Что мы знаем о молниях? После удара молнии в землю

Молния – одно из самых загадочных и притягательных, пугающих и манящих явлений природы. Неудивительно, что ее образ вошел и в наши сны, а вопрос, к чему снится молния, волнует всех, кто верит в пророческую силу полуночных видений.

Молния – одно из самых загадочных и притягательных, пугающих и манящих явлений природы

  • По соннику Ванги , увидеть во сне молнию – предзнаменование больших бед.
  • Сонник Миллера , напротив, видит в сверкнувшей в небе молнии символ счастья, удачи и благополучия, только все эти блага как пришли, так и уйдут, не оставив заметного следа.
  • Сонник Дениз Линн характеризует молнию как символ скорости, напора, могучих жизненных сил, сметающих все на пути к поставленной цели.

Молния в соннике (видео)

Видеть во сне молнию в ночном небе

  • Если молния сверкнула прямо над вами – благоприятный знак, указывающий на улучшение материального положения.
  • Тусклое зарево зарниц, пробегающих меж низко нависших над горизонтом туч, – предчувствие опасности, недоверие к партнеру. Иногда – случайно дошедшие слухи об измене супруга.
  • Если вам снится темно-зеленое ночное небо, которое прорезают яркие лиловые молнии, – вскоре узнаете о смерти влиятельного лица. В отдельных случаях – преступление, свидетелем которого будет сновидец.
  • Если молния вспыхивает посреди звездного неба – вы окажетесь в весьма щекотливом положении, когда от информации, которой вы владеете, будет зависеть судьба дорогого вам человека. Вам будет трудно промолчать, но и оставлять в неведении того, кто сделал вам много хорошего, тоже невозможно. После долгих колебаний и мучительных усилий вы все же подберете нужные слова, но после будете расплачиваться подорванным здоровьем.

Если молния сверкнула прямо над вами – благоприятный знак, указывающий на улучшение материального положения

Ослепительная вспышка, которая озарит ночную тьму ярким светом, – весть о старом друге, с которым не виделись много лет, или его неожиданный визит.

Если во сне молния ударила в землю

Вам приснилось, что в то место, с которого вы только что сошли, ударила молния – любовь с первого взгляда.

  • Если вы увидели еле заметную белесую молнию, которая без звука прошла сквозь тело и ушла в почву под вашими ногами, – к тяжелой, часто неизлечимой болезни.
  • Сильная гроза, во время которой молнии падают с небес на землю, образуя вокруг вас нечто вроде светящейся решетки, – тюремное заключение или брак по прихоти партнера.
  • От удара молнии земля разверзается под вашими ногами – из-за происков клеветников вам предстоит потерять престижную работу, уважение коллег, надежду на спокойную, обеспеченную старость.
  • Разряд попадает в мокрую землю под вашими ногами – это значит, что вам грозит откровенный разговор с любимым человеком, обоюдные признания в неверности, внешне спокойное обсуждение сложившейся ситуации. Тот случай, когда нечего терять. Если вы одиноки, такое сновидение означает прощение высшими силами всех грехов, начало новой жизни. Возможно, вскоре вы сляжете с высокой температурой, что еще раз подтвердит значение этого сна – очищение от грехов.

Разряд попадает в мокрую землю под вашими ногами – это значит, что вам грозит откровенный разговор с любимым человеком

Если снятся зарницы, соединяющие небо и землю на горизонте, – вам предстоит долгий путь, поездка к дальним родственникам. Иногда – туманные мечты о будущем, незрелость личности.

Молния, бьющая в дерево: пять значений снов

Если приснилось, что молния попала в старое раскидистое дерево и расщепила его напополам, – такой сон предвещает скорую разлуку двух любящих сердец, надолго или навсегда.

  1. Ударила в высокую сосну и разбила ее надвое – ссора с лучшим другом, которая окончится разрывом. Может означать непримиримую вражду.
  2. Молния попала в дерево, чьи корни находятся в воде, и подожгла его – сновидца подстерегает опасность, откуда он не ожидает. Это может быть предательство человека, которому он всецело доверял, или семейная тайна, которая станет для него страшным откровением.
  3. Если удар молнии пришелся в ствол липы, под которой вы стояли, – будете испытывать сильнейшее чувство зависти к доброму знакомому, которому прежде сочувствовали.
  4. Если молния поразила цветущую акацию – о вас станут сплетничать, завидуя улучшению ваших дел. Такой сон предостерегает от излишней откровенности, особенно с теми, кто выше вас по положению.
  5. Сон, в котором молния попадает в розовый куст, сформированный ввиде небольшого деревца, с пышными багряными цветами и разрывает его на части, – к возникновению в вашей душе нового всепоглощающего чувства: любви или ненависти. При этом в равной степени будете страдать и вы, и объект ваших страстей, и все вокруг. Постарайтесь сдерживать эмоции и почаще переключать внимание на что-то иное, в противном случае вам обеспечен нервный срыв.

Молния попала в дерево, чьи корни находятся в воде, и подожгла его – сновидца подстерегает опасность

Если молния ударяет в кипарис – сновидца ожидает наказание свыше: не обязательно гибель того, кому это приснилось, хотя такой исход тоже возможен. Скорее, череда потерь значимых для сновидца людей, резкое ухудшение здоровья, внезапное разорение. Все это случится нескоро. Высшие силы словно дают человеку шанс покаяться, изменить свой взгляд на мир и, таким образом, избежать кары.

Сильный удар молнии во сне: к чему это

  • Если снится, что молния ударила в знакомого вам человека – ваши отношения зашли в тупик, вас настолько угнетает превосходство и эгоизм героя сна, что разрыв принес бы вам большое облегчение.
  • Страшный удар молнии, который попадает в сухой фонтан, после чего из него начинают бить сильные струи воды – жизнь сновидца шла тихо и размеренно, мало помалу умирали надежды, мечты и желания; но скоро случится нечто такое, что перевернет с ног на голову упорядоченный быт и совершенно изменит окружающий мир. Такие сны – большая редкость. Они посещают только тех, кто может управлять законами вселенной.
  • Если удар молнии пришелся в голову сновидца и, пронзив его, ушел в землю, – у того, кто видел этот сон, вскоре откроются мощные экстрасенсорные способности.

Если снится, что молния ударила в знакомого вам человека – ваши отношения зашли в тупик

Сон о том, что электрическим разрядом раскалывает надгробье, – при жизни у того, над чьей могилой оно стоит, было тайное желание, которое он не успел или не смог осуществить. Скоро вам предстоит узнать о нем и приложить все усилия, чтобы оно осуществилось. Не стоит пугаться! Это может быть кот редкой породы, о котором мечтал покойник, поездка на Таити или книга, которую он поручит вам написать.

Шаровая молния

Видеть, как шаровая молния проплывает у ваших ног и исчезает в глубокой яме, – все ваши тревоги и огорчения исчезнут сами по себе, без видимой причины. Может означать избавление от затяжной депрессии.

  • Шаровая молния убивает стадо благородных оленей – смена власти.
  • Попадает в терновый куст, отчего он вспыхивает ярким пламенем – конфликт с ведьмой. Будьте осторожны, не поддавайтесь на провокации! Все начнется с недоразумения, а закончиться может загадочной гибелью всей вашей семьи.
  • Появляется из земли под вашими ногами и начинает двигаться вокруг вас по спирали, окружая золотистым светящимся коконом, – символ магической защиты, интерес к вам мощного энергетика. В отдельных случаях – воздействие одного из славянских оберегов, направленное на прибавление вам жизненных сил, богатства, здоровья, удачи в любви. Не удивляйтесь, если вскоре получите в подарок такой оберег. Примите его с благодарностью, он подарен от чистого сердца.

К чему снится молния (видео)

Сновидения похожи на явь, но все-таки настолько отличаются от того, к чему привыкли люди, что каждый старается найти им свое объяснение. Так пусть же молния озарит загадочным светом нелегкий, но такой увлекательный путь толкования сновидений!

Внимание, только СЕГОДНЯ!

Природном явлении как фульгуриты? Давайте разберёмся, что это такое.

Всего лишь одно попадание молнии в землю, и прекрасная скульптура готова. Не правда ли, прекрасно? Фульгурит – настоящее чудо природы.

Итак, это, по сути своей, «застывшая молния». Представьте себе, разряд попадает в пляж, и на его месте песок застывает до нескольких метров вглубь, превращаясь в стекло. Это и есть фульгурит.


Когда молния ударяет в землю, возникает быстрый рост давления воздуха. Воздух расширяется и образует полость внутри расплавленного песка.

После наступает моментальное охлаждение. Так появляется трубочка, повторяющая форму грозы, в песке. Такие песочные изваяния могут уходить вниз, вглубь земли на несколько метров. Но песочные , а потому вытащить их целиком довольно проблематично и, отчасти, невозможно.


Фульгуриты бывают разных цветов. Зависит такое от различных примесей в песке. Практически все песочные изваяния рыжеватого или коричневого цвета, а также серого или чёрного. Но, встречаются и зелёные, белые и иногда даже прозрачные!

Ну а форма зависит от влажности песка.


Мокрый песок имеет большую электропроводность, а потому громовые стрелы могут образовать ветвистую, красивую форму.

Иногда песочная скульптура напоминает корень дерева. И чаще всего именно изваяние из влажного песка можно выкопать из земли целиком.

Поверья и искусство


Сейчас этих природных артефактов стало очень много, особенно в пустыне Сахаре, в Африке. Поэтому уже никому не кажутся необычными эти потрясающие окаменелые молнии.

Считалось, что многие обладатели таких природных скульптур повышали за счёт них своё здоровье. Улучшалось кровообращение, выводились токсины из организма. Долголетие и хорошую потенцию тоже приписывали к их лечебным свойствам. Так считалось раньше.


Черный фульгурит созданный человеком

Но люди, хоть и не превзошли природу, но научились создавать фульгуриты и сами. В 2006 году на дороге вдруг появились песочные изваяния. Они произошли из-за воздействия высокого напряжения. Но тогда как такие скульптуры – случайность, другие – создаются намеренно.

При помощи искусственных молний, людям удается создавать самые разные виды фульгуритов

Именно на этом и специализируется -авангардист Алан Макколум (Allan McCollum). Летом 1997 года он создал огромное количество искусственных молний. Результат его деятельности — появление сотен ископаемых молний .

Алан Макколум — создатель «Мать всех фульгуритов» (The Mother Of All Fulgurites)

Среди них явился на свет и настоящий гигант, который получил название «Мать всех фульгуритов» (The Mother Of All Fulgurites) – эта стеклянная трубка уходила в землю на глубину более пяти метров. Это детище Макколума было признано самым длинным фульгуритом, созданным искусственно. Его увековечили на страницах Книги Рекордов Гиннеса.

Образование на Земле

Есть ещё несколько способов искусственного образования стекла – ведь именно этот материал получается при ударе молнии о землю.

Итак, первый способ – метеорит

Кратер Кебир, который образовался после падения метеорита, занимает довольно обширную территорию, которая приобрела полностью зелено-жёлтый оттенок. Это было самое крепкое стекло, стекло Ливийской пустыни.

Второй способ – ядерный взрыв

Плутониевая бомба под названием «Штучка» 16.06.1945 образовала в результате взрыва огромную территорию, полностью покрытую зеленоватым стеклом.

Третий способ – вулкан


Во время любого извержения вулкана образуется стекло, так как лава имеет очень высокую температуру.

Стекло это называется обсидианом, его можно употреблять в качестве теплоизоляционного материала.


Обсидиан является одним из древнейших материалов, который человечество использовало на протяжении всего времени развития. Из него изготавливали разные виды оружия, украшения, а также применяли в глиптике.

Все эти явления способствовали образованию стекла, из которого люди в древности делали многочисленные украшения. Их и сейчас можно найти в разных поселениях по всему миру. Тогда ещё эти украшения ценились на вес золота, и обладать ими считалось честью для человека.

Разновидности


Кластофульгурит — образуется в результате попадания молнии в песок

Всего существуют два вида природных скульптур: кластофульгурит, который образуется от попадания молнии в песок и петрофульгурит, при попадании молнии в горные породы. Первый вид считается самым распространённым, а второй – встречается довольно редко. Кластофульгурит можно встретить в огромном количестве в пустыне Сахаре, как было уже сказано выше, а петрофульгурит в местах, где есть достаточное количество горных пород.


Петрофульгурит — это когда молния попадает в любую горную породу

Так как в природе, по всей Земле сейчас есть огромное количество этих самых песочных скульптур со стеклом внутри, многие люди начали выкладывать в интернет фотографии, которые якобы сами сделали. Чаще всего, никто не замечает подвоха, хотя в Рунете самое большое количество картинок лже-фульгуритов. Вот, например, такая фотография:


Фальшивый фульгурит — это скульптура которая была сделана человеком

Каждый день на Земле происходит что-то невероятное. Эти события неподвластны объяснению учёных, поэтому им остаётся лишь строить догадки. Однако иногда их доводы считают рациональными, а иногда даже не воспринимают всерьёз. То, что создаёт природа, иногда считают подделкой, которую создают сами люди. Оказывается, не на все способен человек, в отличие от природы. И фульгурит не исключение.


Фульгурит, который был раскопан на одном из песочных пляжей США

Официальная версия и споры вокруг неё

Фульгурит - это очень , представляющий собой «слепок» удара молнии в песок. В результате получаются довольно необычные фигуры, напоминающие корни дерева или его ветви. Но это официальная версия, и данное явление всё ещё вызывает немало споров среди учёных.

Однако споры происходят не только между учёными, но и в социальных сетях. Некоторые пытаются дать своё объяснение происходящему. По словам «народных исследователей», эти странные песочные фигуры сотворены не природой, а человеком, и могут быть самыми банальными замками . Чем руководствуются пользователи соцсетей, не доверяя учёным? Всё просто: люди считают, что и здесь служители науки опростоволосились.

Ведь сколько уже ошибок было допущено в процессе познания непонятных явлений. А вдруг это очередное заблуждение? Описание Млечного пути оказалось неверным, Земля стоит не трёх слонах, а страусы не умеют летать. А посему – что мешает учёным вновь ошибиться? Конечно, сколько людей, столько и мнений. В социальных сетях много людей, которые расходятся в своих точках зрения. Таким образом они создают дезинформацию, которая развивается, включая в себя всё новые и новые лжефакты.

Происхождение


Фульгурит - это минералоид, который появляется благодаря соприкосновению молнии и кварцевого песка

Но давайте же вернёмся поближе к настоящим фактам. Если говорить языком физиков, то фульгурит - это минералоид, который появляется благодаря соприкосновению молнии и кварцевого песка. Для чудесного превращения необходим именно влажный песок, иначе окаменелых глыб можно и не увидеть. Весь процесс занимает не больше секунды, а проникновение молнии в землю достигает 15 метров в глубину!

Фульгурит, помимо этого, может получиться при падении опоры линии электропередач. Стекло, которое образуется в результате, является результатом действия сил, сравнимы со взрывом метеорита. Полученное стекло может быть разных оттенков. Оно может быть либо коричневым, либо зелёным, либо белым. Цвет напрямую зависит от состава песка. Снаружи это детище молнии покрывают крупные частицы песка, поэтому на ощупь оно пористое.


Для фульгурита характерны небольшие разветвления и наличие маленьких отверстий. Интересно, что самый длинный экземпляр был обнаружен во Флориде и был длиной в 4,9 метра.

Но где же зарождается песочная диковина? Самое интересное происходит под землёй. После удара молнии специалисты ищут её место встречи с землёй и выкапывают эти глыбы. Учитывая, что они очень хрупкие, с ними работают крайне осторожно.

После просмотра информации в Интернете, кроме общих сведений об этом явлении, можно убедиться, что существуют художники и скульпторы, которые искусственно создают фульгуриты. Оказывается, есть даже специальные учебники, в которых подробно рассказывается этапы создания такого чуда. Не удивляйтесь, если увидите в продаже фульгуритовую бижутерию – сейчас можно найти и не такое!

Настоящее ювелирное изделие!


После раскопок на пляже некоторые люди стремятся заработать на своих находках и позиционируют порождённый молнией минералоид как ювелирное изделие. Кто-то продаёт его без обработки, кто-то делает настоящие украшения. Весьма оригинальный фульгурит был создан во Флориде в рамках совместных усилий между художником и Международного центра изучения и экспериментирования с молниями. На этой выставке были представлены достойные шедевры. Один из способов создания скульптуры по данной тематике - пропускание электротока через один баррель песка.

Итак, фульгурит – это не самая большая загадка в мире, она, как капля в море, среди тайн и загадок. Наш мир полон тайн, а история фульгурита лишь одна из них.

Псевдофульгуриты – замки из песка


При должном терпении создать «фульгуритоподобное» строение несложно – нужно просто равномерно капать мокрым песком на основу.

Некоторые умельцы настолько вдохновляются творениями природы, что собственными руками творят шикарные замки из песка, очень напоминающие предмет этой статьи.

В качестве основы может быть конструкция из палочек или железяк.


Особенно удачные образцы люди часто путают с фульгуритами, но этого делать не стоит, потому что результат удара молнией обычно прячется под землёй или даже в горах, а не возвышается посреди пляжа.

– температура воздуха и воды, песок на пляже должен быть влажным. А песок для «стройки» должен иметь особую консистенцию. Есть даже специальные видео-уроки по поводу того, как смешивать воду с песком и как переносить мокрый песок на стройплощадку. Многие мастера советуют разводить песок с водой в пропорции 1:1 – так песочный дворец может стать очень высоким.

15. Перенапряжения прямого удара молнии
Перенапряжениями специалисты называют любые кратковременные повышения напряжения в электрической сети над его номинальным уровнем. Здесь будут рассмотрены перенапряжения, которые вызывает ток молнии в месте удара. Самая простая ситуация – молнию принимает на себя специально установленный стержневой молниеотвод . Ее ток I через молниеприемник, а затем через токоотводы попадает в заземлитель и растекается в земле. При этом на сопротивлении заземления R з выделяется напряжение U R = I молR з. Это очень большое напряжение. Например, при I мол = 100 кА и R з = 10 Ом получается U R = 1000 кВ. Примерно такой же потенциал будет в ближайшей окрестности молниеотвода. Расположенный поблизости подземный кабель примет почти тот же потенциал и, если не предпринять специальных мер, передаст его по кабелю внутрь защищаемого здания, вызвав повреждения изоляции, которую на столь высокое напряжение не рассчитывали.
Воспроизведем еще одну практически значимую ситуацию, положив, что металлическая мачта молниеотвода одновременно выполняет функцию осветительной мачты и потому на ней крепятся изоляторы воздушной линии, питающей светильники. Потенциал мачты в месте крепления изоляторов светильников заметно выше, чем U R, потому что к падению напряжения на заземлителе добавляется падение напряжения на индуктивности мачты (или шин токоотводов, которые по ней проложены, если сама мачта непроводящая). Амплитуда напряжения на индуктивности L равна U L = L (di /dt )max, где выражение в скобках определяет скорость роста тока на фронте импульса. В оценке на усредненную длительность фронта импульса первого компонента молнии T f » 5 мкс для тока 100 кА, легко получить (di /dt )max » I мол/T f = 2´1010 А/с, что для индуктивности L = 30 мкГн (мачта высотой ~ 30 м) дает U L = L (di /dt )max = 600 кВ. Суммарная величина U мол = U R + U L возрастает, таким образом, в разобранном примере до 1600 кВ. Силовой провод находится под потенциалом осветительной сети (220/380 В), пренебрежимо малым по сравнению с U мол и потому практически все напряжение U мол действует на изоляцию силовой цепи относительно земли, в итоге перекрывая ее. Это типичный пример грозовых перенапряжений, в равной степени опасных и для низковольтных сетей, и для линий электропередачи высокого напряжением, где в роли молниеприемка выступает опора или молниезащитный трос линии.

16. Индуцированные перенапряжения от молнии
Это самый распространенный вид перенапряжений, за который ответственно электромагнитное поле молнии. Здесь будут рассмотрены раздельно последствия изменения магнитного поля тока молнии и последствия изменения заряда, который несет ее приближающийся к земле канал. В какой-то степени такое деление - условность, но оно удобно для понимания сути дела.
Если произвольный контур помещен в магнитное поле B , в контуре будет наведена ЭДС магнитной индукции U маг » -S A B. Здесь A B =dB /dt – скорость изменения магнитного потока, пронизывающего контур площади S . Пусть, например, этот контур создан витой парой проводов, которые связаны с компьютером. Тогда площадь контура очень небольшая, порядка 10 см2 (в расчете на кабель длиной в несколько метров). Допустим еще, что провод проходит по стене здания на расстоянии r = 1 м от параллельного ему токоотвода, который отводит к земле ток молнии от молниеприемника. Оценка сверху должна ориентироваться на предельно высокую скорость роста тока молнии A I. Действующие нормативные документы дают величину A I = 2∙1011 А/с. Скорость роста магнитного поля, которая ей соответствует, оценивается при этом как
,
где m0 = 4p∙10-7 Гн/м – магнитная проницаемость вакуума. В рассматриваемом примере Ф B » 4∙104 В/м2 и потому U маг = - B » 40 В. Не нужно пренебрегать полученной величиной. Она на порядок больше рабочего напряжения современной микросхемы и наверняка выведет ее из строя.
Представление о другом масштабе перенапряжений дают оценки для воздушной линии электропередачи напряжением 220/380 В. Здесь площадь контура, образованного фазным и нулевым проводом, легко достигает S = 100 м2. Даже далекий разряд молнии на расстоянии r = 100 м от линии приводит к средней скорости роста магнитного поля ~ 400 В/м2, что дает перенапряжение в 40 кВ, безусловно опасное и для трансформаторной подстанции, и для потребителей, которых та питает.
Теперь об электрической составляющей наведенных перенапряжений. Ее вызывает переток электрического заряда, который наводится электрическим полем канала молнии. Заряд канала достаточно весом, около 0,5 – 1 мКл на метр длины, а электрическое поле у земли, которое он возбуждает, многократно превышает электрическое поле грозового облака. Оценка по полю E мол » 200 кВ/м не будет слишком завышена. Теперь представьте проводник электрической емкостью С , размещенный над землей на высоте h. Это может быть горизонтальный провод (например, антенна), металлический корпус какого-то агрегата или строительная конструкция. Потенциал от заряда канала молнии на высоте h , равный U эл = E молh наведет на заземленном проводнике заряд Q = CU эл. После удара молнии в землю, когда заряд ее канала нейтрализуется и электрическое поле исчезнет, наведенный заряд стечет с проводника в землю через сопротивление заземления R з. Ток от стекающего заряда создаст падение напряжения на проводнике относительно земли. Это может быть вполне приличная величина. Если, например, емкость объекта С = 1000 пкФ (провод длиной около 100 м), а высота его подвеса над землей 5 м, то заряд канала молнии создаст в месте размещения объекта потенциал до U эл = E молh = 200´5 = 1000 кВ. В результате наведенный заряд составит Q = CU эл = 10-9´106 = 10-3 Кл. При нейтрализации приземной части канала молнии за время Dt » 1 мкс по сопротивлению заземления проводника протечет ток i » Q /Dt = 10-3/10-6 = 1000 А, который вызовет падение напряжения на сопротивлении заземления R з = 10 Ом величиной U эл = i R з = 1000´10 = 10 кВ.

17. Занос высокого потенциала
Таким не очень благозвучным и не вполне точным словосочетанием в молниезащите называют доставку к защищаемому объекту высокого напряжения по его надземным или подземным коммуникациям. Сам объект может быть и не поражен прямым ударом молнии. Пусть молния ударила совсем в другое сооружение, в дерево или даже просто в землю. Растекаясь в земле у пораженного сооружения, ток молнии создаст на его заземлителе очень высокое напряжение, U з = I молR з. (например, 300 кВ, если R з.= 10 Ом, а I мол = 30 кА). Под таким же напряжением окажется металлическая оболочка коммуникации, которая связана с тем же заземлителем. Волна напряжения может распространяться по коммуникации на большие расстояния, особенно если она наземная и лишена утечки электрических зарядов в грунт. Но даже в подземном исполнении коммуникация может транспортировать волну высокого напряжения на расстояние в сотни метров без заметного затухания. Чем выше удельное сопротивление грунта, тем эффективнее транспортировка. В скальных породах, сухих песках или в вечно мерзлых грунтах занос высокого потенциала опасен даже на расстояниях в несколько километров.
Особо нужно отметить современные коммуникации из пластиковых труб. Внутри их электролит (в крайнем случае, водопроводная вода, которая тоже неплохой проводник), вполне пригодный для передачи высокого напряжения на большие расстояния, а снаружи высококачественный пластик, надежно изолирующий внутреннюю среду от контактов с грунтом. Теперь утечки в грунт исключаются полностью. Легко представить последствия прикосновения человека к металлическому крану такой коммуникации. Стоя на земле с нулевым потенциалом, он окажется под действием полного напряжения, которое передано по жидкостному каналу.

18. Перенапряжения от распространения тока молнии по металлически оболочкам
Металлическую оболочку обоснованно считают эффективным электромагнитным экраном. Тем не менее, она не спасает полностью от воздействия грозовых перенапряжений на внутренние цепи. Причину возникновения перенапряжений легко уяснить из следующего рисунка. Ток молнии, распространяясь по металлической оболочке длины l , создает на ней падение напряжения DU = R 0lI , где R 0 – сопротивление

единицы длины оболочки. Внутренний провод связан с началом оболочки и потому принимает ее потенциал в месте контакта. Потенциал другого конца оболочки из-за падения напряжения от тока I на DU меньше. Значит между концом внутреннего проводника и концом оболочки будет действовать напряжение U э = DU = R 0lI . Следующая оценка позволяет понять, о каких значениях здесь может идти речь. Пусть длина стальной оболочки l = 100 м, а площадь ее сечения – 100 мм2. Тогда погонное сопротивление составит R 0 = 0,001 Ом/м, что при токе молнии I = 100 кА приведет к перенапряжению U э = R 0lI = 0,001´100´100 = 10 кВ. Этого вполне достаточно для повреждения изоляции осветительного кабеля 220/380 В.
Более строгий анализ показывает, что металлическая оболочка не спасает полностью и от перенапряжениях в двухпроводных системах. Дело в том, что потенциал, принимаемый внутренним проводником, зависит от его внутреннего расположения. Все проводники равноценны только в оболочке круглого сечения. Если же сечение оболочки некруговое (например, это прямоугольный короб), потенциалы проводников будут различными и между ними появится напряжение. Как, правило, оно на порядки ниже только что оцененной величины, но и этого бывает достаточно для повреждения микросхемы, к которой подходит кабельная пара.

19. Защитное действие молниеотводов
С времен Франклина и Ломоносова принято, что молния направляется к наиболее высокому сооружению на земной поверхности. Это положение можно принять и сегодня, но с принципиальной оговоркой: молния с наибольшей вероятностью направляется к наиболее высокому сооружению. Вероятность поражения менее высокого тоже ненулевая. Из самых общих соображений понятно, что эта вероятность снижается с увеличением разности высот. Значит, для надежной защиты высота молниеотвода должна быть больше высоты защищаемого объекта. Чем больше требуемая надежность, тем выше должен быть молниеотвод.
Выбор молниеотводов часто производят по их зонам защиты. Предполагается, что надежность защиты не будет ниже указанной величины, если объект целиком размещен внутри зоны защиты. Для стержневого молниеотвода зону защиты представляют в виде конуса, вершина которого лежит на вертикальной оси стержня. Из сказанного выше следует, что вершина зоны должна располагаться ниже вершины молниеприемника, если гарантируемая надежность защиты больше 0,5. Чтобы убедиться в этом достаточно предположить два расположенных вплотную заземленных стержня равной высоты, посчитав один из них молниеотводом, а другой объектом. Ясно, что за большой срок наблюдения стержни примут на себя равное число ударов молнии (50%-ная надежность защиты). Чтобы обеспечить надежность 0,9 или 0,99 стержень, обозначенный молниеотводом, обязательно должен стать выше, чтобы принимать на себя большую часть молний. Сказанное в равной степени справедливо и для тросовых молниеотводов.

Даже при очень большой разности высот молниеотвод не может обеспечить идеальной защиты. На снимке, который здесь представлен, молния промахнулась мимо вершины Останкинской телебашни на 202 м. Такой случай не уникален.
На практике оперируют надежностью защиты 0,9 или 0,99 (к защищаемому объекту прорывается одна молния из 10 или из 100), редко – 0,999. Для одиночного стержневого молниеотвода высотой h £ 30 м радиус зоны защиты с надежностью 0,9 на уровне земли равен примерно r 0 = 1,5h . а с надежностью 0,99 r 0 = 0,95h . Применение системы из многих молниеотводов заметно расширяет зону защиты. При разумном расположении защищаемый объем может быть в несколько раз больше суммы зон защиты каждого из молниеотводов в отдельности. Этим широко пользуются специалисты.
Если правильно рассчитать и установить молниеотвод на крыше своего дома или около него, можно почти не беспокоиться о прожогах кровли. Даже при надежности защиты 0,9 к дому относительно небольшой высоты прорвется меньше одной молнии за 100 лет. К сожалению, на электромагнитные воздействия молнии такой молниеотвод почти не повлияет. Именно эти воздействия становятся главной причиной аварийных ситуаций.

20. Защита от электромагнитных воздействий молнии
Для современной техники – это самая важная проблема. Фирмы со штатом в тысячи человек разрабатывают и выпускают аппаратуру для защиты от электромагнитных воздействий силовых электрических цепей, телефонных линий, каналов телевидения и даже средств охраны вашего дома от нежелательных “гостей”.
Защитные устройства независимо от их конструкции часто называют ограничителями перенапряжения. Представьте какую-нибудь двухпроводную электрическую цепь, которая входит в Ваш дом. Пусть это будет, например, сеть 220 В. У вас не возникнет проблем, если величину грозовых перенапряжений в сети ограничить уровнем, безопасным для изоляции внутренней проводки и включенной в сеть аппаратуры (например, телевизора, СВЧ-печи или компьютера). При рабочем напряжении 220 В изоляция кратковременно выдержит увеличение напряжения в 3 – 5 раз, вряд ли больше. Значит, на входе в дом надо поставить устройство, которое не даст перенапряжению подняться выше.
Механическая система здесь непригодна из-за своей инерционности. Любое механическое реле срабатывает за единицы-десятки миллисекунд, а грозовое перенапряжение, вызванное током молнии, нарастает примерно в 100 раз быстрее. Нужное быстродействие обеспечивается только полупроводниковыми или газоразрядными приборами. Сегодня успешно используют и те, и другие.
Принципиальная идея такова. В месте входа воздушной сети в дом параллельно проводам установлена шайба, спеченная из оксида цинка. Ее толщина подобрана так, что при напряжении 220 В она практически не пропускает тока и ведет себя как совершенный изолятор, не влияя на электрическую цепь. Однако при появлении грозового перенапряжения проводимость шайбы очень быстро нарастает. За доли микросекунды она приближается к проводимости металлического проводника. Возникшее таким образом короткое замыкание не пропускает перенапряжение к аппаратуре внутри здания и она остается неповрежденной. Когда же ток молнии затухает и перенапряжение исчезает, оксидно-цинковая шайба за те же доли микросекунды возвращается в непроводящее состояние. За столь малое время ее работы автоматы и предохранители не успевают сработать и электроснабжение дома не нарушается.
Примерно так же работают и другие полупроводниковые устройства, варисторы. Меняется только их рабочее напряжение (оно может быть и очень низким для защиты микропроцессорной техники), а принцип действия остается неизменным). Благодаря простоте конструкции полупроводниковые ограничители перенапряжения (ОПН) широко распространены. Их удается смонтировать в малогабаритном корпусе, примерно таком же, как бытовые автоматы, и легко крепить на линейке обычной коммутирующей аппаратуры. Тем не менее, сегодня специалисты все чаще обращаются к старым и давно известным газоразрядным приборам. В них защищаемая цепь замыкается не полупроводниковой шайбой, а после пробоя специального искрового промежутка малой длины.
Газонаполненные разрядники с искровыми промежутками – более сложный прибор, чем полупроводниковый ограничитель. В нем обязательно предусматривают устройство для обрыва дуги с током короткого замыкания электрической сети. Сама по себе эта дуга погаснуть не может, ее гасит специальное дутье. Зато искровой разрядник более надежен, а главное, - он совершенно не страдает от случайного не очень сильного, но длительного повышения напряжения в электрической сети, скажем, когда из-за перекоса фаз держится 270 – 300 В вместо нормальных 220 В. От такого перенапряжения оксидно-цинковая шайба чуть-чуть приоткрывается, начинает пропускать ток, перегревается и выходит из строя. Ничего похожего искровому разряднику не грозит.

21. Почему молния не в ладах с дилетантами
Прочитанные главки дают представление о разностороннем вооружении молнии. В конце концов, какое-нибудь ее оружие может сработать. Человеку не легче, если он, справившись с защитой своего сооружения от прямого удара молнии, пострадает от заноса высокого потенциала, грозовых перенапряжений в электрической сети или сбоев электронного оборудования, пославшего ложную команду. Защита от молнии должна быть комплексной и обязательно совместимой с технологическим назначением объекта. Полумеры здесь мало подходят. Более того, не исключена ситуация, когда недальновидное решение может усугубить опасные воздействия молнии. Вот почему проект по молниезащите должен подготовить специалист. Он должен внимательно оценить опасность всех возможных воздействий высокотемпературного канала, тока и электромагнитного поля молнии. Во внимание должно быть приняты не только конструктивные особенности защищаемого объекта, но и его окружение на поверхности земли и даже подземные коммуникации. Дилетанту такое не по силам.
Очень важно, чтобы средства защиты от молнии не “навешивались” на уже смонтированный объект, а разрабатывались еще на стадии проекта. Только тогда удастся максимально совместить элементы молниезащиты с конструктивными деталями защищаемого объекта и тем самым сберечь немалые деньги. Не редкость, когда совершенно незначительное изменение конструкции объекта, не сказывающееся на его технологических функциях, влечет за собой очень резкое повышение молниестойкости. На такие решения способны только высоко квалифицированные специалисты.

Искусство выживания

Молния - что такое молния и как действовать во время грозы

Молния – это искровой разряд электростатического заряда кучевого облака, сопровождающийся ослепительной вспышкой и резким звуком (громом).

Опасность. Молниевой разряд характеризуется большими токами, а его температура доходит до 300 000 градусов. Дерево при ударе молнии расщепляется и даже может загореться. Расщепление дерева происходит вследствие внутреннего взрыва из-за мгновенного испарения внутренней влаги древесины.

Прямое попадание молнии для человека обычно заканчивается смертельным исходом. Ежегодно в мире от молнии погибает около 3000 человек.

Предупредительные мероприятия перед грозой

Для снижения опасности поражения молнией объектов экономики, зданий и сооружений устраивается молниезащита в виде заземленных металлических мачт и натянутых высоко над сооружениями объекта проводами.

Перед поездкой на природу уточните прогноз погоды. Если предсказывается гроза, то перенесите поездку на другой день. Если Вы заметили грозовой фронт, то в первую очередь определите примерное расстояние до него по времени задержки первого раската грома, первой вспышки молнии, а также оцените, приближается или удаляется фронт.

Поскольку скорость света огромна (300 000 км/с), то вспышку молнии мы наблюдаем мгновенно. Следовательно задержка звука будет определяться расстоянием и скоростью звука (около 340 м/с). Мы должны время в секундах от вспышки молнии до первого раската умножить на 340 - и получим расстояние в метрах до грозового фронта.

Пример: если после вспышки до грома прошло 5 с, то расстояние до грозового фронта равно 340 м/с х 5с = 1700 метров. Если с течением времени запаздывание звука растет, то грозовой фронт удаляется, а если запаздывание звука сокращается, а гром перестает быть раскатистым и напоминает сухой треск, то грозовой фронт приближается. Чем раскатистее гром на ровной местности - тем дальше гроза.

Как действовать во время грозы

Молния опасна тогда, когда вслед за вспышкой СРАЗУ следует раскат грома, а гром практически не имеет раскатов. В этом случае срочно примите меры предосторожности.

Если Вы находитесь в сельской местности: закройте окна, двери, дымоходы и вентиляционные отверстия. Не растапливайте печь, поскольку высокотемпературные газы, выходящие из печной трубы, имеют низкое сопротивление. Не разговаривайте по телефону: молния иногда попадает в натянутые между столбами провода.

Во время ударов молнии не подходите близко к электропроводке, молниеотводу, водостокам с крыш, антенне, не стойте рядом с окном, по возможности выключите телевизор, радио и другие электробытовые приборы.

Если Вы находитесь в лесу, то укройтесь на низкорослом участке леса. Не укрывайтесь вблизи высоких деревьев, особенно сосен, дубов и тополей.

Не находитесь в водоеме или на его берегу. Отойдите от берега, спуститесь с возвышенного места в низину.

В степи, поле или при отсутствии укрытия (здания) не ложитесь на землю, подставляя электрическому току все свое тело, а сядьте на корточки в ложбине, овраге или другом естественном углублении, обхватив ноги руками.

Если грозовой фронт настиг Вас во время занятий спортом, то немедленно прекратите их. Металлические предметы (мотоцикл, велосипед, ледоруб и т.д.) положите в сторону, отойдите от них на 20-30 м.

Если гроза застала Вас в автомобиле, не покидайте его, при этом закройте окна и опустите антенну радиоприемника. Если в автомобиле сухо, он сможет выдержать удар молнии, защитив Вас.

Куда и почему ударяет молния?

2008. Юлия Кафтанова. От себя разъясняю больше. При движении грозового фронта от трения воздуха между землей и облаками образуется огромная разность потенциалов. Явление чем-то похоже на гигантский природный конденсатор, накапливающий энергию.

Поэтому метеочувствительным людям может стать плохо перед грозой, даже если она прошла рядом, в работе тонких электроприборов могут наблюдаться электрические помехи, а радиосигнал может не проходить сквозь грозовой фронт.

Разряд статического электричества обычно проходит по пути наименьшего электрического сопротивления - по ионизированному каналу, проложенному "бегущим лидером" (как по проводу). Так как между самым высоким предметом, среди аналогичных, и кучевым облаком расстояние меньшее, значит меньше и электрическое сопротивление. Следовательно, молния поразит в первую очередь высокий предмет (мачту, дерево и т.п.).

Большая часть молний и электрических разрядов происходит между грозовыми облаками и внутри грозового облака - порядка 80%. Но мощность электрических разрядов между землей и облаками несопоставимо больше, так как намного выше разность потенциалов "между небом и землей".

После накопления критического статического заряда из грозового облака стекает небольшой заряд (микро-шаровая молния) - так называемый "бегущий лидер" и движется к земле со скоростью порядка 20 м/с. По пути он образует ионизированный канал, может расщепляться и делиться - тогда молния ветвится.

Как только он достигает земли или высокого предмета, имеющего статический заряд электричества, с земли в грозовое облако по проложенному ионизированному каналу происходит мгновенный многократный электрический разряд. Его мы видим как единую очень яркую "цельную" молнию, но на расстоянии мы слышим раскаты грома, так как мгновенных последовательных разрядов молнии по одному каналу производится от 10-15 до 80 и даже 100 в чрезвычайно редких случаях. Можете посчитать количество раскатов грома на отдалении 2 км от молнии.

"Бегущий лидер" - это ионизированный заряд электричества, стекающий с грозового облака. На фото вверху страницы очень хорошо видно, как с грозового фронта стекают вниз "бегущие лидеры", оставляя за собой слабосветящийся ветвистый канал. И очень хорошо заметен яркий мощный канал "от земли до неба" со вспышкой на облаке, по которому происходит непосредственный разряд молнии. Все такие активные каналы при входе в грозовое облако очень ярко подсвечены, а сам по себе выход "бегущего лидера" из облака - еще нет.

На четвертой слева молнии очень хорошо видно, что мощный разряд бьет вдоль канала из земли и еще не достиг развилки. А крайний справа вверху "слабый" разряд - это движение "бегущего лидера" из облака. На конце крайней левой развилки третьей слева молнии даже виден очень яркий "бегущий лидер" в виде точечного маленького шара.

Тем, кто считает, что разряд молнии бьет из облака в землю, и широко распространяет эти неверные сведения в интернете, настоятельно советую почитать высшую физику - в XX веке с активным приходом фотографии в нашу жизнь явление молнии было очень хорошо описано.

От себя могу высказать предположение о природе шаровой молнии: таинственная шаровая молния может оказаться очень крупным "бегущим лидером", который способен увидеть невооруженный глаз человека (а не только зафиксировать специальная фотография), за которым полностью закрылся ионизированный канал, и поэтому полноценный разряд молнии стал невозможным.

Если "бегущий лидер" оказался "слабеньким" и разрушился до того, как он полностью сформировал ионизированный канал, разряда молнии не происходит. Большинство выходов "бегущих лидеров" не заканчивается разрядом молнии. "Бегущий лидер", формирующий привычную нам молнию "между небом и землей", живет порядка 50-80 секунд, так как ему необходимо время для достижения поверхности.

"Бегущий лидер", за которым непосредственно следует электрический разряд и молния, на специальных фотографиях напоминает небольшую яркую искру и представляет собой сгусток ионизированного газа (сгусток низкотемпературной плазмы). Именно путем фотографирования молнии и того, что происходит непосредственно перед разрядом, в XX веке было сделано открытие, корректно описывающее явление молнии.

Если же "бегущий лидер" оказался очень большим по размеру, он начинает встречать более существенное сопротивление окружающей среды, скорость его движения резко замедляется, ионизированный канал за ним успевает полностью или частично закрыться. Поэтому полноценного разряда молнии не происходит, и мы можем наблюдать явление шаровой молнии (например, в зоне смерча и торнадо, как на фото). Стремясь занять наименьший объем, вещество в состоянии плазмы принимает шарообразную форму (площадь внешней поверхности шара минимальна среди прочих тел при фиксированном объеме).

Фактически, наблюдается три фазовых состояния, описывающих различное поведение математической модели "бегущего лидера" - формирование "бегущего лидера", который не закончился никаким разрядом (более 99%), "бегущий лидер", которому "повезло" и которому удалось полностью сформировать ионизированный канал, движение которого закончилось разрядом молнии (менее 1%), и "переросток", за которым частично или полностью закрылся ионизированный канал, и он сформировал видимую невооруженным глазом шаровую молнию (чрезвычайно редко).

Если рассматривать явление разряда молнии с точки зрения модной сегодня теории катастроф, то именно разряд молнии необходимо рассматривать как фазовое изменение состояния системы "природных конденсаторов". Только разряд молнии и "бегущий лидер", которому "повезло", вызывает скачкообразное изменение состояния электрических потенциалов грозовых облаков и поверхности земли и соответственно может рассматриваться как "катастрофа". Моментом начала скачкообразного изменение состояния системы является момент достижения "бегущим лидером" другого облака или поверхности земли (а также дерева, молниеотвода и т.п.).

Сам момент скачкообразного изменения состояния системы (то есть разряд молнии) может быть описан набором аппроксимированных дельта-функций по числу мгновенных электрических разрядов, аргументом является время.

Ни "бесплодный" "бегущий лидер", который не закончился разрядом молнии, ни тем более "переросток"-шаровая молния с точки зрения современной теории катастроф не вызывают скачкообразное изменения состояния "природных конденсаторов" - грозовых облаков и поверхности земли. Именно поэтому шаровая молния не может рассматриваться как явление, вызывающее скачкообразное изменение состояния системы вцелом, ведь она не влечет за собой полноценного разряда молнии со сформированным по всей длинне ионизированным каналом.

В крайнем случае, шаровая молния, получающая извне энергетическую подпитку (например, от мощного вращения торнадо, как на фото), влечет за собой локальные электрические микро-разряды в своей локализованной окрестности. Эти микро-молнии и электрические разряды проходят по локализованным в некоторой окрестности ионизированным каналам. Если же энергетический подпитки шаровой молнии извне не происходит и связь с источником полностью утеряна, то шаровая молния не формирует локальные электрические разряды вообще.

Но так или иначе, во время своего существования (с момента образования до момента разрушения) поведение шаровой молнии обусловлено исключительно локальными изменениями состояния системы и никак не влияют на ее глобальное состояние и поведение, в отличие от привычного разряда молнии.

Всем хотелось знать, правда ли, что после удара молнии гражданин Китая грохнулся на землю, быстро вскочил, отряхнулся и хотел было двинуться дальше, но вторая молния сбила его с ног еще раз и опять без смертельного исхода. Похожих историй немало. В популярных книжках и журналах вам расскажут о массовом поражении футболистов на стадионе, пассажиров на автобусной остановке, едва ли не целого стада коров на пастбище. Истории жуткие. Десяток человек в больнице. Но в больнице же, - не на кладбище. Может быть опасность молнии сильно преувеличена, если человек в состоянии выдержать ее прямое воздействие? Только кто сказал, что воздействие прямое? Чаще всего это не так.

Разряд молнии сопровождается сильным электрическим током. Даже у средней по силе молнии он близок к 30 000 А, а у мощнейшей едва ли не на порядок больше. В конечном итоге этот ток растекается в грунте по всему объему Земли. Любой молниеприемник обязательно заземляют. Для этого у молниеотвода монтируют заземлитель. Его образует один или несколько подземных заземляющих электродов, вертикальных или горизонтальных. С металлических электродов ток попадает в землю, где, как в любом проводнике, действует закон Ома. Произведение тока на сопротивление дает напряжение, в данном случае напряжение на заземлителе:

Выражение вроде бы привычное, но все-таки не совсем, потому что речь идет о напряжении в земле, которое принято считать нулевым. Ведь для того и заземляют, чтобы не попасть под напряжение. А тут получается с ног на голову, причем не в переносном смысле, а в самом что ни на есть прямом. Напряжение действует на человека через ноги, нормально и твердо стоящие на земле. Такое требует объяснения. И начинать надо с самого простого. Насколько хорошим проводником считается грунт? Ответ кажется очевидным, - безусловно хорошим, если электрики и специалисты по технике безопасности всегда говорят о заземлении. В науке и технике привыкли к конкретным оценкам. Слова много-мало, хорошо-плохо сути дела не поясняют. Качество проводников оценивается их удельным сопротивлением. У хорошего грунта оно близко к 100 Ом*м - в миллиард раз больше, чем у черной стали! Сопоставление более чем убедительное. Выручает очень большой объем, по которому растекается в грунте ток молнии.

Не хочу, чтобы читатель поймал меня на качественном описании и потому сразу перейду к количественным оценкам. Для этого вместо привычного напряжения полезно воспользоваться еще одним параметром из школьной физики. Речь пойдет о напряженности электрического поля. Так называют величину падения напряжения в какой-то среде на единице длины, например, падение напряжения в грунте на длине 1 м. Кстати, длина 1 м - это примерная длина шага взрослого человека. Помните, напряженность измеряют в вольтах на метр. Если электрическое поле в грунте E гр равно 1 В/м, между ногами человека на длине l = 1 м будет действовать напряжение


Время оценить электрическое поле тока молнии в грунте. Представим, что она ударила в стержневой молниеотвод, заземлитель которого выполнен в виде полусферы диаметром d= 0,5 м (кастрюля или казан для плова средних размеров) и закопан в грунт, как это показано на рис. 1. Ток молнии I М будет симметрично стекать с поверхности металлической полусферы, где его плотность составит

Для средней по силе молнии с током 30 000 А в нашем случае получается j M ≈ 7,6×10 4 А/м 2 . Дальше полная аналогия с законом Ома. Чтобы получить напряженность в грунте E гр, надо умножить плотность тока на удельное сопротивление грунта ρ.

Если даже ориентироваться на высоко проводящий грунт (ρ ≈ 100 Ом*м), получается весьма впечатляющая величина 7 600 000 В/м. Напряжение на длине шага 1 м составит здесь почти восемь миллионов вольт. Трудно предположить, чтобы телевизионному китайцу удалось перенести такое без вреда для здоровья. Скорее всего, второй молнии не потребовалось бы.

Величина, которая здесь получена, называется специалистами шаговым напряжением (говорят еще - напряжение шага). Важно понимать, как она меняется в окрестности места удара молнии. Если грунт везде одинаковый, все определяется плотностью тока молнии. По мере удаления от полусферического заземлителя поверхность, через которую протекает ток в силу симметрии так и останется полусферической. а ее радиус r будет непрерывно нарастать. Вместе с ним увеличится площадь полусферической поверхности, "заполненной" током, и соответственно снизится его плотность.

Напряженность электрического поля тоже начнет быстро снижаться

На расстоянии r = 10 м от начальных миллионов в нашем примере останется чуть меньше 5 000 В/м. Это тоже чувствительно, но, как правило, не смертельно, потому что время действия высокого напряжения, как и длительность тока молнии, едва ли больше 0,1 миллисекунды. Высоковольтная подножка может легко сбить с ног, но сил, чтобы подняться, у человека скорее всего хватит.

Если читателю не надоели цифры и он добрался до этой строчки, дальше ему будет легко понять откуда взялась старая рекомендация не прятаться от грозы под большими деревьями. Из-за значительной высоты удар молнии в них наиболее вероятен. При ударе ток потечет по корневой системе дерева как по заземлителю. Вплотную с корнями электрическое поле особенно велико. Ясно, что стоять здесь не рекомендуется, сидеть и особенно лежать тоже, потому что длина человека вдвое больше длины его шага.

Если еще раз вернуться к цифрам, то надо признать, что они нисколько не завышены. Ток молнии даже в 100 000 А особой редкостью не назовешь, да и удельное сопротивление грунта может быть в десятки раз больше использованного в оценках. По этой причине опасное для жизни шаговое напряжение может удерживаться на достаточно большом расстоянии от точки удара молнии. Наконец, во внимание надо принять форму заземляющего электрода. Все оценки выше были сделаны для полусферического заземлителя. Его электрическое поле, как видно из приведенных формул, убывает очень быстро, - обратно пропорционально квадрату расстояния. Чаще же заземлители монтируют из протяженных шин или стержней, мало похожих на полусферу. Их электрическое поле убывает намного медленнее. В результате радиус опасного знакомства с молнией очень заметно увеличивается, иногда, до многих десятков метров. Так объясняют массовые поражения людей на пляже или на футбольном поле.


Перед вами результаты расчета шагового напряжения для типового заземляющего устройства, что рекомендован отечественным нормативом по молниезащите. Он состоит из горизонтальной шины длиной 10 м и трех вертикальных стержней по 5 м - два по краям шины и один у середины. Удельное сопротивление грунта 1000 Ом*м (неувлажненный песок), ток молнии 100 кА. Это мощная молния - у 98% грозовых разрядов ток меньше. Цифры на графике впечатляющие - сотни киловольт непосредственно у заземлителя, свыше 70 кВ на расстоянии 15 м и не меньше 10 кВ на расстоянии 40 м.

Когда в Москве восстанавливали храм Христа Спасителя, проектировщики учли, что при его значительной высоте надо ожидать практически ежегодного удара молнии. Не исключено, что этот удар произойдет в праздничный день, при большом стечении народа на паперти. Чтобы гарантировать безопасность прихожан, пришлось обеспечивать растекание тока молнии по очень разветвленной системе подземных шин, минимизировав тем самым шаговые напряжения.

Сильное электрическое поле в грунте несет еще одну неприятность. Когда напряженность поля поднимается до 1 МВ/м, в земле начинается ионизация. В определенных условиях это приводит к росту плазменного канала, который скользит вдоль поверхности грунта, слегка зарываясь в него. Каналы (а их может быть несколько, как на этой фотографии, полученной в лаборатории) могут продвигаться от места ввода тока молнии


на десятки метров. Фактически их надо рассматривать как продолжение молнии, только не в воздухе, а вдоль поверхности земли. Надо сказать, что они не становятся от этого менее опасными, потому что ток в канале составляет десятки процентов от тока молнии, а температура заведомо выше 6000 0 . Надеюсь, читателю не потребуется большого воображения, чтобы представить себе последствия контакта такого канала с зоной протечек топлива на нефтеналивной эстакаде или с подземным кабелем, например, телефонным либо управляющим микроэлектронной системой.

В засушливый 2010 г центральное телевидение передавало репортаж из полностью сгоревшей в грозу деревни в Омской области. Московская корреспондентка поинтересовалась у деревенских бабушек: “Почему не гасили?”. Те ответили хором; “Страшно было - стрелы огненные по земле ползали”. Взгляните еще раз на снимок. Правда, похоже? Опасались бабушки не напрасно. Электрическое поле у искровых каналов мало чем отличается от поля у металлических шин. Сближение с ними легко может закончиться гибелью.

Представленного достаточно, чтобы убедиться в изобретательности молнии. Вы устроили надежную защиту сверху при помощи молниеотводов, а она прорывается к вам обходным маневром, прокладывая себе путь вдоль поверхности земли. Вот почему практически все популярные статьи заканчиваются обращением не забывать о профессионалах. С грозными явлениями природы шутить рискованно и относится к ним легкомысленно недопустимо.

Э. М. Базелян , д.т.н., профессор
Энергетический институт имени Г.М. Кржижановского, г. Москва