Биосинтез жирных кислот, последовательность реакций. Регуляция биосинтеза. Путь синтеза жирных кислот длиннее, чем их окисление Ацетил апб

20.1.1. Высшие жирные кислоты могут быть синтезированы в организме из метаболитов углеводного обмена. Исходным соединением для этого биосинтеза является ацетил-КоА , образующийся в митохондриях из пирувата - продукта гликолитического распада глюкозы. Место синтеза жирных кислот - цитоплазма клеток, где имеется мультиферментный комплекссинтетаза высших жирных кислот . Этот комплекс состоит из шести ферментов, связанных с ацилпереносящим белком , который содержит две свободные SH-группы (АПБ-SH). Синтез происходит путём полимеризации двууглеродных фрагментов, конечным продуктом его является пальмитиновая кислота - насыщенная жирная кислота, содержащая 16 атомов углерода. Обязательными компонентами, участвующими в синтезе, являются НАДФН (кофермент, образующийся в реакциях пентозофосфатного пути окисления углеводов) и АТФ.

20.1.2. Ацетил-КоА поступает из митохондрий в цитоплазму при помощи цитратного механизма (рисунок 20.1). В митохондриях ацетил-КоА взаимодействует с оксалоацетатом (фермент -цитратсинтаза ), образующийся цитрат переносится через митохондриальную мембрану при помощи специальной транспортной системы. В цитоплазме цитрат реагирует с HS-КоА и АТФ, вновь распадаясь на ацетил-КоА и оксалоацетат (фермент - цитратлиаза ).

Рисунок 20.1. Перенос ацетильных групп из митохондрий в цитоплазму.

20.1.3. Начальной реакцией синтеза жирных кислот является карбоксилирование ацетил-КоА с образованием малонил-КоА (рисунок 20.2). Фермент ацетил-КоА-карбоксилаза активируется цитратом и ингибируется КоА-производными высших жирных кислот.


Рисунок 20.2. Реакция карбоксилирования ацетил-КоА.

Затем ацетил-КоА и малонил-КоА взаимодействуют с SH-группами ацилпереносящего белка (рисунок 20.3).


Рисунок 20.3. Взаимодействие ацетил-КоА и малонил-КоА с ацилпереносящим белком.

Рисунок 20.4. Реакции одного цикла биосинтеза жирных кислот.

Продукт реакции взаимодействует с новой молекулой малонил-КоА и цикл многократно повторяется вплоть до образования остатка пальмитиновой кислоты.

20.1.4. Запомните основные особенности биосинтеза жирных кислот по сравнению с β-окислением:

  • синтез жирных кислот в основном осуществляется в цитоплазме клетки, а окисление - в митохондриях;
  • участие в процессе связывания СО2 с ацетил-КоА;
  • в синтезе жирных кислот принимает участие ацилпереносящий белок, а в окислении - коэнзим А;
  • для биосинтеза жирных кислот необходимы окислительно-восстановительные коферменты НАДФН, а для β-окисления - НАД+ и ФАД.

Ранее предполагали, что процессы расщепления являются обращением процессов синтеза, в том числе синтез жирных кислот рассматривали как процесс, обратный их окислению.

В настоящее время установлено, что митохондриальная система биосинтеза жирных кислот, вклю­чающая несколько модифицированную последова­тельность реакции β-окисления, осуществляет толь­ко удлинение уже существующих в организме среднецепочечных жирных кислот, в то время как пол­ный биосинтез пальмитиновой кислоты из ацетил-СоА активно протекает вне митохондрий по совер­шенно другому пути.

Рассмотрим некоторые важные особенности пути биосинтеза жирных кислот.

1. Синтез происходит в цитозоле в отличие от распада, который протекает в митохондриальном матриксе.

2. Промежуточные продукты синтеза жирных кислот ковалентно связаны с сульфгидрильными группами ацилпереносящего белка (АПБ), тогда как промежуточные продукты расщепления жирных кислот связаны с коферментом А.

3. Многие ферменты синтеза жирных кислот у высших организмов организованы в мультиферментный комплекс, называемый синтетазой жирных кислот. В противоположность им ферменты, катализирующие расщепление жирных кислот, повидимому, не склонны к ассоциации.

4. Растущая цепь жирной кислоты удлиняется путем последовательного присоединения двухуглеродных компонентов, происходящих из ацетил-СоА. Активированным донором двухуглеродных компонентов на стадии элонгации служит малонил-АПБ. Реакция элонгации запускается высвобождением СО 2 .

5. Роль восстановителя при синтезе жирной кислоты выполняет NАDРН.

6. В реакциях также участвует Мn 2+ .

7. Элонгация под действием комплекса синтетазы жирных кислот останавливается на этапе образования палъмитата (С 16). Дальнейшая элонгация и введение двойных связей осуществляются другими ферментными системами.

Образование малонилкофермента А

Синтез жирных кислот начинается с карбоксилирования ацетил-СоА в малонил-СоА. Эта необратимая реакция представляет собою решающий этап в синтезе жирных кислот.

Синтез малонил-СоА катализируется ацетил-СоА-карбоксилазой и осу­ществляется за счет энергии АТР. Источником СО 2 для карбоксилирования ацетил-СоА является бикарбонат.

Рис. Синтез малонил-СоА

Ацетил-СоА-карбоксилаза содержит в качестве простетической группы биотин .

Рис. Биотин

Фермент со­стоит из переменного числа одинаковых субъединиц, каждая из которых содержит биотин, биотинкарбоксилазу , карбоксибиотин-переносящий белок , транскарбоксилазу , а также регуляторный аллостерический центр, т.е. представляет собой полиферментный комплекс. Карбоксильная группа биотина ковалентно присоединяется к ε-аминогруппе остатка лизина карбоксибиотин-переносящего белка. Карбоксилирование биотинового компонента в образованном комплексе катализируется второй субъединицей - биотин-карбоксилазой. Третий компонент системы – транскарбоксилаза – катализирует перенос активированного СО 2 от карбоксибиотина на ацетил-СоА.

Биотин-фермент + АТР + НСО 3 - ↔ СО 2 ~Биотин-фермент + АDР + P i ,

СО 2 ~Биотин-фермент + Ацетил-СоА ↔ Молонил-СоА + Биотин-фермент.

Длина и гибкость связи между биотином и переносящим его белком обусловливают возможность перемещения активированной карбоксильной группы от одного активного центра ферментного комплекса к другому.

У эукариот ацетил-СоА-карбоксилаза существует в виде лишенного ферментативной активности протомера (450 кДа) или в виде активного нитевидного полимера. Их взаимопревращение регулируется аллостерически. Ключевым аллостерическим активатором служит цитрат , который сдвигает равновесие в сторону активной волокнистой формы фермента. Оптимальная ориентация биотина по отношению к субстратам достигается в волокнистой форме. В противоположность цитрату пальмитоил-СоА сдвигает равновесие в сторону неактивной протомерной формы. Таким образом, пальмитоил-СоА, конечный продукт, ингибирует первый решающий этап в биосинтезе жирных кислот. Регуляция ацетил-СоА-карбоксилазы у бактерий резко отличается от таковой у эукариот, так как у них жирные кислоты являются прежде всего предшественниками фосфолипидов, а не резервным топливом. Здесь цитрат не оказывает действия на ацетил-СоА-карбоксилазу бактерий. Активность транскарбоксилазного компонента системы регулируется гуаниновыми нуклеотидами, которые координируют синтез жирных кислот с ростом и делением бактерий.


БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
Кафедра ЭТТ
РЕФЕРАТ
На тему:
«Окисление ненасыщенных жирных кислот. Биосинтез холестерина. Мембранный транспорт»

МИНСК, 2008
Окисление ненасыщенных жирных кисл от.
В принципе происходит также как и насыщенных, однако имеются особенности. Двойные связи природных ненасыщенных жирных кислот имеют цис-конфигурацию, а в КоА эфирах ненасыщенных кислот, являющихся промежуточными продуктами при окислении, двойные связи имеют транс-конфигурацию. В тканях есть фермент, изменяющий конфигурацию двойной связи цис- в транс-.
Метаболизм кетоновых тел.
Под термином кетоновые (ацетоновые) тела подразумевают ацетоуксусную кислоту, -гидроксимасляную и ацетон. Кетоновые тела образуются в печени в результате деацилирования ацетоацетил КоА. Имеются данные, указывающие на важную роль кетоновых тел в поддержании энергетического гомеостаза. Кетоновые тела - своего рода поставщики топлива для мышц, мозга и почек и действуют как часть регуляторного механизма, предотвращающая мобилизацию жирных кислот из депо.
Биосинтез липидов.
Биосинтез липидов из глюкозы является важным звеном обмена у большинства организмов. Глюкоза, в количествах, превышающих непосредственные энергетические потребности может являться строительным материалом для синтеза жирных кислот и глицерина. Синтез жирных кислот в тканях протекает в цитоплазме клетки. В митохондриях в основном происходит удлинение существующих цепей жирных кислот.
Внемитохондриальный синтез жирных кислот.
Строительным блоком для синтеза жирных кислот в цитоплазме клетки служит ацетил КоА, который в основном происходит из митохондриального. Для синтеза необходимо наличие в цитоплазме углекислого газа и иона бикарбоната и цитрат. Митохондриальный ацетил КоА не может диффундировать в цитоплазму клетки, т.к. митохондриальная мембрана непроницаема для него. Митохондриальный ацетил КоА взаимодействует с оксалоацетатом, образуя цитрат и проникает в цитоплазму клетки, где расщепляется до ацетил КоА и оксалоацетата.
Имеется еще один путь проникновения ацетил КоА через мембрану - с участием карнитина.
Этапы биосинтеза жирных кислот :
Образование малонил КоА, путем связывания углекислого газа(биотин-фермент и АТФ) с коэнзимом А. Для этого необходимо наличие НАДФН 2 .
Образование ненасыщенных жирных кислот:
В тканях млекопитающих присутствуют 4 семейства ненасыщенных жирных кислот -
1.пальмитоолеиновая, 2.олеиновая, 3. линолевая,4.линоленовая
1 и 2 синтезируются из пальмитиновой и стеариновой кислот.
Биосинтез триглицеридов.
Синтез триглицеридов происходит из глицерина и жирных кислот (стеариновой, пальмитиновой, олеиновой). Путь биосинтеза триглицеридов происходит через образование глицерол-3-фосфата.
Глицерол-3-фосфат ацилируется и образуется фосфатидная кислота. Далее происходит дефосфорилирование фосфатидной кислоты и образование 1,2-диглицерида. Затем происходит этерификация молекулой ацил КоА и образование триглицерида. Глицерофосфолипиды синтезируются в эндоплазматической цепи.
Биосинтез насыщенных жирных кислот.
Непосредственным предшественником двууглеродных единиц в синтезе жирных кислот служит малонил КоА.
Полный синтез насыщенных жирных кислот катализируется особым синтетазным комплексом, состоящим из 7 ферментов. Синтетазная система, катализируюшая синтез жирных кислот в растворимой фракции цитоплазмы ответственна за следующую суммарную реакцию при которой одна молекула ацетил КоА и 7 молекул малонил КоА конденсируются с образованием одной молекулы пальмитиновой кислоты (восстановление осуществляется за счет НАДФН). Единственная молекула ацетил КоА, необходимая для реакции служит инициатором.
Образование малонил КоА:
1. Цитрат способен проходить через митохондриальную мембрану в цитоплазму. Митохондриальный ацетил КоА переносится на оксалоацетат с образованием цитрата, который может проходить через митохондриальную мембрану в цитоплазму с помощью системы переноса. В цитоплазме цитрат расщепляется до ацетил КоА, который взаимодействуя с углекислым газом превращается в малонил КоА. Лимитирующий фермент всего процесса синтеза жирных кислот - ацетил КоА-карбоксилаза.
2. Ацилпереносящий белок в синтезе жирных кислот служит своего рода якорем, к которому в ходе реакций образования алифатической цепи присоединяются ацильные промежуточные продукты. В митохондриях молекулы насыщенных жирных кислот удлиняются в форме эфиров КоА путем последовательного добавления КоА. Ацильные группы ацетил КоА и малонил КоА переносятся на тиоловые группы ацил-переносящего белка.
3. После конденсации этих двухуглеродных фрагментов идет их восстановление с образованием высших насыщенных жирных кислот.
Последующие этапы синтеза жирных кислот в цитоплазме сходны с реакциями обратными реакциям митохондриального -окисления. Осуществление этого процесса со всеми промежуточными продуктами прочно связано с большим многоферментным комплексом - синтетазой жирных кислот.
Регуляция обмена жирных кислот.
Процессы обмена жиров в организме регулируются нейрогуморальным путем. Одновременно ЦНС и кора головного мозга осуществляют согласованность различных гормональных влияний. Кора головного мозга оказывает трофическое влияние на жировую ткань либо через симпатическую и парасимпатическую систему, либо через эндокринные железы.
Поддержание определенного соотношения между катаболизмом и анаболизмом жирных кислот в печени связано с воздействием метаболитов внутри клетки, а также влиянием гормональных факторов и потребляемой пищи.
При регуляции -окисления первостепенное значение имеет доступность субстрата. Поступление жирных кислот в клетки печени обеспечивается:
1. захватом жирных кислот из жировой ткани, регуляция этого процесса осуществляется гормонами.
2. захват жирных кислот (обусловленных содержанием жиров в пище).
3. высвобождение жирных кислот под действием липазы из триглицеридов печени.
Второй контролирующий фактор - уровень запаса энергии в клетке (соотношение АДФ и АТФ). Если АДФ много (клеточные резервы энергии малы), то протекают реакции сопряжения, что способствует синтезу АТФ. Если содержание АТФ повышено, вышеупомянутые реакции тормозятся, накапливающиеся жирные кислоты используются для биосинтеза жиров и фосфолипидов.
Способность цикла лимонной кислоты катаболизировать ацетил КоА, образующийся при -окислении имеет важное значение в реализации общего энергетического потенциала катаболизма жирных кислот, а также нежелательного накопления кетоновых тел (ацетоуксусная кислота, -оксибутират и ацетон).
Инсулин усиливает биосинтез жирных кислот, превращение углеводов в жиры. Адреналин, тироксин и гормон роста активируют распад (липолиз) жира.
Снижение выработки гормонов гипофиза и половых гормонов приводит к стимуляции синтеза жиров.
Нарушения липидного обмена
1.Нарушение процессов всасывания жиров
а) недостаточность поступления панкреатической липазы
б)нарушение поступления в кишечник желчи
в)нарушение желудочно-кишечного тракта (повреждение эпителиального покрова).
2. Нарушение процессов перехода жира из крови в ткани - нарушается переход жирных кислот из хиломикронов плазмы крови в жировые депо. Это наследственное заболевание, связанное с отсутствием фермента.
3. Кетонурия и кетонемия- при голодании у лиц с диабетом содержание кетоновых тел повышено - это кетонемия. Оно состояние сопровождается кетонурией (наличие кетоновых тел в моче). Ввиду необычно высокой концентрации кетоновых тел в притекающей крови мышцы и другие органы не справляются с их окислением.
4. Атеросклероз и липопротеиды. Доказана ведущая роль определенных классов липопротеидов в патогенезе атеросклероза. Формирование липидных пятен и бляшек сопровождается глубокими дистрофическими изменениями в пределах сосудистой стенки.
Холестерин
У млекопитающих большая часть (около 90%) холестерина синтезируется в печени. Большая часть его (75 %) используется при синтезе так называемых желчных кислот, помогающих перевариванию липидов, поступающих с пищей в кишечнике. Они делают их более доступными для гидролитических ферментов - липаз. Основной желчной кислотой является холевая кислота. Холестерин является также матаболическим предшественником других важных стероидов, многие из которых выступают в виде гормонов.: альдостерона и кортизона, эстрона, тестостерона и андростерона.
Нормальный уровень холестерина в плазме крови в пределах 150-200 мг/мл. Высокий уровень может привести к отложению холестериновых бляшек в аорте и мелких артериях, это состояние известно под названием артериосклероза (атеросклероза). В конечном счете он способствует нарушению сердечной деятельности. Поддержание нормального уровня холестерина осуществляется путем организации правильного режима питания, а также in vivo регуляцией пути ацетил-КоА. Один из способов снижения высокого уровня холестерина в крови заключается в приеме внутрь соединений, уменьшающих способность организма синтезировать холестерин. Холестерин синтезируется в печени и плазме крови, упаковывается в липопротеиновые комплексы, которые переносятся в другие клетки. Проникновение холестерина в клетку зависит от наличия мембранных рецепторов, связывающих такие комплексы, которые проникают в клетку путем эндоцитоза и затем лизосомные ферменты освобождают холестерин внутри клетки. У пациентов с высоким уровнем холестерина в крови были обнаружены дефектные рецепторы, это - генетический дефект.
Холестерин является предшественником многих стероидов, таких как стероиды кала, желчные кислоты и стероидные гормоны. При образовании стероидных гормонов из холестерина сначала синтезируется промежуточный продукт прегненолон, который служит предшественником прогестерона - гормона плаценты и желтого тела, мужских половых гормонов (тестостерона), женских половых гормонов (эстрона) и гормонов коры надпочечников (кортикостерона).
Главным исходным материалом для биосинтеза этих гормонов является аминокислота тирозин. Ее источник в клетках -
1. Протеолиз
2. Образование из фенилаланина (незаменимой АК)
Биосинтез стероидных гормонов несмотря на разнообразный спектр их действия, является единым процессом.
Центральное положение в биосинтезе всех стероидных гормонов занимает прогестерон.
Имеются 2 пути его синтеза:
Из холестерина
Из ацетата
В регуляции скоростей биосинтеза отдельных стероидных гормонов важнейшую роль играют тропные гормоны гипофиза. АКТГ стимулирует биосинтез кортикальных гормонов надпочечников.
Имеются 3 причины расстройства биосинтеза и выделения специфических гормонов:
1. Развитие патологического процесса в самой эндокринной железе.
2. Нарушение регуляторных влияний на процессы со стороны ЦНС.
3. Нарушение координации деятельности отдельных желез внутренней секреции.
Биосинтез холестерина .
Этот процесс насчитывает 35 стадий.
Можно выделить 3 основные:
1. Превращение активного ацетата в мевалоновую кислоту
2. Образование сквалена
3. Окислительная циклизация сквалена в холестерин.
Холестерин является предшественником многих стероидов:
Стероидов кала, желчных кислот, стероидных гормонов. Распад холестерина - это превращение его в желчные кислоты в печени.
Показано, что регуляция биосинтеза холестерина осуществляется путем изменения синтеза и активности -гидрокси--метил глутарил КоА-редуктазы. Этот фермент локализован в мембранах эндоплазматической сети клетки. Его активность зависит от концентрации холестерина, приводит к снижению активности фермента. Регуляция активности редуктазы холестерином - пример регуляции ключевого фермента конечным продуктом по принципу отрицательной обратной связи.
Существует и второй путь биосинтеза мевалоновой кислоты.
Два автономных пути имеют значение для внутриклеточного разграничения биосинтеза холестерина необходимого для внутриклеточных нужд (синтез липопротеидов клеточных мембран) от холестерина, идущего на образование жирных кислот. В составе липопротеидов холестерин покидает печень и поступает в кровь. Содержание общего холестерина в плазме крови 130-300 мг/мл.
Молекулярные компоненты мембран.
Большинство мембран состоит примерно из 40% липида и 60% белка. Липидная часть мембран содержит преимущественно полярные липиды различных типов, практически все количество полярных липидов клетки сосредоточено в ее мембранах.
Большинство мембран содержит мало триацилглицеринов и стеринов, исключением в этом смысле являются плазматические мембраны клеток высших животных с характерным для них высоким содержанием холестерина.
Соотношение между различными липидами постоянно для каждого данного типа мембран клетки и, следовательно, определяются генетически. Большинство мембран характеризуется одинаковым соотношением липида и белка. Почти все мембраны легко проницаемы для воды и для нейтральных липофильных соединений, в меньшей степени проницаемы для полярных веществ, таких как сахара и амиды и совсем плохо проницаемы для небольших ионов, таких как натрий или хлор.
Для большинства мембран характерно высокое электрическое сопротивление. Эти общие свойства послужили основой для создания первой важной гипотезы относительно структуры биологических мембран - гипотезы элементарной мембраны. Согласно гипотезе, элементарная мембрана состоит из двойного слоя смешанных полярных липидов, в котором углеводородные цепи обращенных внутрь и образуют непрерывную углеводородную фазу, а гидрофильные головы молекул направлены наружу, каждая из поверхностей двойного слоя липидов покрыта мономолекулярным слоем белка, полипептидные цепи которого находятся в вытянутой форме. Общая толщина элементарной мембраны - 90 ангстрем, а толщина двойного слоя липидов - 60-70- ангстрем.
Структурное многообразие мембран больше, чем исходя из гипотезы элементарной мембраны.
Другие модели мембран:
1. Структурный белок мембраны находится внутри двойного слоя липидов, а углеводородные хвосты липидов проникают в свободные и т.д.................

Синтез жирных кислот

СИНТЕЗ ЖИРНЫХ КИСЛОТ

1. Биосинтез de novo (синтез пальмитиновой кислоты С16).

1. Систему модификации жирных кислот:

 процессы элонгации жирных кислот (удлинение на 2 углеродных атома),

 десатурацию (образование ненасыщенной связи).

Значительная часть жирных кислот синтезируется в печени, в меньшей степени в жировой ткани и лактирующей железе.

СИНТЕЗ de novo

 Исходным веществом является ацетил-КоА.

Ацетил-КоА , образовавшийся в матриксе митохондрий в результате окислительного декарбоксилирования пирувата - конечного продукта гликолиза, должен транспортироваться через мембрану митохондрий в цитозоль , где происходит синтез жирных кислот.

I ЭТАП. ТРАНСПОРТ АЦЕТИЛ-КоА ИЗ МИТОХОНДРИЙ В ЦИТОЗОЛЬ

1. Карнитиновый механизм.

2. В составе цитрата, образующегося в первой реакции ЦТК:

ОКСАЛОАЦЕТАТ

митохондрии

АЦЕТИЛ-КоА

1 HS-КоА

цитоплазма

АЦЕТИЛ-КоА

МАЛАТ ОКСАЛОАЦЕТАТ

НАД+ 3

1 - цитратсинтаза; 2 – цитратлиаза;

3 - малатдегидрогеназа;

4 – малик-фермент; 5 - пируваткарбоксилаза

II ЭТАП. ОБРАЗОВАНИЕ МАЛОНИЛ-КоА

СН3 -С- KoA

COOH-CH2 - C-KoA

ацетил-КоА ацетил-КоА-карбоксилаза, малонил-КоА содержащая биотин

Осуществляется мультиферментным комплексом "синтаза жирных кислот" в состав которого входит 6 ферментов и ацил-переносящийбелок (АПБ). АПБ включает производное пантотеновой̆кислоты 6-фосфопантетеин, имеющий̆SH-группу, подобно HS-КоА.

III ЭТАП. ОБРАЗОВАНИЕ ПАЛЬМИТИНОВОЙ КИСЛОТЫ

III ЭТАП. ОБРАЗОВАНИЕ ПАЛЬМИТИНОВОЙ КИСЛОТЫ

После этого ацил-АПБ вступает в новый цикл синтеза. К свободной SH-группе АПБ присоединяется новая молекула малонил-КоА. Затем происходит отщепление ацильного остатка, и он переносится на малонильный остаток с одновременным декарбоксилированием, и цикл реакций повторяется. Таким образом, углеводородная цепочка будущей жирной кислоты постепенно растет (за каждый цикл – на два углеродных атома). Это происходит до момента, пока она не удлинится до 16 углеродных атомов.

Синтез пальмитиновой кислоты (С16) из Ацетил-КоА.

1) Протекает в цитоплазме клеток печени и жировой ткани.

2) Значение: для синтеза жиров и фосфолипидов.

3) Протекает после приема пищи (в абсорбтивный период).

4) Образуется из ацетил-КоА, полученного из глюкозы (гликолиз → ОДПВК → Ацетил-КоА).

5) В процессе последовательно повторяются 4 реакции:

конденсация → восстановление → дегидратация → восстановление.

В конце каждого цикла ЖК удлиняется на 2 углеродных атома .

Донор 2С – малонил-КоА.

6) В двух реакциях восстановления принимает участие НАДФН+Н + (50% поступает из ПФП, 50% - от МАЛИК-фермента).

7) Только первая реакция протекает непосредственно в цитоплазме (регуляторная).

Остальные 4 циклических – на специальном пальмитатсинтазном комплексе (синтез только пальмитиновой кислоты)

8) Регуляторный фермент функционирует в цитоплазме – Ацетил-КоА-карбоксилаза (АТФ, вит. Н, биотин, IV класс).

Строение пальмитатсинтазного комплекса

Пальмитатсинтаза – фермент, состоящий из 2 субъединиц.

Каждая состоит из одной ппц, на которой есть 7 активных центров.

Каждый активный центр катализирует свою реакцию.

В каждой ппц находится ацилпереносящий белок (АПБ), на котором проходит синтез (содержит фосфопантетонат).

В каждой субъединице есть HS-группа. В одной HS-группа принадлежит цистеину, в другой – фосфопантотеновой кислоте.


Механизм

1) Ацетил-Коа, полученный из углеводов, не может выйти в цитоплазму, где протекает синтез ЖК. Он выходит через первую реакцию ЦТК – образование цитрата.

2) В цитоплазме цитрат распадается на Ацетил-Коа и оксалоацетат.

3) Оксалоацетат → малат (реакция ЦТК в обратном направлении).

4) Малат → пируват, который используется в ОДПВК.

5) Ацетил-КоА → синтез ЖК.

6) Ацетил-КоА под действием ацетил-КоА-карбоксилазы превращается в малонил-КоА.

Активирование фермента ацетил-КоА-карбоксилазы :

а) путем усиления синтеза субъединиц под действием инсулина – три тетрамера синтезируются отдельно

б) под действием цитрата три тетрамера объединяются, и фермент активируется

в) в период голодания глюкагон ингибирует фермент (путем фосфорилирования), синтез жиров не происходит

7) один ацетил КоА из цитоплазмы перемещается на HS-группу (от цистеина) пальмитат-синтазы; один малонил-КоА – на HS-группу второй субъединицы. Далее на пальмитат синтазе происходят:

8) их конденсация (ацетил КоА и малонил-КоА)

9) восстановление (донор – НАДФН+Н + из ПФП)

10) дегидротация

11) восстановление (донор – НАДФН+Н + от МАЛИК-фермента).

В результате ацильный радикал увеличивается на 2 атома углерода.



Мобилизация жиров

При голодании или длительной физической нагрузке выделяется глюкагон или адреналин. Они активируют в жировой ткани ТАГ-липазу, которая находится в адипоцитах и называется тканевой липазой (гормончувствительная). Она расщепляет жиры в жировой ткани на глицерол и ЖК. Глицерол идет в печень на глюконеогенез. ЖК поступают в кровь, связываются с альбумином и поступают к органам и тканям, используются как источник энергии (всеми органами, кроме мозга , который использует глюкозу и кетоновые тела при голодании или длительной физической нагрузке).

Для сердечной мышцы ЖК – основной источник энергии.

β-окисление

β-окисление – процесс расщепления ЖК с целью извлечения энергии.

1) Специфический путь катаболизма ЖК до ацетил-КоА.

2) Протекает в митохондриях.

3) Включает 4 повторяющиеся реакции (т.е. условно циклический):

окисление → гидратация → окисление → расщепление.

4) В конце каждого цикла ЖК укорачивается на 2 углеродных атома в виде ацетил-КоА (поступающий в ЦТК).

5) 1 и 3 реакции – реакции окисления, связаны с ЦПЭ.

6) Принимают участие вит. В 2 – кофермент ФАД, вит. РР – НАД, пантотеновая кислота – HS-KoA.

Механизм переноса ЖК из цитоплазмы в митохондрию.

1. ЖК перед поступлением в митохондрию должны быть активированы.

Только активированная ЖК = ацил-КоА может транспортироваться через двойную мембрану липидов.

Переносчик – L-карнитин.

Регуляторный фермент β-окисления – карнитинацилтрансфераза-I (KAT-I).

2. КАТ-I переносит ЖК в межмембранное пространство.

3. Под действием КАТ-I ацил-КоА переносится на переносчик L-карнитин.

Образуется ацилкарнитин.

4. При помощи встроенной во внутреннюю мембрану транслоказы ацилкарнитин перемещается в митохондрию.

5. В матриксе под действием КАТ-II ЖК отщепляется от карнитина и вступает в β-окисление.

Карнитин возвращается обратно в межмембранное пространство.

Реакции β-окисления

1. Окисление: ЖК окисляется с участием ФАД (фермент ацил-КоА-ДГ) → еноил.

ФАД поступает в ЦПЭ (р/о=2)

2. Гидратация: еноил → β-гидроксиацил-КоА (фермент еноилгидратаза)

3. Окисление: β-гидроксиацил-КоА → β-кетоацил-КоА (с участием НАД, который поступает в ЦПЭ и имеет р/о=3).

4. Расщепление: β-кетоацил-КоА → ацетил-КоА (фермент тиолаза, с участием HS-KoA).

Ацетил-КоА → ЦТК → 12 АТФ.

Ацил-КоА (С-2) → следующий цикл β-окисления.

Подсчет энергии при β-окислении

На примере меристиновой кислоты (14С).

· Подсчитываем, на сколько ацетил-КоА распадается ЖК

½ n = 7 → ЦТК (12АТФ) → 84 АТФ.

· Считаем, за сколько циклов они распадается

(1/2 n)-1=6·5(2 АТФ за 1 реакцию и 3 АТФ за 3 реакцию) = 30 АТФ

· Вычитаем 1 АТФ, постраченную на активацию ЖК в цитоплазме.

Итого – 113 АТФ.

Синтез кетоновых тел

Почти весь ацетил-КоА вступает в ЦТК. Небольшая часть используется для синтеза кетоновых тел = ацетоновых тел.

Кетоновые тела – ацетоацетат, β-гидроксибутират, ацетон (при патологии).

Нормальная концентрация – 0,03-0,05 ммоль/л.

Синтезируются только в печени из ацетил-КоА, полученного при β-окислении.

Используются как источник энергии всеми органами кроме печени (нет фермента).

При длительном голодании или сахарном диабете концентрация кетоновых тел может увеличиваться в десятки раз, т.к. в этих условиях ЖК являются основным источником энергии. В этих условиях протекает интенсивное β-окисление, и весь ацетил-КоА не успевает утилизироваться в ЦТК, т.к.:

· не хватает оксалоацетата (он используется при глюконеогенезе)

· в результате β-окисления образуется много НАДН+Н+ (в 3 реакции), который ингибирует изоцитрат-ДГ.

Следовательно, ацетил-КоА идет на синтез кетоновых тел.

Т.к. кетоновые тела – кислоты, они вызывают сдвиг кислотно-щелочного равновесия. Возникает ацидоз (из-за кетонемии ).

Они не успевают утилизироваться и появляются в моче как патологический компонент → кетоурия . Также появляется запах ацетона изо рта. Это состояние называется кетоз .

Обмен холестерола

Холестерол (Хс) – одноатомный спирт, в основе которого лежит циклопентанпергидрофенантреновое кольцо.

27 углеродных атомов.

Нормальная концентрация холестерола – 3,6-6,4 ммоль/л, допускается не выше 5.

· на построение мембран (фосфолипиды:Хс=1:1)

· синтез ЖчК

· синтез стероидных гормонов (кортизол, прогестерон, альдостерон, кальцитриол, эстроген)

· в коже под действием УФ используется для синтеза витамина D3 – холекальциферола.

В организме содержится около 140 г холестерола (в основном, в печени и мозге).

Суточная потребность – 0,5-1 г.

Содержится только в продуктах животного происхождения (яйца, сливочном масле, сыр, печень).

Хс не используется как источник энергии, т.к. его кольцо не расщепляется до СО 2 и Н 2 О и не выделяется АТФ (нет фермента).

Избыток Хс не выводится, не депонируется, откладывается в стенке крупных кровеносных сосудов в виде бляшек.

В организме синтезируется 0,5-1 г Хс. Чем больше потребляется его с пищей, тем меньше синтезируется в организме (в норме).

Хс в организме синтезируется в печени (80%), кишечнике (10%), коже (5%), надпочечниках, половых железах.

Даже у вегетарианцев может быть повышен уровень холестерина, т.к. для его синтеза необходимы только углеводы.

Биосинтез холестерола

Протекает в 3 стадии:

1) в цитоплазме - до образования мевалоновой кислоты (похоже на синтез кетоновых тел)

2) в ЭПР – до сквалена

3) в ЭПР – до холестерола

Около 100 реакций.

Регуляторный фермент – β-гидроксиметилглутарил-КоА-редуктаза (ГМГ-редуктаза). Статины, понижающие уровень холестерола, ингибируют этот фермент).

Регуляция ГМГ-редуктазы:

а) Ингибируется по принципу обратной отрицательной связи избытком пищевого холестерола

б) Может увеличиваться синтез фермента (эстроген) или снижаться (холестерол и ЖчК)

в) Фермент активируется инсулином путем дефосфорилирования

г) Если фермента много, то избыток может расщепляться протеолизом

Холестерол синтезируется из ацетил-КоА, полученного из углеводов (гликолиз → ОДПВК).

Образовавшийся холестерол в печени упаковывается вместе с жиром в ЛОНП незр. ЛОНП имеет апобелок В100, поступает в кровь и после присоединения апобелков С-II и Е превращается в ЛОНП зрелый, который поступает к ЛП-липазе. ЛП-липаза удаляет из ЛОНП жиры (50%), остается ЛНП, состоящий на 50-70% из эфиров холестерола.

· снабжает холестеролом все органы и ткани

· в клетках существуют рецепторы в В100, по которым они узнают ЛНП и поглощают его. Клетки регулируют поступление холестерола путем увеличения или уменьшения количества рецепторов к В100.

При сахарном диабете может происходить гликозилирование В100 (присоединение глюкозы). Следовательно, клетки не узнают ЛНП и возникает гиперхолестеролемия.

ЛНП может проникать в сосуды (атерогенная частица).

Более 50% ЛНП возвращаются в печень, где холестерол используется на синтез ЖчК и ингибирование собственного синтеза холестерола.

Существует механизм защиты от гиперхолестеролемии:

· регуляция синтеза собственного холестерола по принципу обратной отрицательной связи

· клетки регулируют поступление холестерола путем увеличения или уменьшения количества рецепторов к В100

· функционирование ЛВП

ЛВП синтезируется в печени. Имеет дисковидную форму, содержит мало холестерола.

Функции ЛВП :

· забирает избыток холестерола из клеток и других липопротеинов

· поставляет C-II и Е другим липопротеинам

Механизм функционирования ЛВП :

ЛВП имеет апобелок А1 и ЛХАТ (фермент лецитинхолестеринацилтрансфераза).

ЛВП выходит в кровь, и к нему подходит ЛНП.

По А1 ЛНП узнаются, что в них много холестерола, и активируют ЛХАТ.

ЛХАТ отщепляет ЖК от фосфолипидов ЛВП и переносит на холестерол. Образуются эфиры холестерола.

Эфиры холестерола гидрофобны, поэтому переходят внутрь липопротеина.


ТЕМА 8

ОБМЕН ВЕЩЕСТВ: ОБМЕН БЕЛКОВ

Белки – это высокомолекулярные соединения, состоящие из α-аминокислотных остатков, которые соединены между собой пептидными связями.

Пептидные связи расположены между α-карбоксильной группой одной аминокислоты и аминогруппой другой, следующей за ней, α-аминокислоты.

Функции белков (аминокислот) :

1) пластическая (основная функция) – из аминокислот синтезируются белки мышц, тканей, гемм, карнитин, креатин, некоторые гормоны и ферменты;

2) энергетическая

а) в случае избыточного поступления в организм с пищей (>100 г)

б) при длительном голодании

Особенность:

Аминокислоты, в отличие от жиров и углеводов, не депонируются .

Количество свободных аминокислот в организме – около 35 г.

Источники белка для организма :

· белки пищи (основной источник)

· белки тканей

· синтезированные из углеводов.

Азотистый баланс

Т.к. 95% всего азота организма принадлежит аминокислотам, то о их обмене можно судить по азотистому балансу – соотношение поступающего азота и выделенного с мочой.

ü Положительный – выделяется меньше, чем поступает (у детей, беременных, в период выздоровления после болезни);

ü Отрицательный – выделяется больше, чем поступает (пожилой возраст, период длительного заболевания);

ü Азотистое равновесие – у здоровых людей.

Т.к. белки пищи – основной источник аминокислот, то говорят о «полноценности белкового питания ».

Все аминокислоты делятся на:

· заменимые (8) – Ала, Гли, Сер, Про, Глу, Глн, Асп, Асн;

· частично заменимые (2) – Арг, Гис (синтезируются медленно);

· условно заменимые (2) – Цис, Тир (могут синтезироваться при условии поступления незаменимых – Мет → Цис, Фен →Тир);

· незаменимые (8) – Вал, Иле, Лей, Лиз, Мет, Тре, Фен, Тпф.

В связи с этим выделяются белки:

ü Полноценные – содержат все незаменимые аминокислоты

ü Неполноценные – не содержат Мет и Тпф.

Переваривание белков

Особенности:

1) Белки перевариваются в желудке, тонком кишечнике

2) Ферменты – пептидазы (расщепляют пептидные связи):

а) экзопептидазы – по краям с C-N-концов

б) эндопептидазы – внутри белка

3) Ферменты желудка и поджелудочной железы вырабатываются в неактивном виде – проферменты (т.к. они бы переваривали собственные ткани)

4) Ферменты активируются частичным протеолизом (отщепление части ппц)

5) Некоторые аминокислоты подвергаются гниению в толстом кишечнике


1. В ротовой полости не перевариваются.

2. В желудке на белки действует пепсин (эндопептидаза). Он расщепляет связи, образованные аминогруппами ароматических аминокислот (Тир, Фен, Тпф).


Пепсин вырабатывается главными клетками в виде неактивного пепсиногена .

Обкладочные клетки вырабатывают соляную кислоту.

Функции HCl :

ü Создает оптимум рН для пепсина (1,5 – 2,0)

ü Активирует пепсиноген

ü Денатурирует белки (облегчает действие фермента)

ü Бактерицидное действие

Активация пепсиногена

Пепсиноген под действием HCl превращается в активный пепсин путем отщепления 42 аминокислот медленно. Затем активный пепсин быстро активирует пепсиноген (аутокаталитически ).

Таким образом, в желудке белки расщепляются на короткие пептиды, которые поступают в кишечник.

3. В кишечнике на пептиды действуют ферменты поджелудочной железы.

Активация трипсиногена, химотрипсиногена, проэластазы, прокарбоксипептидазы

В кишечнике под действием энтеропептидазы активируется трипсиноген . Затем активированный из него трипсин активирует все остальные ферменты путем частичного протеолиза (химотрипсиноген → химотрипсин , проэластаза → эластаза , прокарбоксипептидаза → карбоксипептидаза ).

Трипсин расщепляет связи, образованные карбоксильными группами Лиз или Арг.


Химотрипсин – между карбоксильными группами ароматических аминокислот.

Эластаза - связи, образованные карбоксильными группами Ала или Гли.

Карбоксипептидаза расщепляет карбоксильные связи с С-конца.

Таким образом, в кишечнике образуются короткие ди-, трипептиды.

4. Под действием ферментов кишечника они расщепляются до свободных аминокислот.

Ферменты – ди-, три-, аминопептидазы . Они не обладают видовой специфичностью.

Образовавшиеся свободные аминокислоты всасываются вторично активным транспортом с Na + (против градиента концентрации).

5. Некоторые аминокислоты подвергаются гниению.

Гниение – ферментативный процесс расщепления аминокислот до малотоксичных продуктов с выделением газов (NH 3 , СН 4 , СО 2 , меркаптан).

Значение: для поддержания жизнедеятельности микрофлоры кишечника (при гниении Тир образует токсичные продукты фенол и крезол, Тпф – индол и скатол). Токсичные продукты поступают в печень и обезвреживаются.

Катаболизм аминокислот

Основной путь – дезаминирование – ферментативный процесс отщепления аминогруппы в виде аммиака и образования безазотистой кетокислоты.

· Окислительное дезаминирование

· Неокислительное (Сер, Тре)

· Внутримолекулярное (Гис)

· Гидролитическое

Окислительное дезаминирование (основное)

А) Прямое – только для Глу, т.к. для всех остальных ферменты неактивны.

Протекает в 2 стадии:

1) Ферментативное

2) Спонтанное

В итоге образуется аммиак и α-кетоглутарат.


Функции трансаминирования :

ü Т.к. реакция обратимая, служит для синтеза заменимых аминокислот;

ü Начальный этап катаболизма (трансаминирование не является катаболизмом, т.к. количество аминокислот не меняется);

ü Для перераспределения азота в организме;

ü Участвует в малат-аспартатном челночном механизме переноса водорода в гликолизе (6 реакция).

Для определения активности АЛТ и АСТ в клинике для диагностики заболеваний сердца и печени измеряют коэффициент де Ритиса:

При 0,6 – гепатит,

1 – цирроз,

10 – инфаркт миокарда.

Декарбоксилирование аминокислот – ферментативный процесс отщепления карбоксильной группы в виде СО 2 от аминокислот.

В результате образуются биологически активные вещества – биогенные амины .

Ферменты – декарбоксилазы.

Кофермент – пиридоксальфосфат ← вит. В6.

После оказания действия биогенные амины обезвреживаются 2 путями:

1) Метилирование (добавление CH 3 ; донор - SAM);

2) Окисление с отщеплением аминогруппы в виде NH 3 (фермент MAO – моноаминоксидаза).