От овечки к личности: почему до сих пор не клонировали человека. Забытое клонирование: почему о сенсации XX века не слышно в последнее время Клонирование органов человека

Человек со времен своего разумного существования стремился быть молодым, здоровым и жить долго, а лучше - вечно. Не только древние колдуны, шаманы, целители стремились раскрыть тайну вечной жизни, изобрести но и советские врачи работали над созданием Кремлёвской таблетки бессмертия. К сожалению, пока, человек бессилен в этой проблеме. А вот продлить жизнь становится вполне реально. С появлением и развитием генной инженерии становится возможным клонирование живых органов , что само по себе является ступенью к здоровью и долголетию.

Что такое клонирование, думаю, знает каждый. Клонирование многоклеточных организмов или медицинских органов – точное воссоздание, появление на свет искусственным путём (без полового размножения) живых организмов или создание его частей путём определённых воздействий на клеточное ядро.

Создавая определённые условия и воздействуя на ядро клетки можно заставить её развиваться в нужном направлении вплоть до полного воспроизведения умершего организма при наличии его генетического материала. И сегодня подобные работы уже не тайна.

Научный мир замахнулся на великое: клонирование человека после беспрецедентного появления на свет из пробирки в 1996 году всем известной шотландской овечки по имени Долли.

Однако, принятая в 2005 году ООН «Конвенция о запрете клонирования человека» по социально-этическим и этико-религиозным соображения приостановила на неопределённый срок все работы в этом направлении. Да и сама Долли была усыплена в 2003 году по причине заболевания.

Кстати, чучело Долли выставлено в Шотландском национальном музее.

В России действует Федеральный закон «О временном запрете на клонирование человека» от 20 мая 2002 г. № 54-ФЗ.

Однако не все страны подписались под Конвенцией, одной из них стал Китай. Буквально вчера 18 сентября 2015г ученые из лондонского Института Великобритании запросили у государственного регулятора разрешение на модификацию генов человеческих эмбрионов. Если разрешение будет получено, то Великобритания станет второй страной после Китая, где будут проводится подобные работы.

Это то, что касается клонирования человека. Однако научные работы в области стволовых клеток успешно продолжаются во всём мире и сегодня.

Что такое стволовые клетки?

В человеческом организме существует два вида стволовых клеток: обычные клетки, которые всю жизнь выполняют только отведённую им роль по воспроизводству тканей, а есть такие, которые способны превращаться в другие виды клеток, их называют универсальными . Первые живут во взрослом организме, а вот вторые можно взять только из эмбриона и потом выращивать в пробирке. Вот эти клетки и способы заменить поражённые (больные клетки) в организме. Однако, первая проблема в том, что далеко не каждому организму они могут подойти. Вторая: есть случаи в опытах, когда введённые в организм эмбриональные стволовые клетки начинают неконтролируемо делиться, формируя опухоли-тератомы.

Эти проблемы были решены японскими медиками в ходе выполненного ими важного научного исследования в 2012 году, за что они и получили Нобелевскую премию. Установлено, все мы теоретически независимо от возраста можем быть клонами сами для себя, то есть для наших органов. Мельчайший кусочек кожи, волос или даже кровь могут служить материалом для получения тех самых ценных универсальных клеток, которые и послужат основой для любого органа, будь то кость, хрящ или зрачок глаза.

Конечно, всё это пока чисто научные наработки, должны пройти годы, чтобы биоматериал легко выращивался в любой лаборатории лечебного центра и столь же легко возвращался назад в свой организм. Прежде чем будут возможны подобные операции по замене «заболевших» или вовсе вышедших из строя человеческих органов, нужно решить много промежуточных вопросов. Но их решение не за горами! И тогда любая генетическая поломка в больных клетках будет легко исправлена.

И радует, что и в России научные исследования стволовых клеток успешно развиваются. Так в Российском институте Общей генетики им Вавилова совсем недавно была получена кровь из стволовых клеток кожи, зачаток глаза, там первыми вырастили мини-сердце и продолжаются работы по его совершенствованию…

Голландцы вырастили кишку, японцы - зачаток зуба, а чуть ранее ими был получены клетки сетчатки глаза, сейчас ведутся работы по созданию клеток, вырабатывающих инсулин. Задача очень сложная. Но представьте, сколько людей в мире будут избавлены от тяжёлого недуга - сахарного диабета, болезни Альцгеймера и Паркинсона.

И пусть теория очень далека от практики, всё равно радует факт столь бурного развития клонирования, как отрасли биомедицины и возможности спасения жизни людей, особенно маленьких детей.

Ежегодно жизни тысяч людей по всему миру спасают операции по трансплантации органов. Но десятки тысяч пациентов гибнут из-за того, что донорских органов им не досталось. Трансплантология в последнее десятилетие развивается очень быстро, но главный вопрос все еще не решен: где взять органы для пересадки?

Вариантов несколько:
- взять орган от донора, и почти всю жизнь пациента подавлять иммунитет, чтобы побороть отторжение органа;
- заменить искусственным аналогом (в случаях, когда это возможно);
- вырастить новый «орган в пробирке».
Безусловно, орган из пробирки решит множество проблем: организм примет его как свой, а, значит, не будет отторжения, при этом это будет полностью функциональный орган, а не «протез», лишь частично восполняющий функции. А значит, пациент, получивший такой орган, сможет с большей вероятностью вернуться к полноценной жизни.
Прекрасное решение, но как вырастить такой орган и какие вообще органы возможно вырастить «в пробирке»? И современная наука уже много лет бьётся над решением этих проблем.
Клонирование органов
Наверное многие помнят овечку Долли, которую клонировали в Рослинском институте, в Шотландии, близ Эдинбурга в 1996 году. Тогда в прессе много говорили о возможности клонирования органов. Но научное сообщество поспешило опровергнуть возможность клонирования отдельных органов человека, т. к. соматические (не половые) клетки всего организма имеют одинаковый генетический набор.
Конечно, можно сделать клона – такого же полноценного человека, которого к тому же сначала надо вырастить, и лишь потому него взять органы. Но это было бы, по меньшей мере, неэтично. Единственный перспективный путь – получить органы invitro (вне живого организма).
Клеточные культуры помогут в поисках Уже давно в рутинной работе в научно-исследовательских целях учёными используются клеточные культуры. Клеточные культуры – это клетки человека либо животных, которые растут на специальных питательных средах. Изначально в качестве сред использовались плазма или аллантоисная жидкость, однако со временем изобрели среды постоянного состава. Основные требования к средам – поддержание определённого уровня кислотности (как правило Ph6 - 7,5), осмотического давления, а также наличие необходимых питательных веществ.
Среды для культивирования могут иметь различный состав. На питательной среде клетки культуры начинают активно делиться. В течение некоторого периода времени клетки покрывают всю поверхность культуральной плашки. После этого исследователи собирают клетки, делят их на части и помещают в новые плашки. Процесс перемещения клеток в новые плашки называется пересевом и может многократно повторяться в течение многих месяцев.
Цикл пересева клеток называется пассаж. Однако такое ведение клеток в культуре характерно для трансформированных (изменённых) клеток, которые зачастую уже не похожи на те, из которых были получены. Обычные же соматические клетки взрослого человека очень ограничены в возможностях самовоспроизведения, причём, чем более высоко специализирована клетка, тем меньше поколений клеток она может дать. Другими словами, взять обычные клетки и вырастить из них хоть что-нибудь (даже не целый орган) практически невозможно.
И всё-таки есть в нашем теле клетки, которые могут давать много поколений потомков: это стволовые клетки (в костном мозге, жировой ткани, мозге и др.). Огромным прорывом было открытие в организме взрослого человека стволовых клеток.
На сегодняшний день известно множество стволовых клеток в человеческом организме. С их помощью надеются также вскоре лечить множество болезней человека, однако, как и везде в физиологии и медицине, в этой перспективе множество подводных камней, например один из них – опасность опухолеобразования. Но если использовать эти клетки для создания биоинженерных органов, «органов из пробирки», то возможно удастся избежать этого риска.
Органы – это целые системы клеток разных типов, которые взаимодействуют друг с другом, имеют определённое пространственное строение и выполняют определённую функцию. Потому мало просто суметь вырастить клетки на питательной среде, необходимо ещё и «заставить» их взаимодействовать, создавать структуру.
И эти вопросы старается решить метод «органной культуры». Когда на питательных средах вместе могут сокультивироваться уже несколько типов клеток, которые взаимодействуют и создают определённые структуры. И всё же органные культуры – это не органы, а лишь системы клеток.Наука в поискеВ настоящее время по всему миру множество учёных ведёт поиски возможностей выращивания если не целых органов, то хотя бы«органоидов», которые смогут выполнять часть функций того или иного органа. Это технологии будущего, т. к. они основаны на использовании технологий культивирования из стволовых клеток необходимых человеку тканей, что в настоящее время является проблемой, также находящейся на стадии научных исследований и разработок.
Одним из методов, близких к применению, пожалуй, можно считать запатентованный в 1999г. способ восстановления целостности гиалинового хряща суставов, путем введения в сустав взвеси аутологичных костномозговых стромальных клеток-предшественников, выращенных in vitro. (Патент на изобретение №: 2142285 Автор: Чайлахян Р. К.) В этом случае используется выращивание «в пробирке» не целого органа, в данном случае хряща, а лишь культивирование клеток-предшественников хряща, которые затем вводятся в сустав.
В настоящее время уже проходят клиническое испытание метод лечения остеоартритов при помощи трансплантации клеток. Этот метод состоит в удалении зрелых клеток хряща пациента (хондроцитов) и культивирования их в определенных условиях in vitro. Когда число клеток увеличится, пациенту проводят хирургическую операцию по имплантированию клеток в коленный сустав. Имплантированные хондроциты в последствии помогут образованию здорового хряща. В отличие от предыдущего метода, в данном случае клетки вводятся не в виде суспензии, а на подложке, что требует оперативного вмешательства, однако дает лучшую приживаемость клеток.
В 2005-2006 году появилась информация о возможности выращивания костно-дентального эквивалента, то есть зуба. Эксперименты былипроведены на крысах и свиньях (когда костно-дентальный эквивалент свиньи выращивался в тканях крысы). Зачатки коренных зубов получали из свиней 6-месячного возраста. Из них выделяли клетки и высаживали их на специальные матрицы из синтетических полимеров. Полученные конструкции помещали в сальник бестимусных крыс (бестимусные крысы – животные со сниженным иммунитетом для снижения вероятности отторжения помещённой конструкции), то есть крысы использовались как питательная среда.
Одновременно создавали эквивалент костной ткани. Для этого на те же синтетические полимеры наносили остеобласты (клетки из которых развиваются костные клетки) тех же животных. Эквивалент костной ткани культивировался в роторном биореакторе в течение 10 дней. Через 4 недели эквивалент зуба извлекали из сальника и совмещали с эквивалентом костной ткани. Полученную конструкцию снова помещали в сальник бестимусных крыс на 8 недель.
В результате, эквивалент зуба, помещенного в сальник крыс, при гистологическом исследовании имел строение, характерное для нормального зуба уже через 4 месяца. Композиция костной ткани с эквивалентом зуба при гистологическом исследовании имела структуру губчатой кости, а интегрированный в нее зуб состоял из дентина, эмали и пульпы с сосудами, как полноценный орган. Однако аналогичных исследований с тканями людей пока не проводилось.
Кроме того, сейчас очень много работ появляется в новом направлении: это некий синтез донорского органа и клеток реципиента. Для этого необходимо из донорского органа удалить все клетки при помощи специальных химических агентов. При этом все внеклеточные структуры сохраняются. Оставшийся «каркас» органа затем заселяется клетками реципиента. Так решается вопрос и с сохранением архитектоники органа, и с преодолением иммунного отторжения органа донора.
По данному принципу уже получены такие органы как печень и лёгкие, однако все испытания пока проводятся на животных.Так, в октябре 2010г. появилась публикация американских исследователей, в которой они описали создание биоинженерной печени. Это органоподобная структура, которая может выполнять функции печени. Однако о создании полноценной печени в культуре говорить ещё рано, хотя, несомненно, это уже большой шаг в данном направлении.
Совсем недавно вышла новая статья, в которой авторы говорят о создании биоинженерного лёгкого, моделирование проводили на крысах с использованием человеческих клеток. Полученный орган трансплантировали крысе и он выполнял функции лёгкого. Однако исследования на приматах, а уж тем более на людях, пока не проводились.
Таким образом, «органы из пробирки» - это, несомненно, технологии будущего, которые уже сегодня могут становиться реальностью. Однако как и любые новые разработки, пока это единичные модели, они стоят больших и физических, и финансовых затрат (как, скажем, уникальные автомобили, собранные вручную), однако, когда-нибудь они станут конвейерными технологиями.

С тех пор как стало возможным клонирование живых организмов, идут споры об этичности использования клонов в целях трансплантации органов. Недавно ученые из Орегонского университета здоровья и науки впервые получили полноценный человеческий эмбрион в лабораторных условиях. Такие эмбрионы предполагается использовать для получения стволовых клеток.

Для этого требуется образец кожи оригинала, а также донорская яйцеклетка, полученная от здоровой женщины. Из яйцеклетки удаляется ДНК, после чего внутрь нее вводится одна из кожных клеток. После этого на клетку воздействуют электроразрядом, отчего она начинает делиться. В течение шести дней из нее развивается эмбрион, у которого можно брать стволовые клетки для имплантации. По словам ученых, при помощи подобных технологий можно будет лечить такие тяжелые недуги, как болезнь Альцгеймера, различные патологии мозга и рассеянный склероз.

"Наше открытие позволяет выращивать стволовые клетки для пациентов с серьезными заболеваниями и повреждениями органов, - заявил один из авторов разработки, доктор Шухарат Миталипов. - Конечно, еще очень много нужно сделать, прежде чем появится безопасный и надежный способ лечения стволовыми клетками. Но наша работа - это уверенный шаг навстречу регенеративной медицине".

До недавнего времени для вынашивания клонированного эмбриона обязательно требовалась суррогатная мать. Теперь можно будет получать клоны в лаборатории без участия женщин-добровольцев. Между тем, в очередном открытии многие видят угрозу для человечества. Вернее, перспективу для незаконного и неконтролируемого клонирования людей.

Клонирование - тема достаточно скользкая. Если люди появляются на свет искусственным путем, то можно ли считать их людьми? В последнее время появилось множество фантастических произведений и фильмов, сюжетом которых является дискриминация клонов, а также их использование для пересадки органов. Трансплантация органов всегда являлась проблемой, так как сложно отыскать подходящего донора. При наличии целой армии клонов, выращенных именно в целях донорства, шансы людей на получение здоровых органов взамен больных резко возросли бы. Тем более если бы эти органы брались у их совершенно идентичных двойников. Со временем удалось бы "пересаживать" даже поврежденные конечности или, скажем, глаза…

Но вот как быть с самими клонами? Пока речь идет только об эмбрионах, из которых не планируется выращивать настоящих людей. Но в принципе они могли бы ими стать. Еще вариант - выращивать клонов с неполноценным мозгом - таких вроде бы не жалко… Но опять же - насколько это этично? Герою книги Нэнси Фармер "Дом Скорпиона", клону крупного наркобарона, в отличие от его "собратьев" по несчастью, сохраняют разум, но спасти свою жизнь ему удается лишь чудом…

В фантастической картине "Остров" изображено общество будущего, где существуют целые поселения людей-клонов, которых выращивают только для того, чтобы впоследствии получать от них органы… А в романе Кадзуо Исигуро "Не отпускай меня" и в одноименном фильме клонов обучают в специальных школах, с детства приучая к мысли, что рано или поздно они станут донорами и будут отдавать свои органы, чтобы спасать жизни других людей, так что практически никто из них не доживет до тридцатилетнего возраста…

Казалось бы, в реальности подобный сценарий попросту невозможен: ни одна страна мира не может узаконить убийство живых людей в медицинских целях. Но кто знает… Ведь перспективы, которые открывает клонирование, достаточно заманчивы. И почему бы не пожертвовать недоразвитой "копией", чтобы спасти жизнь, скажем, знаменитого ученого, артиста или политического деятеля? Чем глобальнее масштаб, тем менее ценной покажется жизнь клона…

Особый интерес в биоэтическом контексте представляет проблема клонирования. Выделяют несколько методов клонирования:

Манипуляции со стволовыми клетками;

Пересадка клеточного ядра.

Уникальность стволовых клеток заключается в том, что, когда они попадают на поврежденные участки разных органов, то они способны превращаться в клетки именно такого типа, которые необходимы для восстановления ткани (мышечные, костные, нервные, печеночные и т.д.). То есть, используя технологию клонирования, можно «на заказ» выращивать необходимые человеческие органы. Настоящая фантастика, однако, где взять стволовые клетки? Результаты многолетних экспериментов таковы:

Абортивный материал при естественном и искусственном оплодотворении;

Извлечение стволовых клеток из уголков и борозд мозга, костного мозга и волосяных фолликул взрослого организма и других тканях;

Кровь из пупочного канатика;

Откачанный жир;

Выпавшие детские зубы;

Изучение стволовых клеток взрослого организма, безусловно, обнадеживают и не вызывают этических проблем в отличие от эмбриональных стволовых клеток. Общепризнано, что лучшим источником стволовых клеток для терапевтического клонирования (т.е. получения эмбриональных стволовых клеток) являются эмбрионы. Однако в связи с этим нельзя закрывать глаза на потенциальные опасности. Европейская группа по этике выдвинула на первый план проблему прав женщин, которые могут попасть под сильное давление. Кроме того, специалисты отмечают проблему добровольного и информированного согласия для донора (а также анонимности) и для получателя клеток. Дискуссионным остаются вопросы о приемлемом риске, о применении этических стандартов в исследованиях на людях, охрана и безопасность клеточных банков, конфиденциальность и защита частного характера генетической информации, проблема коммерциализации, защита информации и генетического материала при перемещении через границу и т.д.

В большинстве стран мира существует полное или временное запрещение на репродуктивное клонирование человека. Во Всеобщей Декларации о геноме человека и правах человека ЮНЕСКО (1997 г.) запрещена практика клонирования с целью воспроизводства человеческой особи.

Другим методом клонирования является пересадка клеточного ядра. На данный момент, таким образом, получено много клонов различных видов животных: лошади, кошки, мыши, овцы, козы, свиньи, быки и т.д. Ученые констатируют, что клонированные мыши живут меньше и больше подвержены разным заболеваниям. Исследования по клонированию живых существ продолжаются.

Глава 7. Биоэтические проблемы генно-инженерных технологий



7.1 Биотехнология, биобезопасность и генная инженерия: история и современность

Длительный период времени под биотехнологией понимали микробиологические процессы. В широком смысле под термином «биотехнология» обозначают использование живых организмов для производства продуктов питания и энергии. Последние годы двадцатого века знаменовались большими достижениями молекулярной биологии и генетики. Были разработаны методы выделения наследственного материала (ДНК), создания его новых комбинаций с помощью манипуляций, осуществляемых вне клетки, и перенесения новых генетических конструкций в живые организмы. Таким образом, появилась возможность получать новые породы животных, сорта растений, штаммы микроорганизмов с признаками, которые невозможно отобрать с помощью традиционной селекции.

История использования генетически модифицированных организмов (ГМО) в практической деятельности небольшая. В связи с этим существует элемент неопределенности относительно безопасности ГМО для здоровья человека и окружающей среды. Поэтому обеспечение безопасности генно-инженерных работ и трансгенных продуктов является одной из актуальных проблем в этой области.

Безопасность генно-инженерной деятельности или биобезопасность предусматривает систему мероприятий, направленных на предотвращение или снижение до безопасного уровня неблагоприятных воздействий генно-инженерных организмов на здоровье человека и окружающую среду при осуществлении генно-инженерной деятельности. Биобезопасность как новая область знаний включает два направления: разработка, применение методов оценки и предупреждения риска неблагоприятных эффектов трансгенных организмов и систему государственного регулирования безопасности генно-инженерной деятельности.

Генетическая инженерия – это технология получения новых комбинаций генетического материала с помощью манипуляций с молекулами нуклеиновых кислот, проводимых вне клетки, и переноса созданных конструкций генов в живой организм. Технология получения генно-инженерных организмов расширяет возможности традиционной селекции.

Производство трансгенных медицинских препаратов – перспективное направление генно-инженерной деятельности. Если раньше, например, эффективным методом лечения анемии считалось частое переливание донорской крови (рискованная и дорогостоящая процедура), то сегодня для производства трансгенных медицинских препаратов используют модифицированные микроорганизмы и культуры животных клеток. Эффективность использования трансгенных организмов на службе у медицины можно рассмотреть на нескольких примерах решения проблем здоровья человека. По данным ВОЗ, в мире около 220 млн людей, страдающих диабетом. Для 10% пациентов показана инсулиновая терапия. Обеспечить всех нуждающихся животным инсулином невозможно (вероятность переноса вирусов от животных к людям; дорогостоящее лекарство). Именно поэтому разработка технологии биологического синтеза гормона в клетках микроорганизмов – оптимальное решение задачи. Инсулин, полученный на микробиологической фабрике, идентичен натуральному инсулину человека, дешевле препаратов животного инсулина, не вызывает осложнений.

Выраженное замедление роста детей, приводящее к появлению лилипутов, карликов, – еще одна проблема здоровья человека, связанная с нарушением работы желез внутренней секреции (недостаток гормона роста соматотропина, который вырабатывается гипофизом). Раньше эту болезнь лечили путем введения в кровь пациентов препаратов гормона роста, выделенных из гипофиза умерших людей. Однако здесь возникало ряд технических, медицинских, финансовых и этических проблем. Сегодня эта проблема решена. Ген, кодирующий образование гормона роста человека, синтезирован и встроен в генетический материал E.coli.