Каким организмам характерна эукариотическая клетка. Особенности строения клеток. Особенности строения эукариотических и прокариотических клеток

Митохондрии и пластиды имеют собственную кольцевую ДНК и мелкие рибосомы, за счет них делают сами часть своих белков (полуавтономные органоиды).

Митохондрии принимают участие в (окислении органических веществ) – поставляют АТФ (энергию) для жизнедеятельности клетки, являются «энергетическими станциями клетки».

Немембранные органоиды

Рибосомы - это органоиды, которые занимаются . Состоят из двух субъединиц, по химическому составу – из рибосомной РНК и белков. Субъединицы синтезируются в ядрышке. Часть рибосом присоединены к ЭПС, эта ЭПС называется шероховатая (гранулярная).


Клеточный центр состоит из двух центриолей, которые образуют веретено деления во время деления клетки – митоза и мейоза.


Реснички, жгутики служат для движения.

Выберите один, наиболее правильный вариант. В состав цитоплазмы клетки входят
1) белковые нити
2) реснички и жгутики
3) митохондрии
4) клеточный центр и лизосомы

Ответ


Установите соответствие между функциями и органоидами клеток: 1) рибосомы, 2) хлоропласты. Запишите цифры 1 и 2 в правильном порядке.
А) расположены на гранулярной ЭПС
Б) синтез белка
В) фотосинтез
Г) состоят из двух субъединиц
Д) состоят из гран с тилакоидами
Е) образуют полисому

Ответ


Установите соответствие между строением органоида клетки и органоидом: 1) аппарат Гольджи, 2) хлоропласт. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) двумембранный органоид
Б) есть собственная ДНК
В) имеет секреторный аппарат
Г) состоит из мембраны, пузырьков, цистерн
Д) состоит из тилакоидов гран и стромы
Е) одномембранный органоид

Ответ


Установите соответствие между характеристиками и органоидами клетки: 1) хлоропласт, 2) эндоплазматическая сеть. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) система канальцев, образованных мембраной
Б) органоид образован двумя мембранами
В) транспортирует вещества
Г) синтезирует первичное органическое вещество
Д) включает тилакоиды

Ответ


1. Выберите один, наиболее правильный вариант. Одномембранные компоненты клетки -
1) хлоропласты
2) вакуоли
3) клеточный центр
4) рибосомы

Ответ


2. Выберите три варианта. Какие органоиды клетки отделены от цитоплазмы одной мембраной?
1) комплекс Гольджи
2) митохондрия
3) лизосома
4) эндоплазматическая сеть
5) хлоропласт
6) рибосома

Ответ


Все приведенные ниже признаки, кроме двух, можно использовать для описания особенностей строения и функционирования рибосом. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) состоят из триплетов микротрубочек
2) участвуют в процессе биосинтеза белка
3) формируют веретено деления
4) образованы белком и РНК
5) состоят из двух субъединиц

Ответ


Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. Выберите двумембранные органеллы:
1) лизосома
2) рибосома
3) митохондрия
4) аппарат Гольджи
5) хлоропласт

Ответ


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Двухмембранными органоидами растительной клетки являются.
1) хромопласты
2) центриоли
3) лейкопласты
4) рибосомы
5) митохондрии
6) вакуоли

Ответ


ЯДРО1-МИТОХОНДРИЯ1-РИБОСОМА1
Проанализируйте таблицу. Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка:

1) ядро
2) рибосома
3) биосинтез белка
4) цитоплазма
5) окислительное фосфорилирование
6) транскрипция
7) лизосома

Ответ


МИТОХОНДРИЯ2-ХРОМОСОМА1-РИБОСОМА2

Проанализируйте таблицу «Структуры эукариотической клетки». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка.

1) гликолиз
2) хлоропласты
3) трансляция
4) митохондрии
5) транскрипция
6) ядро
7) цитоплазма
8) клеточный центр

Ответ


ЛИЗОСОМА1-РИБОСОМА3-ХЛОРОПЛАСТ1


1) комплекс Гольджи
2) синтез углеводов
3) одномембранный
4) гидролиз крахмала
5) лизосома
6) немембранный

Ответ


ЛИЗОСОМА2-ХЛОРОПЛАСТ2-РИБОСОМА4

Проанализируйте таблицу. Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка.

1) двумембранный
2) эндоплазматическая сеть
3) биосинтез белка
4) клеточный центр
5) немембранный
6) биосинтез углеводов
7) одномембранный
8) лизосома

Ответ


ЛИЗОСОМА3-АГ1-ХЛОРОПЛАСТ3
Проанализируйте таблицу «Структуры клетки». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка.

1) гликолиз
2) лизосома
3) биосинтез белка
4) митохондрия
5) фотосинтез
6) ядро
7) цитоплазма
8) клеточный центр

Ответ


ХЛОРОПЛАСТ4-АГ2-РИБОСОМА5

Проанализируйте таблицу «Структуры клетки». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка.

1) окисление глюкозы
2) рибосома
3) расщепление полимеров
4) хлоропласт
5) синтез белка
6) ядро
7) цитоплазма
8) образование веретена деления

Ответ


АГ3-МИТОХОНДРИЯ3-ЛИЗОСОМА4

Проанализируйте таблицу «Органоиды клетки». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка.

1) хлоропласт
2) эндоплазматическая сеть
3) цитоплазма
4) кариоплазма
5) аппарат Гольджи
6) биологическое окисление
7) транспорт веществ в клетке
8) синтез глюкозы

Ответ


1. Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. Цитоплазма выполняет в клетке ряд функций:
1) осуществляет связь между ядром и органоидами
2) выполняет роль матрицы для синтеза углеводов
3) служит местом расположения ядра и органоидов
4) осуществляет передачу наследственной информации
5) служит местом расположения хромосом в клетках эукариот

Ответ


2. Определите два верных утверждения из общего списка, и запишите цифры, под которыми они указаны. В цитоплазме происходит
1) синтез белков рибосом
2) биосинтез глюкозы
3) синтез инсулина
4) окисление органических веществ до неорганических
5) синтез молекул АТФ

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Выберите немембранные органеллы:
1) митохондрия
2) рибосома
3) ядро
4) микротрубочка
5) аппарат Гольджи

Ответ



Перечисленные ниже признаки, кроме двух, используются для описания функций изображенного органоида клетки. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) служит энергетической станцией
2) расщепляет биополимеры на мономеры
3) обеспечивает упаковку веществ из клетки
4) синтезирует и накапливает молекулы АТФ
5) участвует в биологическом окислении

Ответ


Установите соответствие между строением органоида и его видом: 1) клеточный центр, 2) рибосома
А) состоит из двух перпендикулярно расположенных цилиндров
Б) состоит из двух субъединиц
В) образован микротрубочками
Г) содержит белки, обеспечивающие движение хромосом
Д) содержит белки и нуклеиновую кислоту

Ответ


Установите последовательность расположения структур в эукариотной клетке растения (начиная снаружи)
1) плазматическая мембрана
2) клеточная стенка
3) ядро
4) цитоплазма
5) хромосомы

Ответ


Выберите три варианта. Чем митохондрии отличаются от лизосом?
1) имеют наружную и внутреннюю мембраны
2) имеют многочисленные выросты - кристы
3) участвуют в процессах освобождения энергии
4) в них пировиноградная кислота окисляется до углекислого газа и воды
5) в них биополимеры расщепляются до мономеров
6) участвуют в обмене веществ

Ответ


1. Установите соответствие между характеристикой органоида клетки и его видом: 1) митохондрия, 2) лизосома. Запишите цифры 1 и 2 в правильном порядке.
А) одномембранный органоид
Б) внутреннее содержимое – матрикс

Г) наличие крист
Д) полуавтономный органоид

Ответ


2. Установите соответствие между характеристиками и органоидами клетки: 1) митохондрия, 2) лизосома. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) гидролитическое расщепление биополимеров
Б) окислительное фосфорилирование
В) одномембранный органоид
Г) наличие крист
Д) формирование пищеварительной вакуоли у животных

Ответ


3. Установите соответствие между признаком и органоидом клетки, для которого он характерен: 1) лизосома, 2) митохондрия. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) наличие двух мембран
Б) аккумулирование энергии в АТФ
В) наличие гидролитических ферментов
Г) переваривание органоидов клетки
Д) образование пищеварительных вакуолей у простейших
Е) расщепление органических веществ до углекислого газа и воды

Ответ


Установите соответствие между органоидом клетки: 1) клеточный центр, 2) сократительная вакуоль, 3) митохондрия. Запишите цифры 1-3 в правильном порядке.
A) участвует в делении клеток
Б) синтез АТФ
B) выделение излишек жидкости
Г) «клеточное дыхание»
Д) поддержание постоянства объема клеток
Е) участвует в развитии жгутиков и ресничек

Ответ


1. Установите соответствие между названием органоидов и наличием или отсутствием у них клеточной мембраны: 1) мембранные, 2) немембранные. Запишите цифры 1 и 2 в правильном порядке.
А) вакуоли
Б) лизосомы
В) клеточный центр
Г) рибосомы
Д) пластиды
Е) аппарат Гольджи

Ответ


2. Установите соответствие между органоидами клетки и их группами: 1) мембранные, 2) немембранные. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) митохондрии
Б) рибосомы
В) центриоли
Г) аппарат Гольджи
Д) эндоплaзматическая сеть
Е) микротрубочки

Ответ


3. Какие три из перечисленных органоидов являются мембранными?
1) лизосомы
2) центриоли
3) рибосомы
4) микротрубочки
5) вакуоли
6) лейкопласты

Ответ


1. Все перечисленные ниже структуры клетки, кроме двух, не содержат ДНК. Определите две структуры клетки, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) рибосомы
2) комплекс Гольджи
3) клеточный центр
4) митохондрии
5) пластиды

Ответ


2. Выберите три органоида клетки, содержащих наследственную информацию.

1) ядро
2) лизосомы
3) аппарат Гольджи
4) рибосомы
5) митохондрии
6) хлоропласты

Ответ


3. Выберите два верных ответа из пяти. В каких структурах клетки эукариот локализованы молекулы ДНК?
1) цитоплазме
2) ядре
3) митохондриях
4) рибосомах
5) лизосомах

Ответ


Выберите один, наиболее правильный вариант. Где в клетке имеются рибосомы, кроме ЭПС
1) в центриолях клеточного центра
2) в аппарате Гольджи
3) в митохондриях
4) в лизосомах

Ответ


Каковы особенности строения и функций рибосом? Выберите три правильных варианта.
1) имеют одну мембрану
2) состоят из молекул ДНК
3) расщепляют органические вещества
4) состоят из большой и малой частиц
5) участвуют в процессе биосинтеза белка
6) состоят из РНК и белка

Ответ


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. В структуру ядра эукариотической клетки входят
1) хроматин
2) клеточный центр
3) аппарат Гольджи
4) ядрышко
5) цитоплазма
6) кариоплазма

Ответ


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Какие процессы происходят в ядре клетки?
1) образование веретена деления
2) формирование лизосом
3) удвоение молекул ДНК
4) синтез молекул иРНК
5) образование митохондрий
6) формирование субъединиц рибосом

Ответ


Установите соответствие между органоидом клетки и типом строения, к которому его относят: 1) одномембранный, 2) двумембранный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) лизосома
Б) хлоропласт
В) митохондрия
Г) ЭПС
Д) аппарат Гольджи

Ответ


Установите соответствие между характеристиками и органоидами: 1) хлоропласт, 2) митохондрия. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) наличие стопок гран
Б) синтез углеводов
В) реакции диссимиляции
Г) транспорт электронов, возбуждённых фотонами
Д) синтез органических веществ из неорганических
Е) наличие многочисленных крист

Ответ



Все перечисленные ниже признаки, кроме двух, можно использовать для описания изображённого на рисунке органоида клетки. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) одномембранный органоид
2) содержит фрагменты рибосом
3) оболочка пронизана порами
4) содержит молекулы ДНК
5) содержит митохондрии

Ответ



Перечисленные ниже термины, кроме двух, используются для характеристики органоида клетки, обозначенного на рисунке вопросительным знаком. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) мембранный органоид
2) репликация
3) расхождение хромосом
4) центриоли
5) веретено деления

Ответ


Установите соответствие между характеристиками органоида клетки и его видом: 1) клеточный центр, 2) эндоплазматическая сеть. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) транспортирует органические вещества
Б) образует веретено деления
В) состоит из двух центриолей
Г) одномембранный органоид
Д) содержит рибосомы
Е) немембранный органоид

Ответ


1. Установите соответствие между характеристиками и органоидами клетки: 1) ядро, 2) митохондрия. Запишите цифры 1 и 2 в порядке, соответствующем цифрам.
А) замкнутая молекула ДНК
Б) окислительные ферменты на кристах
В) внутреннее содержимое – кариоплазма
Г) линейные хромосомы
Д) наличие хроматина в интерфазе
Е) складчатая внутренняя мембрана

Ответ


2. Установите соответствие между характеристиками и органоидами клеток: 1) ядро, 2) митохондрия. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) является местом синтеза АТФ
Б) отвечает за хранение генетической информации клетки
В) содержит кольцевую ДНК
Г) имеет кристы
Д) имеет одно или несколько ядрышек

Ответ


Установите соответствие между признаками и органоидами клетки: 1) лизосома, 2) рибосома. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) состоит из двух субъединиц
Б) является одномембранной структурой
В) участвует в синтезе полипептидной цепи
Г) содержит гидролитические ферменты
Д) размещается на мембране эндоплазматической сети
Е) превращает полимеры в мономеры

Ответ


Установите соответствие между характеристиками и клеточными органоидами: 1) митохондрия, 2) рибосома. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) немембранный органоид
Б) наличие собственной ДНК
В) функция - биосинтез белка
Г) состоит из большой и малой субъединиц
Д) наличие крист
Е) полуавтономный органоид

Ответ



Все перечисленные ниже признаки, кроме двух, используются для описания изображенной на рисунке структуры клетки. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) состоит из РНК и белков
2) состоит из трех субъединиц
3) синтезируется в гиалоплазме
4) осуществляет синтез белка
5) может прикрепляться к мембране ЭПС

Ответ

© Д.В.Поздняков, 2009-2019

Характеристика эукариотических клеток

Средняя величина эукариотической клетки – около 13 мкм. Клетка разделена внутренними мембранами на различные компартменты (реакционные пространства). Три вида органелл четко отграничены от остальной протоплазмы (цитоплазмы) оболочкой из двух мембран: клеточное ядро, митохондрии и пластиды. Пластиды служат главным образом для фотосинтеза, а митохондрии – для выработки энергии. Все пласты содержат ДНК в качестве носителя генетической информации.

Цитоплазма содержит различные органеллы, в том числе рибосомы, которые имеются также в пластидах и митохондриях. Все органеллы лежат в матриксе.

Характеристика прокариотических клеток

Средняя величина прокариотических клеток составляет 5 мкм. У них нет никаких внутренних мембран, кроме выпячиваний внутренних мембран и плазматической мембраны. Вместо клеточного ядра имеется нуклеоид, лишенный оболочки и состоящий из одной-единственной молекулы ДНК. Кроме того, бактерии могут содержать ДНК в форме крошечных плазмид, сходных с внеядерными ДНК эукариот.

В прокариотических клетках , способных к фотосинтезу (синезеленые водоросли, зеленые и пурпурные бактерии), имеются различно структурированные крупные выпячивания мембраны – тилакоиды, по своей функции соответствующие пластидам эукариотДля прокариот характерно наличие муреннового мешка – механически прочного элемента клеточной стенки.

Основные компоненты эукариотической клетки. Их строение и функции.

Оболочка обязательно содержит плазматическую мембрану. Кроме нее, у растений и грибов имеется клеточная стенка, а у животных – гликокаликс.

У растений и грибов выделяют протопласт – все содержимое клетки, кроме клеточной стенки.

Цитоплазма – это внутренняя полужидкая среда клетки. Состоит из гиалоплазмы, включений и органоидов. В цитоплазме выделяют экзоплазму (кортикальный слой, лежит непосредственно под мембраной, не содержит органоидов) эндоплазму (внутренняя часть цитоплазмы).



Гиалоплазма (цитозоль) – это основное вещество цитоплазмы, коллоидный раствор крупных органических молекул.Обеспечивает взаимосвязь всех компонентов клетки

В ней происходят основные процессы обмена веществ, например, гликолиз.

Включения – это необязательные компоненты клетки, которые могут появляться и исчезать в зависимости от состояния клетки. Например: капли жира, гранулы крахмала, зерна белка.

Органоиды бывают мембранные и немембранные.

Мембранные органоиды бывают одномембранные (ЭПС, АГ, лизосомы, вакуоли) и двухмембранные (пластиды, митохондрии).

К немембранным органоидам относятся рибосомы и клеточный центр.

Органоиды эукариотической клетки, их строение и функции.

Эндоплазматическая сеть - одномембранный органоид. Представляет собой систему мембран, формирующих «цистерны» и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство - полости ЭПС. Различают два вида ЭПС: 1) шероховатая, содержащая на своей поверхности рибосомы, и 2) гладкая, мембраны которой рибосом не несут.

Функции: 1) транспорт веществ из одной части клетки в другую, 2) разделение цитоплазмы клетки на компартменты («отсеки»), 3) синтез углеводов и липидов (гладкая ЭПС), 4) синтез белка (шероховатая ЭПС)

Аппарат Гольджи - одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями. С ними связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-х–6-ти «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой.

Функции аппарата Гольджи: 1) накопление белков, липидов, углеводов, 2) «упаковка» в мембранные пузырьки белков, липидов, углеводов, 4) секреция белков, липидов, углеводов, 5) синтез углеводов и липидов, 6) место образования лизосом.

Лизосомы - одномембранные органоиды. Представляют собой мелкие пузырьки содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. Расщепление веществ с помощью ферментов называют лизисом.

Функции лизосом: 1) внутриклеточное переваривание органических веществ, 2) уничтожение ненужных клеточных и неклеточных структур, 3) участие в процессах реорганизации клеток.

Вакуоли - одномембранные органоиды, представляют собой «емкости», заполненные водными растворами органических и неорганических веществ.Жидкость, заполняющая растительную вакуоль, называется клеточным соком.

Функции вакуоли: 1) накопление и хранение воды, 2) регуляция водно-солевого обмена, 3) поддержание тургорного давления, 4) накопление водорастворимых метаболитов, запасных питательных веществ, 5) окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян

Митохондрия ограничена двумя мембранами. Наружная мембрана митохондрий гладкая, внутренняя образует многочисленные складки - кристы. Кристы увеличивают площадь поверхности внутренней мембраны, на которой размещаются мультиферментные системы, участвующие в процессах синтеза молекул АТФ. Внутреннее пространство митохондрий заполнено матриксом. В матриксе содержатся кольцевая ДНК, специфические иРНК, рибосомы прокариотического типа, ферменты цикла Кребса.

Функции митохондрий: 1) синтез АТФ, 2) кислородное расщепление органических веществ.

Пластиды характерны только для растительных клеток. Различают три основных типа пластид: лейкопласты - бесцветные пластиды в клетках неокрашенных частей растений, хромопласты - окрашенные пластиды обычно желтого, красного и оранжевого цветов, хлоропласты - зеленые пластиды.

Хлоропласты. В клетках высших растений хлоропласты имеют форму двояковыпуклой линзы. Хлоропласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом. Группа тилакоидов, уложенных наподобие стопки монет, называется граной. В мембраны тилакоидов встроены фотосинтетические пигменты и ферменты, обеспечивающие синтез АТФ. Главным фотосинтетическим пигментом является хлорофилл, который и обусловливает зеленый цвет хлоропластов.

Внутреннее пространство хлоропластов заполнено стромой . В строме имеются кольцевая ДНК, рибосомы, ферменты цикла Кальвина, зерна крахмала.

Функция хлоропластов : фотосинтез.

Функция лейкопластов : синтез, накопление и хранение запасных питательных веществ.

Хромопласты. В строме имеются кольцевая ДНК и пигменты - каротиноиды, придающие хромопластам желтую, красную или оранжевую окраску.

Функция хромопластов: окрашивание цветов и плодов и тем самым привлечение опылителей и распространителей семян.

Рибосомы - немембранные органоиды, диаметр примерно 20 нм. Рибосомы состоят из двух субъединиц - большой и малой. Химический состав рибосом - белки и рРНК. Молекулы рРНК составляют 50–63% массы рибосомы и образуют ее структурный каркас. Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы - полирибосомы (полисомы) . В таких комплексах они связаны друг с другом одной молекулой иРНК. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка.

Функция рибосом: сборка полипептидной цепочки (синтез белка).

Цитоскелет образован микротрубочками и микрофиламентами. Микротрубочки - цилиндрические неразветвленные структуры. Основной химический компонент - белок тубулин. Микротрубочки разрушаются под воздействием колхицина. Микрофиламенты - нити, состоят из белка актина. Микротрубочки и микрофиламенты образуют в цитоплазме сложные переплетения.

Функции цитоскелета: 1) определение формы клетки, 2) опора для органоидов, 3) образование веретена деления, 4) участие в движениях клетки, 5) организация тока цитоплазмы.

Клеточный центр включает в себя две центриоли и центросферу. Центриоль представляет собой цилиндр, стенка которого образована девятью группами из трех слившихся микротрубочек. Центриоли объединены в пары, где они расположены под прямым углом друг к другу. Перед делением клетки центриоли расходятся к противоположным полюсам, и возле каждой из них возникает дочерняя центриоль. Они формируют веретено деления, способствующее равномерному распределению генетического материала между дочерними клетками.

Функции: 1) обеспечение расхождения хромосом к полюсам клетки во время митоза или мейоза, 2) центр организации цитоскелета.

Плазматическая мембрана (плазмалемма)

В основе всех мембран клетки лежит двойной слой молекул липидов . Их гидрофобные «хвосты», состоящие из остатков молекул жирных кислот, обращены внутрь двойного слоя. Снаружи располагаются гидрофильные «головки», состоящие из остатка молекулы спирта глицерина. В состав мембран чаще всего входят фосфолипиды и гликолипиды (их молекулы наиболее полярны), а также жиры и жироподобные вещества (например, холестерин). Липиды являются основой мембраны, обеспечивают ее устойчивость и прочность, т.е. выполняют структурную (строительную) функцию. Эта функция возможна благодаря гидрофобности липидов.

К заряженным головкам липидов, с помощью электростатических взаимодействий прикрепляются белки . Мембранные белки выполняют структурные, каталитические и транспортные функции.В зависимости от расположения различают погруженные, периферические и пронизывающие белки. Погруженные белки слегка погружены в двойной слой липидов и являются ферментами, которые катализируют различные биохимические реакции. Периферические белки расположены на поверхности двойного слоя липидов. Они стабилизируют расположение погруженных белков-ферментов. Пронизывающие белки пронизывают мембрану насквозь и выполняют транспортные функции.

На наружной поверхности мембраны расположены молекулы углеводов (олигосахариды), которые выполняют рецепторные функции. Олигосахариды воспринимают факторы внешней среды клетки и обеспечивают ее реакцию, изменяют проницаемость мембраны, обеспечивают «распознавание» клеток одного типа и соединение их в ткани. Совокупность олигосахаридов на поверхности животной клетки называется гликокаликсом.

Функции плазматической мембраны

  1. Барьерная функция. Мембрана ограничивает проникновение в клетку чужеродных, токсичных веществ.
  2. Регуляторная. Олигосахариды, располагающиеся на поверхности плазматической мембраны выполняют роль рецепторов, воспринимающих действие различных веществ и изменяющих проницаемость мембраны.
  3. Каталитическая. На поверхности мембран располагаются многочисленные ферменты, катализирующие биохимические реакции.
  4. Мембранный транспорт. Различают несколько видов мембранного транспорта.

А). Транспорт крупных молекул органических веществ, бактерий и вирусов путем эндоцитоза (проникновение в клетку) или экзоцитоза (выведение из клетки). Эндоцитоз - это поглощение веществ путем окружения их выростами плазматической мембраны. При этом различают фагоцитоз (поглощение твердых веществ) и пиноцитоз (поглощение жидкости). Фагоцитоз характерен для одноклеточных организмов и для фагоцитов многоклеточных, которые таким путем обеспечивают уничтожение инородных частиц. Пиноцитоз характерен для одноклеточных организмов и для эпителиальных клеток кишечника. Экзоцитоз - выделение веществ из клетки - осуществляется в обратном порядке.

Б). Небольшие молекулы органических и неорганических веществ, ионы могут поступать в клетку путем пассивного транспорта (диффузии), если вещество перемещается из области высокой концентрации в область низкой концентрации. Пассивный транспорт осуществляется всегда без затрат энергии.

Различают 2 вида пассивного транспорта: обычную диффузию и облегченную диффузию.

Путем обычной диффузии перемещаются:

  1. жирорастворимые вещества - напрямую через мембрану
  2. гидрофильные мелкие молекулы (воды, углекислого газа) и ионы - через белковые поры, которые образованы пронизывающими белками

Облегченная диффузия осуществляется с помощью специальных белков-переносчиков. Таким образом переносятся крупные гидрофильные молекулы, например, глюкоза. Глюкоза соединяется с белком-переносчиком. Образуется комплекс, хорошо растворимый в мембране, что облегчает проникновение глюкозы в клетку. Скорость облегченной диффузии выше, чем у обычной диффузии.

В). Транспорт веществ через мембрану может осуществляться и путем активного транспорта. Активный транспорт осуществляется только с затратами энергии, так как происходит перемещение веществ из области низкой концентрации в область высокой концентрации. Наиболее изучен процесс переноса ионов натрия и калия с помощью калий-натриевого насоса.

Цитоплазма

Цитоплазма представляет собой внутреннее содержимое клетки и состоит из основного вещества (гиалоплазмы), органоидов и включений.

Гиалоплазма - жидкая (желеобразная) часть клетки, представляет собой раствор органических и неорганических веществ. Ее функции:

  1. По гиалоплазме перемещаются различные вещества (и-РНК, т-РНК, аминокислоты, АТФ и др).
  2. В гиалоплазме протекают разнообразные биохимические реакции.
  3. Гиалоплазма обеспечивает химическое взаимодействие всех клеточных структур и объединяет их в одно целое.
  4. В гиалоплазме откладываются разнообразные по химическому составу включения.

Включения - это непостоянные клеточные структуры, представляют собой отложения веществ , временно не участвующих в обмене веществ клетки. По химическому составу и по функциям включения могут быть различными.

Примеры включений:

  1. минеральные (например, кристаллы солей)
  2. трофические (гранулы белков, полисахаридов, капли липидов)
  3. витаминные
  4. пигментные (например, гранулы пигмента в клетках сетчатки глаза) и др.

Органоиды - это постоянные клеточные структуры, выполняющие определенные функции. В зависимости от строения цитоплазматические органоиды разделяют на мембранные органоиды и немембранные органоиды.

Особенности строения и функций мембранных органоидов

Мембранные органоиды - полые структуры, стенки которых образованы одинарной или двойной мембраной.

  1. Органоиды, образованные одинарной мембраной: эндоплазматическая сеть, комплекс Гольджи, лизосомы, вакуоли. Эти органоиды имеют сходный химический состав мембран и образуют внутриклеточную систему синтеза и транспорта веществ.
  2. Двумембранные органоиды. Их стенки образованы двойной мембраной. Это – митохондрии (во всех!!! эукариотических клетках) и пластиды (только в клетках растений!!!).

Одномембранные органоиды

1.Эндоплазматическая сеть (ЭПС)

ЭПС - это одномембранный органоид, состоящий из полостей и канальцев, соединенных между собой. Эндоплазматическая сеть структурно связана с ядром: от наружной мембраны ядра отходит мембрана, образующая стенки эндоплазматической сети. ЭПС бывает 2 видов: шероховатая (гранулярная) и гладкая (агранулярная). В любой клетке присутствуют оба вида ЭПС.

На мембранах шероховатой ЭПС располагаются многочисленные мелкие гранулы - рибосомы, специальные органоиды, с помощью которых синтезируются белки. Поэтому нетрудно догадаться, что на поверхности шероховатой ЭПС синтезируется белки, которые проникают внутрь шероховатой ЭПС и по ее полостям могут переместиться в любое место клетки.

Мембраны гладкой ЭПС лишены рибосом, но зато в ее мембранах встроены ферменты, осуществляющие синтез углеводов и липидов. После синтеза углеводы и липиды тоже могут перемещаться по мембранам ЭПС в любое место клетки Степень развития вида ЭПС зависит от специализации клетки. Например, в клетках, синтезирующих белковые гормоны, будет лучше развита гранулярная ЭПС, а в клетках, синтезирующих жироподобные вещества - агранулярная ЭПС.

Функции ЭПС:

  1. Синтез веществ. На шероховатой ЭПС синтезируются белки, а на гладкой - липиды и углеводы.
  2. Транспортная функция. По полостям ЭПС синтезированные вещества перемещаются в любое место клетки.

2. Комплекс Гольджи

Комплекс Гольджи (диктиосома) представляет собой стопку плоских мембранных мешочков, которые называются цистернами. Цистерны полностью изолированы друг от друга и не соединяются между собой. По краям от цистерн ответвляются многочисленные трубочки и пузырьки. От ЭПС время от времени отшнуровываются вакуоли (пузырьки) с синтезированными веществами, которые перемещаются к комплексу Гольджи и соединяются с ним. Вещества, синтезированные в ЭПС, усложняются и накапливаются в комплексе Гольджи.

Функции комплекса Гольджи

  1. В цистернах комплекса Гольджи происходит дальнейшее химическое преобразование и усложнение веществ, поступивших в него из ЭПС. Например, формируются вещества, необходимые для обновления мембраны клетки (гликопротеиды, гликолипиды), полисахариды.
  2. В комплексе Гольджи происходит накопление веществ и их временное «хранение»
  3. Образованные вещества «упаковываются» в пузырьки (в вакуоли) и в таком виде перемещаются по клетке.
  4. В комплексе Гольджи образуются лизосомы (сферические органоиды с расщепляющими ферментами).

3. Лизосомы («лизис» - распад, растворение)

Лизосомы - мелкие сферические органоиды, стенки которых образованы одинарной мембраной; содержат литические (расщепляющие) ферменты. Сначала лизосомы, отшнуровавшиеся от комплекса Гольджи, содержат неактивные ферменты. При определенных условиях их ферменты активизируются. При слиянии лизосомы с фагоцитозной или пиноцитозной вакуолью образуется пищеварительная вакуоль, в которой происходит внутриклеточное переваривание различных веществ.

Функции лизосом:

  1. Осуществляют расщепление веществ, поглощенных в результате фагоцитоза и пиноцитоза. Биополимеры расщепляются до мономеров, которые поступают в клетку и используются на ее нужды. Например, они могут быть использованы для синтеза новых органических веществ или могут подвергаться дальнейшему расщеплению для получения энергии.
  2. Разрушают старые, поврежденные, избыточные органоиды. Ращепление органоидов может происходить и во время голодания клетки.
  3. Осуществляют аутолиз (расщепление) клетки (рассасывание хвоста у головастиков, разжижение тканей в зоне воспаления, разрушение клеток хряща в процессе формирования костной ткани и др.).

4. Вакуоли

Вакуоли - сферические одномембранные органоиды, представляющие собой резервуары воды и растворенных в ней веществ. К вакуолям относятся: фагоцитозные и пиноцитозные вакуоли, пищеварительные вакуоли, пузырьки, отшнуровывающиеся от ЭПС и комплекса Гольджи. Вакуоли животной клетки - мелкие, многочисленные, но их объем не превышает 5% от всего объема клетки. Их основная функция - транспорт веществ по клетке, олсуществление взаимосвязи между органоидами.

В клетке растений на долю вакуолей приходится до 90% объема. В зрелой растительной клетки вакуоль одна, занимает центральное положение. Мембрана вакуоли растительной клетки - тонопласт, ее содержимое - клеточный сок. Функции вакуолей в растительной клетке: поддержание клеточной оболочки в напряжении, накопление различных веществ, в том числе отходов жизнедеятельности клетки. Вакуоли поставляют воду для процессов фотосинтеза.

В состав клеточного сока могут входить:

-запасные вещества, которые могут использоваться самой клеткой (органические кислоты, аминокислоты, сахара, белки).

-вещества, которые выводятся из обмена веществ клетки и накапливаются в вакуоли (фенолы, дубильные вещества, алкалоиды и др.)

-фитогормоны, фитонциды,

-пигменты (красящие вещества), которые придают клеточному соку пурпурный, красный, синий, фиолетовый цвет, а иногда желтый или кремовый. Именно пигменты клеточного сока окрашивают лепестки цветков, плоды, корнеплоды

Канальцево-вакуолярная система клетки (система транспорта и синтеза веществ)

ЭПС, комплекс Гольджи, лизосомы и вакуоли составляют единую канальцево-вакуолярную систему клетки. Все ее элементы имеют сходный химический состав мембран, поэтому возможно их взаимодействие. Все элементы КВС берут начало от ЭПС. От ЭПС отшнуровываются вакуоли, поступающие к комплексу Гольджи, от комплекса Гольджи отшнуровываются пузырьки, сливающиеся с мембраной клетки, лизосомы.

Значение КВС:

  1. Мембраны КВС делят содержимое клетки на отдельные отсеки (компа ртменты), в которых протекают определенные процессы. Это делает возможным одновременное протекание в клетке различных процессов, иногда прямопротивоположных.
  2. В результате деятельности КВС происходит постоянное обновление мембраны клетки.

Двумембранные органоиды

Двумембранный органоид - это полая структура, стенки которой образованы двойной мембраной. Известно 2 вида двумембранных органоидов: митохондрии и пластиды. Митохондрии характерны для всех клеток эукариот, пластиды встречаются только в клетках растений. Митохондрии и пластиды являются компонентами энергетической системы клетки, так в результате их функционирования синтезируется АТФ.

1. Строение и функции митохондрий

Митохондрия – двумембранный полуавтономный органоид, осуществляющий синтез АТФ.

Форма митохондрий разнообразна, они могут быть палочковидными, нитевидными или шаровидными. Стенки митохондрий образованы двумя мембранами: внешней и внутренней. Внешняя мембрана - гладкая, а внутренняя образует многочисленные складки - кристы. Во внутренней мембране встроены многочисленные ферментные комплексы, которые осуществляют синтез АТФ.

Складчатость внутренней мембраны имеет большое значение. На складчатой поверхности может расположиться больше ферментных комплексов, чем на гладкой поверхности. Количество складок в митохондрии может изменяться в зависимости от потребности клеток в энергии.Если клетка нуждается в энергии, то число крист увеличивается. Соответственно увеличивается и число ферментных комплексов, расположенных на кристах. В результате будет образовано большее количество АТФ. Кроме того, в клетке может возрастать общее количество митохондрий. Если клетка не нуждается в большом количестве энергии, то количество митохондрий в клетке снижается и уменьшается количество крист внутри митохондрий.

Внутреннее пространство митохондрий заполнено бесструктурным однородным веществом (матриксом). В матриксе располагаются кольцевые молекулы ДНК, РНК и мелкие рибосомы (как у прокариот). В ДНК митохондрий записана информация о строении митохондриальных белков. РНК и рибосомы осуществляют их синтез. Рибосомы митохондрий мелкие, по строению они очень похожи на рибосомы бактерий. . Некоторые ученые считают, что митохондрии образовались из бактерий, проникших в эукариотическую клетку Возможно, это происходило на начальных этапах возникновения жизни.

Митохондрии называют полуавтономными органоидами. Это означает, что они зависят от клетки, но в то же время сохраняют некоторую самостоятельность. Так, например, митохондрии сами синтезируют собственные белки, в том числе и ферменты своих ферментных комплексов. Кроме того, митохондрии могут размножаться путем деления независимо от деления клетки.

2. Пластиды

Хлоропласты имеют оболочку из 2 мембран. Наружная оболочка гладкая, а внутренняя образует многочисленные пузырьки (тилакоиды). Стопка тилакоидов - грана. Граны располагаются в шахматном порядке для лучшего проникновения солнечного света. В мембранах тилакоидов встроены молекулы зеленого пигмента хлорофилла, поэтому хлоропласты имеют зеленый цвет. С помощью хлорофилла осуществляется фотосинтез. Таким образом, главная функция хлоропластов - осуществление процесса фотосинтеза.

Пространство между гранами заполнено матриксом. В матриксе находятся ДНК, РНК, рибосомы (мелкие, как у прокариот), капли липидов, зерна крахмала.

Хлоропласты, так же как и митохондрии, являются полуавтономными органоидами растительной клетки, так как могут самостоятельно синтезировать собственные белки и способны делиться независимо от деления клетки.

Хромопласты - пластиды, имеющие красную, оранжевую или желтую окраску. Окраску хромопластам придают пигменты каротиноиды, которые расположены в матриксе. Тилакоиды развиты слабо или вообще отсутствуют. Точная функция хромопластов неизвестна. Возможно, они привлекают к созревшим плодам животных.

Лейкопласты - бесцветные пластиды, расположены в клетках бесцветных тканей. Тилакоиды неразвиты. В лейкопластах накапливается крахмал, липиды и белки.

Пластиды могут взаимно превращаться друг в друга: лейкопласты - хлоропласты - хромопласты.

Особенности строения и функций немембранных органоидов

  1. Рибосома - немембранный органоид клетки, осуществляющий биосинтез белка. Состоит из двух субъединиц - малой и большой. Рибосома состоит из 3-4 молекул р-РНК, образующих ее каркас, и нескольких десятков молекул различных белков. Рибосомы синтезируются в ядрышке. В клетке рибосомы могут располагаться на поверхности гранулярной ЭПС или в гиалоплазме клетки в виде полисом. Полисома - это комплекс и-РНК и нескольких рибосом, считывающих с нее информацию. Функция рибосом - биосинтез белка. Если рибосомы располагаются на ЭПС, то синтезируемые ими белки используются на нужды всего организма, рибосомы гиалоплазмы синтезируют белки на нужды самой клетки. Рибосомы прокариотических клеток мельче, чем рибосомы эукариот. Такие же мелкие рибосомы находятся в митохондриях и пластидах.
  2. Микронити - нити сократимого белка актина или миозина, расположенные в поверхностном слое гиалоплазмы, непосредственно под плазматической мембраной. Способны к сокращению, в результате происходит перемещение гиалоплазмы, впячивание или выпячивание клеточной мембраны, образование перетяжки во время деления клетки.
  3. Микротрубочки - полые цилиндрические структуры клетки, состоящие из несократимого белка тубулина. Микротрубочки не способны к сокращению. Стенки микротрубочки образованы 13 нитями белка тубулина. Микротрубочки располагаются в толще гиалоплазмы клеток. Функции микротрубочек:
  4. создают эластичный и довольно прочный клеточный каркас, который поддерживает форму клетки.
  5. образуют веретено деления клетки и таким образом участвуют в распределении хромосом при митозе и мейозе
  6. обеспечивают передвижение органоидов
  7. входят в состав ресничек, жгутиков, клеточного центра.
  8. Центриоли - цилиндрическая структура, стенки которой образованы 9 триплетами микротрубочек. Центриоли расположены парами перпендикулярно друг другу. В области центриолей образуются микротрубочек веретена деления. Совокупность центриолей и микротрубочек веретена деления называют клеточным центром.
  9. Реснички и жгутики - органоиды движения. Главная функция - передвижение клеток или перемещение вдоль клеток окружающей их жидкости или частиц. В многоклеточном организме реснички характерны для эпителия дыхательных путей, маточных труб, а жгутики - для сперматозоидов. Реснички и жгутики отличаются только размерами - жгутики более длинные. В их основе - микротрубочки, расположенные по системе 9(2) + 2. Это значит, что 9 двойных микротрубочек (дуплетов) образуют стенку цилиндра, в центре которого располагаются 2 одиночные микротрубочки. Опорой ресничек и жгутиков являются базальные тельца. Базальное тельце имееет цилиндрическую форму, образовано 9 тройками (триплетами) микротрубочек, в центре базального тельца микротрубочек нет.

Микронити, микротрубочки, центриоли, а в некоторых клетках - реснички и жгутики с базальными тельцами образуют опорно-двигательную систему клетки или цитоскелет. Цитоскелет пронизывает всю гиалоплазму, определяет форму клетки и ее изменение во время деления или перемещения некоторых клеток, обеспечивает перемещение органоидов в клетке.

ИНФОРМАЦИОННАЯ СИСТЕМА КЛЕТКИ

В состав информационной системы клетки входят: ядро, рибосомы и разнообразные органические молекулы (и-РНК, белки-ферменты, АТФ и др.) Информационная система клетки обеспечивает хранение, воспроизводство и реализацию генетической информации, заключенной в ДНК.

Генетическая информация - это информация о свойствах организма, которая передается по наследству. Поскольку все свойства организмов зависят от разнообразных белков, то генетическая информация содержит сведения о строении белков. Генетическая информация записана в ДНК различными последовательностями ее нуклеотидов.

Место хранения генетической информации - ядро. Там же происходит ее воспроизводство путем удвоения ДНК.

Реализация генетической информации осуществляется в цитоплазме в процессе биосинтеза белка с помощью рибосом. Перенос информации из ядра в цитоплазму осуществляется молекулами и-РНК.

Информационная система функционирует только в периодах между делениями клетки. Во время деления ядро распадается, ДНК суперспирализуется, считывание генетической информации становится невозможным и биосинтез белка прекращается.

СТРОЕНИЕ И ФУНКЦИИ ЯДРА

Ядро - важнейшая составная часть эукариотической клетки. Ядро не является органоидом клетки, так как во время деления клетки распадается.

Функции ядра:

  1. хранение генетической информации и ее воспроизводство
  2. управление жизнедеятельностью клетки путем реализации генетической информации, заключенной в ДНК.

В строении ядра различают 4 основных компонента:

-ядерная оболочка (кариолемма)

-ядерный сок (кариоплазма, кариолимфа, нуклеплазма)

Ядрышко

Хроматин.

Оформленное ядро присутствует в клетке только в периоде между ее делениями (в интерфазе). Во время деления клетки оболочка ядра распадается, исчезает ядрышко, а хроматин спирализуется и преобразуется в хромосомы.

Ядерная оболочка состоит из 2 близко расположенных мембран - наружной и внутренней. Между ними находится пространство. Наружная мембрана переходит в мембрану эндоплазматической сети, к ней могут быть прикреплены рибосомы. Через определенное расстояние обе мембраны сливаются друг с другом, образуя отверстия - ядерные поры. Число пор может изменяться в зависимости от активности ядра.

Функции ядерной оболочки:

  1. Защитная. Защищает генетический материал от различных отрицательных воздействий.
  2. Обеспечивает локализацию (размещение) генетического материала в определенном месте клетки.
  3. Через поры ядра происходит обмен веществами между ядром и цитоплазмой. В ядро поступают белки-гистоны и рибосомные белки, синтезирующиеся в цитоплазме. Из ядра в цитоплазму перемещаются и-РНК, т-РНК, субъединицы рибосом.
  4. Ядерная оболочка обеспечивает определенную реакцию среды внутри ядра, что необходимо для его нормального функционирования
  5. Структурная. Ядерная оболочка придает ядру определенную форму

В кариоплазме ядра располагается хроматин. Хроматин является нуклеопротеидом, так как состоит из ДНК (75%) и белков (25%). Участки ДНК обвивают группы из 8 молекул белков, в результате ДНК конденсируется (укорачивается) и становится более компактной. Степень конденсации хроматина в разных участках ядра различна. В связи с этим различают гетерохроматин и эухроматин.

Эухроматин выглядит как сеть из тонких нитей. Эухроматин генетически активен, генетическая информация ДНК копируется на молекулы РНК (процесс транскрипции), переносится в цитоплазму, где на ее основе синтезируются различные белки.

Гетерохроматин находится в более конденсированном состоянии, поэтому генетически неактивен (в его состав входит неинформативная ДНК), генетическая информация не реализуется.

Перед делением клетки хроматин спирализуется и конденсируется (уплотняется), образуются плотные Х-образные тельца - митотические хромосомы. Линейные размеры ДНК уменьшаются в 10 000 раз. К этому времени ядерная оболочка разрушается и митотические хромосомы свободно лежат в цитоплазме клетки.

Митотические хромосомы в начале деления состоят из двух хроматид. Каждая хроматида представляет собой суперспирализованную молекулу ДНК. Молекулы ДНК двух хроматид являются абсолютно одинаковыми молекулами, несут одинаковую генетическую информацию, так как образовались в результате удвоения одной материнской мо лекулы ДНК. Хроматиды соединены в области перетяжки - центромеры. Центромера делит каждую хроматиду на 2 плеча. У некоторых хромосом образуется дополнительная перетяжка - ядрышковый организатор. На его основе образуется ядрышко.

Во время деления клетки хромосомы тоже делятся. Каждая хромосома разделяется на 2 хроматиды, которые с этого момента являются самостоятельными хромосомами палочковидной формы.Таким образом, в начале деления клетки хромосомы представляют собой х-образные тельца (образованы двумя суперспирализованными молекулами ДНК), в конце деления - палочковидные тельца (образованы одной суперспирализованнной молекулой ДНК).

Во время интерфазы происходит удвоение молекулы ДНК, поэтому в начале деления, после конденсации хроматина, вновь образуется Х-образная хромосома из 2 хроматид.

Ядрышко - округлое, плотное тельце внутри ядра, мембраной не огранечено. Представляет собой скопление органических молекул и формирующихся субъединиц рибосом.

Ядрышко образуется в зоне ядрышкового организатора. Ядрышковый организатор - это определенный участок какой-либо хромосомы, в котором располагаются гены р-РНК. На их основе синтезируется р-РНК. Р-РНК соединяется с рибосомными белками, которые поступают в ядро из цитоплазмы через ядерные поры. Образуются рибонуклеопротеиды, из них формируются субъединицы рибосом. Таким образом, ядрышко - это место образования субъединиц рибосом.

Во время деления клетки хроматин конденсируется, прекращается синтез молекул р-РНК и ядрышко распадается.

Кариоплазма или ядерный сок - матрикс ядра, в котором располагаются ядрышко и хроматин. Представляет собой гелеобразное вещество, в его состав входят ферменты, рибосомные белки, белки-гистоны, нуклеотиды, продукты деятельности ядрышка и хроматина.

Функции кариоплазмы:

1. Связывает в единое целое все части ядра.

2. Через кариоплазму происходит транспорт различных веществ.

ХРОМОСОМНЫЕ НАБОРЫ

Хромосомный набор - совокупность хромосом клетки. Хромосомные наборы разных видов организмов могут отличаться числом хромосом, их размерами и формой. Совокупность количественных (число хромосом и размеры) и качественных (форма хромосом) признаков хромосомного набора называется кариотипом. Кариотип является постоянным для каждого вида и его особенности передаются по наследству.

Изучение хромосомных наборов позволило установить следующие факты:

  1. У организмов одного вида все клетки имеют одинаковые хромосомные наборы.
  2. В соматических клетках все хромосомы парные, поэтому хромосомные наборы называются диплоидными (2n). Хромосомы одной пары называются гомологичными. Они одинаковы по форме, размерам, набору генов. Одна из гомологичных хромосом является материнской, а другая - отцовской.
  3. В половых клетках содержится только какая-то одна хромосома из пары. Хромосомные наборы половых клеток называются гаплоидными (n).
  4. В хромосомном наборе различают аутосомы и половые хромосомы. Аутосомы одинаковы у особей мужского и женского пола. Половые хромосомы содержат гены, определяющие признаки пола и различаются у самцов и самок. Половые хромосомы бывают двух видов: Х-хромосомы и У-хромосомы. У человека у особей женского пола в хромосомном наборе две Х-хромосомы, а у особей мужского пола - ХУ.
  5. Число хромосом в хромосомном наборе может быть одинаковым у разных видов (но кариотипы обязательно будут различаться!) Например, 48 хромосом имеют шимпанзе, таракан, перец. Поэтому можно сделать вывод, что число хромосом не говорит о видовой принадлежности и не указывает на эволюционное родство видов.
  6. Число хромосом не зависит от уровня организации вида. Например, в хромосомном наборе сазана 104 хромосомы, а у человека - 46 хромосом.

РАЗЛИЧИЯ РАСТИТЕЛЬНОЙ И ЖИВОТНОЙ КЛЕТОК

В строении и функционировании животной и растительных клеток имеются как общие черты, так и различия. Различия заключаются в следующем:

  1. У растительной клетки над клеточной мембраной располагается толстая и прочная клеточная оболочка из полисахаридов (целлюлоза, пектин, гемицеллюлоза). Молекулы целлюлозы в клеточной стенке располагаются параллельно друг другу и соединены между собой большим количеством водородных связей. Целлюлоза придает клеточной стенке прочность. Пространство между молекулами целлюлозы заполнено другими углеводами, имеющими рыхлую структуру. Благодаря им клеточная оболочка во время роста клеток может растягиваться. Клеточная оболочка имеет поры. Через них из клетки в клетку проходят тяжи цитоплазмы - плазмодесмы. Через плазмодесмы происходит обмен веществами между соседними клетками. У животных клеток клеточная оболочка и плазмодесмы отсутствуют. Клеточная мембрана покрыта очень тонким слоем углеводов, входящим в состав гликокаликса.
  2. В клетках растений есть особые двумембранные органоиды - пластиды. Различают 3 вида пластид: хлоропласты, хромопласты, лейкопласты.
  3. В клетках высших растений отсутствуют центриоли, а клеточный центр представлен только микротрубочками. В клетках низших растений, как и в клетках животных, центриоли имеются.
  4. Вакуоли в растительных клетках занимают до 90% их объема. В молодых клетках вакуоли мелкие и многочисленные. Затем они сливаются и образуется одна большая вакуоль. Вакуоль растительной клетки заполнена клеточным соком. Клеточный сок - это водный раствор сахаров, аминокислот, витаминов, пигментов, неорганических солей. Вакуоль выполняет несколько функций: придает упругость клетке, запасает органические вещества, в ней откладываются отбросы обмена веществ. В клетках животных вакуоли занимают небольщой объем (до 5 %). Это в основном сократительные, пищеварительные, фагоцитарные вакуоли.
  5. В растительных клетках углеводы запасаются в виде крахмала, а в животных клетках - в виде гликогена.
  6. По способу питания растения являются фотоавтотрофами, а животные - гетеротрофами.

СТРОЕНИЕ ПРОКАРИОТ

Прокариоты - организмы, клетки которых не имеют ограниченного мембраной ядра. Надцарство прокариот состоит из одного царства - царства Дробянок, к которому относятся бактерии и сине-зеленые водоросли Рассмотрим строение прокариот на примере бактерий.

  1. Бактерии имеют самые мелкие клетки - от 0,5 до 10 мкм. Для сравнения: средний размер животной клетки - 40 мкм.
  2. Бактериальная клетка покрыта снаружи плазматической мембраной типичного строения. Над мембраной у всех бактерий находится прочная клеточная стенка, выполняющая защитные функции.
  3. Клеточная стенка многих бактерий окружена слизистой капсулой из полисахаридов. Слизь хорошо удерживает воду, поэтому слизистая капсула защищает бактериальную клетку от высыхания. Толщина слизистой капсулы зависит от условий, в которых находится бактерия. Например, у почвенных бактерий слизистая капсула развита очень хорошо, а у водных бактерий отсутствует.
  4. У некоторых бактерий имеются органоиды движения - один или несколько жгутиков, которые закреплены с помощью базального тельца, расположенного под мембраной.
  5. Матрикс бактериальной клетки - гиалоплазма.
  6. У бактерий нет ограниченного мембраной ядра. Его заменяет кольцевая молекула ДНК (бактериальная «хромосома»), расположенная в центре бактериальной клетки. Место расположения ДНК называется нуклеоидом. ДНК прокариот не соединена с белками. Ядрышка нет. Настоящих хромосом нет.
  7. В бактериальной клетке отсутствуют эндоплазматическая сеть, комплекс Гольджи, митохондрии, пластиды и др. мембранные органоиды. Их функции выполняют мезосомы - внутренние впячивания мембраны клетки. У фотосинтезирующих бактерии образуются специальные мезосомы, в мембранах которых располагаются молекулы бактериального хлорофилла. Такие мезосомы осуществляют фотосинтез.
  8. Рибосомы бактерий более мелкие и по размерам совпадают с рибосомами митохондрий и пластид эукариот. Функции рибосом, как и у эукариот - синтез белка. Из-за высокой скорости размножения и роста бактерии нуждаются в большом количестве белка, поэтому рибосомы могут иногда составлять до 40% массы клетки.
  9. Органические вещества запасаются в виде крахмала или гликогена, иногда в виде жира.

КЛЕТОЧНАЯ ТЕОРИЯ

Клеточная теория - одно из наиболее важных биологических обобощений, согласно которому все организмы имеют клеточное строение.

Клеточная теория возникла в результате анализа огромного количества фактического материала, который был получен в течение 200 лет. Изучение клетки стало возможным после открытия микроскопа.

1665 г. - Роберт Гук при помощи примитивного светового микроскопа увидел на срезе пробки крошечные «ячейки», которые он назвал клетками.

1671 г. - Мальпиги, Грю, Фонтана подтвердили исследования Гука на других биологических объектах. Ученые указывают на наличие клеточных стенок.

1677 г. - Левенгук усовершенствовал микроскоп. Отшлифованные вручную линзы давали увеличение в 275 раз. С помощью своего микроскопа Левенгук открыл одноклеточных животных.

В 19 веке были созданы микроскопы с увеличением в 1200 раз, с хорошим, четким изображением без искажения. Были открыты протоплазма и ядро. Знания накапливались, совершенствовалась техника микроскопирования. Опираясь на имеющиеся данные и собственные исследования немецкий ботаник Матиас Шлейден и зоолог Теодор Шванн в 1839 году почти одновременно, независимо друг от друга, пришли к выводу, что клетка является элементарной единицей строения всех растительных и животных организмов. М.Шлейден и Т.Шванн сформулировали основные положения клеточной теории, которая впоследствии развивалась многими учеными. Ошибки Шлейдена и Шванна заключались в следующем:

Клетки всех организмов сходны по строению и химическому составу.

4.Новые клетки возникают только путем деления ранее существовавших клеток.

5.Активность организма слагается из активности и взаимодействия составляющих его самостоятельных клеток.

6.Клеточное строение всех организмов говорит о единстве их происхождения.

К эукариотам относятся царства растений, животных, грибов.

Основные признаки эукариот.

  1. Клетка разделена на цитоплазму и ядро.
  2. Большая часть ДНК сосредоточена в ядре. Именно ядерная ДНК отвечает за большую часть процессов жизнедеятельности клетки и за передачу наследственности дочерним клеткам.
  3. Ядерная ДНК расчленена на нити, не замкнутые в кольца.
  4. Нити ДНК линейно вытянуты внутри хромосом, отчетливо видны в процессе митоза. Набор хромосом в ядрах соматических клеток диплоидный.
  5. Развита система наружных и внутренних мембран. Внутренние делят клетку на отдельные отсеки – компартменты. Принимают участие в образовании органоидов клетки.
  6. Органоидов много. Некоторые органоиды окружены двойной мембраной: ядро, митохондрии, хлоропласты. В ядре, наряду с оболочкой и ядерным соком, обнаруживается ядрышко и хромосомы. Цитоплазма представлена основным веществом (матриксом, гиалоплазмой) в которой распределены включения и органеллы.
  7. Большое число органелл ограничено одинарной мембранной (лизосомы, вакуоли и т.д.)
  8. В эукариотической клетке выделяют органеллы общего и специального значения. Например: общего значения – ядро, митохондрии, ЭПС и т.д.; специального значения - микроворсинки всасывающей поверхности эпителиальной клетки кишечника, реснички эпителия трахеи и бронхов.
  9. Характерен митоз – механизм воспроизведения в поколениях генетически сходных клеток.
  10. Свойствен половой процесс. Образуются истинные половые клетки – гаметы.
  11. Не способны к фиксации свободного азота.
  12. Аэробное дыхание происходит в митохондриях.
  13. Фотосинтез проходит в хлоропластах содержащих мембраны, которые обычно уложенные в граны.
  14. Эукариоты представлены одноклеточными, нитчатыми и истинно многоклеточными формами.

Основные структурные компоненты эукариотической клетки

органоиды

Ядро. Строение и функции.

В клетке выделяют ядро и цитоплазму. Клеточное ядро состоит из оболочки, ядерного сока, ядрышка и хроматина. Функциональная рольядерной оболочки заключается в обособлении генетического материала (хромосом) эукариотической клетки от цитоплазмы с присущими ей многочисленными метаболическими реакциями, а также регуляции двусторонних взаимодействий ядра и цитоплазмы. Ядерная оболочка состоит из двух мембран, разделенных околоядерным (перинуклеарным) пространством. Последнее может сообщаться с канальцами цитоплазматической сети.

Ядерная оболочка пронизана порожу диаметром 80-90нм. Область поры или поровый комплекс с диаметром около 120нм имеет определенное строение, что указывает на сложный механизм регуляции ядерно-цитоплазматических перемещений веществ и структур. Количество пор зависит от функционального состояния клетки. Чем выше синтетическая активность в клетке, тем больше их число. Подсчитано, что у низших позвоночных животных в эритробластах, где интенсивно образуется и накапливается гемоглобин, на 1мкм 2 ядерной оболочки приходится около 30пор. В зрелых эритроцитах названных животных, сохраняющих ядра, на 1мк»г оболочки остается до пяти пор, т.е. в 6 раз меньше.

В области перового комплекса начинается так называемая плотная пластинка - белковый слой, подстилающий на всем протяжении внутреннюю мембрану ядерной оболочки. Эта структура выполняет прежде всего опорную функцию, так как при ее наличии форма ядра сохраняется даже в случае разрушения обеих мембран ядерной оболочки. Предполагают также, что закономерная связь с веществом плотной пластинки способствует упорядоченному расположению хромосом в интерфазном ядре.

Основу ядерного сока, илиматрикса, составляют белки. Ядерный сок образует внутреннюю среду ядра, в связи с чем он играет важную роль в обеспечении нормального функционирования генетического материала. В составе ядерного сока присутствуютнитчатые, илифибриллярные, белки, с которыми связано выполнение опорной функции: в матриксе находятся также первичные продукты транскрипции генетической информации - гетероядерные РНК (гя-РНК), которые здесь же подвергаются процессингу, превращаясь в м-РНК (см. 3.4.3.2).

Ядрышко представляет собой структуру, в которой происходит образование и созреваниерибосомальных РНК (рРНК). Гены рРНК занимают определенные участки (в зависимости от вида животного) одной или нескольких хромосом (у человека 13-15и 21-22пары) - ядрышковые организаторы, в области которых и образуются ядрышки. Такие участки в метафазных хромосомах выглядят как сужения и называютсявторичными перетяжками. С помощью электронного микроскопа в ядрышке выявляют нитчатый и зернистый компоненты. Нитчатый (фибриллярный) компонент представлен комплексами белка и гигантских молекул РНК-предшественниц, из которых затем образуются более мелкие молекулы зрелых рРНК. В процессе созревания фибриллы преобразуются в рибонуклеопротеиновые зерна (гранулы), которыми представлен зернистый компонент.

Хроматиновые структуры в виде глыбок, рассеянных в нуклеоплазме, являются интерфазной формой существования хромосом клетки

цитоплазма

В цитоплазме различают основное вещество (матрикс, гиалоплазма), включения и органеллы.Основное вещество цитоплазмы заполняет пространство между плазмалеммой, ядерной оболочкой и другими внутриклеточными структурами. Обычный электронный микроскоп не выявляет в нем какой-либо внутренней организации. Белковый состав гиалоплазмы разнообразен. Важнейшие из белков представлены ферментами гаиколиза, обмена Сахаров, азотистых оснований, аминокислот и липидов. Ряд белков гиалоплазмы служит субъединицами, из которых происходит сборка таких структур, как микротрубочки.

Основное вещество цитоплазмы образует истинную внутреннюю среду клетки, которая объединяет все внутриклеточные структуры и обеспечивает взаимодействие их друг с другом. Выполнение матриксом объединяющей, а также каркасной функции может быть связано с выявляемой с помощью сверхмощного электронного микроскопа микротрабекулярной сети, образованной тонкими фибриллами толщиной 2-3нм и пронизывающей всю цитоплазму. Через гиалоплазму осуществляется значительный объем внутриклеточных перемещений веществ и структур. Основное вещество цитоплазмы следует рассматривать так же, как сложную коллоидную систему, способную переходить из золеобразного (жидкого) состояния в гелеобразное. В процессе таких переходов совершается работа. О функциональном значении таких переходов см. разд. 2.3.8.

Включениями (рис. 2.5)называют относительно непостоянные компоненты цитоплазмы, которые служат запасными питательными веществами (жир, гликоген), продуктами, подлежащими выведению из клетки (гранулы секрета), балластными веществами (некоторые пигменты).

Органеллы - это постоянные структуры цитоплазмы, выполняющие в клетке жизненно важные функции.

Выделяют органеллы общего значения испециальные. Последние в значительном количестве присутствуют в клетках, специализированных к выполнению определенной функции, но в незначительном количестве могут встречаться и в других типах клеток. К ним относят, например, микроворсинки всасывающей поверхности эпителиальной клетки кишечника, реснички эпителия трахеи и бронхов, синаптические пузырьки, транспортирующие вещества -переносчики нервного возбуждения с одной нервной клетки на другую или клетку рабочего органа, миофибриллы, от которых зависит сокращение мышцы. Детальное рассмотрение специальных органелл входит в задачу курса гистологии.

К органеллам общего значения относят элементы канальцевой и вакуолярной системы в виде шероховатой и гладкой цитоплазматической сети, пластинчатый комплекс, митохондрии, рибосомы и полисомы, лизосомы, пероксисомы, микрофибриллы и микротрубочки, центриоли клеточного центра. В растительных клетках выделяют также хлоропласта, в которых происходит фотосинтез.

Канальцевая ивакуолярная системы образованы сообщающимися или отдельными трубчатыми или уплощенными (цистерна) полостями, ограниченными мембранами и распространяющимися по всей цитоплазме клетки. Нередко цистерны имеют пузыревидные расширения. В названной системе выделяютшероховатую игладкую цитоплазматическую сети (см. рис. 2.3).Особенность строения шероховатой сети состоит в прикреплении к ее мембранам полисом. В силу этого она выполняет функцию синтеза определенной категории белков, преимущественно удаляемых из клетки, например секретируемых клетками желез. В области шероховатой сети происходит образование белков и липидов цитоплазматических мембран, а также их сборка. Плотно упакованные в слоистую структуру цистерны шероховатой сети являются участками наиболее активного белкового синтеза и называютсяэргастоплазмой.

Мембраны гладкой цитоплазматической сети лишены полисом. Функционально эта сеть связана с обменом углеводов, жиров и других веществ небелковой природы, например стероидных гормонов (в половых железах, корковом слое надпочечников). По канальцам и цистернам происходит перемещение веществ, в частности секретируемого железистой клеткой материала, от места синтеза в зону упаковки в гранулы. В участках печеночных клеток, богатых структурами гладкой сети, разрушаются и обезвреживаются вредные токсические вещества, некоторые лекарства (барбитураты). В пузырьках и канальцах гладкой сети поперечно-полосатой мускулатуры сохраняются (депонируются) ионы кальция, играющие важную роль в процессе сокращения.

Рибосома - это округлая рибонуклеопротеиновая частица диаметром 20-30нм. Она состоит из малой и большой субъединиц, объединение которых происходит в присутствии матричной (информационной) РНК (мРНК). Одна молекула мРНК обычно объединяет несколько рибосом наподобие нитки бус. Такую структуру называютполисомой. Полисомы свободно располагаются в основном веществе цитоплазмы или прикреплены к мембранам шероховатой цитоплазматической сети. В обоих случаях они служат местом активного синтеза белка. Сравнение соотношения количества свободных и прикрепленных к мембранам полисом в эмбриональных недифференцированных и опухолевых клетках, с одной стороны, и в специализированных клетках взрослого организма -с другой, привело к заключению, что на полисомах гиалоплазмы образуются белки для собственных нужд (для «домашнего» пользования) данной клетки, тогда как на полисомах гранулярной сети синтезируются белки, выводимые из клетки и используемые на нужды организма (например, пищеварительные ферменты, белки грудного молока).

Пластинчатый комплекс Голъджи образован совокупностью диктиосом числом от нескольких десятков (обычно около 20)до нескольких сотен и даже тысяч на клетку.

Диктиосома (рис. 2.6,А ) представлена стопкой из 3-12уплощенных дискообразных цистерн, от краев которых отшнуровываются пузырьки (везикулы). Ограниченные определенным участком (локальные) расширения цистерн дают более крупные пузырьки (вакуоли). В дифференцированных клетках позвоночных животных и человека диктиосомы обычно собраны в околоядерной зоне цитоплазмы. В пластинчатом комплексе образуются секреторные пузырьки или вакуоли, содержимое которых составляют белки и другие соединения, подлежащие выводу из клетки. При этом предшественник секрета (просекрет), поступающий.в диктиосому из зоны синтеза, подвергается в ней некоторым химическим преобразованиям. Он также обособляется (сегрегируется) в виде «порций», которые здесь же одеваются мембранной оболочкой. В пластинчатом комплексе образуются лизосомы. В диктиосомах синтезируются полисахариды, а также их комплексы с белками (гликопротеины) и жирами (гликолипиды), которые затем можно обнаружить в гликокаликсе клеточной оболочки.

Оболочка митохондрий состоит из двух мембран, различающихся по химическому составу, набору ферментов и функциям. Внутренняя мембрана образует впячивания листовидной (кристы) или трубчатой (тубулы) формы. Пространство, ограниченное внутренней мембраной, составляет матрикс органеллы. В нем с помощью электронного микроскопа обнаруживаются зерна диаметром 20-40нм. Они накапливают ионы кальция и магния, а также полисахариды, например гликоген.

В матриксе размещен собственный аппарат биосинтеза белка органеллы. Он представлен 2-б копиями кольцевой и лишенной гистонов (как у прокариот) молекулы ДНК, рибосомами, набором транспортных РНК (тРНК), ферментами редупликации ДНК, транскрипции и трансляции наследственной информации. По основным свойствам: размерам и структуре рибосом, организации собственного наследственного материала -этот аппарат сходен с таковым у прокариот и отличается от аппарата биосинтеза белка цитоплазмы эукариотической клетки (чем подтверждается симбиотическая гипотеза происхождения митохондрий; см. § 1.5).Гены собственной ДНК кодируют нуклеотидные последовательности митохондриальных рРНК и тРНК, а также последовательности аминонокислот некоторых белков органеллы, главным образом ее внутренней мембраны. Аминокислотные последовательности (первичная структура) большинства белков митохондрий закодированы в ДНК клеточного ядра и образуются вне органеллы в цитоплазме.

Главная функция митохондрий состоит в ферментативном извлечении из определенных химических веществ энергии (путем их окисления) и накоплении энергии в биологически используемой форме (путем синтеза молекул аденозинтрифосфата -АТФ). В целом этот процесс называетсяокислительным (расформированием. В энергетической функции митохондрий активно участвуют компоненты матрикса и внутренняя мембрана. Именно с этой мембраной связаны цепь переноса электронов (окисление) и АТФ-синтетаза, катализирующая сопряженное с окислением фосфорилирование АДФ в АТФ. Среди побочных функций митохондрий можно назвать участие в синтезе стероидных гормонов и некоторых аминокислот (глутаминовая).

Лизосомы (рис. 2.6,В ) представляют собой пузырьки диаметром обычно 0,2-0,4мкм, которые содержат набор ферментов кислых гидролаз, катализирующих при низких значениях рН гидролитическое (в водной среде) расщепление нуклеиновых кислот, белков, жиров, полисахаридов. Их оболочка образована одинарной мембраной, покрытой иногда снаружи волокнистым белковым слоем (на электронограммах «окаймленные» пузырьки). Функция лизосом - внутриклеточное переваривание оазличных химических соединений и структур.

Первичными лизосомами (диаметр 100нм) называют неактивные органеллы,вторичными - органеллы, в которых происходит процесс переваривания. Вторичные лизосомы образуются из первичных. Они подразделяются нагетеролизосомы (фаголизосомы) иаутолизосомы (цитолизосомы). В первых (рис. 2.6,Г ) переваривается материал, поступающий в клетку извне путем пиноцитоза и фагоцитоза, во вторых разрушаются собственные структуры клетки, завершившие свою функцию. Вторичные лизосомы, в которых процесс переваривания завершен, называютостаточными тельцами (телолизосомы). В них отсутствуют гидролазы и содержится непереваренный материал.

Микротельца составляют сборную группу органелл. Это ограниченные одной мембраной пузырьки диаметром 0,1-1,5мкм с мелкозернистым матриксом и нередко кристаллоидными или аморфными белковыми включениями. К этой группе относят, в частности,пероксисомы. Они содержат ферменты оксидазы, катализирующие образование пероксида водорода, который, будучи токсичным, разрушается затем под действием фермента пероксидазы. Эти реакции включены в различные метаболические циклы, например в обмен мочевой кислоты в клетках печени и почек. В печеночной клетке число пероксисом достигает70-100.

К органеллам общего значения относят также некоторые постоянные структуры цитоплазмы, лишенные мембран. Микротрубочки (рис.2.6,Д ) - трубчатые образования различной длины с внешним диаметром 24нм, шириной просвета 15нм и толщиной стенки около 5нм. Встречаются в свободном состоянии в цитоплазме клеток или как структурные элементы жгутиков, ресничек, митотического веретена, центриолей. Свободные микротрубочки и микротрубочки ресничек, жгутиков и центриолей имеют разную устойчивость к разрушающим воздействиям, например химическим (колхицин). Микротрубочки строятся из стереотипных субьединиц белковой природы путем их полимеризации. В живой клетке процессы полимеризации протекают одновременно с процессами деполимеризации. Соотношением этих процессов определяется количество микротрубочек. В свободном состоянии микротрубочки выполняют опорную функцию, определяя форму клеток, а также являются факторами направленного перемещения внутриклеточных компонентов.

Микрофиламентами (рис. 2.6,Е ) называют длинные, тонкие образования, иногда образующие пучки и обнаруживаемые по всей цитоплазме. Существует несколько разных типов микрофиламентов.Актиновые микрофиламенты благодаря присутствию в них сократимых белков (актин) рассматривают в качестве структур, обеспечивающих клеточные формы движения, например амебоидные. Им приписывают также каркасную роль и участие в организации внутриклеточных перемещений органелл и участков гиалоплазмы.

По периферии клеток под плазмалеммой, а также в околоядерной зоне обнаруживаются пучки микрофиламентов толщиной 10нм - промежуточные филстенты. В эпителиальных, нервных, глиальных, мышечных клетках, фибробластах они построены из разных белков. Промежуточные филаменты выполняют, по-видимому, механическую, каркасную функцию.

Актиновые микрофибриллы и промежуточные филаменты, как и микротрубочки, построены из субъединиц. В силу этого их количество зависит от соотношения процессов полимеризации и деполимеризации.

Для животных клеток, части клеток растений, грибов и водорослей характерен клеточный центр, в состав которого входят центриоли.Центриолъ (под электронным микроскопом) имеет вид «полого» цилиндра диаметром около 150нм и длиной 300-500нм. Ее стенка образована 27микротрубочками, сгруппированными в 9триплетов. В функцию центриолей входит образование нитей митотического веретена, которые также образованы микротрубочками. Центриоли поляризуют процесс деления клетки, обеспечивая расхождение сестринских хроматид (хромосом) в анафазе митоза.

Эукариотическая клетка имеет клеточный скелет (цитоскелет) из внутриклеточных волокон (Кольцов) – начало ХХ века, в конце 1970 вновь открыт. Эта структура позволяет клетке иметь свою форму, иногда изменяя ее. Цитоплазма находится в движении. Цитоскелет участвует с процессе переноса органоидов, участвует в регенерации клеток.

Митохондрии – сложные образования с двойной мембраной(0,2-0,7мкм) и разной формой. Внутренняя мембрана имеет кристы. Наружная мембрана проницаема практически для всех химических веществ, внутренняя – только активный транспорт. Между мембранами – матрикс. Митохондрии располагаются там, где необходима энергия. Митохондрии имеют систему рибосом, молекулу ДНК. Возможно возникновение мутаций (более66 заболеваний). Как правило, они связаны с недостаточной энергией АТФ, часто связаны с сердечно-сосудистой недостаточностью, патологиями. Количество митохондрий разное (в клетке трипаносомы- 1 митохондрия). Количество зависит от возраста, функции, активности ткани (печень – более1000).

Лизосомы – тельца, окруженные элементарной мембраной. Содержат 60 ферментов(40 лизосомальных, гидролитических). Внутри лизосомы – нейтральная среда. Активизируются низкими значениями рН, выходя в цитоплазму (самопереваривание). Мембраны лизосом защищают цитоплазму и клетку от разрушения. Образуются в комплексе Гольджи (внутриклеточный желудок, могут перерабатывать отработавшие свое структуры клетки). Есть 4 вида. 1-первичные, 2-4 – вторичные. С помощью эндоцитоза в клетку попадает вещество. Первичная лизосома (запасающая гранула) с набором ферментов, поглощает вещество и образуется пищеварительная вакуоль (при полном переваривании расщепление идет до низкомолекулярных соединений). Непереваренные остатки остаются в остаточных тельцах, которые могут накапливаться (лизосомные болезни накопления). Остаточные тельца, накапливающиеся в эмбриональном периоде, приводят к гаргалеизму, уродствам, мукополисахаридозам. Аутофагирующие лизосомы уничтожают собственные структуры клетки(ненужные структуры). Могут содержать митохондрии, части комплекса Гольджи. Часто образуются при голодании. Могут возникать при воздействии других клеток (эритроциты).

Эукариотические клетки от простейших организмов до клеток высших растений и млекопитающих, отличаются сложностью и разнообразием структуры. Типичной эукариотической клетки не существует, но из тысяч типов клеток можно выделить общие черты. Каждая эукариотическая клетка состоит из цитоплазмы и ядра.

Строение эукариотической клетки .

Плазмалемма (клеточная оболочка) животных клеток образована мембраной, покрытой снаружи слоем гликокаликса толщиной 10-20 нм. Плазмалемма выполняет отграничивающую, барьерную, транспортную и рецепторную функции. Благодаря свойству избирательной проницаемости плазмалемма регулирует химический состав внутренней среды клетки. В плазмалемме размещены молекулы рецепторов, которые избирательно распознают определенные биологически активные вещества (гормоны). В пластах и слоях соседние клетки удерживаются благодаря наличию разного вида контактов, которые представлены участками плазмалеммы, имеющими особое строение. Изнутри к мембране примыкает кортикальный (корковый) слой цитоплазмы толщиной 0,1-0,5 мкм.

Цитоплазма. В цитоплазме находится целый ряд оформленных структур, имеющих закономерные особенности строения и поведения в разные периоды жизнедеятельности клетки. Каждая из этих структур несёт определенную функцию. Отсюда возникло сопоставление их с органами целого организма, в связи с чем они получили название органеллы , или органоиды . В цитоплазме откладываются различные вещества - включения (гликоген, капли жира, пигменты). Цитоплазма пронизана мембранами эндоплазматической сети .

Эндоплазматическая сеть (ЭДС) . Эндоплазматическая сеть - это разветвлённая сеть каналов и полостей в цитоплазме клетки, образованная мембранами. На мембранах каналов находятся многочисленные ферменты, обеспечивающие жизнедеятельность клетки. Различают 2 вида мембран ЭДС - гладкие и шероховатые. На мембранах гладкой эндоплазматической сети находятся ферментные системы, участвующие в жировом и углеводном обмене. Основная функция шероховатой эндоплазматической сети - синтез белков, который осуществляется в рибосомах, прикрепленных к мембранам. Эндоплазматическая сеть - это общая внутриклеточная циркуляционная система, по каналам которой транспортируются вещества внутри клетки и из клетки в клетку.

Рибосомы осуществляют функцию синтеза белков. Рибосомы представляют собой сферические частицы диаметром 15-35нм, состоящие из 2 субъединиц неравных размеров и содержащие примерно равное количество белков и РНК . Рибосомы в цитоплазме располагаются или прикрепляются к наружной поверхности мембран эндоплазматической сети. В зависимости от типа синтезируемого белка рибосомы могут объединяться в комплексы - полирибосомы . Рибосомы присутствуют во всех типах клеток.

Комплекс Гольджи. Основным структурным элементом комплекса Гольджи является гладкая мембрана, которая образует пакеты уплощенных цистерн, или крупные вакуоли, или мелкие пузырьки. Цистерны комплекса Гольджи соединены с каналами эндоплазматической сети. Синтезированные на мембранах эндоплазматической сети белки, полисахариды, жиры транспортируются к комплексу, конденсируются внутри его структур и "упаковываются" в виде секрета, готового к выделению, либо используются в самой клетке в процессе её жизнедеятельности.

Митохондрии. Всеобщее распространение митохондрий в животном и растительном мире указывают на важную роль, которую митохондрии играют в клетке. Митохондрии имеют форму сферических, овальных и цилиндрических телец, могут быть нитевидной формы. Размеры митохондрий 0,2-1мкм в диаметре, до 5-7мкм в длину. Длина нитевидных форм достигает 15-20мкм. Количество митохондрий в клетках различных тканей неодинаково, их больше там, где интенсивны синтетические процессы (печень) или велики затраты энергии. Стенка митохондрий состоит из 2-х мембран - наружной и внутренней. Наружная мембрана гладкая, а от внутренней внутрь органоида отходят перегородки - гребни, или кристы. На мембранах крист находятся многочисленные ферменты, участвующие в энергетическом обмене. Основная функция митохондрий - синтез АТФ .

Лизосомы - небольшие овальные тельца диаметром около 0,4мкм, окруженные одной трехслойной мембраной. В лизосомах находится около 30 ферментов, способных расщеплять белки, нуклеиновые кислоты, полисахариды, липиды и др. вещества. Расщепление веществ с помощью ферментов называется лизисом , поэтому и органоид назван лизосомой . Полагают, что лизосомы образуются из структур комплекса Гольджи либо непосредственно из эндоплазматической сети. Функции лизосом : внутриклеточное переваривание пищевых веществ, разрушение структуры самой клетки при её отмирании в ходе эмбрионального развития, когда происходит замена зародышевых тканей на постоянные, и в ряде других случаев.

Центриоли. Клеточный центр состоит из 2-х очень маленьких телец цилиндрической формы, расположенных под прямым углом друг к другу. Эти тельца называются центриолями . Стенка центриоли состоит из 9-ти пар микротрубочек. Центриоли способны к самосборке и относятся к самовоспроизводящимся органоидам цитоплазмы. Центриоли играют важную роль в клеточном делении: от них начинается рост микротрубочек, образующих веретено деления.

Ядро. Ядро - важнейшая составная часть клетки. Оно содержит молекулы ДНК и поэтому выполняет две главные функции: 1) хранение и воспроизведение генетической информации, 2) регуляция процессов обмена веществ, протекающих в клетке. Клетка утратившая ядро , не может существовать. Ядро также неспособно к самостоятельному существованию. Большинство клеток имеет одно ядро, но можно наблюдать 2-3ядра в одной клетке, например в клетках печени. Известны многоядерные клетки с числом ядер в несколько десятков. Формы ядер зависят от формы клетки. Ядра бывают шаровидные, многолопастные. Ядро окружено оболочкой, состоящей из двух мембран, имеющих обычное трёхслойное строение. Наружная ядерная мембрана покрыта рибосомами, внутренняя мембрана гладкая. Главную роль в жизнедеятельности ядра играет обмен веществ между ядром и цитоплазмой. Содержимое ядра включает ядерный сок, или кариоплазму, хроматин и ядрышко. В состав ядерного сока входят различные белки, в том числе большинство ферментов ядра, свободные нуклеотиды, аминокислоты, продукты деятельности ядрышка и хроматина, перемещающиеся из ядра в цитоплазму. Хроматин содержит ДНК, белки и представляет собой спирализованные и уплотненные участки хромосом. Ядрышко представляет собой плотное округлое тельце, располагающееся в ядерном соке. Число ядрышек колеблется от 1 до 5-7 и более. Ядрышки есть только в неделящихся ядрах, во время митоза они исчезают, а после завершения деление образуются вновь. Ядрышко не является самостоятельным органоидом клетки, оно лишено мембраны и образуется вокруг участка хромосомы, в котором закодирована структура рРНК. В ядрышке формируются рибосомы, которые затем перемещаются в цитоплазму. Хроматином называют глыбки, гранулы и сетевидные структуры ядра, интенсивно окрашивающиеся некоторыми красителями и отличные по форме от ядрышка.