Инвертор 12 в 24 автомобильный своими руками. Как получить двадцать четыре вольта из компьютерного блока питания. Зарядное устройство для автомобильного аккумулятора

Практически вся техника, которую выпускают в наши дни, содержит в себе светодиоды. Они буквально окружают нас со всех сторон, начиная от ламп и фонариков, заканчивая определением напряжения буквально во всей бытовой технике. Их часто используют для подсветки экранов, управления различными приборами и т.д.
Чаще всего в технике используются светодиоды пяти цветов:

  • белые,
  • красные,
  • зеленые,
  • желтые,
  • синие.

Так же они могут создавать инфракрасное и ультрафиолетовое излучение. Именно такие незаменимы в системах управления: пульты для телевизоров, кондиционеров и другой бытовой техники.
Мы рассмотрим способ применения светодиодов в определении напряжения устройств. Основной прибор для измерения напряжения – вольтметр. Как же тут могут пригодиться светодиоды? Они и станут нашими видимыми индикаторами.
Обычно, как образец приводят пример вольтметра на основе 12 светодиодов. Соответственно он может индексировать напряжение в диапазоне от 0 до 12 вольт. Такое устройство можно весьма эффективно использовать для измерения блоков питания, которые можно регулировать. Незаменимым он будет так же для радиолюбителей, в частности для создания небольших приборов дома.

Светодиоды – индикаторы

Использование светодиода в качестве индикатора тоже имеет свои законы, которые нужно знать, если вы собираете прибор своими руками.

  • Важно соблюдать полярность. Светодиод – полупроводниковый прибор, который имеет два вывода: катод и анод. Работать он будет только в случае прямого включения.
  • Граница напряжения. Для каждого светодиода она своя. Если превысить это значение – он сломается.
  • Как индикаторы рекомендуется применять светодиоды, которые достаточно ярко горят при напряжении 5 мА.


Вольтметры на светодиодах

Если погрешность вольтметра составляет не более 4%, то его можно смело назвать индикатором. Такое устройство можно легко сделать своими руками при помощи светодиодов. Вы сможете использовать такой вольтметр для индикации микросхем под напряжением 5 вольт. Индикаторами будут 6 светодиодов в границах 1,2 – 4,2 вольт с промежутком через 0,6 вольт. Светодиоды должны потреблять 60 микроампер.
Принцип работы индикатора основан на фиксации падения напряжения в переходах: база – эмиттер транзисторов и прямых падений на диодах (0,6 вольт).
Схему такого вольтметра легко найти в интернете.

Как собрать вольтметр для аккумулятора автомобиля?

Этот вольтметр можно использовать как для 12-вольтного аккумулятора, так и для зарядных устройств, либо вообще самостоятельно.
Индикатор будет состоять из 10 светодиодов с разницей значения в четверть вольт. Измерение напряжения будет в диапазоне 10,25 – 15 вольт.
Питание осуществляется от напряжения, которые вы будете измерять.
Основой схемы такого вольтметра являются две поликомпараторные микросхемы с линейным законом индикации.
Микросхема – это набор из 10 компараторов и резисторов, которые образуют делитель напряжения. У компаратов на выходе есть ключевые каскады для того, чтобы управлять светодиодами. Для того, чтобы микросхемы работали последовательно, резисторные делители включены именно в таком (последовательном) порядке.
Светодиоды устанавливаем в одну линию. Вы можете взять как светодиодные линейки, так и 10 отдельных светодиодов. Для вольтметра подойдут светодиоды любого типа.

Встала задача определения состояния аккумуляторной батареи во время разряда, хранения ее и заряда, пришлось вспомнить навыки и взяться за паяльник. Все схемы с кучей компараторов и прочими ухищрениями своим размером навевали тоску - проще было мультиметр привязать к аккумулятору. Поэтому решено было придумать что-нибудь простое и элегантное, в результате родилась схема, которую можно масштабировать под свои нужды как в ширину, так и в глубину. На один шаг напряжения используются всего три элемента - стабилитрон, резистор и светодиод (на этом месте хлопни себя по лбу и воскликни: "Как я раньше не додумался!"

В общем лови схему и фото готового устройства из расчета на одну 12 Вольтовую свинцовую кислотную аккумуляторную батарею как в UPSах и автомобилях. Индикация от совсем разряжено (напряжение меньше 9,5В) до полностью заряжено (напряжение больше 14,6В). Если надо другие диапазоны или шкалу хочется шире, то берем ближайший стабилитрон по напряжению и считаем токоограничительный резистор для светодиода. (1,5В падение, 20мА ток).
В общем все просто.




Если использовать SMD компоненты, то можно уложиться в эту десятикопеечную монету, ну у меня задачи миниатюризации не стояло, потому собрал на макетке.

Первый красный светодиод показывает, что схема подключена и какое-то напряжение есть. второй - больше 9 Вольт, третий, желтый, - больше 10В, четвертый - больше 11В, пятый, зеленый, - больше 12В и шестой - больше 13В. Градации между этими точками прекрасно видны по степени свечения соответствующих светодиодов. В данном случае аккумулятор стоит на заряде и вот-вот будет заряжен.

Цифровой амперметр на светодиодах – удобный способ отображения информации, при котором имеет значение не только модуль измеряемой величины (что, кстати, значительно удобнее определять не по отклонению стрелочного индикатора, а по величине столбчатой диаграммы, или при помощи мини-дисплея), но и частоту изменения этого параметра.

Описание схемы

Светодиоды не отличаются большой мощностью, но использовать их в слаботочных электрических цепях допустимо и целесообразно. В качестве примера можно рассмотреть схему получения цифрового амперметра для определения силы тока в аккумуляторной батарее автомобиля, при номинальном диапазоне значений в 40…60 мА.

Вариант внешнего вида амперметра на светодиодах в столбик

Количество использованных светодиодов определит пороговое значение тока, при котором в работу будет включаться один из светодиодов. В качестве операционного усилителя можно использовать LM3915, либо подходящий по параметрам микроконтроллер. На вход будет подаваться напряжение через любой низкоомный резистор.

Удобно отражать результаты измерения в виде столбчатой диаграммы, где весь, практически используемый диапазон тока будет разделяться на несколько сегментов по 5…10 мА. Плюсом LED является то, что в схеме можно использовать элементы разного цвета – красного, зелёного, синего и т.д.

Для работы цифрового амперметра потребуются следующие компоненты:

  1. Микроконтроллер типа PIC16F686 с АЦП на 16 бит.
  2. Настраиваемые джамперы для выхода конечного сигнала. Можно, как альтернативу, применить DIP-переключатели, которые используются в качестве электронных шунтов или сигнальных замыканий в обычных электронных цепях.
  3. Источник питания постоянного тока, который рассчитан на рабочее напряжение от 5 до 15 В (при наличии стабильного напряжения, что контролируется вольтметром, подойдёт и 6 В).
  4. Контактная плата, где можно разместить до 20 светодиодов типа SMD.

Электрическая схема амперметра на LED источниках

Последовательность размещения и монтажа амперметра

Входной сигнал по току (не более 1 А) подаётся от стабилизированного блока питания через шунтирующий резистор, допустимое напряжение на котором не должно быть более 40…50 В. Далее, проходя через операционный усилитель, сигнал поступает на светодиоды. Поскольку значение тока во время прохождения сигнала изменяется, то соответственно будет изменяться и высота столбика. Управляя током нагрузки, можно регулировать высоту диаграммы, получая результат с различной степенью точности .

Монтаж платы с SMD-компонентами, по желанию пользователя, можно размещать либо горизонтально, либо вертикально. Смотровое окошко перед началом тарировки необходимо перекрывать тёмным стеклом (подойдёт фильтр с кратностью 6…10 х от обычной сварочной маски).

Тарировка цифрового амперметра состоит в подборе минимального значения нагрузки по току, при которой светодиод будет светиться. Варьирование настройки производится экспериментально, для чего в схеме предусматривается резистор с небольшим (до 100 мОм) сопротивлением. Погрешность показаний такого амперметра обычно не превышает нескольких процентов.

Вы знали, что можно переделать старый вольтметр в амперметр? Как это сделать — смотрите видео:

Как настраивать регулировочный резистор

Для этого последовательно устанавливают силу тока, которая проходит через определённый светодиод. В качестве контрольного прибора можно использовать обычный тестер. Вольтметр включается в схему перед микроконтроллером, а амперметр – после него. Для исключения влияния случайных пульсаций подключается также сглаживающий конденсатор.

Практическим плюсом изготовления прибора своими руками (светодиодов не должно быть менее четырёх) является устойчивость схемы при значительных изменениях первоначально заданного диапазона силы тока. В отличие от обычных диодов, которые при коротком замыкании выйдут из строя, светодиоды просто не загораются.

Св-диоды как измерители тока в аккумуляторной батарее автомобиля, не только экономят заряд и сохраняют аккумуляторы, но и позволяют более удобным способом считывать показания.

Аналогичным образом можно построить и цифровой вольтметр. В качестве источников света для такого варианта применения подойдут элементы на 12 В, а наличие дополнительного шунта в схеме вольтметра позволит более рационально использовать всю высоту столбчатой диаграммы.

Вольтметры, погрешность измерения которых превышает 4%, относятся к группе индикаторов. Вольтметры-индикаторы можно изготовить без применения дорогостоящих электроизмерительных приборов, используя светоизлучающие элементы — неоновые лампы, люминесцентные светодиоды и жидкокристаллические индикаторы.

Высокоомные вольтметры-индикаторы допускается использовать при ремонте большинства радиоаппаратов, так как разброс режимов по напряжению до 10%, как правило, не ухудшает технических характеристик устройства.

Для измерения напряжения на цифровых микросхемах, питающихся от источника тока напряжением +5 В, можно использовать вольтметр-индикатор, схема которого показана на рис. 1,а. Индикация напряжения осуществляется шестью светодиодами в пределах 1,2—4,2 В через каждые 0,6 В. Входное сопротивление индикатора не менее 20 кОм, напряжение питания +5 В, ток потребления при излучающих светодиодах — около 60 мА.

В индикаторе использован принцип работы, заключающийся в фиксации падений напряжений на переходах база —эмиттер транзисторов и прямых падений напряжений на диодах, которые равны 0,6 В на каждом элементе.

Индикатор собран на транзисторах VT1—VT7 и светодиодах HL1—HL6, Для увеличения входного сопротивления прибора предназначен транзистор VT1, включенный по схеме эмиттерного повторителя. При напряжении на входе менее 1,2 В транзисторы VT1 —VT7 закрыты и светодиоды HL1—HL6 погашены. Если напряжение на входе несколько превышает 1,2 В, образуется цепь тока через базы транзисторов VT1, VT2 и светодиод HL1 загорается. Дальнейшее повышение напряжения на 0,6 В приводит к образованию дополнительной цепи тока через диод VD1, резистор R3 и переход база — эмиттер транзистора VT3 и включению светодиода HL2. Аналогично включаются и остальные светодиоды при повышении напряжения на входе до 4,2 В.

Если во входную цепь подключить стабилитрон в стабилизирующем направлении, индикатором можно будет измерять напряжения, начиная с напряжения стабилизации стабилитрона. Таким индикатором удобно контролировать напряжение аккумуляторной батареи. При увеличении напряжения питания необходимо использовать резистор R8 на большее сопротивление.

Для индикатора можно применять транзисторы КТ315 (любые из серии) со статическим коэффициентом передачи тока 50… 60, диоды из серии КД102, кд103.
Вольтметр-индикатор собран в пластмассовом корпусе авторучки (рис. 1,6), внутренняя часть которой удалена, и на ее место установлена монтажная плата, вырезанная из стеклотекстолита толщиной 1 мм. В нижней части платы помещен контакт из спиральной пружины, касающийся измерительной иглы, закрепленной с помощью эпоксидного компаунда в торце корпуса. Выше пружинного контакта на плате установлены шесть светодиодов и остальные элементы индикатора. Верхняя часть монтажной платы заканчивается штырем из винта МЗ длиной 25 мм, на которой в нерабочем положении индикатора намотаны провода марки МГТФ-0,12 для подключения питания. Для удобства включения индикатора к проводам питания припаяны пружинные миниатюрные зажимы (рис. 1,б).

Соединение элементов выполняют проводом ПЭЛШО 0,12 или ПЭВ-2 0,12. После проверки работоспособности индикатора монтажную плату со стороны выводов элементов следует залить эпоксидным компаундом. В корпусе напротив светодиодов нужно просверлить отверстие диаметром 2,5 мм, возле которых выгравировать цифры, соответствующие значениям напряжения свечения светодиодов.

Налаживание индикатора сводится к подборке светодиодов с одинаковой яркостью свечения.

Для уменьшения времени ремонта сложной электронной аппаратуры целесообразно при ее разработке или модернизации предусмотреть индикатор режимов работы, с помощью которого можно оперативно проверить режимы по постоянному току всех узлов устройства. Схема одного из вариантов такого индикатора показана на рис. 2. Входной ток индикатора 0,1 мА, напряжение питания 10 В, ток потребления от источника питания не более 10 мА.

Устройство содержит измерительный мост на резисторах R4—R6 и транзисторе VT1, в диагональ которого включены светодиоды HL1 и HL2. При балансе моста, когда сопротивление транзистора эквивалентно 1 кОм, напряжение на светодиодах отсутствует и они погашены. Если контролируемое напряжение превышает установленное значение, транзистор VT1 будет открыт и светодиод HL2 светится. Пониженное контролируемое напряжение приводит к закрыванию транзистора VT1 н свечению светодиода HL1.

Для уменьшения размеров индикатора вместо переключателя SA1 можно использовать фольгированные проводники платы, форма которых должна соответствовать показанной на схеме. При контроле режимов работы концом отвертки поочередно замыкают проводники, соединенные с входными резисторами R1—Rn с проводником, подключенным к базе транзистора. Входные резисторы рассчитывают исходя из значения контролируемого напряжения — 10 кОм на 1 В, при условии, что статический коэффициент передачи тока транзистора VT1 равен 50. В этом случае устанавливается баланс измерительного моста и светодиоды погашены.

Для индикатора следует применять светодиоды, которые дают достаточную яркость свечения при токе 5 мА.

Дробница Н. А. 60 схем радиолюбительских устройств

Related Posts

На рис. 58 приведена очень простая схема мигалки, автоматически включающейся с наступлением темноты и выключающейся с рассветом. Она содержит лишь реле, лампу накаливания, потенциометр настройки и фоторезистор типа LDR03 или…….

Предлагаемая игра имитирует ситуацию “сражения за замок”. Задача нападающих - захватить его, а обороняющихся - не пропустить “врага”, вовремя подняв мост через окружающий замок ров. Перемещение “врага” имитируют светодиоды. Защитники…….