Черные дыры: самые таинственные объекты Вселенной. Черные дыры: история открытия самых загадочных объектов во Вселенной, которые мы никогда не увидим Черные дыры история открытия

Гипотеза существования черных дыр была впервые выдви­нута английским астрономом Дж. Мичеллом в 1783 г. на осно­ве корпускулярной теории света и ньютоновской теории тяго­тения. В то время волновая теория Гюйгенса и его знаменитый волновой принцип были просто забыты. Не помогла волновой теории поддержка некоторых маститых ученых, в частности известных петербургских академиков М.В. Ломоносова и Л. Эй­лера. Логика рассуждений, приведшая Мичелла к понятию черной дыры, очень проста: если свет состоит из частиц-корпускул светоносного эфира, то эти частицы должны испыты­вать, подобно другим телам, притяжение со стороны гравита­ционного поля. Следовательно, чем массивнее звезда (или пла­нета), тем большее притяжение с ее стороны должны испыты­вать корпускулы и тем труднее свету покинуть поверхность та­кого тела.

Дальнейшая логика подсказывает, что в природе могут су­ществовать такие массивные звезды, притяжение которых корпускулы уже не смогут преодолеть, и они всегда будут ка­заться черными для внешнего наблюдателя, хотя сами по себе могут светиться ослепительным блеском, как Солнце. Физи­чески это значит, что вторая космическая скорость на поверх­ности такой звезды должна быть не меньше скорости света. Вычисления Мичелла дают, что свет никогда не покинет звез­ду, если ее радиус при средней солнечной плотности будет ра­вен 500 солнечным. Вот такую звезду и можно уже назвать черной дырой.

Через 13 лет французский математик и астроном П.С. Лап­лас высказал, скорее всего, независимо от Мичелла, аналогич­ную гипотезу о существовании подобных экзотических объек­тов. Используя громоздкий метод вычисления, Лаплас нашел радиус шара для заданной его плотности, на поверхности кото­рого параболическая скорость равна скорости света. По мнению Лапласа, корпускулы света, будучи тяготеющими частицами, должны задерживаться испускающими свет массивными звезда­ми, которые имеют плотность, равную плотности Земли, а радиус больше солнечного в 250 раз.

Эта теория Лапласа вошла только в первые два прижизнен­ных издания его знаменитой книги «Изложение системы мира», вышедшей в свет в 1796 и 1799 гг. Да, пожалуй, еще австрий­ский астроном Ф. К. фон Цах заинтересовался теорией Лапласа, опубликовав ее в 1798 г. под названием «Доказательство теоре­мы о том, что сила притяжения тяжелого тела может быть столь большой, что свет не может истекать из него».

На этом история исследования черных дыр приостановилась более чем на 100 лет. Похоже, сам Лаплас тихо отказался от столь экстравагантной гипотезы, поскольку он ее исключил из всех остальных прижизненных изданий своей книги, которая выходила в 1808, 1813 и 1824 гг. Возможно, Лаплас не хотел больше тиражировать почти фантастическую гипотезу о колос­сальных звездах, не выпускающих свет. Возможно, его остано­вили новые астрономические данные о неизменности величины аберрации света у разных звезд, что противоречило некоторым выводам его теории, на основании которой он строил свои вы­числения. Но наиболее вероятной причиной того, что о загадоч­ных гипотетических объектах Мичелла-Лапласа все забыли, яв­ляется торжество волновой теории света, триумфальное шествие которой началось с первых лет XIX в.

Начало этого триумфа положила Букеровская лекция анг­лийского физика Т. Юнга «Теория света и цвета», опубликован­ная в 1801 г., где Юнг смело, вопреки Ньютону и другим знаме­нитым сторонникам корпускулярной теории (в том числе и Ла­пласу), изложил сущность волновой теории света, говоря, что излучаемый свет состоит из волнообразных движений светонос­ного эфира. Лаплас, окрыленный открытием поляризации света, принялся «спасать» корпускулы, построив теорию двойного лу­чепреломления света в кристаллах на основе двоякого действия молекул кристалла на световые корпускулы. Но последующие труды физиков О.Ж. Френеля, Ф.Д. Арагон, Й. Фраунгофера и других камня на камне не оставили от корпускулярной теории, о которой серьезно вспомнили лишь спустя столетие, после от­крытия квантов. Все рассуждения о черных дырах в рамках вол­новой теории света в то время выглядели нелепо.

Сразу не вспомнили о черных дырах и после «реабилитации» корпускулярной теории света, когда о ней заговорили на новом качественном уровне благодаря гипотезе квантов (1900) и фото­нов (1905). Черные дыры были вторично переоткрыты лишь по­сле создания ОТО в 1916 г., когда немецкий физик-теоретик и астроном К. Шварцшильд через несколько месяцев после пуб­ликации уравнений Эйнштейна с их помощью исследовал структуру искривленного пространства-времени в окрестности Солнца. В итоге он заново открыл феномен черных дыр, но на более глубоком уровне.

Окончательное теоретическое открытие черных дыр состоя­лось в 1939 г., когда Оппенгеймер и Снайдер провели первое яв­ное решение уравнений Эйнштейна при описании процесса формирования черной дыры из сжимающегося облака пыли. Сам термин «черная дыра» впервые был введен в науку амери­канским физиком Дж. Уиллером в 1968 г., в годы бурного возрождения интереса к ОТО, космологии и астрофизике, вызванного достижениями внеатмосферной (в частности, рентгенов­ской) астрономии, открытием реликтового излучения, пульсаров и квазаров.

Черные дыры – пожалуй, самые таинственные и загадочные астрономические объекты в нашей Вселенной, с момента своего открытия привлекают внимание ученых мужей и будоражат фантазию писателей-фантастов. Что же такое черные дыры и что они из себя представляют? Черные дыры – это погаснувшие звезды, в силу своих физических особенностей, обладающие настолько высокой плотностью и настолько мощной гравитацией, что даже свету не удается вырваться за их пределы.

История открытия черных дыр

Впервые теоретическое существование черных дыр, еще задолго до их фактического открытия предположил некто Д. Мичел (английский священник из графства Йоркшир, на досуге увлекающийся астрономией) в далеком 1783 году. По его расчетам, если наше взять и сжать (говоря современным компьютерным языком – заархивировать) до радиуса в 3 км., образуется настолько большая (просто огромная) сила гравитации, что даже свет не сможет ее покинуть. Так и появилось понятие «черная дыра», хотя на самом деле она вовсе не черная, на наш взгляд более подходящим был бы термин «темная дыра», ведь имеет место именно отсутствие света.

Позже, в 1918 году о вопросе черных дыр в контексте писал великий ученый Альберт Эйнштейн. Но только в 1967 году стараниями американского астрофизика Джона Уиллера понятие черных дыр окончательно завоевало место в академических кругах.

Как бы там ни было, и Д. Мичел, и Альберт Эйнштейн, и Джон Уиллер в своих работах предполагали только теоретическое существование этих загадочных небесных объектов в космическом пространстве, однако подлинное открытие черных дыр состоялось в 1971 году, именно тогда они впервые были замечены в телескоп.

Так выглядит черная дыра.

Как образуются черные дыры в космосе

Как мы знаем из астрофизики, все звезды (в том числе и наше Солнце) имеют некоторый ограниченный запас топлива. И хотя жизнь звезды может длиться миллиарды лет, рано или поздно этот условный запас топлива подходит к концу, и звезда «гаснет». Процесс «угасания» звезды сопровождается интенсивными реакциями, в ходе которых звезда проходит значительную трансформацию и в зависимости от своего размера может превратиться в белого карлика, нейтронную звезду или же черную дыру. Причем в черную дыру, обычно, превращаются самые крупные звезды, обладающие невероятно внушительными размерами – за счет сжимание этих самых невероятных размеров происходит многократное увеличение массы и силы гравитации новообразованной черной дыры, которая превращается в своеобразный галактический пылесос – поглощает все и вся вокруг себя.

Черная дыра поглощает звезду.

Маленькая ремарка – наше Солнце по галактическим меркам вовсе не является крупной звездой и после угасания, которое произойдет примерно через несколько миллиардов лет, в черную дыру, скорее всего, не превратиться.

Но будем с вами откровенны – на сегодняшний день, ученые пока еще не знают всех тонкостей образования черной дыры, несомненно, это чрезвычайно сложный астрофизический процесс, который сам по себе может длиться миллионы лет. Хотя возможно продвинуться в этом направлении могло бы обнаружение и последующее изучение так званых промежуточных черных дыр, то есть звезд, находящихся в состоянии угасания, у которых как раз происходит активный процесс формирования черной дыры. К слову, подобная звезда была обнаружена астрономами в 2014 году в рукаве спиральной галактики.

Сколько черных дыр существует во Вселенной

Согласно теориям современных ученых в нашей галактике Млечного пути может находиться до сотни миллионов черных дыр. Не меньшее их количество может быть и в соседней с нами галактике , до которой от нашего Млечного пути лететь всего нечего – 2,5 миллиона световых лет.

Теория черных дыр

Не смотря на огромную массу (которая в сотни тысяч раз превосходит массу нашего Солнца) и невероятной силы гравитацию увидеть черные дыры в телескоп было не просто, ведь они совсем не излучают света. Ученым удалось заметить черную дыру только в момент ее «трапезы» – поглощения другой звезды, в этот момент появляется характерное излучение, которое уже можно наблюдать. Таким образом, теория черной дыры нашла фактическое подтверждение.

Свойства черных дыр

Основное свойство черно дыры – это ее невероятные гравитационные поля, не позволяющие окружающему пространству и времени оставаться в своем привычном состоянии. Да, вы не ослышались, время внутри черной дыры протекает в разы медленнее чем обычно, и окажись вы там, то вернувшись обратно (если б вам так повезло, разумеется) с удивлением бы заметили, что на Земле прошли века, а вы даже состариться не успели. Хотя будем правдивы, окажись внутри черной дыры вы вряд ли бы выжили, так как сила гравитации там такая, что любой материальный объект просто разорвала бы даже не на части, на атомы.

А вот окажись вы даже поблизости черной дыры, в пределах действия ее гравитационного поля, то вам тоже пришлось бы не сладко, так как, чем сильнее вы бы сопротивлялись ее гравитации, пытаясь улететь подальше, тем быстрее бы упали в нее. Причинной этому казалось бы парадоксу является гравитационное вихревое поле, которым обладают все черные дыры.

Что если человек попадет в черную дыру

Испарение черных дыр

Английский астроном С. Хокинг открыл интересный факт: черные дыры также, оказывается, выделяют . Правда это касается только дыр сравнительно небольшой массы. Мощная гравитация около них рождает пары частиц и античастиц, один из пары втягивается дырой внутрь, а второй исторгается наружу. Таким образом, черная дыра излучает жесткие античастицы и гамма- . Это испарение или излучение черной дыры было названо на честь ученого, открывшего его – «излучение Хокинга».

Самая большая черная дыра

Согласно теории черных дыр в центре почти всех галактик находятся огромные черные дыры с массами от нескольких миллионов до нескольких миллиардом солнечных масс. И сравнительно недавно учеными были открыты две самые большие черные дыры, известные на сегодняшний момент, они находятся в двух близлежащих галактиках: NGC 3842 и NGC 4849.

NGC 3842 – самая яркая галактика в созвездии Льва, от нас находится на расстоянии 320 миллионов световых лет. В центре нее иметься огромная черная дыра массой в 9,7 миллиарда солнечных масс.

NGC 4849 – галактика в скопление Кома, на расстоянии 335 миллионов световых лет от нас может похвалится не менее внушительной черной дырой.

Зоны действия гравитационного поля этих гигантских черных дыр, или говоря академическим языком, их горизонт событий, примерно в 5 раз больше дистанции от Солнца до ! Такая черна дыра скушала бы нашу солнечную систему и даже не поперхнулась бы.

Самая маленькая черная дыра

Но есть в обширном семействе черных дыр и совсем маленькие представители. Так самая карликовая черная дыра, открытая учеными на настоящий момент по своей массе всего лишь в 3 раза превосходит массу нашего Солнца. По сути это теоретический минимум, необходимый для образования черной дыры, будь та звезда чуть меньше, дыра бы не образовалась.

Черные дыры – каннибалы

Да, есть такое явление, как мы писали выше, черные дыры являются своего рода «галактическими пылесосами», поглощающими все вокруг себя, и в том числе и… другие черные дыры. Недавно астрономами было обнаружено поедание черной дыры из одной галактике еще большой черной обжорой из другой галактики.

  • Согласно гипотезам некоторых ученых черные дыры являются не только галактическими пылесосами, всасывающими все в себя, но при определенных обстоятельствах могут и сами порождать новые вселенные.
  • Черные дыры могут испаряться со временем. Выше мы писали, что английским ученым Стивеном Хокингом было открыто, что черные дыры имеют свойство излучение и через какой-то очень большой отрезок времени, когда поглощать вокруг будет уже нечего, черная дыра начнет больше испарять, пока со временем не отдаст всю свой массу в окружающий космос. Хотя это только предположение, гипотеза.
  • Черные дыры замедляют время и искривляют пространство. О замедлении времени мы уже писали, но и пространство в условиях черной дыры будет совершенно искривлено.
  • Черные дыры ограничивают количество звезд во Вселенной. А именно их гравитационные поля препятствуют остыванию газовых облаков в космосе, из которых, как известно, рождаются новые звезды.

Черные дыры на канале Discovery, видео

И в завершение предлагаем вам интересный научно-документальный фильм о черных дырах от канала Discovery


При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту [email protected] или в Фейсбук, с уважением автор.

Черные дыры, темная материя, темное вещество… Это, несомненно, самые странные и загадочные объекты в космосе. Их причудливые свойства могут бросить вызов законам физики Вселенной и даже природе существующей действительности. Чтобы понять, что же такое черные дыры, ученые предлагают “сменить ориентиры”, научиться думать нестандартно и применить немного фантазии. Черные дыры образуются из ядер супер массивных звёзд, которые можно охарактеризовать как область пространства, где огромная масса сосредоточенна в пустоте, и ничего, даже свет не может там избежать гравитационного притяжения. Это та область, где вторая космическая скорость превышает скорость света: И чем более массивен объект движения, тем быстрее он должен двигаться для того, чтобы избавиться от силы своей тяжести. Это известно как вторая космическая скорость.

Энциклопедия Кольера называет черными дырами область в пространстве, возникшую в результате полного гравитационного коллапса вещества, в которой гравитационное притяжение так велико, что ни вещество, ни свет, ни другие носители информации не могут ее покинуть. Поэтому внутренняя часть черной дыры причинно не связана с остальной Вселенной; происходящие внутри черной дыры физические процессы не могут влиять на процессы вне ее. Черная дыра окружена поверхностью со свойством однонаправленной мембраны: вещество и излучение свободно падает сквозь нее в черную дыру, но оттуда ничто не может выйти. Эту поверхность называют “горизонтом событий”.

История открытия

Черные дыры, предсказанные общей теорией относительности (теорией гравитации, предложенной Эйнштейном в 1915) и другими, более современными теориями тяготения, были математически обоснованы Р.Оппенгеймером и Х. Снайдером в 1939. Но свойства пространства и времени в окрестности этих объектов оказались столь необычными, что астрономы и физики в течение 25 лет не относились к ним серьезно. Однако астрономические открытия в середине 1960-х годов заставили взглянуть на черные дыры как на возможную физическую реальность. Новые открытия и изучение может принципиально изменить наши представления о пространстве и времени, проливая свет на миллиарды космических тайн.

Образование черных дыр

Пока в недрах звезды происходят термоядерные реакции, они поддерживают высокую температуру и давление, препятствуя сжатию звезды под действием собственной гравитации. Однако со временем ядерное топливо истощается, и звезда начинает сжиматься. Расчеты показывают, что если масса звезды не превосходит трех масс Солнца, то она выиграет “битву с гравитацией”: ее гравитационный коллапс будет остановлен давлением “вырожденного” вещества, и звезда навсегда превратится в белый карлик или нейтронную звезду. Но если масса звезды более трех солнечных, то уже ничто не сможет остановить ее катастрофического коллапса и она быстро уйдет под горизонт событий, став черной дырой.

Черная дыра - дырка от бублика?

То, что не излучает свет, заметить непросто. Одним из способов поиска черной дыры является поиск областей в открытом космосе, которые обладают большой массой и находятся в темном пространстве. При поиске подобных типов объектов астрономы обнаружили их в двух основных областях: в центрах галактик и в двойных звездных системах нашей Галактики. Всего же, как предполагают учёные, существует десятки миллионов таких объектов.

Понятие чёрной дыры известно всем — от школьника до людей преклонного возраста, оно используется в научной и фантастической литературе, в желтых СМИ и на научных конференциях. Но что конкретно представляют собой такие дыры, известно далеко не всем.

Из истории чёрных дыр

1783 г. Первая гипотеза существования такого явления, как чёрная дыра, была выдвинута в 1783 году английским учёным Джоном Мичеллом. В своей теории он объединил два творению Ньютона — оптику и механику. Идея Мичелла была такова: если свет — это поток мельчайших частиц, то, как и все другие тела, частицы должны испытывать притяжение гравитационного поля. Получается, чем массивнее звезда, тем сложнее свету противиться её притяжению. Через 13 лет после Мичелла, французский астроном и математик Лаплас выдвинул (скорее всего, независимо от британского коллеги) схожую теорию.

1915 г. Однако, все их труды оставались невостребованными вплоть до начала XX века. В 1915 году Альберт Эйнштейн опубликовал Общую теорию относительности и показал, что гравитация есть искривление пространства-времени, вызванное материей, а спустя несколько месяцев немецкий астроном и физик-теоретик Карл Шварцшильд использовал её для решения конкретной астрономической задачи. Он исследовал структуру искривленного пространства-времени вокруг Солнца и заново открыл феномен чёрных дыр.

(Джон Уилер ввел в научный обиход термин "Чёрные дыры")

1967 г. Американский физик Джон Уилер обрисовал пространство, которое можно скомкать, подобно листику бумаги, в бесконечно малую точку и обозначил термином "Чёрная дыра".

1974 г. Британский физик Стивен Хокинг доказал, что чёрные дыры, хоть и поглащают метерию без возврата, могут испускать излучение и в конце концов испаряться. Такое явление получило название "излучение Хокинга".

2013 г. Новейшие исследования пульсаров и квазаров, а также открытие реликтового излучения, наконец сделали возможным описать само понятие чёрных дыр. В 2013 году газовое облако G2 приблизилось на очень близкое расстояние к чёрной дыре и скорее всего будет поглощено ей, наблюдения за уникальным процессом даёт огромные возможности для новых открытий особенностей чёрных дыр.

(Массивный объект Стрелец А*, его масса больше Солнца в 4 млн раз, где подразумевается скопление звезд и образование чёрной дыры )

2017 г . Группа ученых из коллоборации нескольких стран Event Horizon Telescope, связав восемь телескопов с разных точек континентов Земли, проводили наблюдения за чёрной дырой, которая является сверхмассивным объектом и находится в галактике М87, созвездие Дева. Масса объекта 6,5 млрд (!) солнечных масс, в гигантские разы больше массивного объекта Стрелец А*, для сравнения диаметром чуть менее расстояния от Солнца до Плутона.

Наблюдения проводились в несколько этапов, начиная с весны 2017 года и в течении периодов 2018 года. Объём информации исчислялся петабайтами, которые затем следовало расшифровать и получить подлинный снимок сверхдалекого объекта. Поэтому потребовалось ещё целых два года для досканальной обработки всех данных и соединения их в одно целое.

2019 г. Данные были успешно расшифрованы и приведены в вид, получив первое в истории изображение чёрной дыры.

(Первый в истории снимок чёрной дыры в галактики М87 в созвездии Дева )

Разрешение изображения позволяет увидеть тень точки невозврата в центре объекта. Изображение получено в результате интерферометрических наблюдений со сверхдлинной базой. Это, так называемые, синхронные наблюдения одного объекта с нескольких радиотелескопов, соединенных между собой сетью и находящихся в разных частях земного шара, направленных в одну сторону.

Чем на самом деле являются чёрные дыры

Лаконичное объяснение феномена звучит так.

Чёрная дыра — это пространственно-временная область, чье гравитационное притяжение настолько велико, что её не может покинуть ни один объект, в том числе световые кванты.

Когда-то чёрная дыра была массивной звёздой. Пока термоядерные реакции поддерживают в её недрах высокое давление, всё остаётся в норме. Но со временем запас энергии истощается и небесное тело, под действием собственной гравитации, начинает сжиматься. Завершающий этап этого процесса — схлопывание звездного ядра и образование чёрной дыры.

  • 1. Выбрасывание черной дырой струи на высокой скорости

  • 2. Диск материи перерастает в чёрную дыру

  • 3. Чёрная дыра

  • 4. Детальная схема региона чёрной дыры

  • 5. Размер найденных новых наблюдений

Самая распространённая теория гласит, что подобные феномены есть в каждой галактике, в том числе и в центре нашего Млечного пути. Огромная сила притяжения дыры способна удерживать вокруг себя несколько галактик, не давая им удаляться друг от друга. «Площадь покрытия» может быть разной, всё зависит от массы звёзды, которая превратилась в чёрную дыру, и может составлять тысячи световых лет.

Радиус Шварцшильда

Главное свойство чёрной дыры — любое вещество, которое в неё попало, никогда не сможет вернуться. Это же касается и света. По своей сути дыры — это тела, которые полностью поглощают весь попадающий на них свет и не испускающие собственного. Такие объекты визуально могут казаться сгустками абсолютной темноты.

  • 1. Движущаяся материя в половину скорости света

  • 2. Фотонное кольцо

  • 3. Внутреннее фотонное кольцо

  • 4. Горизонт событий в чёрной дыре

Отталкиваясь от Общей теории относительности Эйнштейна, если тело приблизилось на критическое расстояние к центру дыры, оно уже не сможет вернуться. Это расстояние называют радиусом Шварцшильда. Что именно происходит внутри этого радиуса доподлинно неизвестно, но есть наиболее распространенная теория. Считается, что всё вещество чёрной дыры концентрируется в бесконечно малой точке, а в её центре находится объект с бесконечной плотностью, который ученые именуют сингулярным возмущением.

Как происходит падение в чёрную дыру

(На картинке чёрная дыра Стрельца А* выглядит крайне ярким скоплением света)

Не так давно, в 2011 году, ученые обнаружили газовое облако, дав ему несложное название G2, которое испускает необычные свет. Такое свечение может давать трение в газе и пыли, вызываемое действием чёрной дыры Стрельца А* и которые вращаются вокруг нее в виде аккреционного диска. Таким образом, мы становимся наблюдателями удивительного явления поглощения сверхмассивной чёрной дырой газового облака.

По последним исследованиям наибольшее сближение с черной дырой произойдет в марте 2014 года. Мы можем воссоздать картину того, как будет происходит это захватывающее зрелище.

  • 1. При первом появлении в данных газовое облако напоминает огромный шар из газа и пыли.

  • 2. Сейчас по состоянию на июнь 2013 года облако находится в десятках миллиардов километров от чёрной дыры. Оно падает в неё со скоростью 2500 км/с.

  • 3. Ожидается, что облако пройдет мимо чёрной дыры, но приливные силы, вызванные различием в притяжении, действующем на передний и задний край облака, заставят его принимать всё более вытянутую форму.

  • 4. После того, как облако будет разорвано, большая его часть, скорее всего, вольется в аккреционный диск вокруг Стрельца А*, порождая в нём ударные волны. Температура при этом подскочит до нескольких миллионов градусов.

  • 5. Часть облака упадёт прямо в чёрную дыру. Никто не знает в точности, что случится потом с этим веществом, но ожидается, что в процессе падения оно будет испускать мощные потоки рентгеновских лучей, и больше его никто не увидит.

Видео: чёрная дыра поглощает газовое облако

(Компьютерное моделирование того, как большая часть газового облака G2 будет разрушено и поглощено чёрной дырой Стрельцом А*)

Что там внутри чёрной дыры

Есть теория, которая утверждает, что чёрная дыра внутри практически пуста, а вся её масса сосредоточена в невероятно маленькой точке, находящейся в самом её центре - сингулярности.

Согласно другой теории, существующей на протяжении полувека, всё, что попадает в чёрную дыру, переходит в другую вселенную, находящуюся в самой чёрной дыре. Сейчас это теория не является основной.

И есть третья, самая современная и живучая теория, по которой всё, что попадает в чёрную дыру, растворяется в колебаниях струн на её поверхности, которую обозначают, как горизонт событий.

Так что же такое - горизонт событий? Внутрь чёрной дыры заглянуть нельзя даже сверхмощным телескопом, так как даже свет, попадая внутрь гигантской космической воронки, не имеет шансов вынырнуть назад. Всё, что можно хоть как-то рассмотреть, находится в её ближайших окрестностях.

Горизонт событий - это условная линия поверхности, из под которой ничто (ни газ, ни пыль, ни звезды, ни свет) выйти уже не сможет. И вот это и есть та самая таинственная точка невозврата в чёрных дырах Вселенной.

Научное мышление подчас конструирует объекты со столь парадоксальными свойствами, что даже самые проницательные ученые поначалу отказывают им в признании. Самый наглядный пример в истории новейшей физики — многолетнее отсутствие интереса к черным дырам, экстремальным состояниям гравитационного поля, предсказанным почти 90 лет назад. Долгое время их считали чисто теоретической абстракцией, и лишь в 1960-70-е годы уверовали в их реальность. Однако основное уравнение теории черных дыр было выведено свыше двухсот лет назад.

Озарение Джона Мичелла

Имя Джона Мичелла, физика, астронома и геолога, профессора Кембриджского университета и пастора англиканской церкви, совершенно незаслуженно затерялось среди звезд английской науки XVIII века. Мичелл заложил основы сейсмологии — науки о землетрясениях, выполнил превосходное исследование магнетизма и задолго до Кулона изобрел крутильные весы, которые использовал для гравиметрических измерений. В 1783 году он попытался объединить два великих творения Ньютона — механику и оптику. Ньютон считал свет потоком мельчайших частиц. Мичелл предположил, что световые корпускулы, как и обычная материя, подчиняются законам механики. Следствие из этой гипотезы оказалось весьма нетривиальным — небесные тела могут превратиться в ловушки для света.

Как рассуждал Мичелл? Пушечное ядро, выстреленное с поверхности планеты, полностью преодолеет ее притяжение, лишь если его начальная скорость превысит значение, называемое теперь второй космической скоростью и скоростью убегания. Если гравитация планеты столь сильна, что скорость убегания превышает скорость света, выпущенные в зенит световые корпускулы не смогут уйти в бесконечность. Это же произойдет и с отраженным светом. Следовательно, для очень удаленного наблюдателя планета окажется невидимой. Мичелл вычислил критическое значение радиуса такой планеты R кр в зависимости от ее массы М, приведенной к массе нашего Солнца M s: R кр = 3 км x M/M s .

Джон Мичелл верил своим формулам и предполагал, что глубины космоса скрывают множество звезд, которые с Земли нельзя разглядеть ни в один телескоп. Позже к такому же выводу пришел великий французский математик, астроном и физик Пьер Симон Лаплас, включивший его и в первое (1796), и во второе (1799) издания своего «Изложения системы мира». А вот третье издание вышло в свет 1808 году, когда большинство физиков уже считало свет колебаниями эфира. Существование «невидимых» звезд противоречило волновой теории света, и Лаплас счел за лучшее о них просто не упоминать. В последующие времена эту идею считали курьезом, достойным изложения лишь в трудах по истории физики.

Модель Шварцшильда

В ноябре 1915 года Альберт Эйнштейн опубликовал теорию гравитации, которую он назвал общей теорией относительности (ОТО). Эта работа сразу же нашла благодарного читателя в лице его коллеги по Берлинской Академии наук Карла Шварцшильда. Именно Шварцшильд первым в мире применил ОТО для решения конкретной астрофизической задачи, расчета метрики пространства-времени вне и внутри невращающегося сферического тела (для конкретности будем называть его звездой).

Из вычислений Шварцшильда следует, что тяготение звезды не слишком искажает ньютоновскую структуру пространства и времени лишь в том случае, если ее радиус намного больше той самой величины, которую вычислил Джон Мичелл! Этот параметр сначала называли радиусом Шварцшильда, а сейчас именуют гравитационным радиусом. Согласно ОТО, тяготение не влияет на скорость света, но уменьшает частоту световых колебаний в той же пропорции, в которой замедляет время. Если радиус звезды в 4 раза превосходит гравитационный радиус, то поток времени на ее поверхности замедляется на 15%, а пространство приобретает ощутимую кривизну. При двукратном превышении оно искривляется сильнее, а время замедляет свой бег уже на 41%. При достижении гравитационного радиуса время на поверхности звезды полностью останавливается (все частоты зануляются, излучение замораживается, и звезда гаснет), однако кривизна пространства там все еще конечна. Вдали от светила геометрия по-прежнему остается евклидовой, да и время не меняет своей скорости.

Несмотря на то что значения гравитационного радиуса у Мичелла и Шварцшильда совпадают, сами модели не имеют ничего общего. У Мичелла пространство и время не изменяются, а свет замедляется. Звезда, размеры которой меньше ее гравитационного радиуса, продолжает светить, однако видна она только не слишком удаленному наблюдателю. У Шварцшильда же скорость света абсолютна, но структура пространства и времени зависит от тяготения. Провалившаяся под гравитационный радиус звезда исчезает для любого наблюдателя, где бы он ни находился (точнее, ее можно обнаружить по гравитационным эффектам, но отнюдь не по излучению).

От неверия к утверждению

Шварцшильд и его современники полагали, что столь странные космические объекты в природе не существуют. Сам Эйнштейн не только придерживался этой точки зрения, но и ошибочно считал, что ему удалось обосновать свое мнение математически.

В 1930-е годы молодой индийский астрофизик Чандрасекар доказал, что истратившая ядерное топливо звезда сбрасывает оболочку и превращается в медленно остывающий белый карлик лишь в том случае, если ее масса меньше 1,4 масс Солнца. Вскоре американец Фриц Цвикки догадался, что при взрывах сверхновых возникают чрезвычайно плотные тела из нейтронной материи; позднее к этому же выводу пришел и Лев Ландау. После работ Чандрасекара было очевидно, что подобную эволюцию могут претерпеть только звезды с массой больше 1,4 масс Солнца. Поэтому возник естественный вопрос — существует ли верхний предел массы для сверхновых, которые оставляют после себя нейтронные звезды?

В конце 30-х годов будущий отец американской атомной бомбы Роберт Оппенгеймер установил, что такой предел действительно имеется и не превышает нескольких солнечных масс. Дать более точную оценку тогда не было возможности; теперь известно, что массы нейтронных звезд обязаны находиться в интервале 1,5-3 M s . Но даже из приблизительных вычислений Оппенгеймера и его аспиранта Джорджа Волкова следовало, что самые массивные потомки сверхновых не становятся нейтронными звездами, а переходят в какое-то другое состояние. В 1939 году Оппенгеймер и Хартланд Снайдер на идеализированной модели доказали, что массивная коллапсирующая звезда стягивается к своему гравитационному радиусу. Из их формул фактически следует, что звезда на этом не останавливается, однако соавторы воздержались от столь радикального вывода.

Окончательный ответ был найден во второй половине XX века усилиями целой плеяды блестящих физиков-теоретиков, в том числе и советских. Оказалось, что подобный коллапс всегда сжимает звезду «до упора», полностью разрушая ее вещество. В результате возникает сингулярность, «суперконцентрат» гравитационного поля, замкнутый в бесконечно малом объеме. У неподвижной дыры это точка, у вращающейся — кольцо. Кривизна пространства-времени и, следовательно, сила тяготения вблизи сингулярности стремятся к бесконечности. В конце 1967 года американский физик Джон Арчибальд Уилер первым назвал такой финал звездного коллапса черной дырой. Новый термин полюбился физикам и привел в восторг журналистов, которые разнесли его по всему миру (хотя французам он сначала не понравился, поскольку выражение trou noir наводило на сомнительные ассоциации).

Там, за горизонтом

Черная дыра — это не вещество и не излучение. С некоторой долей образности можно сказать, что это самоподдерживающееся гравитационное поле, сконцентрированное в сильно искривленной области пространства-времени. Ее внешняя граница задается замкнутой поверхностью, горизонтом событий. Если звезда перед коллапсом не вращалась, эта поверхность оказывается правильной сферой, радиус которой совпадает с радиусом Шварцшильда.

Физический смысл горизонта очень нагляден. Световой сигнал, посланный с его внешней окрестности, может уйти на бесконечно далекую дистанцию. А вот сигналы, отправленные из внутренней области, не только не пересекут горизонта, но и неизбежно «провалятся» в сингулярность. Горизонт — это пространственная граница между событиями, которые могут стать известны земным (и любым иным) астрономам, и событиями, информация о которых ни при каком раскладе не выйдет наружу.

Как и положено «по Шварцшильду», вдали от горизонта притяжение дыры обратно пропорционально квадрату расстояния, поэтому для удаленного наблюдателя она проявляет себя как обычное тяжелое тело. Кроме массы, дыра наследует момент инерции коллапсировшей звезды и ее электрический заряд. А все остальные характеристики звезды-предшественницы (структура, состав, спектральный класс и т. п.) уходят в небытие.

Отправим к дыре зонд с радиостанцией, подающей сигнал раз в секунду по бортовому времени. Для удаленного наблюдателя по мере приближения зонда к горизонту интервалы времени между сигналами будут увеличиваться — в принципе, неограниченно. Как только корабль пересечет невидимый горизонт, он полностью замолчит для «наддырного» мира. Однако это исчезновение не окажется бесследным, поскольку зонд отдаст дыре свою массу, заряд и вращательный момент.

Чернодырное излучение

Все предыдущие модели были построены исключительно на основе ОТО. Однако наш мир управляется законами квантовой механики, которые не обходят вниманием и черные дыры. Эти законы не позволяют считать центральную сингулярность математической точкой. В квантовом контексте ее поперечник задается длиной Планка—Уилера, приблизительно равной 10 -33 сантиметра. В этой области обычное пространство перестает существовать. Принято считать, что центр дыры нафарширован разнообразными топологическими структурами, которые появляются и погибают в соответствии с квантовыми вероятностными закономерностями. Свойства подобного пузырящегося квазипространства, которое Уилер назвал квантовой пеной, еще мало изучены.

Наличие квантовой сингулярности имеет прямое отношение к судьбе материальных тел, падающих вглубь черной дыры. При приближении к центру дыры любой объект, изготовленный из ныне известных материалов, будет раздавлен и разорван приливными силами. Однако даже если будущие инженеры и технологи создадут какие-то сверхпрочные сплавы и композиты с невиданными ныне свойствами, все они все равно обречены на исчезновение: ведь в зоне сингулярности нет ни привычного времени, ни привычного пространства.

Теперь рассмотрим в квантовомеханическую лупу горизонт дыры. Пустое пространство — физический вакуум — на самом деле отнюдь не пусто. Из-за квантовых флуктуаций различных полей в вакууме непрерывно рождается и погибает множество виртуальных частиц. Поскольку тяготение около горизонта весьма велико, его флуктуации создают чрезвычайно сильные гравитационные всплески. При разгоне в таких полях новорожденные «виртуалы» приобретают дополнительную энергию и подчас становятся нормальными долгоживущими частицами.

Виртуальные частицы всегда рождаются парами, которые движутся в противоположных направлениях (этого требует закон сохранения импульса). Если гравитационная флуктуация извлечет из вакуума пару частиц, может случиться так, что одна из них материализуется снаружи горизонта, а вторая (античастица первой) — внутри. «Внутренняя» частица провалится в дыру, а вот «внешняя» при благоприятных условиях может уйти. В результате дыра превращается в источник излучения и поэтому теряет энергию и, следовательно, массу. Поэтому черные дыры в принципе не стабильны.

Этот феномен называется эффектом Хокинга, в честь замечательного английского физика-теоретика, который его открыл в середине 1970-х годов. Стивен Хокинг, в частности, доказал, что горизонт черной дыры излучает фотоны точно так же, как и абсолютно черное тело, нагретое до температуры T = 0,5 x 10 -7 x M s /M. Отсюда следует, что по мере похудания дыры ее температура возрастает, а «испарение», естественно, усиливается. Этот процесс чрезвычайно медленный, и время жизни дыры массы M составляет около 10 65 x (M/M s) 3 лет. Когда ее размер становится равным длине Планка—Уилера, дыра теряет стабильность и взрывается, выделяя ту же энергию, что и одновременный взрыв миллиона десятимегатонных водородных бомб. Любопытно, что масса дыры в момент ее исчезновения все еще довольно велика, 22 микрограмма. Согласно некоторым моделям, дыра не исчезает бесследно, а оставляет после себя стабильный реликт такой же массы, так называемый максимон.

Максимон родился 40 лет назад — как термин и как физическая идея. В 1965 году академик М. А. Марков предположил, что существует верхняя граница массы элементарных частиц. Он предложил считать этим предельным значением величину размерности массы, которую можно скомбинировать из трех фундаментальных физических констант — постоянной Планка h, скорости света C и гравитационной постоянной G (для любителей подробностей: для этого надо перемножить h и C, разделить результат на G и извлечь квадратный корень). Это те самые 22 микрограмма, о которых говорится в статье, эту величину называют планковской массой. Из тех же констант можно сконструировать величину с размерностью длины (выйдет длина Планка—Уилера, 10 -33 см) и с размерностью времени (10 -43 сек).
Марков пошел в своих рассуждениях и дальше. Согласно его гипотезе, испарение черной дыры приводит к образованию «сухого остатка» — максимона. Марков назвал такие структуры элементарными черными дырами. Насколько эта теория отвечает реальности, пока что вопрос открытый. Во всяком случае, аналоги марковских максимонов возрождены в некоторых моделях черных дыр, выполненных на базе теории суперструн.

Глубины космоса

Черные дыры не запрещены законами физики, но существуют ли они в природе? Совершенно строгие доказательства наличия в космосе хоть одного подобного объекта пока не найдены. Однако весьма вероятно, что в некоторых двойных системах источниками рентгеновского излучения являются черные дыры звездного происхождения. Это излучение должно возникать вследствие отсасывания атмосферы обычной звезды гравитационным полем дыры-соседки. Газ во время движения к горизонту событий сильно нагревается и испускает рентгеновские кванты. Не меньше двух десятков рентгеновских источников сейчас считаются подходящими кандидатами на роль черных дыр. Более того, данные звездной статистики позволяют предположить, что только в нашей Галактике существует около десяти миллионов дыр звездного происхождения.

Черные дыры могут формироваться и в процессе гравитационного сгущения вещества в галактических ядрах. Так возникают исполинские дыры с массой в миллионы и миллиарды солнечных, которые, по всей вероятности, имеются во многих галактиках. Судя по всему, в закрытом пылевыми облаками центре Млечного Пути прячется дыра с массой 3-4 миллиона масс Солнца.

Стивен Хокинг пришел к выводу, что черные дыры произвольной массы могли рождаться и сразу после Большого Взрыва, давшего начало нашей Вселенной. Первичные дыры массой до миллиарда тонн уже испарились, но более тяжелые могут и сейчас скрываться в глубинах космоса и в свой срок устроивать космический фейерверк в виде мощнейших вспышек гамма-излучения. Однако до сих пор такие взрывы ни разу не наблюдались.

Фабрика черных дыр

А нельзя ли разогнать частицы в ускорителе до столь высокой энергии, чтобы их столкновение породило черную дыру? На первый взгляд, эта идея просто безумна — взрыв дыры уничтожит все живое на Земле. К тому же она технически неосуществима. Если минимальная масса дыры действительно равна 22 микрограммам, то в энергетических единицах это 10 28 электронвольт. Этот порог на 15 порядков превышает возможности самого мощного в мире ускорителя, Большого адронного коллайдера (БАК), который будет запущен в ЦЕРНе в 2007 году.

Однако не исключено, что стандартная оценка минимальной массы дыры значительно завышена. Во всяком случае, так утверждают физики, разрабатывающие теорию суперструн, которая включает в себя и квантовую теорию гравитации (правда, далеко не завершенную). Согласно этой теории, пространство имеет не три измерения, а не менее девяти. Мы не замечаем дополнительных измерений, поскольку они закольцованы в столь малых масштабах, что наши приборы их не воспринимают. Однако гравитация вездесуща, она проникает и в скрытые измерения. В трехмерном пространстве сила тяготения обратно пропорциональна квадрату расстояния, а в девятимерном — восьмой степени. Поэтому в многомерном мире напряженность гравитационного поля при уменьшении дистанции возрастает намного быстрее, нежели в трехмерном. В этом случае планковская длина многократно увеличивается, а минимальная масса дыры резко падает.

Теория струн предсказывает, что в девятимерном пространстве может родиться черная дыра с массой всего лишь в 10 -20 г. Примерно такова же и расчетная релятивистская масса протонов, разогнанных в церновском суперускорителе. Согласно наиболее оптимистическому сценарию, он сможет ежесекундно производить по одной дыре, которая проживет около 10 -26 секунд. В процессе ее испарения будут рождаться всевозможные элементарные частицы, которые будет несложно зарегистрировать. Исчезновение дыры приведет к выделению энергии, которой не хватит даже для того, чтобы нагреть одним микрограмм воды на тысячную градуса. Поэтому есть надежда, что БАК превратится в фабрику безвредных черных дыр. Если эти модели верны, то такие дыры смогут регистрировать и орбитальные детекторы космических лучей нового поколения.

Все вышеописанное относится к неподвижным черным дырам. Между тем, существуют и вращающиеся дыры, обладающие букетом интереснейших свойств. Результаты теоретического анализа чернодырного излучения привели также к серьезному переосмыслению понятия энтропии, которое также заслуживает отдельного разговора. Об этом — в следующем номере.