прямоугольная резьба

Таблица 1.12 - Основные размеры метрической резьбы, мм (по ГОСТ 9150-81. ГОСТ 8724-81

d, D - наружные диаметры соответственно наружной резьбы (болта) и внутренней резьбы (гайки);

d 2 , D 2 - средние диаметры соответственно болта и гайки;

d 1 , D 1 - внутренние диаметры соответствен­но болта и гайки;

d 3 - внутренний диаметр болта по дну впа­дины;

р - шаг резьбы;

Н - высота исходного треугольника.

Номинальные значения диаметров резьбы должны соответствовать указанным на чертеже и в таблице.

Шаг резьбы р

Диаметр резьбы

наружный

внутренний

внутренний по дну впадины

С крупным шагом

Продолжение табл. 1.12

Диаметр резьбы

Шаг резьбы р

наружный

внутренний

внутренний по дну впадины

Конструктивные формы резьбовых соединений. Наибольше распространение среди резьбовых деталей получили кре­пежные болты, шпильки, винты, гайки.

Соединение болтом (рис. 5.1.10, а ) применяют для деталей сравнительно малой толщины, а также при многократной разработке и сборке соедине­ний. При большой толщине соединяемых деталей предпочтительны шпильки (рис. 5.1.10, в ).


Рисунок 5.1.10. Виды резьбовых соединений: Рисунок 5.1.11. Формы головок болтов:

а - соединение болтом; б - соединение вин- а - шестигранные; б, е - полукруглые; том; в - соединение шпилькой е, ж - цилиндрические; г, д - по

Болты и крепежные винты различают по форме головок, форме стержня, а также по степени точности изготовления (рис. 5.1.11).

Чаще применяют болты и винты с шестигранной головкой, так как они позволяют приложить больший момент завинчивания и получить большие силы затяжки деталей.

Гайки различают в зависимости от формы, высоты и точности изготовле­ния (рис. 1.46, 1.47).

Шайбы подкладывают под гайки увеличивая этим опорную поверх­ность и предохраняя детали от задиров. Существуют шайбы пружинные, стопорные и др. применяемые для предохранения резьбовых деталей от самоотвинчивания.


Рисунок. 5.1.12 - Виды гаек: Рисунок 5.1.13 - Гайки шестигранные:

а - гайка круглая, б - гайка-барашек а - нормальной высоты; б - высокая; в -

узкие; г - корончатые

КПД винтовой пары. При переменных нагрузках условие самоторможения не наблюдается, по­этому применяют различные способы стопорения.

КПД винтовой пары определяется как отношение полезной работы W п на винте к затраченной W З за один оборот винта или гайки.

где - угол подъема резьбы;- приведенный угол трения,

f " - приведенный коэффициент трения (рис. 5.1.1).

Значение КПД имеет смысл для передачи винт-гайка. Для повышения КПД применяют многозаходную резьбу с углом подъема до 40°, а также антифрикционные материалы (бронзу и др.), вводят смазочные материалы.

Классы прочности и материалы резьбовых изделий. Стальные болты, шпильки и винты изготовляют 12 классов прочности, которые обозначают двумя числами, разделенными точкой: 3.6, 4.6, 4.8, 5.6, 5.8, 6.6, 6.8 и т. д. Первое число, умноженное на 100, указывает мини­мальное значение временного сопротивления в Н/мм 2 (МПа); произве­дение чисел, умноженное на 10, определяют предел текучести в Н/мм 2 .

Класс прочности деталей выбирается в зависимости от степени нагружен­ности. При малой нагруженности принять 5.6; 6.6 - для средней нагруженности; 12.9 - для высокой нагруженности.

Таблица 1.13 - Классы прочности и механические характеристики болтов, гаек (выборка)

Класс прочности

Временное сопротивление ств, Н/мм 2 (МПа)

Предел текучести от, Н/мм 2 (МПа)

Марка стали

20, СтЗкпЗ

Для стандартных крепежных резьбовых деталей общего назначения применяют низко- и среднеуглеродистые стали по ГОСТ 1759.4-87.

Таблица 1.14 - Механические характеристики марок сталей

Марка стали

Предел прочности , МПа

Предел текучести , МПа

Предел выносли­вости МПа

Марка стали

Предел прочности , МПа

Предел текучести , МПа

Предел выносли­вости , МПа

Углеродистые стали 10...35 являются дешевыми и позволяют изготов­лять болты, винты, гайки методом штамповки с последующей накаткой резьбы. Легированные стали ЗОХ, 30ХГСА применяют при высоких нагруз­ках на детали, испытывающих переменные и ударные нагрузки.

Значения допускаемых напряжений определяют в зависимости от предела текучести , так как в большинстве случаев резьбовые изделия изготовля­ют из пластичных материалов.

При расчете на растяжение: , (- см. табл. 1.14).

При расчете на срез: ср = 0,4 .

При расчете на смятие: см = 0,8 .

Значения допускаемого коэффициента запаса прочности зависят от характера нагрузки, качества монтажа (контролируемая или неконтро­лируемая затяжка), материала крепежных деталей из углеродистых сталей:

для незатянутых соединений = 1,5...2 (в общем машинострое­нии);

для грузоподъемного оборудования = 3...4;

для затянутых соединений = 1,3...2, (при контролируемой затяж­ке) и- при неконтролируемой затяжке.

Типовые схемы расчета болтов

Рисунок 5.1.14 – Нагружение стержня винта растягивающей силой

Опыт эксплуатации машин, аппаратов показал, что отказы соединений обычно происходят из-за разруше­ния резьбовых изделий и разгерметизации стыков. Как правило происходит поломка болтов и шпилек по резь­бовой части. Реже встречаются поломки болтов под го­ловкой и срез резьбы в гайке. Рассмотрим некоторые случаи нагружения болтов (винтов).

1. Стержень винта нагружен только внешней растя­гивающей силой F (pиc. 5.1.14). Опасным является сечение резьбы по диаметру d 1 - внутренний диаметр резьбы.

Условие прочности при растяжении:

Расчетный диаметр d 1 - согласовать со стандартом и записать найденный номинальный диаметр резьбы.

Рисунок 5.1.15

2. Болт затянут (кре­пление крышек корпусов редукторов, крепление герме­тичных крышек). Болт затягивается осевой силой F 0 и закручивается моментом сил трения в резьбе (рис. 5.1.15).

Напряжение растяжения от силы F зат :

где d paсч = d - 0,94p ;

d и р - наружный диаметр резьбы и шаг резьбы;

F зат - на практике определяют:

F зат = К зат F , где

К зат - коэффициент затяжки по условию нераскрытия стыка.

При постоянной нагрузке К зат = 1,25...2.

При переменной нагрузке К зат = 2,5...4.

При металлической фасонной прокладке К зат = 2...3.

При металлической плоской прокладке К зат = 3...5.

Напряжение кручения от трения в резьбе

где - угол подъема резьбы;

Приведенный угол трения.

Эквивалентное напряжение по теории энергии формоизменения

Подставляя выражение ив формулуи принимая для стан­дартных болтов с метрической резьбой= 2°30",d 2 /d l = 1,12 и f = 0,15; чему соответствует = 8°40", получим.

Профиль резьбы – это форма выступа и канавки резьбы в плоскости осевого сечения.

Угол профиля α – это угол между смежными боковыми сторонами профиля в плоскости осевого сечения.

Виток – часть резьбы, образованной при одном полном повороте профиля вокруг оси.

Шаг резьбы Р – расстояние между соседними одноименными боковыми сторонами профиля в направлении, параллель-ном оси резьбы.

Ход резьбы Р h – расстояние между ближайшими одноименными боковыми сторонами профиля, принадлежащими одной и той же винтовой поверхности, в направлении, параллельном оси резьбы. Ход резьбы есть величина относительного осевого перемещения винта (гайки) за один оборот.

Резьбы классифицируется по следующим признакам :

по форме профиля – треугольные, трапецеидальные, прямоугольные, круглые и другие резьбы;

по форме поверхности – цилиндрические (резьба, образованная на цилиндрической поверхности), конические (резьба, образованная на конической поверхности);

по расположению – наружная (резьба, образованная на наружной цилиндрической или конической поверхности) и внутренняя (резьба, образованная на внутренней цилиндрической или конической поверхности);

по эксплуатационному назначению крепежные, крепежно-уплотни-тельные, ходовые и специальные.

Крепежная резьба – резьба, которая обеспечивает неподвижное соединение деталей. К этому типу относится метрическая резьба.

Метрическая резьба (М) – основной тип крепежной резьбы треугольного профиля. Она обеспечивает надежное неподвижное соединение деталей при статических и динамических нагрузках. Резьба метрическая применяется в таких крепежных деталях как: болты, винты, шпильки, гайки и т. п. Профиль ее – равносторонний треугольник с углом при вершине 60º (Рис.3). Вершины профиля срезаны, а впадины могут быть срезаны либо скруглены. Скругление впадин повышает прочность резьбы.

Метрические резьбы бывают с крупным (единственным для данного диаметра резьбы) и мелкими шагами, которых для данного диаметра может быть несколько. Например, для диаметра d = 20 мм крупный шаг всегда равен 2,5 мм (М20), а мелкий может быть равен 0,5; 1; 1,75; и 2 мм. Поэтому в обозначении метрической резьбы крупный шаг не указывается, а мелкий указывается обязательно (М20х2).

Резьба с мелким шагом применяется при соединении тонкостенных деталей, при ограниченной длине свинчивания, а также там, где требуется повышенная прочность и надежность соединения.

Представителями крепежно-уплотнительных резьб (резьба, основным назначением которой является обеспечение герметичности соединения при различном температурном режиме) являются трубная цилиндрическая и трубная коническая резьбы.

Трубная цилиндрическая резьба (G)имеет профиль в виде равнобедренного треугольника с углом при вершине 55°, вершины и впадины скруглены (Рис. 4). Эта резьба правая. Применяется трубная цилиндрическая резьба для соединения труб и арматуры трубопроводов в жидко- или газообразных средах, находящихся под давлением.

Трубная коническая резьба (R), профилем которой также является равнобедренный треугольник с углом при вершине 55°(Рис.5), нарезается внутри и снаружи поверхностей с конусностью 1:16. Применяется в трубопроводах, подвергнутых высоким давлениям и температурам, так как обеспечивает высокую герметичность соединения.

К ходовым резьбам (резьба, служащая для преобразования вращательного движения в поступательное с одновременной передачей усилий) относятся трапециидальная, упорная, прямоугольная резьбы.

Трапецеидальная резьба (Тr) относится и применяется для передачи возвратно-поступательного движения. Она может быть однозаходной и многозаходной, левой и правой. Профиль ее – равнобокая трапеция, продолжение боковых сторон которой образует угол 30°(Рис. 6).

Упорная резьба (S ) также относится к ходовым резьбам и может быть однозаходной, многозаходной, левой и правой. Профиль ее – неравнобокая трапеция, с углом нерабочей стороны 30° и рабочей 3°(Рис.7). Применяется упорная резьба в механизмах, где передаются большие усилия в одном направлении, например, в прессах, домкратах и т. п.

Прямоугольная резьба применяются для передачи движения в ходовых винтах. Профиль резьбы прямоугольный (Рис. 8). Эта резьба не стандартизована. Нестандартная резьба изображается так же, как и стандартная. Профиль и все размеры, необходимые для ее изготовления, задаются на изображении или показываются на выносном элементе в большем масштабе. Сведения о числе заходов левой резьбы записывается на полках выносных линий.

На рис. 9 изображены резьбовые соединения, на которых одна деталь ввинчена в другую.

На продольных разрезах показана только та часть внутренней резьбы, которая не закрыта завернутой в нее деталью, контур ввинчиваемой детали выполняется сплошной основной линией.

Резьба (цилиндрическая) характеризуется следующими параметрами:

1) диаметрами - наружным, средним и внутренним;

2) формой и размерами профиля;

3) параметрами, связанными с подъемом резьбы - шагом, числом заходов и углом подъема.

Наружный диаметр резьбы d - диаметр цилиндра, описанного вокруг вершин наружной резьбы (винта); этот диаметр является номинальным диаметром резьбы.

Внутренний диаметр резьбы d 1 - диаметр цилиндра, описанного вокруг вершин внутренней резьбы.

Средний диаметр резьбы d 2 - диаметр воображаемого цилиндра, на поверхности которого ширина витков и ширина впадин резьбы равны.

Профиль резьбы - контур сечения витка в плоскости, проходящей через ось резьбы.

Угол профиля α - угол между боковыми сторонами профиля, измеренный в осевой плоскости.

Обозначение основных параметров резьбы представлено на рисунке 2.1.

Рисунок 2.1 – Резьба, обозначение основных параметров

Профиль резьбы характеризуется также:

1. высотой теоретического профиля Н, т. е. высотой полного треугольного профиля резьбы, полученного при продолжении боковых сторон профиля до их пересечения.

2. рабочей высотой профиля h, на которой происходит соприкосновение витков винта и гайки, равной полуразности наружного и внутреннего диаметров.

Высоту профиля измеряют в радиальном направлении.

Важнейшей характеристикой резьбы является шаг. Шаг резьбы P - расстояние между параллельными сторонами профиля двух соседних витков, измеренное вдоль оси.

Для многозаходных резьб вводят дополнительный термин - ход винта, равный произведению шага на число заходов P t. Таким образом, ход равен шагу винтовой поверхности резьбы - расстоянию, на которое переместится винт вдоль своей оси при повороте на один оборот в неподвижной гайке. Для однозаходной резьбы понятия шаг и ход совпадают.

Угол подъема резьбы β - угол, образованный винтовой линией по среднему диаметру резьбы и плоскостью, перпендикулярной к оси резьбы:

Перечисленные параметры можно рассматривать в общем виде, так как все профили имеют общие элементы и могут быть получены варьированием угла профиля, высоты профиля и радиусов закруглений. Например, уменьшая угол профиля, можно перейти от треугольной резьбы к трапецеидальной, а потом к прямоугольной.

Резьбы по назначению разделяют на следующие группы:

1. Крепежные резьбы , предназначначены для скрепления деталей. Их выполняют, как правило, треугольного профиля с притуплёнными вершинами.

Применение треугольного профиля вызывается следующим:

а) повышенным трением, обеспечивающим меньшую опасность ослабления затянутой резьбы;

б) повышенной прочностью резьбы;

в) удобством изготовления.

2. Крепежно-уплотняющие резьбы , служачат как для скрепления деталей, так и для предохранения от вытекания жидкости (в соединениях трубопроводов и в арматуре). Эти резьбы по указанным причинам также выполняют треугольного профиля, но без радиальных зазоров во избежание вытекания жидкости. Чтобы исключить обмятие острых кромок, профиль выполняют с плавными закруглениями.

3. Резьбы для передачи движения (ходовые) , могут применяться в ходовых и грузовых винтах. Эти резьбы для уменьшения трения выполняют трапецеидальными с симметричным профилем и несимметричным профилем (упорные), а иногда с прямоугольным профилем.

4. Упорные резьбы предназначены для восприятия больших осевых сил, действующих в одном направлении.

5. Специальные (круглые и другие).

Необходимо иметь в виду, что приведенное деление резьб по назначению не является строгим. Так, например, резьбы треугольного профиля иногда используют для особо точных ходовых винтов с малым шагом, а упорные резьбы - в качестве крепежных.

Из-за гарантированных зазоров резьбы, как правило, не могут быть использованы в качестве центрирующих элементов.

Треугольный профиль выполняют с притуплением вершин витков и дна впадин по прямой или по дуге окружности, что необходимо в крепежной резьбе для уменьшения концентрации напряжений, для повышения стойкости инструмента и для уменьшения повреждений (забоин), а в уплотняющих резьбах - также для обеспечения непроницаемости вследствие замыкания по вершинам.

Метрическая резьба (рисунок 2.2) является основной треугольной резьбой. Она характеризуется углом профиля α = 60°, притуплением вершин профиля резьбы винта по прямой на расстоянии H/8 и вершин профиля резьбы гайки на расстоянии H/4 от вершин теоретического профиля. Профиль впадин у винта может иметь притупление или закругление радиусом r=H/6 ≈ 0,866P. Высота исходного треугольника теоретического профиля . Рабочая высота профиля .

Метрические резьбы разделяют на резьбы с крупными и мелкими шагами. С уменьшением шага резьбы Р при данном наружном диаметре d внутренний диаметр d 1 увеличивается и, следовательно, увеличиваются площадь сечения и прочность нарезанного стержня. Профили треугольной резьбы с крупным и мелким шагом геометрически подобны.

Рисунок 2.2 – Треугольная метрическая резьба

За основную принята резьба с крупным шагом. Для таких изделий, как болты, винты и шпильки в основном используют треугольную резьбу с крупным шагом как наиболее технологичную. Статическая несущая способность этой резьбы выше и меньше влияние на прочность ошибок изготовления и износа, чем резьбы с мелким шагом. Предел выносливости винтов из высокопрочных сталей понижается с уменьшением шага, а винтов из низкоуглеродистых сталей повышается.

Области применения резьбы с мелкими шагами:

а) динамически нагруженные детали и детали, диаметры которых в основном определяются напряжениями изгиба и кручения (валы);

б) полые тонкостенные детали;

в) детали, у которых резьба применяется для регулировки.

Шаги всех метрических резьб составляют ступенчатый арифметический ряд.

Метрическую резьбу с крупными шагами обозначают буквой М и числом, выражающим диаметр резьбы в мм, например М20, а для метрической резьбы с мелкими шагами дополнительно указывают шаг, например М20х1,5.

Трубная резьба (рисунок 2.3), являющаяся крепежно-уплотняющей, применяется для соединения труб и арматуры трубопроводов в диапазоне номинальных размеров от 1/8 до 6.

Трубная резьба представляет собой мелкую дюймовую резьбу, которая выполняется с закруглениями профиля и без зазоров по выступам и впадинам для лучшего уплотнения. За основной (номинальный) размер, характеризующий резьбы и указываемый в обозначении резьбы, принят условный внутренний диаметр трубы (проход в свету).

r

Рисунок 2.3 – Трубная резьба

Трапецеидальная резьба (рисунок 2.4)является основной резьбой для передач винт - гайка. Она имеет меньшие потери на трение, чем треугольная резьба, удобна в изготовлении и более прочна, чем прямоугольная резьба. При необходимости она допускает выборку зазоров радиальным сближением половинок гайки (если гайка выполнена разъемной по диаметральной плоскости). Трапецеидальная резьба имеет угол профиля 30°, рабочую высоту профиля , средний диаметр , зазор в зависимости от диаметра резьбы от 0,25 до 1 мм. Трапецеидальная резьба стандартизована в диапазоне диаметров от 8 до 640 мм; предусмотрена возможность применения резьб с мелкими, средними и крупными шагами.

Рисунок 2.4– Трапецеидальная резьба

Упорная резьба (рисунок 2.5) применяется для винтов с большой односторонней осевой нагрузкой в прессах, нажимных устройствах прокатных станов, в грузовых крюках и т. д. Профиль витков - несимметричный трапецеидальный. Угол наклона рабочей стороны профиля для повышения к.п.д. выбран достаточно малым 3° (резьба с углом наклона профиля 0° неудобна в изготовлении), угол наклона нерабочей стороны профиля 30°, и предусмотрен значительный радиус закругления впадины для снижения концентрации напряжения. Рабочая высота профиля h = 0,75S . Усиленные упорные резьбы имеют угол нерабочей стороны профиля 45°.

Рисунок 2.5– Упорная резьба

Круглые резьбы (рисунок 2.6) в основном применяют для винтов, подверженных большим динамическим напряжениям, а также часто завинчиваемых и отвинчиваемых в загрязненной среде (пожарная арматура, вагонные стяжки). Круглые резьбы можно применять в гидравлической арматуре из-за хорошего уплотнения. Наконец, круглые резьбы с малой высотой профиля накатывают на тонкостенные изделия, например на цоколи и патроны электроламп.

Профиль круглой силовой резьбы состоит из дуг, связанных короткими участками прямой; угол профиля 30°. Большие радиусы закруглений исключают значительную концентрацию напряжений. Попадающие в резьбу загрязняющие частицы выжимаются в зазоры.

Рисунок 2.6– Круглая резьба

Для круглых резьб, применяемых на тонкостенных изделиях, характерны малая высота профиля и отсутствие прямолинейного участка, что важно для уменьшения деформаций металла в процессе накатки.

Коническая резьба (рисунок 2.7) используется в тех случаях, когда необходимо обеспечить герметичность соединения, то есть она обеспечивает непроницаемость без специальных уплотнений, также применяется для соединения труб, установки пробок, масленок и т.п. Непроницаемость достигается плотным прилеганием профилей по вершинам. Затяжкой конической резьбы можно компенсировать износ и создавать требуемый натяг. Кроме того, эти резьбы обеспечивают быстрое завинчивание и отвинчивание.

Рисунок 2.7 – Коническая резьба c углом профиля

Целесообразно, чтобы конические резьбы имели возможность свинчиваться с цилиндрическими. Поэтому конические резьбы имеют профили, аналогичные профилям соответствующих цилиндрических резьб, и их нарезают с биссектрисой угла профиля, перпендикулярной оси винта.

ОСНОВНЫЕ ТИПЫ РЕЗЬБ

Метрическая резьба - изготовляется по стандарту с крупным и мелким шагом. Угол наклона у боковой стороны профиля дает возмож­ность самоторможения и обеспечивает восприятие больших осевых сил. Мелкие резьбы применяют в соединениях, работающих при пе­ременных напряжениях.Метрическую резьбу обозначают буквой М и наружным диаметром резьбы. В мелких резьбах дополнительно указывается шаг резьбы.

Дюймовая резьба имеет треугольный профиль с углом при вер­шине ά = 55°. Число витков задают на дюйм (1 дюйм = 25,4 мм). В РФ используется при ремонте импортного оборудования. Не стандартизована.

Трубная резьба имеет профиль равнобед­ренного треугольника с закругленными вы­ступами и впадинами.

Трапецеидальная резьба - основная в пе­редаче винт-гайка. Профиль - равнобочная трапеция, угол профиля а = 30°, угол наклона боковой стороны γ = 15° (рис. 1.41). Характеризуется технологичностью, малыми потерями на трение, КПД выше, чем у резьб треугольного профиля. Применяется для реверсивных передач под нагруз­кой (домкраты, прессы, ходовые винты станков).

Упорная резьба Профиль - неравнобочная трапеция с γ= 3°. Применяют в передаче винт-гайка при больших односторонних нагрузках (винты домкратов, прессов).

Прямоугольная резьба . Профиль резьбы - квадрат, γ = 0°. Имеет самый высо­кий среди резьб КПД, но затруднительна в изготовлении. Затруднение вызваны тем, что эту резьбу нельзя фрезеровать и шлифовать, т. к. угол профиля а = 0°. Не стандартизиро­вана. Применение ограниченно (малонагруженные передачи винт-гайка).

1. Шаг Р резьбы - расстояние между соседними одноименными боковыми сторонами профиля, лежащими в одной осевой плоскости.

Наиболее часто применяют однозаходную резьбу (п = 1), для которой шаг (ход) Рн винтовых линий резьбы равен шагу Р резьбы:

Рь^Р.

Рь = пР,

где п - число заходов (для стандартных резьб п < 8); Р - шаг резьбы.

шаг резьбы Р– расстояние между соседни­ми одноименными боковыми сторонами профиля в направлении, парал­лельном оси резьбы; число заходов n (заходность резьбы легко определя­ется на торце винта по числу сбегающих витков); ход резьбы - величина относительного осевого перемещения гайки или винта за один оборот.


К основным параметрам относится угол подъема резьбы - угол, образованный касательной к винтовой линии резьбы в точках, лежащих на среднем диаметре, и плоскостью, перпендикулярной оси резьбы.

Из рис.2.2, а видно, что угол подъема резьбы определяется зависимостью

(2.1)

Диаметр, условно характеризующий размер резьбы, называется но­минальным; для большинства резьб в качестве номинального диаметра резьбы принимается наружный диаметр.



В качестве крепёжной в нашей стране используется резьба метрическая по ГОСТ 24705-81, характеризуемая параметрами: диаметрами, формой и размерами профиля, шагом, числом заходов и углом подъёма. В болтовых соединениях используется однозаходная резьба.

Наружный диаметр резьбы болта диаметр цилиндра, описанного вокруг вершин наружной резьбы. Этот диаметр является номинальным диаметром резьбы.

Наружный диаметр резьбы гайки .

Внутренний диаметр резьбы болта и гайки диаметр цилиндра, описанного вокруг вершин внутренней резьбы.

Средний диметр резьбы болта и гайки диаметр воображаемого цилиндра, на поверхности которого ширина витков равна ширине впадин.

Внутренний диаметр резьбы болта по дну впадин .

Профиль резьбы (рис.2) контур сечения витка в плоскости, проходящей через ось резьбы. Метрическая резьба
характеризуется углом профиля .

Шаг резьбы Р расстояние между параллельными сторонами профиля двух соседних витков, измеренное вдоль оси.

Осевое перемещение, соответствующее полному обороту (ε = 2 π), называют шагом или ходом Р h винтовой линии.

Для многозаходных резьб ход винтовых линий

Р h = пР, где п - число заходов; Р - шаг резьбы.

Ход P h равен осевому перемещению винта при повороте на один оборот в неподвижной гайке.

В резьбовых соединениях используют обычно однозаходную крепежную треугольную резьбу: метрическую и трубную.

шаг резьбы р - расстояние между соседни­ми одноименными боковыми сторонами профиля в направлении, парал­лельном оси резьбы; число заходов n (заходность резьбы легко определя­ется на торце винта по числу сбегающих витков ).

Метрические резьбы разделяют на резьбы с крупными и мелкими шагами. Резьбу с крупным шагом обозначают буквой М и числом, соответствующим номинальному диаметру резьбы в мм, например М16, а для резьбы с мелким шагом дополнительно указывают шаг, например Параметры метрической резьбы приведены в таблице

Резьба Шаг резьбы, мм Диаметр, мм Запас прочности S
М10 1,5 1,25 1,0 8,376 8,647 8,917 9,026 9,188 9,350 8,160 8,466 8,773 3,55
М12 1,75 1,5 1,25 1,0 10,106 10,376 10,647 10,917 10,863 11,026 11,188 11,350 9,853 10,160 10,466 10,773 3,37
М16 2,0 1,5 1,0 13,835 14,376 14,917 14,701 15,026 15,350 13,546 14,160 14,773 3,00
М18 2,5 2,0 1,5 1,0 15,294 15,835 16,376 16,917 16,376 16,701 17,026 17,350 14,933 15,546 16,160 16,773 2,84
М20 2,5 2,0 1,5 1,0 17,294 17,835 18,376 18,917 18,376 18,701 19,026 19,350 16,933 17,546 18,160 18,773 2,70

Стандарт предусматривает метрические резьбы с крупным и мелким шагом. Для одного и того же диаметра d. Например, для диаметра 14 мм стандарт предусматривает крупную резьбу с шагом 2 мм и пять мелких резьб с шагами 1,5; 1,25; 1; 0,75 и 0,5 мм.

ОБЩИЕ СВЕДЕНИЯ О РЕЗЬБОВЫХ СОЕДИНЕНИЯХ

Резьбовые соединения являются наиболее распространенными разъемными соединениями. Их создают болты, винты, шпильки, гайки и другие детали, снабженные резьбой. Основным элементом резьбового соединения является резьба, которая получается путем прорезания на поверхности деталей канавок по винтовой линии. Винтовую линию образует гипотенуза прямоугольного треугольника при навертывании на прямой круговой цилиндр (рис. 3.1).

Если плоскую фигуру (треугольник, трапецию и т.п.)перемещать по винтовой линии так, чтобы её плоскость при движении всегда проходила через ось винта, то эта фигура образует резьбу соответствующего профиля (рис. 3.2)

Классификация резьб

В зависимости от формы поверхности, на которой образуется резьба, различают цилиндрические и конические резьбы (Рис. 3.3).

В зависимости от формы профиля резьбы делятся на пять основных типов: треугольные (рис.3.4, а), упорные (рис. 3.4, б), трапецеидальные (рис. 3.4,в), прямоугольные (рис. 3.4, г) и круглые (рис, 3.4, д).

В зависимости от направления винтовой линии резьбы бывают правые и левые (рис. 3.5). У правой резьбы винтовая линия поднимается слева вверх направо. Левая резьба имеет ограниченное применение.

В зависимости от числа заходов резьбы делятся на однозаходные (рис. 3.5,б) и многозаходные (рис. 3.5,а).

Многозаходные резьбы получаются при перемещении по винтовым линиям нескольких рядом расположенных профилей. 3аходность резьбы легко определить с торца винта по числу сбегающих витков. Как правило, все крепежные резьбовые детали имеют однозаходную резьбу.

В зависимости от назначения резьбы делятся на крепёжные и для передачи движения. Крепежные резьбы применяют в резьбовых соединениях; они имеют треугольный профиль, который характеризуется:

а) большим трением, предохраняющим резьбу от само отвинчивания; б) высокой прочностью; в) технологичностью.

Резьбы для передачи движения применяются в винтовых механизмах и имеют трапецеидальный (реже прямоугольный) профиль, который характеризуется меньшим трением.



Геометрические параметры резьбы

Основными геометрическими параметрами цилиндрической резьбы являются (рис. 3.6):

d - наружный диаметр номинальный диаметр резьбы;

d 1 -внутренний диаметр резьбы;

d 2 - средний диаметр резьбы, то есть диаметр воображаемого цилиндра, на котором ширина витка равна ширине впадины;

S-шаг резьбы, т. е. расстояние между одноименными сторонами двух соседних витков в осевом направлении;

S 1 -ход резьбы, т. е. расстояние между одноименными сторонами одного и того же витка в осевом направлении (см. рис. 3.5);

для однозаходной резьбы S 1 =S,

для многозаходных резьб S1=zS, где z-число заходов;

α - угол профиля резьбы (см. рис. 3.4);

λ - угол подъема резьбы (см. рис. 3.1), т. е. угол, образованный винтовой линией по среднему диаметру резьбы и плоскостью, перпендикулярной к оси винта;

Основные типы резьб

Метрическая резьба (см. рис. 3.6). Это наиболее распространенная из крепежных резьб. Имеет профиль в виде равностороннего треугольника, следовательно, α = 60°. Вершины витков и впадин притупляются по прямой или дуге, что уменьшает кон­центрацию напряжений, предохраняет резьбу от повреждений, а также удовлетворяет нормам техники безопасности. Радиальный зазор в резьбе делает ее не герметичной.

По ГОСТ 9150-59 метрические резьбы делятся на резьбы с крупным и мелким шагом (см. табл. 3.1) В качестве основной крепежной применяют резьбу с крупным шагом, так как она менее чувствительна к износу и неточностям изготовления. Резьбы с мелким шагом различаются между собой коэффициентом измельчения, т. е. отношением крупного шага к соответствующему мелкому шагу (рис. 3,7). Резьбы с мелким шагом меньше ослабляют деталь и характеризуются повышенным самоторможением, так как при малом шаге угол подъема винтовой линии λ мал (см. формулу 3.1). Мелкие резьбы применяются в резьбовых соединениях, подверженных переменным и знакопеременным нагрузкам, а также в тонкостенных деталях (на деталях из пластмасс метрическая резьба изготовляется по ГОСТ 11709-66.).

Дюймовая резьба (1 дюйм равен 25,4 мм). (рис. 3.8). Имеет профиль в виде равнобедренного треугольника с углом при вершине α=55°. Применяется только при ремонте деталей импортных машин. Изготовляется по ОСТ НКТП 1260.

Трубная резьба . Трубная цилиндрическая резьба (рис. 3.9) является мелкой дюймовой резьбой, но с закруглёнными выступами и впадинами. Отсутствие радиальных зазоров делает резьбовое соединение герметичным. Применяется для соединения труб. Изготовляется по ГОСТ 6357-52.

Высокую плотность соединения дает трубная коническая резьба (ГОСТ 6211-69).

Трапецеидальная резьба (рис. 3.1.). Это основная резьба в пе­редаче винт-гайка (см. ниже). Ее профиль равнобочная тра­пеция с углом α = 30°. Характеризуется небольшими потерями на трение, технологична. К.п.д. выше, чем для резьб с треугольным профилем. Применяется для передачи реверсивного движения под нагрузкой (ходовые винты станков и т. п,) Размеры резьбы приведены в табл. 3.2.

Упорная резьба (рис. 3.11). Имеет профиль в виде не равнобочной трапеции с углом 27°. Для возможности изготовления резьбы фрезерованием рабочая сторона профиля имеет угол наклона 3°. К.п.д. выше, чем у трапецеидальной резьбы. Закругление впадин повышает усталостную прочность винта. Применяется в передаче винт-гайка при больших односторонних осевых нагрузках (грузовые винты прессов, домкратов и т. д.). Изготовляется по ГОСТ 10177-62.

Таблица 3.2

Резьба трапецеидальная по ГОСТ 9484-60 (извлечениe)

Размеры в мм по рис. 3.10

Наружный диаметр д Шаг резьбы S Средний диаметр d 2 Внутренний диаметр д,
30,5 28,5
2i
38,5 36,5
48,5 46,5
58,5 56,5

Прямоугольная резьба (рис. 3.12). Профиль резьбы квадрат. Из всех резьб имеет самый высокий к.п.д., так как угол профиля резьбы, α=0. Обладает пониженной прочностью. При износе образуются осевые зазоры, которые трудно устранить. Имеет ограниченное применение в малонагруженных передачах винт - гайка.

Круглая резьба (рис. 3.13). Профиль резьбы состоит из дуг, сопряжённых короткими прямыми линиями. Угол профиля α=30 о. Резьба характеризуется высокой динамической прочностью. Стандарта нет. Имеет ограниченное применение при тяжелых условиях эксплуатации в загрязненной среде. Технологична при изготовлении отливкой, накаткой и вылавливанием на тонкостенных изделиях.